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ABSTRACT

While conventional Transformers generally operate on sequence data, they can be
used in conjunction with structure models, typically SE(3)-invariant or equivari-
ant graph neural networks (GNNs), for 3D applications such as protein structure
modelling. These hybrids typically involve either (1) preprocessing/tokenizing
structural features as input for Transformers or (2) taking Transformer embed-
dings and processing them within a structural representation. However, there is
evidence that Transformers can learn to process structural information on their
own, such as the AlphaFold3 structural diffusion model. In this work we show
that Transformers can function independently as structure models when passed
linear embeddings of coordinates. We first provide a theoretical explanation for
how Transformers can learn to filter attention as a 3D Gaussian with learned vari-
ance. We then validate this theory using both simulated 3D points and in the con-
text of masked token prediction for proteins. Finally, we show that pre-training
protein Transformer encoders with structure improves performance on a down-
stream task, yielding better performance than custom structural models. Together,
this work provides a basis for using standard Transformers as hybrid structure-
language models. The code is available at: https://github.com/Ellmen/
attending-to-distance.

1 INTRODUCTION

Background. Transformers typically operate on sequential data, however many applications of
Transformers benefit from an ability to learn geometric reasoning. For instance, ESM-2 (Lin et al.,
2023) demonstrates that in order to effectively predict masked tokens in protein sequences, the
model has learned some ability to predict protein structures. Other tasks such as image processing
or even natural language processing may benefit from an internal representation of objects in 3D
space. However, it is unclear how Transformers can learn to use 3D representations to perform
spatial reasoning. To this end, custom structural Transformers have been created which model data
as graphs and represent distance between nodes as edge features in order to perform SE(3)-invariant
attention (Ingraham et al., 2019; Fuchs et al., 2020; Liao & Smidt, 2023; Liao et al., 2023).

SE(3) invariance means that all functions of coordinates reduce to functions of relative distance.
That is, for every function f of two coordinates x1 and x2, there exists an equivalent function g
which depends only on their relative distance: f(x⃗1, x⃗2) = g(|x⃗1 − x⃗2|). Since relative distance
in Euclidean space is defined as |x⃗| =

√
x2 + y2 + z2, it may be easier to learn functions of the

square of the relative distance — a linear combination of functions of the individual coordinates.

In this manuscript, we investigate how conventional Transformers can learn to approximate func-
tions of the squared distance between points, thereby learning an approximately SE(3)-invariant
measure of distance. In short, we show that “out of the box” Transformers can act as 3D structural
models. Our main contributions are (1) to provide a theoretical explanation for how standard Trans-
formers can learn to measure distance and perform structural reasoning, (2) to show that Transform-
ers indeed learn Gaussian functions of distance and investigate efficient data augmentation methods
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which can be used to learn SE(3), and (3) to train a protein masked token prediction model with
coordinates and show that finetuning it for function prediction yields a model which outperforms
structural GNNs.

2 THEORY

Here we introduce our theory for how Transformers can learn to measure Euclidean distance.
Throughout this section, we assume that all coordinates are small. This can be achieved by scal-
ing the inputs and outputs manually or via learned weights in the linear input/output maps. For more
detail, see Appendix A.2.

2.1 GAUSSIAN SPATIAL ATTENTION

Consider a pre-norm Transformer (Xiong et al., 2020) operating on a sequence of embedded po-
sitions, E(x⃗i). For simplicity, assume that the key and query embeddings for all heads are trivial
(Q = K = Id). Such mappings can easily be learned as long as the head dimension is at least d.
Then, in the first layer of the Transformer, the attention matrix for all heads will be:

Ai,j = SM(
LN(E(x⃗i))·LN(E(x⃗j))√

d
) (1)

Where SM denotes the softmax function and LN denotes LayerNorm (Ba et al., 2016).

