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Abstract

This work introduces Residual TPP, a novel, uni-
fied, and lightweight approach for analyzing event
stream data. It leverages the strengths of both sim-
ple statistical TPPs and expressive neural TPPs
to achieve superior performance. Specifically,
we propose the Residual Events Decomposition
(RED) technique in temporal point processes,
which defines a weight function to quantify how
well the intensity function captures the event char-
acteristics. The RED serves as a flexible, plug-
and-play module that can be integrated with any
TPP model in a wide range of tasks. It enables
the identification of events for which the intensity
function provides a poor fit, referred to as resid-
ual events. By combining RED with a Hawkes
process, we capture the self-exciting nature of
the data and identify residual events. Then an
arbitrary neural TPP is employed to take care
of residual events. Extensive experimental re-
sults demonstrate that Residual TPP consistently
achieves state-of-the-art goodness-of-fit and pre-
diction performance in multiple domains and of-
fers significant computational advantages as well.

1. Introduction
Event stream data, characterized by sequences of events
occurring over time, plays a crucial role across various do-
mains, including financial transactions (Bacry et al., 2015),
neuroscience (Williams et al., 2020), social media (Fara-
jtabar et al., 2017), and natural disaster monitoring (Fox
et al., 2016). In these fields, events are typically discrete,
irregularly spaced, and may exhibit complex temporal de-
pendencies, distinguishing them from conventional time
series data. Consequently, many studies seek to understand
and model the underlying dynamics of event streams in or-
der to address tasks such as predicting future events (Du
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et al., 2016; Biloš et al., 2019; Shchur et al., 2020), detecting
anomalies in event sequences (Liu & Hauskrecht, 2021a;
Shchur et al., 2021), and performing causal inference (Xu
et al., 2016; Zhang et al., 2020b; 2022).

Temporal Point Processes (TPPs) (Daley & Vere-Jones,
2003) are widely used to model the temporal structure and
dependencies in event stream data. A TPP defines the prob-
ability of events occurring at a specific time, conditioned on
the past event history, through an intensity function. Tradi-
tional statistical TPPs, such as the Possion process (King-
man, 1992) and the Hawkes process (Hawkes, 1971), exhibit
favorable statistical properties with fixed parametric inten-
sity functions. While these models are computationally sim-
ple and have been extensively applied in finance (Hasbrouck,
1991), seismology (Ogata, 1988), and other domains for
decades, the strong parametric assumptions constrain their
ability to capture the complexity of real-world event dynam-
ics. To address the limitations and enhance the expressive-
ness of classical TPPs, numerous studies have leveraged the
power of neural networks to construct neural TPPs. Most
neural TPPs parameterize the intensity function using recur-
rent neural networks (Du et al., 2016; Mei & Eisner, 2017)
and attention mechanisms (Zuo et al., 2020; Zhang et al.,
2020a), which enable the capture of complex dependencies.
Furthermore, research has explored innovative extensions of
TPPs, including their integration into meta-learning frame-
works (Bae et al., 2023) and modeling the intensity process
as the solution to a neural jump-diffusion stochastic differ-
ential equation (Zhang et al., 2024).

Despite these efforts, several limitations remain in the analy-
sis of event stream data. (i) RNN-based TPPs struggle to ef-
fectively capture long-term dependencies while transformer-
based TPPs suffer from high computational costs, particu-
larly when processing long sequences. (ii) There is a lack of
focus on developing lightweight models. Existing models
tend to prioritize accuracy, often at the expense of compu-
tational efficiency, limiting their scalability and practical
generalization ability. (iii) Unlike in time series analysis,
where techniques like Seasonal-Trend Decomposition (STD)
have been successfully applied to decompose data into trend,
seasonal, and residual components, no comparable decom-
position methods have been proposed for TPPs to better
capture the temporal structure of event streams and simplify
the computational process.
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In this paper, we pioneer the exploration of leveraging the
statistical properties of event stream data, such as periodic-
ity and self-excitation, to decompose the data and construct
a lightweight model. Specifically, we introduce Residual
TPP, a unified approach that combines the simplicity of
traditional statistical TPPs with the expressiveness of neural
TPPs, achieving superior performance. Technically, we pro-
pose the Residual Events Decomposition (RED) technique,
which utilizes a weight function to separate residuals in tem-
poral point processes. In Residual TPP, we first integrate
RED with a Hawkes process to capture event characteristics
and identify residual events. Subsequently, an arbitrary neu-
ral TPP is employed to handle the residual events, thereby
reducing the computational burden of the neural TPP. Resid-
ual TPP is conceptually simple, computationally efficient,
and demonstrates substantial improvements in goodness-of-
fit and prediction accuracy across multiple domains.

In summary, the contributions of this paper are as follows:

• Due to the distinguished nature of event stream data
(i.e. discrete event types and irregular event times),
the STD methods deployed in time series data can-
not be applied here. Therefore, we introduce a novel
RED technique for TPPs, which uses a proper weight
function to evaluate the performance of the intensity
function and identify residual events. RED is the first
TPP decomposition method and serves as a flexible,
plug-and-play module that can be integrated with any
TPP model to enhance its performance.

• Building on RED, we propose the Residual TPP, a
unified approach that integrates both statistical TPPs
and neural TPPs, demonstrating robust generalization
capabilities.

• The extensive numerical results show that the proposed
Residual TPP not only achieves consistent state-of-the-
art performances across multiple domains but is also
more computationally efficient than existing methods.
Therefore, our new model is lightweight, reducing the
demand for computational resources.

Notation. In this paper, we denote the total event dataset,
the collection of event sequences, by S = {Sn}Nn=1 and
the residual event dataset by S′

w = {S′
n,w}Nn=1, where N

is the total number of sequences. We use |S| to denote the
total number of events in all sequences. Model parameters
for the Hawkes process and neural TPPs are represented
by θ = {θk}Kk=1 and ψ = {ψk}Kk=1, respectively. The
subscripts n, i, and k refer to the event sequence index,
event number index, and event type, respectively.

2. Background
This section provides a brief introduction to the definition of
temporal point processes, their statistical modeling methods

and neural network-based modeling approaches for tempo-
ral point processes.

2.1. Temporal Point Processes

A temporal point process (TPP) is a type of stochastic pro-
cess used to model the occurrence of events over time.
Specifically, a temporal point process is a sequence of ran-
dom variables denoted as {ti}Ii=1, where ti represents the
time of occurrence of the i-th event, with 0 < t1 < · · · <
tI ≤ T . A marked temporal point process (marked TPP)
extends the traditional temporal point process by not only
modeling the times at which events occur, but also modeling
each event type with a discrete variable ki ∈ {1, · · · ,K}.
Formally, a marked temporal point process is a sequence
denoted as S = {(t1, k1), . . . , (tI , kI)} = {(ti, ki)}Ii=1.
In this paper, we primarily focus on marked TPP, as they
represent a more general and widely applicable class of data.

A typical way to characterize a TPP is through its intensity
function, denoted as λk(t|Ht), where Ht = σ({(ti, ki) :
ti < t}) is the information filtration containing the event
history up to time t. For notational simplicity, we may later
write λk(t|Ht) as λk(t). The intensity λk(t) represents the
expected rate of events of type k occurring in an infinitesi-
mal time interval [t, t+ dt), conditioned on the events that
have already occurred by time t. Therefore, the probability
that an event of type k occurs over [t, t + dt) is approxi-
mately λk(t)dt, provided that dt is sufficiently small.

Whether for classical statistical TPPs or neural TPP models,
the training objective is to learn the model parameters by
minimizing the loss function, Negative log-likelihood (NLL).
Given the model’s intensity function λk(t) and an event
sequence S, the corresponding NLL is defined as:

−
I∑

i=1

log λki
(ti) +

K∑
k=1

∫ T

t=0

λk(t) dt.

2.2. Classical Statistical TPPs

Several classical statistical models have been developed
to characterize TPPs, where the intensity function usually
follows a fixed parametric form.

Poisson Processes (Daley & Vere-Jones, 2007). The sim-
plest model for TPPs is the Poisson Process, where the
intensity function is defined as λk(t), a function over time
domain, indicating that the probability of an event occurring
in a given time interval is independent of the history.

Hawkes Processes (Hawkes, 1971). The Hawkes Process
captures the self-exciting nature of events in TPPs. The
occurrence of an event not only depends on the baseline
intensity but is also influenced by past events, making it
suitable for modeling clustered or dependent events. The
occurrence of an event causes a temporary increase in the
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intensity, which decays over time:

λk(t) = µk(t) +
∑
i:ti<t

αk,kigk,ki(t− ti), (1)

where µk(t) > 0 is the baseline intensity, ti denotes the
times of past events, and g(·) > 0 is a pre-specified decay-
ing function that models the influence of past events on the
current intensity. The exponential function gk,ki

(t− ti) =
βk,ki

e−βk,ki
(t−ti) is frequently used in this context. A ma-

jor limitation of this formulation lies in its assumption that
past events cannot inhibit occurrence of future events, which
is unrealistic in complex real-life scenarios.

