
Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

PREDICTING GROKKING LONG BEFORE IT HAPPENS:
A LOOK INTO THE LOSS LANDSCAPE OF MODELS WHICH
GROK

Pascal Jr. Tikeng Notsawo∗ & Hattie Zhou
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ABSTRACT

This paper presents a cost-effective method for predicting grokking in neural
networks—delayed perfect generalization following overfitting or memorization.
By analyzing the learning curve of the first few epochs, we show that certain
oscillations forecast grokking in extended training. Our approach, using the Fourier
transform’s spectral signature, efficiently detects these oscillations. Additional
experiments explore their origins and characterize the loss landscape.

1 INTRODUCTION

Despite the recent growth of theoretical studies and empirical successes of neural networks (Graves
et al., 2013; He et al., 2015; Krizhevsky et al., 2012; Silver et al., 2016), understanding why such
networks find generalizable solutions in over-parameterized regimes, remains an open question.
Indeed, one of the major challenges of deep learning is that, in practice, neural networks are highly
overparameterized (Allen-Zhu et al., 2019; Zhang et al., 2017), and in some cases, it is observed
that overparameterization empirically improves optimization and generalization, which seems to
contradict traditional learning theory. For example, Livni et al. (2014) observed that in synthetic data
generated from a target network, the learned network converges faster when it has more parameters
than the target network. Arora et al. (2018) also found that, in practice, trained overparameterized
networks can often be compressed into simpler networks with far fewer parameters without affecting
their generalizability. Nakkiran et al. (2020) experiment a double-descent phenomenon where
performance first gets worse as the model size increases and then gets better. Recently, Power et al.
(2022) have shown through a phenomenon they named grokking that long after severe overfitting,
validation accuracy sometimes suddenly begins to increase from chance level to perfect generalization.

The grokking phenomenon opens the way to new studies concerning the structure of the minimum
found by Stochastic Gradient Descent (SGD) and how networks behave in the neighborhood of SGD
training convergence. Indeed, neural activity is often characterized by an exploratory early phase
of rapid learning with a rapid and sometimes abrupt decrease in the loss function (Nakkiran et al.,
2020; Feng & Tu, 2021). This phase is followed by a second phase, often called the diffusion phase
(Shwartz-Ziv & Tishby, 2017), when the learning error reaches its minimum value and the global loss
decreases again, but much more slowly and gradually. This second phase, often chaotic (Herrmann
et al., 2022; Cohen et al., 2021; Thilak et al., 2022), is characteristic of the structure of the minimum
found by the optimization algorithm (Goodfellow & Vinyals, 2015; Im et al., 2016; Smith & Topin,
2017; Keskar et al., 2017; Li et al., 2018; Jastrzebski et al., 2018; Feng & Tu, 2021). Optimization
hyper-parameters and initialization strongly affect training dynamics during the above phases, the
convergence to a specific region in parameter space, and the geometries and generalization properties
of solutions found by SGD (Keskar et al., 2017; Jastrzebski et al., 2018). Recent work has shown
that grokking is observed only with a certain range of hyperparameters (Power et al., 2022; Liu et al.,
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2022). Others have studied microscopic phenomena that coincide or come in tandem with delayed
generalization, such as the emergence of structure in embedding space (Liu et al., 2022) and the
slingshot effect (Thilak et al., 2022). However, observing grokking often requires training the model
for a very long time, making it difficult to construct a phase diagram of generalization covering all the
hyperparameters. In this work, we propose a low-cost method that can predict grokking long before
it occurs. Our main contributions are: 1) We study the learning curves of a transformer network
(Vaswani et al., 2017) trained on arithmetic data in settings with and without grokking (section 2). 2)
We propose spectral signature to quantify the oscillations of the loss in the early phases of training
and show that empirically it can be used to predict a potential generalization (section 3). 3) To
understand the origin of the oscillations and the shape of the minimizer, we analyze the model’s loss
landscape along the training trajectory and present evidence linking the shape of this landscape to
the different phenomena related to grokking such as the slingshot mechanism (Thilak et al., 2022)
(section 4).

2 PRELIMINARIES
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Figure 1: Oscillation in training and validation
accuracies for on modular addition with r = 0.5.
The left curve shows a case where the model did

not grok after 10k steps of training. The right
curve shows the generalization after overfitting.

Task definition and training scheme Let ◦ be
a binary mathematical operator and p, q ∈ N∗.
The task is to predict (a ◦ b) mod q given
a, b ∈ [p] = {0, . . . , p− 1}. The dataset D that
we can thus constitute has a size of p(p+ 1)/2
if ◦ is symmetric and p2 otherwise. D is ran-
domly partitioned into two disjoint and non-
empty sets Dtrain and Dval, the training and
the validation dataset respectively. The training
data fraction r = |Dtrain|/|D| is a hyperpa-
rameter. This problem can be solved with an
auto-regressive approach. For a, b ∈ [p], let
s = s1 . . . s5 = ⟨a⟩⟨◦⟩⟨b⟩⟨=⟩⟨(a ◦ b) mod q⟩
where si = ⟨x⟩ stands for the token correspond-
ing to the element x. The training is performed
by maximizing the likelihood under the direct
autoregressive factorization, and the loss (as well as the accuracy) is calculated only on the answer
part s5 of the equation. We focus on the multiplication in the permutation group S5 and modular
addition, and we use a transformer (Vaswani et al., 2017) as a model (more details in the appendix D).

Grokking and Non-grokking Let t1 denote the step when training accuracy first exceeds 0%, t2
when training accuracy reaches 100% (memorization), t3 when validation accuracy first exceeds 0%,
and t4 when validation accuracy reaches 100% (generalization). The delay between memorization
and generalization, t4 − t2, characterizes grokking (figure 1). On the other hand, formally defining
non-grokking is challenging within finite training steps. We proceeded empirically by training the
models for a large range of hyperparameters, and we fit a function that predicts t4 for each training
data fraction r. That is, if a given value for each hyper-parameters (including r), we train a model for
t4(r) + ϵ (we used ϵ = 1k) steps and have no generalization, we can stop the training. In general,
more data leads to faster grokking.Empirically, t4 follows a power law of the form t4(r) = ar−γ + b
(more details in the appendix E). This was first predicted by Žunkovič & Ilievski (2022).

3 PREDICTING GROKKING

A starting observation is that the learning curves of models that grok exhibit oscillatory behaviors
(Figure 1). A related phenomenon, the slingshot effect, was identified recently by Thilak et al. (2022),
who observed that slingshots and grokking tend to come in tandem. Based on this observation, we
conjecture that the spectral signature of training loss in early epochs can hint us about the existence
of an upcoming grokking. We first try to quantify the oscillations in the training loss comparatively
when the model groks and when it does not grok, the idea being to stop the training if the model does
not seem to be able to grok in order to save computational resources. Let F(L) denote the Fourier
transform of L(t), the training loss as a function of training step t, and mn(L) =

∫
ωn|F(L)(ω)|2dω,
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the nth moment of F2(L), with |F(L)(ω)|2 the energy spectral density present in the pulse ω. The
Hjorth activity represents the signal power, the surface of the power spectrum in the frequency domain.
It is given by m0(L), which is equal to

∫
L2(t)dt by the parseval’s theorem.
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Figure 2: Final validation accuracy (top) and
spectral energy m0(L) for the first 400

training steps (bottom), all this as a function
of the weight decay strength (x-axis) and the
learning rate (y-axis). The similarity between
m0(L) and the validation accuracy suggests
that m0(L) can be used as an indicator for

the upcoming grokking.