Our objective is to determine an embedding, E, such that the attention Ai,j is a monotone decreasing
function of the Euclidean distance between x⃗i and x⃗j . In particular, if we choose E such that, for
some a, b ∈ R:

LN(E(x⃗i)) · LN(E(x⃗j)) ≈ −a|x⃗i − x⃗j |2 + b (2)

Then,

Ai,j = SM(
LN(E(x⃗i))·LN(E(x⃗j))√

d
)

≈ SM(− a√
d
|x⃗i − x⃗j |2 +

b√
d
)

= SM(− a√
d
|x⃗i − x⃗j |2)

(3)

In particular, the unnormalized attention paid to xj by xi is:

Anonormi,j ≈ e
− a√

d
|x⃗i−x⃗j |2 (4)

Which is a Gaussian of the relative distance between the two points, i.e., Transformers can learn to
approximate a 3D Gaussian to gate attention values and selectively attend to points nearby in 3D
space. By learning individual LayerNorm gains or Q/K mappings, each head can tune the variance
of this Gaussian filter, which allows each head to determine the appropriate spatial resolution for
that type of information.

Below, we provide embeddings which satisfy Equation 2 and so lead to Gaussian attention filters.

2.2 SPATIAL POSITIONAL EMBEDDINGS

For simplicity, we consider the case of 1 spatial dimension and provide 4-dimensional embeddings,
which satisfy Equation 2. The 3 (or n) dimensional case is similar. Consider the embeddings:

2



Published at LMRL Workshop at ICLR 2025

Etrig(x) = (sin(x),− sin(x), cos(x),− cos(x))

Elin(x) = (x,−x, 1,−1)

Equad(x) = (x,−x, 1− x2

2
,
x2

2
− 1)

(5)

Here, Etrig is similar to the standard sinusoidal positional encoding for linear sequences (Vaswani
et al., 2017). Then, Elin and Equad can be thought of as the first and second order approximations
of Etrig, respectively. It can be shown (see Appendix A.3) that for all three embeddings:

LN(E(xi)) · LN(E(xj)) ≈ −2|xi − xj |2 + 4 (6)

Subject to |xi−xj | being small for Etrig and subject to |xi| and |xj | being small for Elin and Equad.
This surprising result for Elin stems from the non-linearity of LayerNorm causing the constant terms
to be locally quadratic. For more details, see Appendix A.3.2. An important consequence of this
result is that simple linear embeddings of positions can still lead to an approximately 3D Gaussian
filter of relative distance for attention.

Additionally, the approximation Equad is better than that of Elin, however the requirement to encode
x2 explicitly makes it harder for individual attention heads to rescale the positions appropriately,
since heads have to learn the linear and quadratic scaling terms separately. However, in A.3 we
show that ReGLU and SwiGLU activation functions (Shazeer, 2020) are capable of learning exactly
quadratic functions of their input, which may allow some modern Transformers to learn positional
embeddings of the form Equad after the appropriate rescaling. This may be a useful benefit of GLU
activation functions for models such as AlphaFold3 (Abramson et al., 2024).

3 EXPERIMENTS

3.1 SIMULATED POINTS

To test our theory of how Transformers learn to measure distance, we designed a Transformer en-
coder which is truncated such that the output is the unnormalized attention matrix for a single head.
A diagram of this model is shown in Figure 1. We computed the loss as the l1 difference between the
output matrix and the matrix Ai,j = e(

−(xi−xj)
2

2002 ). This corresponds to the prenormalized softmax
of the negative square of the relative distance between points, as predicted by our theory. The data
consisted of 10,000 “structures”, each with five 3-dimensional points with coordinates randomly se-
lected between 0 and 200. Unless otherwise indicated, the Transformer encoder for all experiments
has three layers (is truncated at the third layer), an embedding dimension of 256, a feedforward
dimension of 1,024, 8 heads, pre-normalization and ReLU activation. The models were trained with
a batch size of 16 using the Adam optimizer with a peak learning rate of 4×10−4 which is reached
after 4,000 warmup steps, and then is quadratically decayed.

As in AlphaFold3 (Abramson et al., 2024), we transform the input structures before they are passed
through the model. Whenever a structure is loaded, its points are recentred, randomly rotated, and
rescaled by a factor of 1

16 . This has two benefits. First, recentering and rescaling the points ensures
that all coordinates stay relatively small, even before the embedding layer has learned an appropriate
mapping. Second, recentering and randomly rotating gives the model resilience to translations and
rotations which encourages it to learn a distance measure which is truly SE(3)-invariant.