Self-Correcting Processes (Isham & Westcott, 1979). In
self-correcting processes, the intensity function is typically
modified by a negative feedback term that reduces the like-
lihood of subsequent events, thus correcting the system’s
behavior over time:

λk(t) = Ψ(µkt−
∑
i:ti<t

αk),

where Ψ is a non-linear function, µk is the baseline coef-
ficient, and αk is the self-correction term that reduces the
event intensity based on the accumulated history of events.

2.3. Neural TPPs

Neural TPP models extend the classical statistical models
by parameterizing the intensity function through neural net-
works, rather than relying on a fixed parametric form. These
models autoregressively generate future events conditioned
on historical data. The most widely used neural TPPs can
be broadly categorized as follows.

The first class is RNN-based (Du et al., 2016) or Attention-
based (Zuo et al., 2020) TPPs. In this approach, the
model computes the embedding of the i-th event (ti, ki)
as ei ∈ RD via an embedding layer. The hidden state hi is
updated based on the current event embedding ei and the
previous hidden state hi−1. The next event is then generated
conditioned on hi:

ti+1, ki+1 ∼ Pψ(ti+1, ki+1 | hi), hi = f(hi−1, ei),

where f represents the encoder function, which can take
various forms, such as recurrent architectures (e.g., LSTM,
GRU) or more expressive transformer layers.

Another class, referred to as ODE-based (Jia & Benson,
2019), models the evolution of the hidden state in continuous
time. Between event occurrences, the hidden state is updated
continuously, typically governed by an ordinary differential
equation (ODE). Specifically, the evolution of the hidden
state from the (i− 1)-th to the i-th event is given by:

hi = f(hi−, ei), where hi− = fODE(hi−1, ti−1, ti).

A more complete list of existing neural models can be found
in Appendix D.3.

3. Methodology
In this section, we propose the Residual TPP method to en-
hance the performance of existing models while also reduc-
ing the computational complexity. This method combines
a simple statistical TPP with a neural TPP trained on the
residuals, forming a simple yet powerful hybrid approach.

3.1. Motivation

Our motivation can be summarized as follows:

(i) Event stream data is complex due to irregular timing,
heterogeneity, and the presence of noise or outliers, which
may result from collection errors, unusual behavior, or rare
events. Identifying and handling these outliers is crucial for
accurate analysis but remains challenging. Classical TPPs
typically rely on strong assumptions, such as the Poisson
process or self-excitation, and use fixed parametric forms
based on these assumptions. While these models are struc-
turally simple and computationally efficient, they often per-
form poorly when applied to complex real-world data. As
shown in Figure 1, the Hawkes process fits the data well
most of the time, but it struggles to handle commission
(added) and omission (removal) outliers (Liu & Hauskrecht,
2021b). Thus, we aim to propose a new approach that not
only captures the self-excitation nature of data through the
Hawkes process but also effectively handles outliers.
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Figure 1. A simulation illustrating the impact of outliers on the
Hawkes process. The ground truth intensity is a Hawkes process
with added noise, where black dots represent real events generated
from the ground truth. Green triangles and red crosses indicate
randomly added and removed outliers, respectively. The fitted
Hawkes process is estimated from the modified event sequence.

(ii) Recent advancements in neural TPPs have significantly
improved performance over traditional methods. However,
challenges remain: RNN-based TPPs inherit the intrinsic
weaknesses of RNNs, i.e. their difficulty in capturing long-
term dependencies. In contrast, more expressive attention-
based TPPs, while offering enhanced modeling capabilities,
suffer from high computational complexity and difficulties
in training over long sequences. Therefore, our approach is
designed to address the issue of lightweight modeling.
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(iii) Our approach is inspired by the Seasonal-Trend Decom-
position (STD) techniques in time series analysis, which
decompose a series into trend, seasonal, and residual compo-
nents, allowing models to better utilize periodic information
and enhance prediction accuracy. Many popular models
such as Autoformer (Wu et al., 2021), FEDformer (Zhou
et al., 2022), and DLinear (Zeng et al., 2023), adopt the STD
approach to decompose the time series and separately model
seasonal and trend components. There is a significant body
of research on STD methods. Classical approaches typically
employ moving average kernels to estimate the trend compo-
nent. More recently, several neural network-based methods
have been proposed to model the periodicity in time series
data (Fan et al., 2022; Lin et al., 2024a;b). However, despite
similarities between event stream and time series data, cur-
rent research on TPPs focuses mainly on modifying neural
network architectures for improved performance. To the
best of our knowledge, no studies have yet proposed decom-
position methods for TPPs analogous to those used for time
series. This gap arises from the unique challenges of event
stream data, including irregular timing, heterogeneous
event types, and complex temporal dependencies. Unlike
time series, which are recorded at regular intervals and the
observations are mostly continuous, event streams consist
of asynchronous events that vary in type and frequency and
event types take discrete values, often exhibiting high dimen-
sionality and sparsity. Consequently, defining the residual
of a temporal point process is inherently difficult. To
address this gap, we introduce an innovative modeling and
decomposition approach for temporal point processes.

3.2. Residual TPP

The Residual TPP method consists of three steps: First, a
classical TPP is used to fit the statistical characteristics of
the original sequence, such as periodicity and self-excitation,
to obtain an intensity function. Next, the proposed Residual
Events Decomposition (RED) technique is applied to sep-
arate the residual components of the sequence. Finally, a
neural TPP is used to capture the intensity that remains unex-
plained by the classical model in the residual sequence. By
combining the two intensity functions, the final TPP model
is obtained. The overall algorithmic flow is illustrated in
Figure 2 and Algorithm 1.

Periodic / Self-exciting patterns modeling. (Step 1) Event
stream data often exhibit two key statistical properties: peri-
odicity and self-excitation. Periodicity refers to the tendency
of events to recur at regular intervals, commonly observed
in fields like neuroscience and economics, where events
follow repetitive cycles. Self-excitation refers to the phe-
nomenon where the occurrence of an event increases the
likelihood of future events. This is important in modeling
phenomena such as earthquakes, financial market crashes, or
social media activity, where an event can trigger subsequent

activity. In the view of statistical terminology, periodicity
and self-excitation correspond to the first-order and second-
order statistics of event stream data. These are the main
features that should be captured in TPP modeling. Further
explanations can be found in Appendix B.

Standard statistical TPP model, e.g. the Hawkes pro-
cess, can be well-suited to model both periodicity and self-
excitation, with its intensity function taking the form de-
scribed in (1). To capture periodicity, the baseline function
µk(t) can be selected to exhibit periodic behavior. To model
self-excitation, g(·) is typically chosen to be a non-negative
function that decays over time, such as an exponential decay
or a power-law decay, reflecting the fact that recent events
have a stronger impact on future events but this influence
diminishes with time. Therefore, in order to capture the
key statistical properties of the data in a simple and efficient
manner, we first fit the Hawkes process intensity λ(1)k (t) to
the event sequences, where the overall intensity function is
given by λ(1)(t) =

∑K
k=1 λ

(1)
k (t).

Residual Events Decomposition (RED). (Step 2) Next,
we provide a solution to define the residual of the temporal
point process data. Our objective is to evaluate the perfor-
mance of the intensity function λ(1)k (t) obtained from the
statistical TPP model, and to identify the data points where
the intensity fit is poor. Therefore, we aim to construct a
weight function such that events well captured by λ(1)(t)
receive larger weights, allowing us to filter out the residual
events based on these weights. To achieve this, a specific
weight function is given as follows.

We denote θ := {θk}Kk=1 as the complete parameter set in
λ
(1)
k (t) = Hawkes(S; θk), where θk is the parameter set for

event type k. For example, in the case of Hawkes process,
θk := [µk(·), gk,k′(·)], k′ = 1, · · · ,K. Given a set of
parameters θ obtained in Step 1, we define the weight of the
i-th event in sequence S as follows:

Wi(S;θ) = ϕ′ρ1,ρ2

(∫ ti

ti−1

K∑
k=1

λ
(1)
k (u)du− 1

)
, (2)

where t0 = 0, i = 1, · · · , I , and ϕ′ρ1,ρ2
(x) is defined as

ϕ′ρ1,ρ2
(x) =

{
ϕ′(x/ρ2), x ≥ 0,

ϕ′(x′/ρ1), −1 ≤ x < 0.
(3)

Here, ϕ′(x) denotes the derivative function of an influence
function ϕ(x), which, for x ≥ 0, takes the following form:

ϕ′(x) =


1+x

1+x+x2/2 0 ≤ x ≤ a,
ϕ′(a) · (b−x)2

(b−a)2 a < x ≤ b,
0 x > b.

(4)

Additionally, ϕ′(x) = ϕ′(x′) for −1 ≤ x < 0, where x′ :=
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Figure 2. Algorithm flowchart of the Residual TPP. The event stream data here consists of three event types, represented by triangles,
circles, and plus signs, respectively.

{x′|(x′+1) exp(−x′−1) = (x+1) exp(−x−1), x′ ≥ 0}.
ρ1, ρ2, a and b are positive tuning parameters.

It is evident that ϕ′(x) attains its maximum at x = 0 and has
compact support. The influence function ϕ(x) is increasing
and twice continuously differentiable. Due to these proper-
ties, Wi(S;θ) approaches 1 when

∫ ti
ti−1

λ(1)(u) du is close
to 1, while Wi(S;θ) will approach 0 when the integral de-
viates significantly from 1. The expression

∫ ti
ti−1

λ(1)(u) du

represents the average number of events predicted by the
Hawkes process within the time interval (ti−1, ti].