Figure 2 shows a similarity between the oscillation
in the training loss in the early phases of training
and the validation accuracy for r = 0.5 (more results
in the appendix, E), suggesting that the spectral sig-
nature can serve as a proxy to upcoming grokking
phenomenon. The generalization is most observed
for small learning rates and small weight decay. Al-
though large learning rates have the effect of increas-
ing the oscillations, this does not directly result in
grokking and is not necessarily visible in the early
steps but more near the basin of attraction of the min-
imum. Importantly, the spectral signature of the loss
is not an explicit capacity measure, so either a posi-
tive or negative correlation with generalization could
be informative. Our observations are related to the
empirical findings of Jiang et al. (2019). They investi-
gate more than 40 complexity measures derived from
both theoretical and empirical studies and train a va-
riety of models by systematically varying commonly
used hyperparameters. Their results suggest that the
difficulty of optimization during the initial phase of
the optimization benefits the final generalization, but
the evolution of the loss when it reaches a certain
value is not correlated to the generalization of the
final solution.

4 GROKKING LOSS LANDSCAPE
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Figure 3: 1D projection of the landscape.
The x-axis is α ∈ [−3, 3], and the y-
axis are the loss and accuracy at θ∗ +
αδ with δ ∝ θ0 − θ∗, where θ0 is the
initial parameter and θ∗ the parameter
after the model has grokked. We have
two minimizers of the training loss but
only one minimizes the validation loss.

What can be a possible explanation for the oscillations ob-
served in the early phases and the slingshot phenomenon?
Many hypotheses can, in fact, be put forward to reconcile
oscillations with delayed generalization. Does the model,
during the confusion, memorization, and comprehension
phases, oscillate around a local minimum, cross a very
flat region, or circumvent a large obstacle? One initial
intuitive explanation for delayed generalization could be
that the model gets stuck in local solutions during the
memorization phase. The ease of escaping these local
solutions depends on factors such as initialization or hy-
perparameters like the amount of training data, and the
model achieves grokking when it successfully breaks free
from the basin of attraction of such solutions. This expla-
nation is similar to the working hypothesis of Dziugaite &
Roy (2017) that SGD finds good solutions only if they are
surrounded by a relatively large volume of solutions that
are nearly as good. A second attempt to explain grokking
landscape is that the model crosses an ill-conditioned sur-
face, potentially a valley with almost no curvature in the
majority of directions and very high curvature in some directions. This results in a weak progression
in the directions of low curvature and a lot of back and forth in the directions of high curvature.
A third attempt is to consider the first two hypotheses together. That is, the model goes through
several ill-conditioned local minima during training. In the following paragraphs, we present the loss
landscape of grokking and discuss how they are linked to our hypothesis.
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Figure 4: Accuracy surface ft(α) =

Accuracy(θt + αδ⃗t) for each epoch t. This
corresponds to figure 3, but for several training
epochs. The direction δ⃗t used for each training
epoch t is the unit vector of θ∗ − θt, the direction
from the parameter at epoch t to the minimum.
Here, the structure is more exotic.

For r = 0.3, figure 3 shows the 1D projection of
the grokking loss surface just after the grokking
step, while figures 4 shows it for different train-
ing epochs (more experiments in the Appendix
G). We can see that the 1-D subspace from initial
to final parameters and from one minimizer to
another contains many difficult and exotic struc-
tures. We can clearly see two minimizers of the
training loss, but only one minimizes the vali-
dation loss: during memorization, the model is
in this local minimum, and it achieves grokking
when it successfully breaks free from this lo-
cal solution. When r increases, the time t4 it
takes for the model to reach the global minimum
decreases as Θ(1/rγ) with γ > 0 (section E)

To measure the level of curvature of the loss
function, we compute the maximum (λmax) and minimum (λmin) eigenvalue of its Hessian. We
observe that there is no significant negative curvature in the trajectory. The curvature remains
generally positive and is greatly disturbed at the slingshot points (λmin remains in general close
to 0 while λmax is large, but during slingshot λmin becomes negative). Our loss is λmax-smooth,
i.e. its gradient is λmax-Lipschitz. It is known from optimization literature that a function with
bounded Hessian eigenvalues has a gradient that tends to decay when the parameter gets closer to the
minimum, in contrast to a non-smooth one that generally has abrupt bends at the minimum, which
causes significant oscillations for gradient descent (Bubeck et al., 2015).

In fact, Let {λt(i)}i be the eigenvalues of Ht and {vt(i)}i the associated eigenvectors. For a
very small step size ϵt of SGD, Lt+1 − Lt ≈ −ϵt∥Gt∥2 + 1

2ϵ
2
tG

T
t HtGt − o(ϵ2t∥Gt∥2). Futher, if

λt(i) > 2/ϵt, we get−ϵt∥Gt∥2+ 1
2ϵ

2
tG

T
t HtGt > 0 1. WhenHt has some large positive eigenvalues

(i.e., high-curvature directions) and some eigenvalues close to 0 (i.e., low-curvature directions),
gradient descent bounces back and forth in high-curvature directions and makes slow progress in
low-curvature directions. In this case, the optimization problem has an ill-conditioned curvature.
Furthermore, if the loss function near θt has a high condition number, that is, very small steps cause
an increase in the cost function (for example, if θt is a very sharp minimum surrounded by high loss
regions), the optimization problem becomes also ill-conditioned. During training, if the gradient
norm does not shrink but GT

t HtGt increases in order of magnitude, learning can become very slow
despite a strong gradient. The above observation (λt(i) > 2ϵ−1

t ) is similar to what Herrmann et al.
(2022) [Theorem 2.1] defines for the eigenvalues of a positive-definite Ht, as a locally chaotic
training behavior of the Local Lyapunov Exponents. They show evidence that neural network training
is intrinsically locally chaotic due to the negative eigenspectrum of the Hessian and that network
training with SGD exhibits globally edge-chaotic behavior. This observation is also linked to the
progressive sharpening phenomenon (Cohen et al., 2021) in which maxiλt(i) increases and reaches
a value that is equal to or slightly larger than 2ϵ−1

t , leading the model to enter an Edge of Stability
regime where loss shows non-monotonic training behavior over short time spans (Thilak et al., 2022).

We also observed that more than 98% of the total variance in the parameter space occurs in the first
2 PCA modes, much smaller than the total number of weights, suggesting that the optimization
dynamics are embedded in a low-dimensional space (Li et al., 2018; Feng & Tu, 2021). Moreover,
the model remains in a lazy training regime (Chizat et al., 2019; Berner et al., 2021) most of the
time, as the measure of cosine distance between the model weights from one training step to the next
remains almost constant, except at the slingshot location (more details on these observations in the
Appendix G.2).