Transformers can attend to |x⃗i − x⃗j |2. In Section 2, we show that Transformers are theoretically
capable of learning Gaussian functions of distance. We experimented with learning e−|x⃗i−x⃗j |p for
different powers p, ranging from 0.5 to 4, in increments of 0.5. Figure 2a shows the relationship
between p and the validation loss. As expected, Transformers can learn to reproduce the e−|x⃗i−x⃗j |2

attention matrix most accurately which shows that a Gaussian is the most natural way for Trans-
formers to learn to filter attention spatially.

Transformers need n + 2 embedding dimensions to learn distance in Rn. Next, we explored
how large a spatial embedding must be to learn a good approximation of distance for Rn. For the
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Figure 1: Overview of the simulated experiment model. Coordinates are passed through a Trans-
former encoder which is truncated such that the output is the unnormalized attention for a single
head. Loss is computed as the difference between the attention for each pair and a Gaussian of the
relative distance between those points.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Exponent (p)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Va
lid

at
io

n 
lo

ss

Loss depending on p for exp( dp)

(a) Loss vs exponent

1 2 3 4 5 6 7 8
Head dimension

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Va
lid

at
io

n 
lo

ss

Loss depending on head dimension
Spatial dimension = 1
Spatial dimension = 2
Spatial dimension = 3
Spatial dimension = 4

(b) Loss vs head dimension

Figure 2: (a) Validation loss as a function of the exponent p. The loss is lowest for p = 2 which
corresponds to learning a Gaussian function of distance. (b) Validation loss as a function of head
dimension for different spatial dimensions. Models need a head dimension of n + 2 to accurately
measure distance in Rn.
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case of 1 spatial dimension, we provide a theoretical 4-dimensional embedding. We trained models
to predict Euclidean distance in Rn for n ∈ 1, 2, 3, 4 using head dimensions from 1 to 8. Figure 2b
shows the relationship between validation loss and head dimension. We found that the model only
needs n + 2 head dimensions to learn a good approximation of distance for all spatial dimensions.
This means that to learn a good approximation of distance in R3, a model must reserve at least 5
embedding dimensions for each head. This is a surprisingly compact requirement which should be
easily accommodated even in small Transformers.

3.2 PROTEINS

Proteins are a natural fit for structural Transformers because they are composed of linear sequences
embedded in 3D space. As such, their properties depend on both sequential and structural features.
We considered two tasks in protein modelling: predicting masked tokens as a pretraining objective
and predicting protein function conditioned on embeddings generated by pretrained models. For all
protein experiments we used the GO PDB dataset from DeepFRI (Gligorijević et al., 2021) which
comprises ∼36K protein chains.

Pretraining a structural protein language model. To test a Transformer’s ability to learn useful
structural patterns in proteins, we trained an ESM/BERT-style (Rives et al., 2021; Devlin et al., 2019)
model to complete masked token prediction. We trained two models: one with coordinates (‘coords
model’) and the other without (‘non-coords model’). The version with coordinates added a linear
embedding of the coordinates to the token embedding in the same way as the simulated experiments.
Both models were very similar to the smallest publicly released ESM1 model, consisting of a 6-layer
Transformer encoder with a hidden dimension of 768, 12 attention heads, a feedforward dimension
of 2048, and GeLU activation (Hendrycks & Gimpel, 2023). As in ESM, we omitted dropout. To
prevent the model from focusing too much on linear positional information, we used Sinusoidal
Positional Encodings rather than Rotary Positional Encodings (Su et al., 2022). As is common
in masked token prediction, we masked 15% of tokens. Of the masked tokens, 80% were replaced
with a [MASK] token, 10% were replaced with a random amino acid, and 10% were left unchanged.
We clustered the data by 50% sequence identity using MMSeqs2 (Steinegger & Söding, 2017) and
randomly held out 1% of the clusters to use as a validation set. We trained each model for 100 epochs
with a fixed batch size of 24, resulting in approximately 150K updates. We used the Adam optimizer
with 4,000 warmup steps to a peak learning rate of 2.3×10−4, followed by inverse square decay.
Each time a structure was loaded, its coordinates were recentred, randomly rotated, and rescaled.