Furthermore, based on the time transformation theory, if
the event sequence S is generated by a point process with
intensity function λ∗(t), then

∫ ti
ti−1

λ∗(u) du ∼ Exp(1). In
other words, weightWi(S;θ) is close to 1 when the number
of events predicted by the Hawkes process closely matches
the actual observed number of events, indicating that the
model accurately captures event occurrences within this
interval. This also suggests that the event occurrence within
this time interval is relatively predictable, as the model can
accurately forecast the probability of an event occurring.

After obtaining the weight for each event, the residual com-
ponent of sequence S can be identified by applying a thresh-
old w (0 ≤ w ≤ 1) as follows:

S′
w = {(ti, ki) :Wi(S;θ) ≤ w}.

Residual modeling. (Step 3) After identifying the residual
events, we train a neural TPP model on the residual sequence
dataset S′

w, yielding the following intensity function:

λ
(2)
k (t) = Neural TPP(S′

w;ψk), k = 1, ...,K,

where the Neural TPP represents an arbitrarily existing
model (parametrized by ψk’s), such as RNN-based or
attention-based models, among others.

Combined Intensity. Due to the superposition property
of temporal point processes, the final intensity function for
event type k is given by the combination of the Hawkes

process and the neural TPP for residual events:

λk(t) = (1− α)λ(1)k (t) + λ
(2)
k (t),

and the overall intensity function is λ(t) =
∑K

k=1 λk(t).
Here, α =

|S′
w|

|S| represents the proportion of residual events
in S′

w relative to the total number of events in dataset S.

The intensity function in the proposed model is a higher-
level concept, encompassing both classical statistical TPPs
and neural TPPs. Specifically, when the threshold w = 0,
S′
w = ∅, indicating that we believe the statistical model

has adequately fit the original events, and no residual data
is selected for training the neural TPP model. In this case,
α = 0 and λk(t) = λ

(1)
k (t), making the model equivalent

to a Hawkes process. On the other hand, when the threshold
w = 1, we have S′

w = S, meaning that the neural TPP
model is trained on the entire original sequences. Here,
α = 1 and λk(t) = λ

(2)
k (t), which corresponds to a neural

TPP. When 0 < w < 1, the resulting intensity function is a
combination of the Hawkes process and the neural TPP on
the residual data, capturing both the self-excitation in the
original sequence and the unexplained intensity from the
residual data, thereby yielding a more powerful model.

In practical applications, α can also be treated as a hyper-
parameter to be tuned, allowing for a more flexible balance
between the statistical properties modeled by the classical
TPP and the residuals captured by the neural TPP. This
balance can lead to the improved model performance.

Prediction. Given a prefix of the event sequence S[0,ti−1] =
{(t1, k1), . . . , (ti−1, ki−1)}, we want to predict the time
and type of the next event. The probability density of the
next event time ti is given by

pi(t) = P (ti = t | Hti−1) = λ(t) exp

(
−
∫ t

ti−1

λ(s) ds

)
.

To minimize the expected L2 loss in predicting the event
time, we select the expected value:

t̂i = E[ti | Hti−1
] =

∫ ∞

ti−1

tpi(t) dt. (5)
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Algorithm 1 The Overall Pseudocode of Residual TPP
INPUT: Event dataset S = {Sn}Nn=1, influence function ϕ
OUTPUT: Intensity function λk(t)

1: Initialize parameters θ = {θk}Kk=1, ψ = {ψk}Kk=1

—- Step 1 —-
2: Fit the Hawkes process with full data S and obtain θ̂
3: λ(1)k (t)← Hawkes(S; θ̂k)

—- Step 2 —-
4: for Sn in S do
5: Initialize the residual set S′

n,w = ∅
6: for (tn,i, kn,i) in sequences Sn do
7: Wi(Sn; θ̂)← ϕ′ρ1,ρ2

(∫ tn,i

tn,i−1

∑K
k=1 λ

(1)
k (u)du− 1

)
8: if Wi(Sn; θ̂) < w then
9: S′

n,w ← S′
n,w ∪ {(tn,i, kn,i)}

10: end if
11: end for
12: Obtain the residual event dataset S′

w = {S′
n,w}Nn=1

13: end for
—- Step 3 —-

14: Compute α← |S′
w|

|S|

15: Fit a neural TPP model to the residual S′
w to obtain ψ̂

16: λ(2)k (t)← Neural TPP(S′
w; ψ̂k)

17: λk(t)← (1− α)λ(1)k (t) + λ
(2)
k (t)

Given the actual next event time ti, the most likely type of
the next event is given by

k̂i = argmaxk∈[K]

λk(ti)

λ(ti)
. (6)

3.3. Theoretical Justification of the Weight Function

As recently shown in Zhang et al., 2025, the influence func-
tion defined in (4) enjoys the “unbiasedness” properties.

Proposition 3.1. When X follows the standard
exponential distribution Exp(1), it holds that
E [(X − 1) · ϕ′(X − 1)] = 0 .

By this property, we can show that the expected gradient
evaluated at the true model parameters remains asymptoti-
cally unbiased after incorporating the weight function when
there is no event contamination and T → ∞. To be more
mathematically formal, for any TPP model with intensity
function λθ(t) parametrized by θ, the weighted gradient is
defined as

ϱ(θ) =
1

T

I∑
i=1

Wi(S;θ)∇θ
(
log λθ(ti−1)−

∫ ti

ti−1

λθ(t)dt
)
,

where Wi(S;θ) = ϕ′ρ1,ρ2
(
∫ ti
ti−1

λθ(u)du− 1).

Theorem 3.2. When ρ1 = ρ2,∇θ log λθ(t) and λθ(t) are
bounded at the true θ∗, it holds that∣∣E[ϱ(θ)]∣∣

θ=θ∗

∣∣ = O(
1

T
). (7)

Note that E[ϱ(θ)] is a vector and (7) holds elementwisely.
The theorem says that, although

∫ ti
ti−1

λk(u)du is left-
skewed, the careful design of ϕ(x) ensures that the proposed
weight function carefully balances the left and right tails
of the integral of the intensity function, thereby allowing
them to have equal impacts on the loss function. Theorem
3.2 is the generalization of Theorem 3 in Zhang et al., 2025,
where they only allow λθ(t) to take some specific forms.
Here λθ(t) can take any parametric form, including neural
network-based models as well.

Therefore, Step 2 of Algorithm 1 can safely remove those
events which are well captured by the Hawkes processes.
The remaining events in S′

w are viewed as unexpected out-
liers that may not have statistical interpretations (i.e., peri-
odic baseline events or self-exciting events).

4. Experiments
In this section, we present the experimental results of our
method on six mainstream real-world TPP benchmarks and
three synthetic datasets with six baseline models. Our
code is publicly available at https://github.com/
ruoxinyuan/ResidualTPP.

4.1. Experimental Setup

Datasets. We evaluate our method on six real-world bench-
mark datasets: MIMIC-II (Johnson et al., 2016), Retweet
(Zhou et al., 2013), Earthquake (Xue et al., 2024), Stack-
Overflow (Leskovec & Krevl, 2014), Amazon (Ni, 2018) and
Volcano (Xue et al., 2024). The MIMIC-II dataset is avail-
able at the public GitHub repository1, and the others can be
accessed via the EasyTPP library2. Detailed descriptions of
these datasets are provided in Appendix D.2.

In addition to real-world benchmarks, we construct three
synthetic datasets for controlled evaluation. (i) Poisson-
based: We generate a non-homogenous Possion process
with five event types, each with a different periodic trian-
gular function for λ(1)k , and set residual events to follow
λ
(2)
k = 0.1, a homogeneous Poisson process. The superposi-

tion of these processes yields the Poisson-based dataset. (ii)
AttNHP-based: We use the AttNHP (Yang et al., 2022) to
model λ(1), with the residuals again modeled by a homoge-
neous Poisson process λ(2)k = 0.1. (iii) Possion + AttNHP:

1https://github.com/hongyuanmei/neurawkes
2https://github.com/ant-research/

EasyTemporalPointProcess
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Table 1. Performance of all the methods on the goodness-of-fit task. The first row presents the log-likelihood on the test set for the
multivariate Hawkes process. For each baseline model, the first row indicates the performance of the baseline neural TPP, while the
second row shows the performance of the corresponding Residual TPP. Higher scores indicate better performance.

MODEL
GOODNESS-OF-FIT (LOG-LIKELIHOOD)

MIMIC-II RETWEET EARTHQUAKE STACKOVERFLOW AMAZON VOLCANO

MHP -2.839 -13.71 -4.155 -2.866 -0.534 0.983

RMTPP -2.626 -4.382 -4.643 -2.844 -2.389 -3.776
RES RMTPP -2.045 -3.240 -3.689 -0.864 -1.419 -3.548

NHP -2.031 -4.146 -2.389 -2.613 -2.199 0.261
RES NHP -1.825 -3.881 -1.930 -0.712 -1.303 0.435

SAHP -4.672 -4.564 -3.338 -3.867 -2.370 0.128
RES SAHP -4.488 -4.493 -3.335 -2.374 -1.548 0.256

THP -2.048 -4.548 -3.498 -2.747 -2.365 -0.068
RES THP -2.040 -4.597 -3.415 -2.467 -1.611 0.233

ATTNHP -2.500 -4.729 -2.896 -2.685 -2.376 -0.303
RES ATTNHP -2.197 -4.576 -3.147 -2.482 -1.383 -0.050

ODETPP -1.855 -4.527 -2.203 -2.492 -2.468 -0.078
RES ODETPP -1.371 -4.491 -2.340 -2.467 -1.394 0.321

We use the same periodic non-homogenous Possion process
for λ(1) and AttNHP for λ(2). Summary statistics for these
synthetic datasets are provided in Table 8.