These observations seem to support the hypothesis that the model crosses a perturbed valley of bad
solutions and experiences disturbances along the direction of the valley. The valley here is just a
surface with a large curvature in most directions and no (low) curvature in the rest. Hence, the
learning activity of SGD is governed by these directions of high curvature. When the iterates fall in

1This comes come from the fact that near θt, L(θ) ≈ Lt+(θ−θt)
TGt+

1
2
(θ−θt)

THt(θ−θt)+o(∥θ−θt∥2).
Taking θ = θt − ϵtGt gives the first approximation. The last inequality is obtained with GT

t HtGt =∑
i λt(i)⟨Gt, vt(i)⟩2 and

∑
i⟨Gt, vt(i)⟩2 = ∥Gt∥2.
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the valley, we are at the minimum for the training objective (figure 4), so that the model can memorize
the training data. This local minimum in the valley directions is flat, but in the high curvature
directions, it is sharp. The pathological curvature is no longer a big problem with accelerated or
adaptative gradient methods, but the local minimum and saddle points are. This interpretation of
grokking was the working hypothesis of Dziugaite & Roy (2017) that SGD finds good solutions
only if they are surrounded by a relatively large volume of solutions that are nearly as good, as we
saw above with grokking optimum that is surrounded by many local minima along the principal
directions of curvature. Moreover, the loss function here does not seem to satisfy the strict saddle
property (λmin < 0), which guarantees that gradient descent does not converge to saddle points
on continuously differentiable functions when using a step size smaller than 1/λmax (Lee et al.,
2016). The dynamic, therefore, has components in the unstable subspace of the Hessian (a sub-space
spanned by the dimensions of non-negative eigenvalues), and if θ0 is chosen out of this space (which
happens with zero probability for a random initialization), there is hope that we will quickly converge
to a global solution. The spectral signature reflects the dynamics in and out of this unstable sub-space.
The strict saddle property is indeed verified only when there are strong oscillations.

5 SUMMARY AND DISCUSSION

In this work, we observe that in the context of grokking, the memorization phase is characterized by
a perturbed landscape, and it is separated from comprehension by a perturbed valley of bad solutions.
Small data results in the slow progression of SGD in this region, causing a delay in generalization.
During the comprehension phase, the loss and accuracy of training and validation show a periodic
perturbation. We found that these perturbation points are characterized at the level of loss (resp.
accuracy) by a sudden increase-decrease (resp. decrease-increase), at the level of the model weights
by a sudden variation of the relative cosine similarity, and at the level of the loss landscape by
obstacles. This last point goes against what Goodfellow & Vinyals (2015) observed, namely that a
variety of state-of-the-art neural networks never encounter any significant obstacles from initialization
to solution. The slingshot mechanism also contradicts the idea that SGD spends most of its time
exploring the flat region at the bottom of the valley surrounding a flat minimizer (Goodfellow &
Vinyals, 2015) since it goes with the model from confusion to the terminal phase of training, even
after the model generalized. The Hessian of the grokking loss function is characterized by larger
condition numbers, leading to a slower convergence of gradient descent. Also, more than 98% of the
total variance in the parameter space occurs in the first 2 PCA modes, much smaller than the total
number of weights, suggesting that the optimization dynamics are embedded in a low-dimensional
space (Li et al., 2018; Feng & Tu, 2021). Moreover, the model remains in a lazy training regime
(Chizat et al., 2019; Berner et al., 2021) most of the time.

From the point of view of the landscape, grokking seems a bit clearer: landscape geometry affects
generalization and can allow in the early stages of training to know if the model will generalize or
not by just looking at a microscopic quantity characteristic of that landscape, like the empirical risk.
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A RELATED WORKS

Grokking Power et al. (2022) are the first to have studied and named the grokking phenomenon.
They train a decoder-only causal transformer (Vaswani et al., 2017) to predict the response c of a
binary operation of the form a ◦ b = c, where a, b, c are discrete symbols without internal structure,
and ◦ a binary operation (addition, composition of permutations, bivariate polynomials, etc). Liu
et al. (2022) studied grokking in simple toy models: an embedding layer followed by a multilayer
perceptron for classification and regression. The authors empirically show that generalization on
algorithmic datasets coincides with the emergence of structure in embeddings, that the quality of
representation predicts generalization, and they defined the notion of representation quality in the toy
setting and showed that it predicts generalization by developing an effective theory to describe the
learning dynamics of the representations in the same toy setting. They also illustrate phase diagrams,
including memorization, comprehension, confusion, and grokking (similar to comprehension, but
with a very large number of training steps between memorization and generalization) as a function of
hyperparameters. The taxonomy used throughout this paper is identical to theirs, with the difference
that we refer in our work to the phases along the training trajectory. We examined the loss landscape
in more detail during these training phases but did not analyze the embedding structure. Thilak et al.
(2022)’s slingshot mechanism correlates with our oscillation hypotheses. Their work focuses on
characterizing periodic oscillations observed in the different phases of model training, and they were
the first to empirically observe that grokking almost exclusively happens at the onset of slingshots
and is absent without it. Our work reveals that these oscillations are caused at the landscape level
by the escape of sharp mountains surrounding local optima. Moreover, the model weights change
abruptly during the slingshot and slightly outside the slingshot. Other works have also been interested
in grokking recently, such as the mechanistic interpretability of grokking (Nanda & Lieberum, 2022)
and grokking as a phase transition (Žunkovič & Ilievski, 2022).

Neural networks loss landscape The visualization methods used in this paper were first introduced
by Goodfellow & Vinyals (2015), and are still one the most used method in date to study the effect of
loss landscapes on generalization (Goodfellow & Vinyals, 2015; Im et al., 2016; Smith & Topin, 2017;
Keskar et al., 2017; Li et al., 2018; Feng & Tu, 2021). Li et al. (2018) observe that, when networks
become sufficiently deep, neural loss landscapes quickly transition from being nearly convex to being
highly chaotic, and that this transition coincides with a dramatic drop in generalization error, and
ultimately to a lack of trainability. Feng & Tu (2021) investigate the connection between the loss
function landscape and the stochastic gradient descent (SGD) learning dynamics. They show that
around a solution found by SGD, the loss function landscape can be characterized by its flatness in
each PCA direction. As Li et al. (2018), they show that optimization trajectories lie in an extremely
low dimensional space.
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Flatness, Sharpness Hochreiter & Schmidhuber (1997) defined a flat minimizer as a (large) region
in weight space with the property that each weight vector from that region leads to a similar small
error, and proposed an algorithm to search such a minimizer, called flat minimum search. Similarly,
we can say that a minimizer is sharp when the loss function has a (very) high condition number near
it, at any point in its basin of attraction. Keskar et al. (2017) characterize flatness using eigenvalues
of the Hessian and empirically show that large-batch methods make the minimizers of training and
testing functions sharp while small-batch methods make them flat. Hochreiter & Schmidhuber (1997)
and Keskar et al. (2017) methods to quantify sharpness are not invariant to symmetries in the network,
so, are not sufficient to determine generalization ability, as shown by Dinh et al. (2017); Neyshabur
et al. (2017).