As shown in Figure 3a, adding coordinates substantially improved the model, leading to a final
training perplexity of 6.5 with coordinates vs 11.9 without. The final training loss for the version
without coordinates (after 100 epochs) was surpassed by the version with coordinates after 8 epochs.
Additionally, the final validation loss was surpassed after only 4 epochs which may indicate that the
structural features learned early in training are more robust to dissimilarity in sequence space.

We also investigated the difference in sequence recovery rates between the two models. The total
sequence recovery rate was ∼23% for the non-coords model compared to ∼38% for the coords
model. Figure 3b shows a breakdown of the recovery rates per amino acid type. The recovery rate
for the coords model was greater than or equal to that of the non-coords model for all amino acid
types. The difference was particularly stark for glycine and proline, which may be related to their
distinct backbone conformational preferences (Ho & Brasseur, 2005; Beck et al., 2008).

Pretrained models learn to measure distance. In the model trained in the previous paragraph,
there are three inputs to the model for each token: amino acid type, sequential position, and 3D
coordinates. To test if the pretrained model with coordinates was learning to measure distance as
predicted, we plotted the average attention paid by each pair of tokens across all heads in a layer
as a function of distance. We also plotted the average attention paid to each token as a function
of relative sequence distance. To isolate the effect of each feature, we fixed all amino acids to
alanine. We also fixed the linear sequence index to a constant value for all tokens while measuring
3D dependence and fixed the 3D position to (0, 0, 0) while measuring linear dependence. For the
distance measurements, we rounded each pairwise distance to the nearest Angstrom and computed
the average for each distance value.

Figure 4 shows the plots for 3D and linear positional dependence for all layers for both models as
well as the amplitude and standard deviation of the fit Gaussian for each layer. As expected, the
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Figure 3: (a) Masked token prediction loss per epoch. Adding coordinates to the model hugely
improves training and validation accuracy, as the model quickly learns to use coordinates to measure
distance and compute structural features. (b) Sequence recovery rate for each amino acid type. The
height of each bar represents the recovery rate for the coords model and the orange portion is the
recovery rate for the non-coords model (the coords model had at least as high a recovery rate as
the non-coords model for all amino acid types). The recovery rates for glycine and proline were
substantially higher in the coords model, which may correspond to identification of beta turns.

model without coordinates shows no correlation with Euclidean distance. Conversely, the model
with coordinates shows a strong dependence in the early layers which is well-approximated by a
Gaussian. Both models progressively widen their field of view as information passes through the
layers. This may correspond to a system of reasoning where the model collects information about
the local environment before processing this information alongside global patterns. We provide a
similar plot without isolating each of the factors in Appendix A.5.

Protein function prediction. Finally, we tested whether the pretrained protein model embeddings
could improve accuracy on a downstream task. We trained models to predict protein molecular func-
tion Gene Ontology labels (Ashburner et al., 2000). Protein function prediction has been studied
extensively, and has been shown to benefit from both language and structural features (Gligorijević
et al., 2021). We trained models to predict protein function based on the mean token embedding out-
put by the pretrained models, using the same data splits as DeepFRI (Gligorijević et al., 2021). We
compare our results to the DeepFRI and DeepCNN versions which were trained on PDB sequences.
DeepFRI provided a useful comparison since it achieved state of the art performance on protein
function prediction before models were trained using ESM embeddings. Thus we could pretrain our
model on the same data as DeepFRI and evaluate the specific contributions of model architectures.
DeepFRI is an ensemble of Graph Convolutional Networks (Kipf & Welling, 2022) with different
propagation rules, as in Dehmamy et al. (2019). The graph structure is defined by connecting the
k-nearest neighbours for each amino acid in the protein structure. DeepFRI uses a pretrained LSTM
model (Graves, 2014) to generate language model embeddings for node features. DeepCNN is a
Convolutional Neural Network (LeCun et al.) meant to replicate DeepGO (Kulmanov et al., 2018)
but retrained on the same sequences as DeepFRI (and our model).