Each dataset is split into training, validation, and test sets.
The validation set is for hyperparameter tuning, and the test
set is for model evaluation. Due to the wide distribution
range of event times and the sparsity of events in the Volcano
dataset, we additionally scale the time series by dividing it
by one thousand.

Baselines. In the experiments, we integrate the multivari-
ate Hawkes process (MHP) with several neural TPP models
to derive the corresponding Residual TPP. We employ all
intensity-based neural TPPs from the EasyTPP library, for
integration into the Residual TPP and as baselines for com-
parison. The models include two RNN-based models: the
Recurrent Marked Temporal Point Process (RMTPP, Du
et al. (2016)) and the Neural Hawkes Process (NHP, Mei
& Eisner (2017)); three attention-based models: the Self-
Attentive Hawkes Process (SAHP, Zhang et al. (2020a)),
the Transformer Hawkes Process (THP, Zuo et al. (2020)),
and the Attentive Neural Hawkes Process (AttNHP, Yang
et al. (2022)); and one TPP with a hidden state governed by
a neural jump SDE: the simplified version of Neural Spatio-
Temporal Point Process (ODETPP, Chen et al. (2021)).
More details on the baseline models are provided in Ap-
pendix D.3. As clarified, the original FullyNN model
(Omi et al., 2019), with a fully neural network-based in-
tensity, does not support multi-type event sequences and
exhibit worse fitness than other neural competitors across
all datasets. Consequently, we omit it from the main text,
with specific results provided in Appendix E.2.

Implementation details. For simplicity, we model the
event stream data using a Hawkes process with a fixed base-
line intensity and an exponential decay function to capture
the self-excitation property:

λ
(1)
k (t) = µk +

∑
i:ti<t

αk,kiβk,kie
−βk,ki

(t−ti).

In our experiments, we implement this using Tick3 (Bacry
et al., 2017). A more comprehensive treatment of periodicity
will be explored in our future work.

We follow the architecture of all neural TPP models as
outlined in the original implementations of the respective
papers, utilizing the code from EasyTPP (Xue et al., 2024).
To ensure a fair comparison, the training parameters and
procedures for the corresponding neural TPP models trained
on the original data are kept consistent with those for models
trained on the residual events filtered by RED.

Evaluation. After obtaining the Residual TPPs and the
corresponding baseline neural TPPs, we evaluate the models
using three standard metrics on the test set:

• Goodness-of-fit: We evaluate the log-probability as-
signed to the test set by the models, with higher values
indicating better model performance in terms of fitting
the data.

• Next event-time prediction: We predict the next event’s
time using the minimum Bayes risk principle, based
solely on preceding events, as described in (5). The
accuracy is assessed using the Root Mean Squared
Error (RMSE).

3https://github.com/X-DataInitiative/tick
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Table 2. Performance of all methods on next-event time prediction and next-event type prediction across six datasets. Lower scores
indicate better performance. As noted, the Volcano dataset is not applicable for the type prediction task, as it contains only one event type.

MODEL
PREDICTION PERFORMANCE (TIME RMSE / TYPE ERROR RATE)

MIMIC-II RETWEET EARTHQUAKE STACKOVERFLOW AMAZON VOLCANO

MHP 0.925/27.9% 21.98/53.5% 1.475/60.6% 1.619/57.5% 1.042/70.4% 4.223/N.A.

RMTPP 0.998/37.8% 20.68/44.6% 1.956/52.9% 1.334/57.5% 0.613/68.4% 4.696/N.A.
RES RMTPP 0.915/26.7% 19.31/44.5% 1.420/52.7% 1.315/57.5% 0.504/67.5% 3.709/N.A.

NHP 1.010/26.7% 21.97/42.3% 1.910/53.9% 1.411/56.2% 0.611/67.2% 3.906/N.A.
RES NHP 0.913/20.9% 19.14/40.9% 1.416/52.8% 1.383/56.1% 0.514/66.1% 3.854/N.A.

SAHP 0.971/23.8% 22.13/44.8% 1.463/54.1% 1.348/55.6% 0.605/68.3% 3.998/N.A.
RES SAHP 0.935/18.0% 19.85/42.0% 1.455/53.3% 1.245/55.4% 0.498/67.0% 3.940/N.A.

THP 1.129/35.5% 22.01/45.4% 1.857/54.7% 1.401/56.1% 0.622/66.8% 3.945/N.A.
RES THP 0.930/27.9% 19.33/41.5% 1.403/52.8% 1.376/55.7% 0.515/65.7% 3.910/N.A.

ATTNHP 1.030/35.4% 21.78/43.1% 1.822/54.5% 1.384/57.1% 0.640/66.4% 4.032/N.A.
RES ATTNHP 0.932/36.0% 19.41/42.9% 1.413/52.8% 1.369/57.0% 0.633/65.4% 3.918/N.A.

ODETPP 1.416/22.1% 22.48/43.2% 2.396/56.0% 1.469/56.0% 0.697/67.6% 3.927/N.A.
RES ODETPP 0.934/19.2% 19.45/42.7% 1.412/53.0% 1.378/55.6% 0.643/67.3% 3.865/N.A.

Table 3. End-to-end training time. “MHP + RED” reports the average runtime of Steps 1 and 2 over 10 independent trials. For each Res
TPP, the result reflects the total time cost of the 3-step procedure (MHP + RED + neural TPP). All training was conducted on a CPU.

MODEL
END-TO-END RUNTIME (SECONDS)

MIMIC-II RETWEET EARTHQUAKE STACKOVERFLOW AMAZON VOLCANO

MHP+RED 1.42 0.27 0.11 0.84 1.49 0.02

RMTPP 9.70 195.3 26.00 71.20 95.75 34.20
RES RMTPP 9.72 188.7 20.01 70.44 95.19 26.42
NHP 34.70 492.6 25.32 206.3 256.6 77.05
RES NHP 29.52 441.9 20.57 190.8 245.1 54.47
SAHP 128.5 498.4 24.90 498.0 505.8 37.30
RES SAHP 113.4 434.9 16.96 461.9 450.3 24.42
THP 10.45 1183 19.20 81.20 257.7 39.90
RES THP 10.67 1029 17.77 76.44 244.8 29.82
ATTNHP 68.60 9475 162.2 1924 6375 1093
RES ATTNHP 52.92 7195 143.1 1863 5646 657.5
ODETPP 9.96 106.4 42.00 243.6 196.4 51.96
RES ODETPP 9.64 102.7 37.43 224.2 192.1 40.88

• Next event-type prediction: We forecast the corre-
sponding event type using both its actual time and
the preceding events according to (6). The prediction
accuracy is measured by the error rate.

4.2. Main Results

Table 1 reports the log-likelihood of the models on each
test set. It reveals that Residual TPP fits the data well and
significantly outperforms the corresponding neural TPPs
across all datasets. This highlights our model’s capability to
capture complex real-world intensity dynamics from diverse
domains. The results for next event-time and event-type
prediction, presented in Table 2, further confirm the supe-
rior performance of our method. Residual TPP achieves a

notable improvement in predictive accuracy. Table 3 evalu-
ates the computational efficiency by reporting the training
time for the baseline neural models and their corresponding
Residual TPPs. Across all datasets, Residual TPP consis-
tently exhibits lower training times compared to the baseline
models. These experimental results demonstrate that the
proposed Residual TPP is a powerful yet lightweight ap-
proach for modeling event streams. It can be integrated with
various types of neural TPPs, enhancing both performance
and computational efficiency.

4.3. Simulation Analysis

To further validate the robustness of RED, we generate
synthetic datasets under various configurations of primary
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Table 4. Performance comparison on synthetic datasets. Goodness-of-fit is measured by log-likelihood (L-L; higher is better). Prediction
performance is evaluated using time RMSE and type error rate (lower is better).