Related phenomena Grokking can be seen as an extreme gradient starvation phenomenon (Pezeshki
et al., 2021b) or a very slow double descent (Nakkiran et al., 2020), for which the model only manages
to learn the features necessary for generalization in the terminal phases of training (Pezeshki et al.,
2021a). In fact, we observe that the validation loss exhibits a double descent behavior with an initial
decrease, then growth, and a rapid decrease to zero when the model grows. Grokking can also be
seen as a phase transition (see (Nanda & Lieberum, 2022; Žunkovič & Ilievski, 2022)). Regarding
catastrophic forgetting, there is a link between it when learning many tasks and the sharpness of the
optimum for each task; so that the slightest update to one task makes the optimum escape from its
basin of attraction for the other tasks. Mirzadeh et al. (2020; 2021) formalize this.

B LIMITATIONS AND PERSPECTIVES

Limitations Some limitations that would require further scrutiny include:

1. We view the loss surface with a dramatic reduction in dimensionality, and we need to be careful in
interpreting these graphs.

2. We are only optimizing an unbiased estimate of the total loss function (added up across all training
examples), whose structure may be different from the global loss function, so that the delay in
generalization is an effect of each individual term in the loss function, or of the noise induced by the
sampling of these terms, or of the stochasticity in the initialization of weights, generation of dropout
masks, etc (Goodfellow & Vinyals, 2015). More research needs to be done to find out if it is indeed
the fact that the loss surface is perturbed that causes the generalization in the long run.

Perspectives The future direction is to study what a feature learning-based explanation of double
descent Pezeshki et al. (2021a) has in common with grokking and to see if it is possible to design a
specific learning curve as Chen et al. (2021) derived for the generalization curve. Also, this work
focused on detecting grokking; however, it ultimately paved the way to induce grokking. Another
path of development is to move from arithmetic tasks with deterministic answers to language models
and computer vision with more probabilistic answers.

C NOTATIONS

The index t is used to characterize the training steps (θt, etc.). Lt = L(θt) denotes the loss at θt
(the parameter update at time t given the optimization algorithm of choice), Gt = ∇L(θt) and
Ht = ∇2L(θt) the gradient and the local Hessian matrix of the loss function at θt.

D TRAINING SETTINGS

We focus on the following binary operations, for a prime number p = 97, and q = p : modular
addition (+), a ◦ b = a+ b (mod p) for a, b ∈ [p]; and multiplication in the permutation group S5,
a ◦ b = a · b for a, b ∈ S5.

For all experiments, we used a transformer with 2 layers, 128 embeddings, and 4 attention heads,
with a total of roughly 4 · 105 non-embedding parameters. We use the following hyperparameters
unless stated otherwise: AdamW optimizer with a learning rate of 10−4, weight decay of 1 and
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(β1, β2) = (0.9, 0.98), linear learning rate warm up over the first 10 updates, and minibatch size of
|Dtrain|.

E GROKKING

E.1 TRAINING PHASES

Previous work (Power et al., 2022; Liu et al., 2022) used the terms confusion, memorization and
comprehension in the phase diagram based on different hyperparameters, but in this paper they also
refer to the phases along the training trajectory. Conventional deep neural networks training is split
into two phases (Shwartz-Ziv & Tishby, 2017; Nakkiran et al., 2020; Feng & Tu, 2021). A first
phase during which the network learns a function with a small generalization gap and a second phase
during which the network starts to overfit the data, leading to an increase in the test error. However,
Nakkiran et al. (2020) show that in some regimes, the test error decreases again and can reach a
lower value at the end of the training compared to the first minimum, suggesting potential training
phases to exploit. Feng & Tu (2021) distinguish two phases, an initial fast learning phase where the
loss function decreases quickly and sometimes abruptly, followed by an exploration phase when the
training error reaches its minimum value and the overall loss still decreases, but much more slowly
and gradually. However, considering just two phases does not allow to study grokking properly, as
the whole ingredient of grokking is in the memorization phase and in how the model gets in this
phase and out.

E.2 NON-GROKKING

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5000

10000

15000

20000

Figure 5: t4(r) is a transition step from memorization to generalization for each training data fraction
r >= 0.2. The blue curve shows the empirically obtained values of t4(r) (y-axis) as a function of
r (x-axis), and the orange curve represents an estimate of the form t4(r) = ar−γ + b fitted on the
obtained data, with (γ, a, b) = (7.73, 1.09× 1015, 1442.63) in this case.

Although it is easy to identify grokking, it is very difficult to give a formal definition of its opposite
since nothing contradicts the fact that if the model is allowed to train indefinitely, it will not eventually
generalize. Knowing the hyperparameters (learning rate, weight decays strength, ...) that allow to
have grokking ( let’s note by Hg the set of values of such hyperparameters); we use them to train our
model for different data sizes. Then, we fit a function that predicts t4, the generalization step, for
each training data fraction r. We then used the expression of t4(r) estimated as a proxy of the number
of training steps needed to get the generalization for each r. That is, if for other hyper-parameters
that are not in Hg, and for a given training data fraction r, we train a model for t4(r) + ϵ (we used
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Figure 6: Left) The first figure (top) represents the validation accuracy (%) at the end of the training
(10k steps), and the second figure (bottom) represents the spectral energy (activity) in the training
loss for the first 400 training steps (r = 0.5). On the x-axis we have the weight decay strength,
and on the y-axis we have the learning rate. Right) On the x-axis we have the (normalize) activity
(400 steps), and on the y-axis we have the validation accuracy (%), for different value of r. On the
x-axis we have the weight decay strength, and on the y-axis we have the learning rate. A similarity is
observed between the oscillation patterns in the training loss during the initial stages of training and
the validation accuracy. This suggests that the spectral signature can be used as an indicator or proxy
for the upcoming grokking phenomenon. The highest degree of generalization is typically observed
when using small learning rates and small weight decay. While large learning rates may increase
oscillations, this does not directly lead to grokking and is not necessarily evident in the early stages of
training. Instead, such effects become more noticeable near the basin of attraction of the minimum.

ϵ = 1k) steps and have no generalization, we can stop the training. This does not necessarily imply
that there will be no grokking if the model is left in training for longer. The limit of this approach is
that t4(r) is just an empirical law estimated for r ≥ rmin > 0, which collapses when r → 0.

E.3 THE OVER-PARAMETERIZATION RATIO AND THE EFFECT OF THE OPTIMIZER PARAMETERS

In general, more data leads to faster grokking (figure 5-b ), i.e. t2(r) and t4(r) are a decreasing func-
tions of r. Empirically, t4 follows a power law of the form t4(r) = ar−γ + b. This was first predicted
by Žunkovič & Ilievski (2022). For r ≥ rmin, we found (γ, a, b) = (7.73, 1.09 × 1015, 1442.63)
for modular addition (figure 5.b), and (γ, a, b) = (1.18, 1.85× 106, 0.0) for multiplication in S5, in
Hg . Smaller learning rates require more training steps for convergence, whereas larger learning rates
result in rapid changes and require fewer training epochs. However, a learning rate that is too large
can cause the model to converge too quickly to a suboptimal solution, whereas a learning rate that
is too small can cause the process to get stuck. This is verified with grokking because the more we
increase the learning step, the faster we observe grokking, up to a threshold that depends on the value
of the weight decay strength used.