We train two models based on the pretrained models from the previous section. Our first model
is based on the simple MLP model from Kulmanov et al. (2024), which is a simple 2 layer MLP
block of 1,024 dimensions with a residual connection. The input to the model is a learned linear
embedding of the mean token embedding output by the pretrained models.

Our second model is a finetuned version of the pretrained masked token prediction models. As in
BERT (Devlin et al., 2019) the output is a learned linear projection of the final start token embedding.
Each model (coords/no coords) is finetuned for 20 epochs with a constant learning rate of 3×10−5.

The results are shown in Table 1. Additional results for predicting biological process and cellular
component are provided in Appendix A.6. Our sequence-only MLP model compared competitively
with DeepCNN and our sequence-structure MLP model compared competitively with DeepFRI. The
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Figure 4: Average attention paid per layer to linear and 3D positional information (a-d). Fit Gaussian
functions are shown in blue for each plot. The model which was trained with coordinates learns to
filter heavily by linear and 3D positional information whereas the model trained without coordinates
only filters by linear information in early layers. Amplitudes (e) and standard deviations (f) of the
fit Gaussians show that both models pay attention to local features early and then gradually widen
their fields of view.

MLP models are very simple, taking less than 2 minutes to train on a single GPU, since they are O(1)
in sequence length after obtaining the mean sequence embeddings. This indicates that the pretrained
models have learned rich embeddings of sequence and structure.

Additionally, the finetuned structure model achieves a substantially better AUPRC (0.566 vs 0.446)
and max F1 score (0.575 vs 0.460) than DeepFRI. The gap between our structural and non-structural
models is much wider than that of DeepFRI, indicating that our model derives a greater benefit
from structural information, despite the fact that DeepFRI uses established models for structural
processing.
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Table 1: GO molecular function prediction results.

Pretraining (# seqs) Method Structure AUPRC (Gain from Max F1 (Gain from
structure) structure)

DeepFRI (∼10M) DeepFRI ✗ 0.427 0.438
✓ 0.446 0.019 0.460 0.022

None DeepCNN ✗ 0.363 0.385

Ours (∼35K)
MLP ✗ 0.361 0.377

✓ 0.460 0.099 0.465 0.088

Finetuned ✗ 0.381 0.421
✓ 0.566 0.185 0.575 0.154

4 CONCLUSIONS

In this work we show that standard Transformers are capable of performing structural reasoning by
learning an approximately SE(3)-invariant distance filter on attention. We predict that even linearly
embedded positions can produce Gaussian attention filters of distance and validate this prediction
using experiments on simulated points and proteins. The protein model naturally learns to use
the 3D coordinates to measure distance which substantially improves its ability to predict masked
tokens. The structural information also materially improves the model’s ability to inform function
prediction, providing even greater benefit than existing custom-built structural models.

We show that Transformers can learn to measure distance and operate as hybrid structure/language
models. In contrast to many conventional structure models which are based on GNNs, Transformers
do not explicitly model edges. This admits memory-efficient implementations such as FlashAtten-
tion (Dao et al., 2022; Dao, 2023) which allow for fast, fully-connected updates in linear memory.
Most structure models store distance in edges which use quadratic memory for fully-connected
graphs. Practically, this means that Transformers can perform structural reasoning on more highly
connected structures, which may allow them to “see” more while making decisions.

As shown in Section 3.2, the pretrained protein model trained with coordinates showed a strong
positional dependence in attention in early layers followed by a weak positional dependence in the
last few layers. It is possible that this corresponds to the model identifying structural features such as
secondary structure and local physics, before encoding these and performing long-range sequential
processing. This corresponds with the contemporary trend of preprocessing structural information
to create structural tokens for Transformers compared to the more traditional approach of using
language model embeddings as input to structural GNNs.