MODEL
POSSION-BASED ATTNHP-BASED POSSION+ATTNHP

L-L TIME/TYPE L-L TIME/TYPE L-L TIME/TYPE

MHP -0.132 0.298/62.2% -1.435 0.329/79.4% -0.203 0.257/68.1%

RMTPP -1.030 0.337/63.2% -1.277 0.373/78.5% -0.788 0.271/68.6%
RES RMTPP -0.531 0.305/62.3% -0.664 0.334/77.9% -0.027 0.237/67.8%

NHP -1.023 0.343/62.1% -1.267 0.374/77.4% -0.776 0.277/67.8%
RES NHP -0.527 0.301/62.0% -0.661 0.334/77.1% -0.009 0.237/67.8%

SAHP -1.033 0.330/62.1% -1.267 0.376/77.5% -0.789 0.282/67.8%
RES SAHP -0.556 0.303/62.1% -0.660 0.335/77.3% -0.002 0.238/67.8%

THP -1.026 0.336/62.6% -1.270 0.374/77.6% -0.785 0.266/67.8%
RES THP -0.566 0.300/62.0% -0.655 0.331/77.6% 0.004 0.234/67.8%

ATTNHP -1.026 0.337/62.1% -1.266 0.374/77.3% -0.789 0.269/67.8%
RES ATTNHP -0.534 0.302/62.1% -0.658 0.336/77.2% 0.001 0.237/67.8%

ODETPP -1.028 0.339/62.1% -1.267 0.382/77.6% -0.789 0.270/67.8%
RES ODETPP -0.565 0.302/62.1% -0.663 0.332/77.6% -0.001 0.238/67.8%

intensities λ(1) and residual intensities λ(2), and evaluate
the effectiveness of the RED technique across three distinct
settings, as illustrated in Section 4.1.

We compare the performance of Residual TPP against base-
line neural TPPs on these synthetic datasets. As shown in Ta-
ble 4, Residual TPP consistently improves the performance
of neural TPPs through RED, even when the underlying
true signal does not follow a Hawkes process. This demon-
strates that the residuals identified by RED are agnostic to
the true data-generating process. RED quantifies how well
a given statistical model (e.g., Hawkes process) explains the
observed events through its weight function. Even if the
true process deviates significantly from the assumed model,
RED can isolate the unexplained residuals for refinement
by a neural TPP. This is conceptually similar to residual
learning in deep neural networks, where residuals represent
deviations from a simpler base function, regardless of its
exact form.

5. Conclusion
In this study, we introduce the Residual TPP, a novel frame-
work that bridges the gap between simple statistical TPPs
and expressive neural TPPs through Residual Events Decom-
position (RED), providing a unified solution that combines
the strengths of both. Extensive experiments demonstrate
that Residual TPP significantly outperforms existing mod-
els, offering a robust and scalable approach for event stream
data analysis. We also validate the effectiveness of RED
as a novel decomposition method compatible with various
existing TPP architectures.

This framework establishes an extensible foundation for

future research. First, the baseline intensity and decay func-
tion in the Hawkes process can be adjusted to better capture
specific data characteristics like periodicity. Additionally,
decomposition methods for TPPs remain an underexplored
area. As the first decomposition technique, RED provides
valuable insights for developing further methods, similar
to STD in times series analysis, to simplify computational
procedure and enhance model performance.

Overall, the flexibility of RED as a plug-and-play module
makes Residual TPP adaptable to various TPP models and
tasks. Residual TPP offers a lightweight but powerful solu-
tion for event stream analysis. This work not only advances
event stream analysis capabilities but also opens new direc-
tions for developing hybrid TPP frameworks through inno-
vative decomposition strategies. Moreover, beyond event
streams, the RED technique could be similarly extended to
other complex, discrete, and irregular data types.
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A. Technical Proof
Proof of Theorem 3.2

Suppose θ is a n-dimensional parameter vector, i.e., θ = (θ1, ..., θn). By recalling the definition of ϱ(θ), the gradient can
be written as

ϱ(θ)

=


∑I

i=1 ϕ
′
(∫ ti

ti−1
λθ(u)du− 1

)
·
(

λ′
θ,1(ti−1)

λθ(ti−1)
−
∫ ti
ti−1

λ′θ,1(x)dx
)
− ϕ′

(∫ t1
0
λθ(u)du− 1

) ∫ t1
0
λ′θ,1(x)dx

...∑I
i=1 ϕ

′
(∫ ti
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λθ(u)du− 1

)
·
(

λ′
θ,n(ti−1)

λθ(ti−1)
−
∫ ti
ti−1

λ′θ,n(x)dx
)
− ϕ′

(∫ t1
0
λθ(u)du− 1

) ∫ t1
0
λ′θ,n(x)dx


⊤

/T,

where λ′θ,k(t) is the partial derivative of λθ(t) with respect to θk for k = 1, ..., n.

Without loss of generality, we only need to consider the first entry of ϱ(θ). When θ takes the true value θ∗, its gradient can
be written as

ϱ(θ)1 :=

(
I∑

i=1

ϕ′

(∫ ti

ti−1

λθ∗(u)du− 1

)
·

(
λ′θ∗,1(ti−1)

λθ∗(ti−1)
−
∫ ti

ti−1

λ′θ∗,1(x)dx

)

− ϕ′
(∫ t1

0

λθ∗(u)du− 1

)∫ t1

0

λ′θ∗,1(x)dx

)
/T.

We define Λ∗(t) :=
∫ t

0
λθ∗(t)dt. When S = {t1, ..., tI} is a counting process with intensity function λθ∗(t), we know that

{Λ∗(t1), · · · ,Λ∗(tI)} is a standard Poisson process on
[
0,
∫ T

0
λθ∗(t)dt

]
.

Then we deploy the time transformation technique, i.e., using Λ∗(t) to replace t to discuss. Following the notation in Zhang
et al., 2025, we define λ̃θ∗(Λ∗(t)) = λθ∗(t) and κ̃(Λ∗(t)) = λ

′

θ∗,1(t). We have

E

[
I∑

i=1

ϕ′

(∫ ti

ti−1

λθ∗(u)du− 1

)
·

(
λ′θ∗,1(ti−1)

λθ∗(ti−1)
−
∫ ti

ti−1

λ′θ∗,1(x)dx

)
− ϕ′

(∫ t1

0

λθ∗(u)du− 1

)∫ t1

0

λ′θ∗,1(x)dx

]

=E

[
M∑
i=1

ϕ′ (Λ∗(ti)− Λ∗(ti−1)− 1) ·

(
κ̃(Λ∗(ti−1))

λ̃θ∗(Λ∗(ti−1))
−
∫ Λ∗(ti)

Λ∗(ti−1)

κ̃(Λ∗(t))

λ̃θ∗(Λ∗(t))
dΛ∗(t)

)]
︸ ︷︷ ︸

term1

− E

[
ϕ′ (Λ∗(t1)− 1) ·

∫ Λ∗(t1)

0

κ̃(Λ∗(t))

λ̃θ∗(Λ∗(t))
dΛ∗(t)

]
.

For simplicity, we write κ̃(Λ∗(t))/λ̃θ∗(Λ∗(t)) as χ(Λ∗(t)), ∀t ∈ [0, T ], and
{
t̃1, · · · , t̃I

}
:= {Λ∗(t1), · · · ,Λ∗(tI)}. We

define Ñ(t̃) = N(Λ∗−1(t̃)), then we know that P(Ñ(t̃ + dt̃) − Ñ(t̃) = 1) = P(N(Λ∗−1(t̃ + dt̃)) − N(Λ∗−1(t̃)) =
1) = dΛ∗(Λ∗−1(t̃)) = dt̃. In other words,

{
t̃1, · · · , t̃I

}
becomes a standard homogeneous Poisson process after time

transformation.
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By calculations, we get that term1 can be simplified as

E

[
I∑

i=1

ϕ′ (Λ∗(ti)− Λ∗(ti−1)− 1) ·

(
χ(Λ∗(ti−1))−

∫ Λ∗(ti)

Λ∗(ti−1)

χ(Λ∗(t))dΛ∗(t)

)]

=E

[
I∑

i=1

ϕ′
(
t̃i − t̃i−1 − 1

)
·

(
χ(t̃i−1)−

∫ t̃i

t̃i−1

χ(s̃)ds̃

)]
(variable substitution)

=E

[
I∑

i=1

E

[
ϕ′
(
t̃i − t̃i−1 − 1

)
·

(
χ(t̃i−1)−

∫ t̃i

t̃i−1

χ(s̃)ds̃

)
| Ht̃i−1

]]
(take the conditional expectation respectively)

=E

[
I∑

i=1

f(t̃i−1)

]
= E

[∫
f(t̃)dÑ(t̃)

]
=

∫ Λ∗(T )

0

f(t̃)dt̃,

where f(t̃i−1) := E
[
ϕ′
(
t̃i − t̃i−1 − 1

)
·
(
χ(t̃i−1)−

∫ t̃i
t̃i−1

χ(s̃)ds̃
)
| Ht̃i−1

]
is a function of t̃i−1.

Because t̃i − t̃i−1 follows the standard exponential distribution conditioning on the history Ht̃, we can write f(t̃) as

EX∼EXP(1)

[
ϕ′ (X − 1) ·

(
χ(t̃)−

∫ t̃+X

t̃
χ(s̃)ds̃

)]
.