F SPECTRAL SIGNATURE

A starting observation is that the learning curves of models that grok exhibit oscillatory behaviors. A
related phenomenon, the slingshot effect, was observed and named recently by Thilak et al. (2022).
Cyclic transitions between a stable and unstable training regime characterize this phenomenon. Thilak
et al. (2022) characterized this phenomenon as the complete cycle starting with the norm growth
phase and ending with the norm plateau phase and found that it is ubiquitous and can be easily
replicated in multiple scenarios, encompassing a variety of models and data sets. They observe that
slingshots and grokking tend to come in tandem, that is grokking almost exclusively happens at
the onset of slingshots, and is absent without it. As pointed out by Thilak et al. (2022), this type
of transition is reminiscent of the catapult phenomenon (Lewkowycz et al., 2020), where the loss
initially increases and begins to decrease once the model catapults to a region of lower curvature
early in the training, for a sufficiently large training step.
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(d) r = 0.9

Figure 7: For (a)-(d), the first figure (top) represents the validation accuracy (%) at the end of the
training (10k steps), and the second figure (bottom) represents the spectral energy (activity) in the
training loss for the first 400 training steps. On the x-axis, we have the weight decay strength, and on
the y-axis, we have the learning rate. A similarity is observed between the oscillation patterns in the
training loss during the initial stages of training and the validation accuracy.

We first try to comparatively quantify the oscillations in the training loss when the model groks and
when it does not grok, the idea being to stop the training if the model does not seem to be able to grok
in order to save computational resources. From the gradient flow equation θ̇ = −G(t), it holds that
L̇ ≈ −∥G(t)∥2 and L̈ ≈ 2G(t)TH(t)G(t) = 2

∑
i λi(t)⟨G(t), vi(t)⟩2 with {λi(t)}i the spectrum

of H(t), and {vi(t)}i the associated eigenvectors. From this, it becomes clear that the evolution of L
over time depends on the norm of the gradient, and how fast it changes depends on the curvature of
its landscape. Any signal that can be represented as a variable that varies in time has a corresponding
frequency spectrum. We considered the training loss L over the training steps (and in the early stages
of training) as signals and analyzed its spectral signature. By spectral signature of the loss, we mean
any measure or set of measures that can quantify the oscillations in the loss, such as the spectral
energy or the Hjorth parameters (Hjorth, 1970) - activity, mobility, and complexity. The Hjorth
activity, which is the variance of the signal in the time domain, is equal to the spectral energy if the
signal L has zero mean. The latter condition is obtained by passing L through a sufficiently low-pass
filter in the frequency domain, which removes its non-oscillatory components 2 that are not necessary
for the quantification of the oscillations. In this case, the Hjorth parameters are directly related to the
loss landscape, as illustrated below.

The Hjorth activity represents the signal power, the surface of the power spectrum in the frequency
domain. It is given by m0(L), which is equal to

∫
L2(t)dt by the parseval’s theoremThe Hjorth

mobility is the mean frequency or the proportion of standard deviation of the power spectrum

2A non-oscillatory component of a signal is any component that does not vary rapidly with time, such as a
constant value, a linear trend, or a smooth curve. These components are generally considered to be low-frequency
signals and can be removed by passing the signal through a low-pass filter.
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and is given by
√
m2(L)/m0(L) with m2(L) =

∫
|ωF(L)(ω)|2dω =

∫
L̇2(t)dt ≈ m0(L̇) the

activity of the gradient norm ∥G(t)∥2. In a similar way, The Hjorth complexity, which indicates
how the shape of a signal is similar to a pure sine wave, is given by

√
m4(L)/m2(L) with m4(L) =∫

|ω2F(L)(ω)|2dω =
∫
L̈2(t)dt ≈ m0(L̈) the activity of the hessian spectrum.

Figures and 6 and 7 show a similarity between the oscillation in the training loss in the early phases
of training and the validation accuracy for many values of r.

G LOSS LANDSCAPE

G.1 1D/2D PROJECTION

Since neural loss functions live in a very high-dimensional space, visualizations are only possible
using low-dimensional 1D (line) or 2D (surface) plots. In this work, we consider the approach of
Li et al. (2018). Let θ be the point near which we want to observe the loss landscape. We plot
the loss and the accuracy as a function of A ⊆ R, f(α) = L(θ + αδ⃗), where δ⃗ is a direction
vector carefully chosen in Θ⃗ 3. Due to scale invariance in network weights, this approach may
fail to capture the intrinsic geometry of loss surfaces. To remove this scaling effect, we plot the
loss functions using an adaptation of the filter-wise normalized directions (Li et al., 2018), that is
wk(δ⃗) ← wk(δ⃗)

∥wk(δ⃗)∥
∥wk(θ)∥ and bk(δ⃗) ← bk(δ⃗)

|bk(δ⃗)|
|bk(θ)| for each weight W = [. . . , wk, . . . ]

T (wk is

a vector) and bias b = [. . . , bk, . . . ] (bk is a scalar) in each layer of θ and δ⃗ 4. This loss-landscape
visualization approach, although simple, has the advantage of allowing to visualize the potential local
convexity of the loss in the chosen direction 5.

For r = 0.3, figure 3 shows the 1D projection of the grokking accuracy surface for a single epoch
of training (just after the grokking step), while figures 4 (δ⃗t ∝ θ∗ − θt), 8 (δ⃗t ∝ θt+1 − θt), 10
(δ⃗t ∝ θ0 − θt) and 9 (random δ⃗t) show it for different training epochs.
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(a) Accuracy surface : ft(α) = Acc(θt + αδ⃗t) for each epoch t

Figure 8: 1D projection of the grokking loss surface for epoch to epoch, δ⃗t ∝ θt+1 − θt ∝ −∇L(θt).
This allows a closer look at the behavior of the landscape in the (local) direction of the gradient at each
training step t. For some t, the loss, although disturbed, remains locally flat (up to a resolution used
for visualization). These are the instants during which the weight progresses along the directions of
least curvature, resulting in a stagnation of the loss. These points are usually followed by a slingshot.

3In 2D, the loss is plot as a function of A × B ⊆ R2, f(α, β) = L(θ + αδ⃗ + βη⃗), where δ⃗ and η⃗ are
two carefully chosen direction vectors in Θ⃗. δ⃗ and η⃗ can be randomly chosen or defined by δ⃗ = θ

′
− θ and

η⃗ = θ
′′
− θ, with θ

′
and θ

′′
another points whose choice will be specified.

4The same as for η⃗ when applied
5A function f : Rn → R is convex if and only if g(x,y) : α ∈ [0, 1] 7→ g(x,y)(α) = f

(
x + α(y − x)

)
is

convex for all x, y ∈ Rn.

14



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

11
00

0
12

00
0

13
00

0
14

00
0

15
00

0
16

00
0

17
00

0
18

00
0

19
00

0

epochs

-3.0
-2.52
-2.04
-1.56
-1.08

-0.6
-0.120.0
0.36
0.84
1.32

1.8
2.28
2.76

al
ph

a

train

0

20

40

60

80

100

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

11
00

0
12

00
0

13
00

0
14

00
0

15
00

0
16

00
0

17
00

0
18

00
0

19
00

0

epochs

-3.0
-2.52
-2.04
-1.56
-1.08
-0.6

-0.120.0
0.36
0.84
1.32
1.8

2.28
2.76

al
ph

a

validation

0

20

40

60

80

(a) Accuracy surface : ft(α) = Acc(θt + αδ⃗t) for each epoch t

Figure 9: 1D projection of the grokking loss surface in a random direction δ⃗. In this direction, no
obstacles are visible along the trajectory, and the surface is rather well-conditioned.
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(a) Accuracy surface : ft(α) = Acc(θt + αδ⃗t) for each epoch t

Figure 10: 1D projection of the grokking loss surface from the initialization point to any step t,
δ⃗t ∝ θ0 − θt. In this direction, each point considered behaves locally as a minimum, and as one
approaches the optimum, local minima become preponderant.

G.2 LOSS SURFACE CURVATURE

The approach described in the previous section allows us to visualize the loss surface under a dramatic
dimensionality reduction, and we need to be careful how we interpret the plots. One way to measure
the level of convexity in a loss function is to compute the principal curvatures, which are simply
eigenvalues of the Hessian. Since we are in a very high dimension, it would be impractical to compute
all the eigenvalues of the Hessian or simply to compute the Hessian itself. To avoid this dimensional
problem, we estimated the curvature through the condition number of the Hessian of L(θ) at each
step t, which is simply the ratio λmin(t)/λmax(t), where λmin(t) and λmax(t) are, respectively,
the minimum and maximum eigenvalues of the Hessian of Lt. The condition number is a direct
measure of pathological curvature. Larger condition numbers imply slower convergence of gradient
descent. Li et al. (2018) compute the above ratio at each point of the loss surface and observe that
the convex-looking regions in the surface plots correspond to regions with insignificant negative
eigenvalues, while chaotic regions contain large negative curvatures, and that for convex-looking
surfaces, the negative eigenvalues remain extremely small.

To measure the level of curvature of the loss function, we compute the maximum (λmax) and
minimum (λmin) eigenvalue of its Hessian (figure 11). We observe that there is no significant
negative curvature in the trajectory. The curvature remains generally positive and is greatly disturbed
at the slingshot points (λmin remains in general close to 0 while λmax is large, but during slingshot
λmin becomes negative). Our loss is λmax-smooth, i.e. its gradient is λmax-Lipschitz. It is known
from optimization literature that a function with bounded Hessian eigenvalues has a gradient that

15



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

tends to decay when the parameter gets closer to the minimum, in contrast to a non-smooth one that
generally has abrupt bends at the minimum, which causes significant oscillations for gradient descent
(Bubeck et al., 2015).

In fact, Let {λt(i)}i be the eigenvalues of Ht and {vt(i)}i the associated eigenvectors. For a
very small step size ϵt of SGD, Lt+1 − Lt ≈ −ϵt∥Gt∥2 + 1

2ϵ
2
tG

T
t HtGt − o(ϵ2t∥Gt∥2). Futher, if

λt(i) > 2/ϵt, we get−ϵt∥Gt∥2+ 1
2ϵ

2
tG

T
t HtGt > 0 6. WhenHt has some large positive eigenvalues

(i.e., high-curvature directions) and some eigenvalues close to 0 (i.e., low-curvature directions),
gradient descent bounces back and forth in high-curvature directions and makes slow progress in
low-curvature directions. In this case, the optimization problem has an ill-conditioned curvature.
Furthermore, if the loss function near θt has a high condition number, that is, very small steps cause
an increase in the cost function (for example, if θt is a very sharp minimum surrounded by high loss
regions), the optimization problem becomes also ill-conditioned. During training, if the gradient
norm does not shrink but GT

t HtGt increases in order of magnitude, learning can become very slow
despite a strong gradient. The above observation (λt(i) > 2ϵ−1

t ) is similar to what Herrmann et al.
(2022) [Theorem 2.1] defines for the eigenvalues of a positive-definite Ht, as a locally chaotic
training behavior of the Local Lyapunov Exponents. They show evidence that neural network training
is intrinsically locally chaotic due to the negative eigenspectrum of the Hessian and that network
training with SGD exhibits globally edge-chaotic behavior. This observation is also linked to the
progressive sharpening phenomenon (Cohen et al., 2021) in which maxiλt(i) increases and reaches
a value that is equal to or slightly larger than 2ϵ−1

t , leading the model to enter an Edge of Stability
regime where loss shows non-monotonic training behavior over short time spans (Thilak et al., 2022).
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Figure 11: Condition number of the Hessian over training epoch for modular addition (top, r = 0.3,
bottom, r = 0.8). We can see that there is no significant negative curvature in the trajectory (figure
11). The curvature remains in general positive and is greatly disturbed at the slingshot points.

6This comes come from the fact that near θt, L(θ) ≈ Lt+(θ−θt)
TGt+

1
2
(θ−θt)

THt(θ−θt)+o(∥θ−θt∥2).
Taking θ = θt − ϵtGt gives the first approximation. The last inequality is obtained with GT

t HtGt =∑
i λt(i)⟨Gt, vt(i)⟩2 and

∑
i⟨Gt, vt(i)⟩2 = ∥Gt∥2.
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G.3 OTHER LANDSCAPE MEASURES

To see how far optimization strays from the primary linear subspace, we plot the norm of the residual
of the parameter value after projecting the parameters at each epoch into the 1-D subspace using the
following two approaches. Let M = [θt − θT ]1≤t≤T−1 ∈ R(T−1)×d where T is the total number of
training steps. We applied PCA to the matrix M , select the 2 most explanatory directions, then project
each parameter θt on these two directions to have α(t) and β(t). In figure 12, we plot the projection
along the two first PCA axes from initialization to solution, α(t) and β(t). More than 98% of the
total variance in the parameter space occurs in the first 2 PCA modes, much smaller than the total
number of weights, suggesting that the optimization dynamics are embedded in a low-dimensional
space (Li et al., 2018; Feng & Tu, 2021).
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Figure 12: Projection along the axis from initialization to solution, α(t) and β(t). We can see that
more than 98% of the total variance in the parameter space occurs in the first 2 PCA modes, much
smaller than the total number of weights, suggesting that the optimization dynamics are embedded in
a low-dimensional space.

Also, the cosine similarity measure between the model weights from one epoch to the next remains
almost constant, except at the slingshot location (figure 14). This allows us to see that our model
passes through the abovementioned anomalies. It has been shown that with high probability over the
initialization, the iterates of the gradient descent algorithm even stay in a small fixed neighborhood of
the initialization during training. Because the parameters only move very little, this type of training
has also been coined lazy training (Chizat et al., 2019; ?). These steps, where the distances change
abruptly, are caused by spikes in the training gradient (figure 13).