We swap the order of integration of t̃ and s̃ and get

ϱ(θ)1

=

(∫ Λ∗(T )

0

EX∼EXP(1)

[
ϕ′ (X − 1) ·

(
χ(t̃)−

∫ t̃+X

t̃

χ(s̃)ds̃

)]
dt̃− E

[
ϕ′
(
t̃1 − 1

)
·
∫ t̃1

0

χ(s̃)ds̃

])
/T

=EX∼EXP(1)

[
ϕ′ (X − 1)

(∫ Λ∗(T )

0

χ(t̃)dt̃−
∫ X

0

∫ Λ∗(T )

0

χ(t̃+ s̃)dt̃ds̃

)]
/T

− EX∼EXP(1)

[
ϕ′ (X − 1)

∫ X

0

χ(s̃)ds̃

]
/T (swap the order of integration of t̃ and s̃)

=

∫ ·Λ∗(T )

0

χ(t̃)dt̃ · EX∼EXP(1)

[
ϕ′ (X − 1) ·

(
1−

∫ X

0

ds̃

)]
/T (extract the part that is irrelevant to the expectation)

+

(
EX∼EXP(1)

[
ϕ′ (X − 1)

∫ X

0

(∫ s̃

0

χ(u)du

)
ds̃

]
− EX∼EXP(1)

[
ϕ′ (X − 1)

∫ X

0

χ(s̃)ds̃

])
/T

=0 + Cg/T,

where Cg := EX∼EXP(1)

[
ϕ′ (X − 1)

∫X

0

(∫ s̃

0
χ(u)du

)
ds̃
]
− EX∼EXP(1)

[
ϕ′ (X − 1)

∫X

0
χ(s̃)ds̃

]
. Here we use the prop-

erty that
∫ Λ∗

k(T )

0
χ(t̃)dt̃ =

∫ Λ∗
k(T )−s̃

0
χ(t̃ + s̃)dt̃ +

∫ s̃

0
χ(t̃)dt̃ and t̃1 follow the standard exponential distribution. By the

assumption that ∇θ log λθ(t), λθ(t) are bounded at the true θ∗, hence Cg is bounded as well.

As a result, we get that |ϱ(θ)| is of order O(1/T ) when θ = θ∗. In other words, the gradient goes to 0 elementwisely as
T →∞ when ρ1 = ρ2.
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B. Statistical Property
In the context of temporal point processes, the terms µ1, µ2, and µ3 refer to the mean, variance, and covariance of the event
counts within time intervals, respectively. These quantities provide crucial insights into the distribution of events and their
temporal dependencies. Their precise definitions are as follows.

We partition the total time span [0, T ] into n time intervals, each of length τ . The number of events occurring within the j-th
interval, denoted Mj , corresponds to the interval [(j − 1)τ, jτ).

µ1 represents the empirical mean of the number of events within the time interval τ :

µ1 =
1

n

n∑
j=1

Mj .

µ2 denotes the empirical variance of the number of events within the same time interval:

µ2 =
1

n

n∑
j=1

(Mj − µ1)
2.

µ3 represents the empirical covariance of the number of events between two intervals separated by a lag ∆:

µ3 =
1

n∗

n∗∑
j=1

(Mj ×Mj+∆)−

 1

n∗

n∗∑
j=1

Mj

 1

n∗

n∗∑
j=1

Mj+∆

 ,

where Mj denotes the number of events in the j-th interval, and Mj+∆ represents the number of events in the j +∆-th
interval. Here, n∗ = n−∆, with ∆ representing the lag between the two intervals.

µ3 plays a crucial role in capturing the self-excitation property of temporal point processes. Self-excitation refers to the
phenomenon where past events increase the likelihood of future events, creating temporal correlations between events over
time. A positive value of µ3 suggests a correlation between the event counts in the j-th and j +∆-th intervals, indicating
that events in one interval influence the occurrence of events in a subsequent interval. If µ3 exhibits significant variation as
∆ changes, it indicates the presence of self-excitation. A higher value of µ3 for smaller lags suggests stronger temporal
dependence (i.e., more pronounced self-excitation), while a constant or small µ3 across varying ∆ values may suggest
weaker or absent self-excitation.

Table 5. The µ3 values for different datasets at various lag values. For each dataset, the total time span is divided into n = 30 equal-
length time intervals, with each interval’s length given by τ = T/n. The covariance of event counts within each time interval and the
corresponding lag ∆ is calculated for each sequence in the dataset. The average of these covariance values across all sequences is then
used to obtain the µ3 for the dataset.

DATASET
µ3

∆ = 1 ∆ = 2 ∆ = 3 ∆ = 5 ∆ = 10

MIMIC-II 0.024 0.012 0.007 0.002 -0.003
RETWEET 7.220 4.554 3.216 1.753 0.361
EARTHQUAKE 0.644 0.433 0.306 0.152 0.023
STACKOVERFLOW 1.042 0.871 0.718 0.451 -0.091
AMAZOM 3.674 2.911 2.279 1.259 -0.010
VOLCANO 3.272 1.285 0.413 0.022 -0.138

Table 5 presents the values of µ3 across different datasets for various lag values. The results indicate clear evidence of
self-excitation in most cases, as the values of µ3 consistently show a positive correlation between event counts in different
time intervals. This correlation is particularly pronounced at smaller lag values, which strongly suggests the presence
of self-excitation behavior. As the lag ∆ increases, the values of µ3 generally decrease, which aligns with the expected
behavior of self-excitation, where the influence of past events on future events diminishes over time.

It is worth noting that the MIMIC-II dataset consists of relatively short sequences with fewer events, which limits the ability
to effectively capture the covariance between event counts in different time intervals. In contrast, the other datasets, with a
larger number of events, yield more consistent results in identifying self-excitation patterns.
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C. Detailed Analysis of RED
C.1. Influence Function
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Figure 3. The influence function ϕ′
ρ1,ρ2(x) under different parameter settings (a, b), with ρ1 = ρ2 = 1. The parameters a and b determine

the transition points and the degree of truncation applied to the function.

Figure 3 visualizes the behavior of the influence function ϕ′ρ1,ρ2
(x) defined in (3), with the parameters set as ρ1 = ρ2 = 1.

The function exhibits piecewise behavior, where the varying parameters a and b define the transition points and the extent of
the truncation. Specifically, ϕ′ρ1,ρ2

(x) remains relatively high for x ∈ [0, a] and then decays quadratically in the interval
[a, b]. Beyond b, ϕ′ρ1,ρ2

(x) becomes zero. The function attains its maximum at x = 0, and maintains a certain symmetry
for negative and positive arguments due to the definition: ϕ′(x) = ϕ′(x′) for −1 ≤ x < 0, where x′ is defined as
x′ := {x′|(x′ + 1) exp(−x′ − 1) = (x+ 1) exp(−x− 1), x′ ≥ 0}. The interplay between the parameters a and b alters
the transition regions of the function. Smaller values of a and b impose stricter constraints on x, which, in turn, affects the
sensitivity of the weight function to the underlying integration values.

This visualization demonstrates the flexibility of the influence function, as the parameters a, b, ρ1 and ρ2 allow for fine-tuning
of the sensitivity and truncation behaviors, which are essential for robust statistical modeling. Specifically, the parameters a,
b can be adjusted based on the characteristics of the data without affecting the order of the function values ϕ′ρ1,ρ2

(x), as
shown by the following proposition.

Proposition C.1. Let ρ1 = ρ2 = 1. For any x1, x2 ∈ [−1,∞), let ϕ′ρ1,ρ2
(x) be denoted as ϕ′1(x) when the parameters are

a = a1 and b = b1, and as ϕ′2(x) when the parameters are a = a2 and b = b2, where a1, a2, b1, b2 > 0. It holds that:

ϕ′1(x1) ≥ ϕ′1(x2) ⇔ ϕ′2(x1) ≥ ϕ′2(x2).

Proof. When x1, x2 ∈ [−1, 0), both ϕ′1(x) and ϕ′2(x) are monotonically decreasing. Therefore, we have:

ϕ′1(x1) ≥ ϕ′1(x2) ⇔ x1 ≤ x2 ⇔ ϕ′2(x1) ≥ ϕ′2(x2).

When x1, x2 ∈ [0,∞), both ϕ′1(x) and ϕ′2(x) are monotonically increasing. Hence, we get:

ϕ′1(x1) ≥ ϕ′1(x2) ⇔ x1 ≥ x2 ⇔ ϕ′2(x1) ≥ ϕ′2(x2).

Without loss of generality, consider when x1 ∈ [−1, 0) and x2 ∈ [0,∞), from the definition of ϕ′ρ1,ρ2
(x), we know that

ϕ′1(x1) = ϕ′(x1) = ϕ′(x′1) = ϕ′1(x
′
1), where x′1 satisfies the equation (x′1 + 1) exp(−x′1 − 1) = (x1 + 1) exp(−x1 − 1),

with x′1 ≥ 0. Similarly, we have ϕ′2(x1) = ϕ′2(x
′
1). Therefore, the inequality becomes:

ϕ′1(x1) ≥ ϕ′1(x2) ⇔ ϕ′1(x
′
1) ≥ ϕ′1(x2) ⇔ x′1 ≥ x2 ⇔ ϕ′2(x

′
1) ≥ ϕ′2(x2) ⇔ ϕ′2(x1) ≥ ϕ′2(x2).

16



Residual TPP

C.2. Weight Function

Based on the definition of the influence function, we calculate the weight value for each event using Equation (2). When the
integral

∫ ti
ti−1

λ(1)(u) du is close to 1, Wi(S;θ) approaches 1. Conversely, Wi(S;θ) approaches 0 as the integral deviates
from 1. This allows us to isolate the residual events.