G.4 THE SLINGSHOT MECHANISM

Above, we derive L̇(t) = −∥G(t)∥2 for a small enough step size. This relaxation property of gradient
descent reflects the fact that the loss function cannot increase. However, we lose this property with
certain accelerated or adaptative methods like Adam or on ill-conditioned problems, as we saw above
with Lt+1 > Lt for ϵtλt(i) > 2. In the case of grokking, the loss, even when it becomes zero,
presents a sudden growth, followed by decay, and this is in a periodic way. Thilak et al. (2022) have
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(b) r = 0.8

Figure 13: Gradient Norm ∥Gt∥2. Most of the time, there is no significant gradient, which results in
a weak progression of gradient descent.
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Figure 14: Relative consine similarity (r = 0.3 and 0.8). Left) cos(θt, θt+1) Right) cos(θt, θ0). Most
of the time the weights progress very little, jumping when the gradient explodes, with a slingshot
effect.

recently shown that this phenomenon is general to the optimization of deep neural networks. Between
two slingshots, the gradient is almost zero, all eigenvalues of the Hessian are nonnegative, and there
is one direction of very large curvature that dominates the others and the weights update, resulting in
a small change in weight from one training step to another. The model thus seems to traverse a flat
valley.

To reduce this phenomenon (i.e., the amplitude of the spikes), we clipped the gradient norm during
training (using a threshold η > 0). This had the effect of slowing down generalization but not
preventing it.

18



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Figure 15: 3D (r = 0.5)

θ̇ =

{
− η

∥G(t)∥G(t) if ∥G(t)∥ ≥ η

−G(t) otherwise.
(η > 0)

=⇒ L̇ =

{
−η∥G(t)∥ if ∥G(t)∥ ≥ η
−∥G(t)∥2 otherwise. (η > 0)

The spikes are reduced as η → 0, but remain visible as θ → θ∗. By reducing the learning rate
extremely, the spikes also become less visible, but we also pay the same cost because the model takes
more steps to generalize.

G.5 THREE-DIMENSIONAL VISUALIZATIONS

We can accomplish this by viewing a heatmap of the cost function in 2D (figure 15).
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Figure 16: 1D projection of the grokking loss (top) and accuracy (bottom) surface for different values
of the training data fraction r, for modular addition. The direction used for each training epoch t is
δ⃗t = θ∗ − θt.
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Figure 17: 1D projection of the grokking loss (top) and accuracy (bottom) surface for different values
of the training data fraction r, for multiplication in S5. The direction used for each training epoch t

is δ⃗t = θ∗ − θt.
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Figure 18: Condition number of the Hessian over training epoch for modular addition.
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Figure 19: Gradient Norm for modular addition.
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Figure 20: Relative cosine distance for modular addition. Left) cos(θt, θt+1) Right) cos(θt, θ0)
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H INTRINSIC DIMENSION ESTIMATION

We also empirically investigate the relationship between the evolution of the objective function of
a neural network during training and the evolution of the intrinsic dimension (ID) of the activation
manifolds of its layers. We found that the dimensionality of the network layers (mainly the last layer)
correlates with oscillations in training and validation performances (loss and accuracy) both in toy
models (Liu et al., 2022) and transformer (Power et al., 2022). The intrinsic dimensionality grows at
the very beginning of the training, then decreases (oscillating very strongly) until it stabilizes at a
certain level of the training.

H.1 METHODS

Data are usually represented by high-dimensional feature vectors, but in many cases, they could be,
in principle, embedded in lower-dimensional spaces without any loss of information (Facco et al.,
2017). In other words, any set of points of a high-dimensional ambient space RD usually actually
lies on (or close to) another space of dimension d smaller than D : d is then called the intrinsic
dimension of the ambient space RD. Several methods have long been developed to estimate this
intrinsic dimension (Roweis & Saul, 2000; Tenenbaum et al., 2000; Belkin & Niyogi, 2001; Donoho
& Grimes, 2003; Levina & Bickel, 2004; David J.C. & Zoubin, 2005), among which Two Nearest
Neighbors (TWONN) (Facco et al., 2017) and Maximum Likelihood Estimation (MLE) approaches
(Levina & Bickel, 2004; David J.C. & Zoubin, 2005) that examine a neighborhood around each point
and compute the Euclidean distance to the nearest neighbor kth (Pope et al., 2021).

Assuming that the density is constant within small neighborhoods, the MLE (Levina & Bickel, 2004)
uses a Poisson process to model the number of points found by random sampling within a given
radius around each sample point (Pope et al., 2021). By relating the rate of this process to the surface
area of the sphere, the likelihood equations yield an estimate of the intrinsic dimension at a given
point x as

m̂k(x) =

[
1

k − 1

k−1∑
j=1

log
Tk(x)

Tj(x)

]−1

where Tj(x) is the Euclidean distance from x to its jth nearest neighbor. Levina & Bickel (2004)
propose to average the local estimates at each point to obtain a global estimate (n is the number of
samples) :

m̂k =
1

n

n∑
i=1

m̂k(xi)

David J.C. & Zoubin (2005) suggest a correction based on the averaging of the inverses:

m̂k =

[
1

n

n∑
i=1

m̂k(xi)
−1

]−1

TWONN (Facco et al., 2017) uses just the two nearest neighbors of each point to make the estimate.
The distribution of R = ∆v2

∆v1
has as probability density function g(R) = 1

(1+R)2 (Facco et al.,
2017), where ∆vl = ωd(r

d
l − rdl−1) is the volume of the hyperspherical shell enclosed between two

successive neighbors l − 1 and l of a given point i of the dataset (rl being the distance between i
and its lth nearest neighbor), d the dimensionality of the space in which the points are embedded
and ωd = πd/2

Γ(d/2+1) the volume of the d-sphere with unitary radius (Γ is the Euler gamma function).
Let µ = r2

r1
≥ 1, then R = µd − 1 since r0 = 0, which allows finding an explicit formula for

the distribution of µ, f(µ) = dµ−d−11[1,+∞](µ), and thus its cumulative distribution F (µ) =

(1− µ−d)1[1,+∞](µ)⇒ d = − log(1−F (µ))
log(µ) , µ ≥ 1. This yields the following algorithm.

1. Compute the pairwise distances for each point in the dataset i = 1, . . . , n

2. For each point i find the two shortest distances ri(i) and ri(2).

3. For each point i compute µi =
ri(2)
ri(1)
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4. Compute the empirical cumulate F (µi) by sorting the values of {µi}ni=1 in an ascending
order through a permutation σ, then define F (µσ(i)) =

i
n

5. Fit the points of the plane given by coordinates {(log(µi),− log(1−F (µi))) | i = 1, . . . , n}
with a straight line passing through the origin.