In all experiments presented in this paper, we set ρ1 = ρ2 = 1. The parameters a and b are adjusted based on the
characteristics of the data from different datasets to ensure that the proportion of residual events remains within an
appropriate range. The variation of parameters a and b influences the values of the weights and the proportion of non-zero
weights, but does not affect the ranking of the weight values, as demonstrated in Proposition C.1. This further justifies the
use of the weight function we define to separate residual events.
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Figure 4. Weight distribution across different datasets: (a) MIMIC-II, (b) Retweet, (c) Earthquake, (d) StackOverflow, (e) Amazon, (f)
Volcano. The weight computation is performed as follows: First, a Hawkes process with a fixed baseline intensity and an exponential
decay function is fitted to the data to obtain the intensity function. The parameters of the influence function are set to a = 1, b = 2,
ρ1 = ρ2 = 1 Based on this, the weight values for all events across all sequences in the dataset are computed. The histograms show the
distribution of these weight values for each dataset.

Figure 4 illustrates the distribution of weight values computed across different datasets under identical settings. Each
distribution exhibits a truncation near a weight value of 0.8, with a significant portion of the probability mass concentrated
at 0. A higher weight value indicates that the number of events predicted by the Hawkes process closely matches the actual
number of observed events, suggesting that the model accurately captures event occurrences within this interval. Conversely,
a lower weight value indicates poorer performance of the intensity function.

Given this observation, it is natural to consider filtering the events based on their weights, which would enable us to
isolate the residual component of the events. These residual events represent unexpected events that may not have clear
statistical interpretations. Consequently, we can further utilize neural TPPs to model the intensity of this residual component.
This filtering process could therefore be particularly useful for capturing statistical properties such as periodicity and
self-excitation, while the residual component can be further analyzed using additional modeling techniques.
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C.3. Combined Intensity

In our approach, the final intensity function for event type k is defined as a combination of the intensity functions from the
Hawkes process and the neural TPP for residual events. Specifically, the combined intensity function is given by:

λk(t) = (1− α)λ(1)k (t) + λ
(2)
k (t),

where α =
|S′

w|
|S| represents the proportion of residual events in S′

w relative to the total number of events in the original dataset
S. This formulation leverages the superposition property of point processes, enabling the combination of contributions from
both the Hawkes process and the neural TPP in a way that aligns with intuitive observations from the data. The weight
parameter α is directly driven by the residual events present in the dataset, making the model’s behavior data-driven and
interpretable.

One might wonder the advantages of our proposed method in comparison to the approach of fitting the data directly using
the intensity function of the form

λk(t) = (1− α1)λ
(1)
k (t) + α2λ

(2)
k (t), (8)

where α1 and α2 are treated as learnable parameters. Here we give two explanations.

i. The latter approach (8) does not explicitly account for the proportion of residual events in the data; instead, the
parameters α1 and α2 are optimized during training to minimize the loss function and determine the best-fit values. In
contrast, our method explicitly identifies the residual events and non-residual events.

ii. The latter approach is much more computationally heavy. Fitting the model in form of (8) requires more computational
time than that of fitting λ(2)k (t) only. On the other hand, our method is plug-and-play module-based. Hence, Step 2 of
the proposed algorithm effectively reduces the sample size and hence makes Step 3 more efficient. As a result, our
method is more lightweight than the original approach, which fits the full data with λ(2)k (t).

C.4. An Alternative Choice of Influence Function

The modular structure of the RED framework allows the substitution of ϕ′(x) with any valid influence function that satisfies
the “unbiasedness” property. To further enrich this work, we investigate an alternative influence function given by

ϕ′(x) =
(1 + α)(x+ 1)

(x+ 1) + α exp(x)
, x ≥ −1.

This function is continuously differentiable over its domain and preserves the “unbiasedness” property established in
Proposition 3.1.
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Figure 5. The smooth influence function ϕ′(x) = (1+α)(x+1)
(x+1)+α exp(x)

, x ≥ −1 under different parameter settings α.

As reported in Table 6, the Residual TPP method implemented with both the original and alternative influence functions
(denoted as ”old” and ”new”, respectively) consistently outperforms the baseline models, demonstrating the robustness of
the RED framework to the choice of influence function.
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Table 6. Performance Comparison on MIMIC-II and Earthquake Datasets. Goodness-of-fit (Log-Likelihood, higher is better); Prediction
(Time RMSE / Type Error Rate, lower is better).

MODEL
MIMIC-II EARTHQUAKE

LOG-LIKELIHOOD TIME/TYPE LOG-LIKELIHOOD TIME/TYPE

MHP -2.839 0.925/27.9% -4.155 1.475/60.6%

RMTPP -2.626 0.998/37.8% -4.643 1.956/52.9%
RES RMTPP(OLD) -2.045 0.915/26.7% -3.689 1.420/52.7%
RES RMTPP(NEW) -2.150 0.923/24.4% -3.667 1.415/52.8%

NHP -2.031 1.010/26.7% -2.389 1.910/53.9%
RES NHP(OLD) -1.825 0.913/20.9% -1.930 1.416/52.8%
RES NHP(NEW) -2.040 0.900/18.0% -1.916 1.419/52.9%

SAHP -4.672 0.971/23.8% -3.338 1.463/54.1%
RES SAHP(OLD) -4.488 0.935/18.0% -3.335 1.455/53.3%
RES SAHP(NEW) -4.571 0.925/22.1% -3.312 1.458/53.0%

THP -2.048 1.129/35.5% -3.498 1.857/54.7%
RES THP(OLD) -2.040 0.930/27.9% -3.415 1.403/52.8%
RES THP(NEW) -2.879 0.911/26.7% -3.533 1.417/52.8%

ATTNHP -2.500 1.030/35.4% -2.896 1.822/54.5%
RES ATTNHP(OLD) -2.197 0.932/36.0% -3.147 1.413/52.8%
RES ATTNHP(NEW) -2.918 0.914/32.0% -1.969 1.419/52.8%

ODETPP -1.855 1.416/22.1% -2.203 2.396/56.0%
RES ODETPP(OLD) -1.371 0.934/19.2% -2.340 1.412/53.0%
RES ODETPP(NEW) -2.365 0.921/19.3% -1.889 1.411/53.1%
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D. Experiment implementation details
D.1. Experimental Environment

All experiments in this study were implemented using PyTorch (Paszke et al., 2019), trained using the Adam (Kingma,
2014) optimizer, and executed on a CPU.

D.2. Descriptions of Datastes

• MIMIC-II (Johnson et al., 2016). This electronic medical dataset contains records of 650 patients’ clinical visits to
Intensive Care Units (ICUs) over a seven-year period. Each sequence represents the medical history of a single patient,
where each event is defined by its timestamp and an associated disease diagnosis code, serving as the event type.

• Retweet (Zhou et al., 2013). The Retweet dataset includes 5,200 sequences of tweets, each consisting of an original
tweet followed by a series of retweets. Each event in a sequence is characterized by its timestamp and the user tag
of the individual retweeting the post. Furthermore, users are grouped into three categories based on their number of
followers: ”small”, ”medium”, and ”large,” providing information as event type.

• Earthquake (Xue et al., 2024). This dataset comprises 4,296 sequences of timestamped earthquake events recorded
across the Conterminous United States from 1996 to 2023. Each earthquake event is classified into one of seven
categories based on its magnitude.

• StackOverflow (Leskovec & Krevl, 2014). This dataset includes two years of award collections from 2,200 users on
StackOverflow, a question-and-answer website, where each user receives a sequence of badges. We treat each user’s
reward history as a sequence, with each event in the sequence representing the receipt of one of 22 distinct types of
badges.

• Amazon (Ni, 2018). This dataset is derived from the product review behaviors of the 5,200 most active users on
Amazon, spanning the period from January 2008 to October 2018. Each sequence represents a user’s review history,
where each event is defined by its timestamp and the category of the reviewed product. The dataset is particularly
useful for studying consumer behavior and temporal dynamics in e-commerce.

• Volcano (Xue et al., 2024). This dataset consists of 431 sequences of timestamped volcanic eruption events recorded
over several centuries across the globe. Since the dataset contains only a single event type, it represents a simpler
scenario compared to other datasets. To address the extensive original time span and enhance model usability, we scale
the time series by dividing the timestamps by one thousand, bringing the events into a more manageable time range for
analysis.

Table 7. Statistics of the real-world datasets. The table columns, from left to right, represent the dataset, number of event types, number of
events, sequence length, and number of sequences.

DATASET # TYPES # EVENTS SEQUENCE LENGTH # SEQUENCES

MIN MEAN MAX TRAIN VALID TEST

MIMIC-II 75 2,419 2 4 33 527 58 65
RETWEET 3 493,708 10 40 97 9,000 1,535 1,520
EARTHQUAKE 7 70,723 11 16 18 3,000 400 896
STACKOVERFLOW 22 142,777 41 65 101 1,400 400 400
AMAZON 16 330,000 14 45 94 6,454 922 1,851
VOLCANO 1 9,127 1 14 244 400 50 181

D.3. Descriptions of Baseline Neural TPPs

We provide a detailed overview of the neural TPP models utilized in this study:

• RMTPP (Du et al., 2016): RMTPP utilizes Recurrent Neural Networks (RNNs) to capture the temporal dependencies
in event sequences and learn a latent representation of event history. The core idea is to use an RNN to model the
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Table 8. Statistics of the synthetic datasets. Possion-based dataset represented sequences follow periodic non-homogenous Possion
process with homogeneous Poisson anomalies. AttNHP-based dataset represented TPP sequences are generated by AttNHP model and
than randomly add homogeneous Poisson anomalies. Possion+AttNHP dataset represented sequences follow periodic non-homogenous
Possion process with commission events generated by AttNHP. The table columns, from left to right, represent the dataset, number of
event types, totoal number of events, number of residual events generated by λ(2), sequence length, and number of sequences.