Note that the last step of this algorithm is to solve the linear equation − log(1− F (µi)) = d log(µi)
for any point i of the data set, which by the least squares reduces to d∗ = argmind∈R

∑n
i=1

(
log(1−

F (µi)) + d log(µi)
)2

, that is d∗ = −
∑n

i=1 log(µi) log(1−F (µi))∑n
i=1 log(µi)2

= −
∑n

i=1 log(1−i/n) log(µσ(i))∑n
i=1 log(µi)2

. For
k = 2, we have m̂ki = log(µi)

−1 for any point i in the data set. This implies, if − log(1−F (µi)) =
d∗ log(µi) ∀i, m̂−1

k d∗ = 1
n

∑n
i=1 m̂

−1
ki d

∗ = − 1
n

∑n
i=1 log(1− i/n), that is, m̂k ∝ d∗ up to the least

squares error
∑n

i=1

(
log(1− F (µi))

)2 − (d∗)2
∑n

i=1 log(µi)
2. We empirically obtained a Pearson

correlation coefficient of ∼ 99.60% between MLE (with k = 2) and TWONN (with a p-value in the
order of ∼ 10−7). Since we will only be interested in the evolution of the intrinsic dimension (and
not its value itself), we could use any of the two methods in our work.

H.2 RESULTS

We use David J.C. & Zoubin (2005)’s Maximum Likelihood Estimation approach with k = 2
neighbors to estimate the intrinsic dimensionality of every layer of our model during training, training
data, and validation data. For modular addition, we varied the percentage of training data from 0.35
to 0.9 in steps of 0.5, that is, in {0.35, 0.40, . . . , 0.85, 0.90}. We have repeated each experiment for
each dataset size with 2/3/5 random seeds. We fixed the learning rate to 10−4. See figures 21 and 22
below.

Figure 21: Modular addition, 2 different initial conditions (one per row). Steps is training steps×100.
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(a)

(b)

Figure 22: Training & validation accuracy & loss versus estimated intrinsic dimension in the case of
modular addition, 2 different initial conditions (one per column)

(a) Accuracy (b) Loss

Figure 23: (Grokking) Validation accuracy and loss for modular addition, with different data size.
For other operators, the validation accuracy stays at 0 before starting to grow. For addition, it goes up
to the percentage of training data at the beginning of training, stays there, before grokking later.
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I THEORETICAL MODELS OF GROKKING

We will use the following acronyms to designate our algorithms : sgd for vanilla SGD, momentum
for SGD with momentum (Polyak, 1964), rmsprop for the RMSProp algorithm (Hinton, 2012), rprop
for the resilient backpropagation algorithm (Riedmiller & Braun, 1993), adam for Adam (Kingma &
Ba, 2014) and adamax for Adamax (Kingma & Ba, 2014).

I.1 ROSENBROCK FUNCTION

The vanilla rosenbrok function is given by gn(x) =
∑n/2

i=1

[
100(x2i − x2

2i−1)
2 + (x2i−1 − 1)2

]
,

with the gradient∇ign(x) = 200(xi − x2
i−1) · 1i∈2N −

[
400xi(xi+1 − x2

i )− 2(xi − 1)
]
· 1i∈2N−1,

and x∗ ∈ {(1, . . . , 1), (−1, 1, . . . , 1)} ⊂ {x,∇gn(x) = 0} 7. A more involved variant is given by
gn(x) =

∑n−1
i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
, with the gradient ∇ign(x) = 200(xi − x2

i−1) ·
1i>1 −

[
400xi(xi+1 − x2

i )− 2(xi − 1)
]
· 1i<n, and x∗ = {1, . . . , 1)} ⊂ {x,∇gn(x) = 0} 8. The

number of stationary points of this function grows exponentially with dimensionality n, most of
which are unstable saddle points (Kok & Sandrock, 2009).

Figure 24: Left) Rosenbrock function in log scale for n = 2, Center) Contours Right) Gradient
field: note how these vectors are pronounced in norm near the global minimum; that is important to
understand how even near this global optimum many optimizers can fail to reach it.

We optimized the Rosenbrock function in a logarithmic scale (to create a ravine, figure 24), for
n = 2. The function is unimodal, and the global minimum is very sharp and surrounded in the
direction of the ravine by many local minima. We fall very quickly into the ravine at the beginning
of optimization because the surface is well-conditioned. Then, depending on the learning rate and
the optimizer used (as well as the associated hyperparameters), we go down the ravine very slowly.
Indeed, without momentum, we do not go directly down to the minimum since the gradient is almost
zero along the ravine direction but very large in the perpendicular directions: we go from left to
right (perpendicular to the ravine), while going down a little, but very slowly. Moreover, once we
are near the minimum, we turn there almost indefinitely. With adaptive gradient, we go down to the
minimum very quickly because this direction problem is corrected (due to momentum, left-right
ravine perpendicular directions cancel out): if the learning rate is too small, we will also go down
very slowly (small gradient in the flat ravine direction). Unlike SGD, here, we always reach the
minimum (and stay there). Also, for some learning rates and initializations, there is a double descent
(Nakkiran et al., 2020) in error (euclidean distance between the global minimum and the current
position at a given time) when landing in the ravine. The methods that succeed in reaching the
minimum are rmsprop, rprop, adam, adamax (figures 25 and 26). The method that comes close to it
without reaching it is momentum.

7When the coordinates range from 0 to n − 1, gn(x) =
∑n/2−1

i=0

[
100(x2i+1 − x2

2i)
2 + (x2i − 1)2

]
and

∇ign(x) = 200(xi − x2
i−1) · 1i∈2N+1 −

[
400xi(xi+1 − x2

i )− 2(xi − 1)
]
· 1i∈2N.

8When the coordinates range from 0 to n − 1, gn(x) =
∑n−2

i=0

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
and

∇ign(x) = 200(xi − x2
i−1) · 1i>0 −

[
400xi(xi+1 − x2

i )− 2(xi − 1)
]
· 1i<n−1.
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Figure 25: Comparative visualization of the progression error of each algorithm on the rosenbrock
function

Figure 26: Comparative visualization of the progression of each algorithm on the rosenbrock function

I.2 RASTRIGIN FUNCTION

The rastrigin function is given by gn(x) = na +
∑n

i=1

[
x2
i − a cos(2πxi)

]
= na + xTx −

a1Tn cos(2πx) with a ∈ R. Its gradient is ∇gn(x) = 2x + 2πa sin(2πx), and x∗ = {0, . . . , 0)} ⊂
{x,∇gn(x) = 0}.
We also optimized the Rastrigin function in a logarithmic scale (to create many local minimums and
make the global minimum sharp, figure 27). The function is unimodal, and the global minimum is
sharp and surrounded symmetrically by many local minima. At the beginning of optimization, we
fall very quickly into the one local minimum. Then, depending on the learning rate and the optimizer
used (and the associated hyperparameters), we can move successively from one minimum to another
until we reach the global minimum. No method has succeeded in reaching the global minimum
(figures 28 and 29).
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Figure 27: Left) Rastrigin function in log scale (a = 10, n = 2), Center) Contours, Right) Gradient
field

Figure 28: Comparative visualization of the progression error of each algorithm on the Rastrigin
function

Figure 29: Comparative visualization of the progression of each algorithm on the Rastrigin function
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