DATASET # TYPES # EVENTS # RESIDUALS SEQUENCE LENGTH # SEQUENCES

MIN MEAN MAX TRAIN VALID TEST

POSSION-BASED 5 33,243 4,253 20 29 100 600 200 200
ATTNHP-BASED 5 100,052 12,807 9 44 79 1,000 500 500
POSSION+ATTNHP 5 54,737 16,625 24 55 126 600 200 200

sequence of past events, which then produces a dynamic, evolving feature vector that encodes the event history. This
latent representation is then passed through an exponential transformation to define the intensity function.

• NHP (Mei & Eisner, 2017): NHP extends the traditional Hawkes process by introducing a continuous-time LSTM
network to encode event sequences. Unlike standard Hawkes models, NHP allows the intensity function to decay
over time automatically as a result of the learned parameters within the LSTM, without requiring inter-event times as
inputs. This enables the model to learn complex temporal patterns without the need to manually specify the relationship
between event timings.

• SAHP (Zhang et al., 2020a): SAHP introduces a self-attention mechanism to aggregate historical events for modeling
the intensity function. This method enhances the expressiveness of the intensity function by allowing it to adapt
to different time scales and dependencies. The self-attention mechanism enables the model to efficiently capture
long-range dependencies in the event sequence.

• THP (Zuo et al., 2020): THP incorporates a Transformer architecture to model the intensity function of a temporal
point process. The Transformer is known for its ability to capture long-range dependencies through self-attention
mechanisms, which is particularly useful for event sequences with complex, non-linear temporal dependencies.

• AttNHP (Yang et al., 2022): AttNHP extends the Transformer framework to model event sequences, generating rich,
context-sensitive embeddings for both observed and potential future events. These embeddings are based on the event’s
temporal context, enabling the model to generate more accurate predictions by considering the surrounding events and
their relative importance.

• ODETPP (Xue et al., 2024):The hidden state evolution in the ODETPP is governed by a neural ODE. It is a simplified
version of the Neural Spatio-Temporal Point Processes (NSTPP) proposed by Chen et al. (2021) by removing the
spatial component. NSTPP leverages the Neural ODE framework to model high-fidelity spatio-temporal distributions,
combining concepts from Neural Jump SDEs (Jia & Benson, 2019) and continuous-time normalizing flows (Chen et al.,
2018).

• FullyNN (Omi et al., 2019): FullyNN is a model with a fully neural network-based intensity function. It uses a
feedforward neural network to model the integral of the intensity function, deriving the intensity function as its
derivative. This approach enables exact evaluation of the log-likelihood function, which involves the integral, without
relying on numerical approximations.

D.4. Likelihood computation

We can estimate the model parameters by locally maximizing the Negative log-likelihood function with any stochastic
gradient method:

NLL(λk) = −
I∑

i=1

log λki
(ti) +

K∑
k=1

∫ T

t=0

λk(t) dt. (9)

Note that computing the NLL can be challenging due to the presence of the integral in the second term of Equation (9).
In this study, we utilize a Monte Carlo method for integral estimation to evaluate the intensity function and its gradient,
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a technique first applied to the NLL computation for TPPs by Mei and Eisner (2017), and subsequently adopted by most
models in the field (Omi et al., 2019; Xue et al., 2024).

We randomly sample time points t ∼ Unif(0, T ) from the interval [0, T ] and compute the corresponding intensity λk(t)
for each event type k. The expected value of the integral is approximated by Tλ(t), and its gradient is computed via
backpropagation, enabling efficient estimation of ∇Λ. To enhance the accuracy of the integral and its gradient, we repeat
this process over N samples, thereby reducing the variance of the noisy estimator.

E. More Experimental Results
E.1. Extending RED with Different Base Models

To further demonstrate the capability of the RED technique, we conduct additional experiments using two configurations: (i)
simple TPP + RED + simple TPP, and (ii) neural TPP + RED + neural TPP. These configurations allow us to compare the
performance of Residual TPP models that apply the RED technique with different base models for residual filtering, against
their respective base models without RED.

As shown in Table 9, the combination of MHP + RED + MHP may yield worse results, as the model complexity of it is
twice that of a single MHP. Apparently, the residuals do not follow MHP, leading to overfitting.

We then use the NHP as a representative neural base model for residual filtering. For each baseline neural TPP, we compare
its performance with two RED variants: the original version using a Hawkes process as the base model and the new vairant
using NHP. The results in Table 9 demonstrate that Residual TPPs with the RED technique consistently outperform the
baselines, regardless of whether Hawkes or NHP is used as the base model. This highlights that the RED technique, as a
plug-and-play module, can effectively enhance the performance of TPPs.

Table 9. Performance comparison of Residual TPPs with RED method using different base models on example benchmark datasets:
MIMIC-II and Earthquake. For each baseline neural TPP, the first row reports its original performance, the second row (e.g. Res RMTPP)
shows Residual TPP with RED using Hawkes as base model and the third row (e.g. NHP+RMTPP) presents the new Residual TPP with
RED using NHP as base model. We evaluate the model’s goodness-of-fit (Log-Likelihood, higher is better) and prediction performance
(Time RMSE / Type Error Rate, lower is better).

MODEL
MIMIC-II EARTHQUAKE

LOG-LIKELIHOOD TIME/TYPE LOG-LIKELIHOOD TIME/TYPE

MHP -2.839 0.925/27.9% -4.155 1.475/60.6%
MHP+MHP -3.883 0.919/43.0% -3.746 1.452/71.8%

RMTPP -2.626 0.998/37.8% -4.643 1.956/52.9%
RES RMTPP -2.045 0.915/26.7% -3.689 1.420/52.7%
NHP+RMTPP -2.059 0.929/37.8% -4.098 1.797/52.8%

NHP -2.031 1.010/26.7% -2.389 1.910/53.9%
RES NHP -1.825 0.913/20.9% -1.930 1.416/52.8%
NHP+NHP -1.792 1.061/22.1% -2.089 1.711/52.8%

SAHP -4.672 0.971/23.8% -3.338 1.463/54.1%
RES SAHP -4.488 0.935/18.0% -3.335 1.455/53.3%
NHP+SAHP -4.126 0.935/20.9% -3.152 1.452/52.8%

THP -2.048 1.129/35.5% -3.498 1.857/54.7%
RES THP -2.040 0.930/27.9% -3.415 1.403/52.8%
NHP+THP -2.743 1.067/35.5% -4.112 1.755/53.0%

ATTNHP -2.500 1.030/35.4% -2.896 1.822/54.5%
RES ATTNHP -2.197 0.932/36.0% -3.147 1.413/52.8%
NHP+ATTNHP -2.649 1.094/23.8% -2.133 1.757/52.8%

ODETPP -1.855 1.416/22.1% -2.203 2.396/56.0%
RES ODETPP -1.371 0.934/19.2% -2.340 1.412/53.0%
NHP+ODETPP -2.480 1.263/22.7% -2.089 2.099/54.8%

Nevertheless, we omit these extended results from the main text, as one of the key advantages of our method is its lightweight

22



Residual TPP

nature. Our primary motivation is to capture statistical properties using a simple TPP and refine residuals using a neural TPP,
thereby accelerating neural TPP computation with fewer events. While a neural TPP + RED + neural TPP configuration
may further improve accuracy, it comes at the cost of substantially increased computational complexity.

E.2. FullyNN

To be self-complete, we compare the proposed method with FullyNN model. It can be clearly seen from Table 10 - Table 12
that there is a significant improvement in all performance metrics by using our RED technique.

Table 10. Performance of FullyNN and Residual FullyNN on the goodness-of-fit task. Higher scores indicate better performance.

MODEL
GOODNESS-OF-FIT (LOG-LIKELIHOOD)

MIMIC-II RETWEET EARTHQUAKE STACKOVERFLOW AMAZON VOLCANO

FULLYNN -10.01 -11.45 -10.00 -12.72 -9.737 -9.337
RES FULLYNN -2.971 -4.810 -4.132 -3.448 -1.963 -1.344

Table 11. Performance of FullyNN and Residual FullyNN on the next event time prediction task. Lower scores indicate better performance.

MODEL
PREDICTION PERFORMANCE (TIME RMSE)

MIMIC-II RETWEET EARTHQUAKE STACKOVERFLOW AMAZON VOLCANO

FULLYNN 4.580 21.92 4.313 4.316 3.862 6.267
RES FULLYNN 1.247 19.76 1.523 2.379 1.196 5.629

Table 12. Training time per epoch for FullyNN and Residual FullyNN. All training was conducted on a CPU.

MODEL
TRAINING TIME PER EPOCH (SECONDS)

MIMIC-II RETWEET EARTHQUAKE STACKOVERFLOW AMAZON VOLCANO

FULLYNN 0.672 2.360 0.341 1.695 4.980 0.150
RES FULLYNN 0.570 2.124 0.317 1.686 4.740 0.116
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