In this work we explore two protein tasks: masked token prediction and function prediction. Vir-
tually all protein learning tasks benefit from combined sequence and structure processing and so
this work could be applied across areas including inverse folding, structure prediction, and arbi-
trary property prediction. As is common in tasks such as inverse folding, the input structures could
include more atoms from the backbone. This could be achieved by simply projecting these atom co-
ordinates to the input representation, unlike GNN-based methods which require explicitly including
all pairwise distances in the edge features. Additionally, while proteins are a natural fit for struc-
tural Transformers due to their combined sequential and spatial data, there are many other possible
applications of this type of model. Some of these include tasks with explicit 3D information such as
small molecules and 3D objects. However, there are also tasks where learning an approximate rela-
tionship between entities in Euclidean space could help with reasoning, such as vision Transformers
(Dosovitskiy et al., 2021) or even large language models.
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MEANINGFULNESS STATEMENT

Proteins, the molecular machines of life, are typically represented as either sequences or structures.
These two representations are often used with different types of models: Transformers can leverage
long-range sequential patterns, while GNNs can interpret local structural features. There has been
interest in combining these representations by using sequence-level embeddings as node annotations
for GNNs or using GNNs to create structural tokens for Transformers. In this work, we show that
Transformers are capable of creating their own meaningful representation of protein coordinates,
which allows them to learn to attend to local structure and operate as a hybrid sequence-structure
model.
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A APPENDIX

A.1 PRIOR WORK

There have been prior approaches to merge Transformers with SE(3)-(in/equi)variant models, es-
pecially for computational chemistry and 3D point clouds. Some methods add attention blocks to
SE(3) GNNs to create SE(3)-invariant GNN Transformers (Fuchs et al., 2020; Liao & Smidt, 2023).
These have shown good results on a number of tasks, however tend to be memory-intensive, par-
ticularly because attention is performed on edges, which grow as n2 for fully-connected graphs.
As a result, the graph connectedness of the GNNs is typically limited to k-nearest neighbours. In
contrast, memory-efficient attention implementations such as FlashAttention (Dao et al., 2022; Dao,
2023) have enabled linear-memory standard Transformers.

Previous works have demonstrated that sequence-only protein Transformers can learn attention maps
which correlate with physical contacts (Lin et al., 2023; Vig et al., 2020). However, these works do
not formally model structure and so are limited by which contacts can be predicted from purely
sequential patterns. To overcome this, Transformers are often paired with structural models, for
instance methods such as ProSST (Li et al., 2024), ESM-IF (Hsu et al., 2022), and ESM3 (Hayes
et al., 2024) use custom graph-based modules to create structural tokens which are fed into standard
Transformers. In contrast, our work shows that standard Transformers are natively capable of using
coordinates to model structure and measure distance.

Similarly, AlphaFold2 (Jumper et al., 2021) and ESMFold (Lin et al., 2023) use Transformers to
preprocess protein sequences for structure prediction. Again, these preprocessed representations
have been shown to correlate with structural contacts. AlphaFold2 makes this explicit during train-
ing by minimizing a distrogram loss which encourages the EvoFormer to learn structural contacts.
However, it is unclear if these representations are learning to explicitly embed coordinates in 3D
and both models still require an SE(3)-equivariant GNN structure module to actually produce 3D
structures.

In building AlphaFold3, DeepMind replaced AlphaFold2’s SE(3)-equivariant structure module with
linearly embedded coordinates fed into a diffusion transformer (Abramson et al., 2024). Al-
phaFold3’s structure module uses inner product attention with a pair bias learned from the pair
representation. At present, this still requires quadratic memory, however does indicate that nearly-
standard Transformers with linearly embedded coordinates can learn on structure. Here, we explore
how such linearly embedded coordinates can be used by standard Transformer attention modules
to measure the Euclidean distance between tokens, and, in contrast to prior work, show that no
modifications are necessary for the standard Transformer architecture to learn to perform structural
reasoning.

A.2 COORDINATES CAN BE RESCALED FOR BETTER APPROXIMATIONS

The validity of the approximations shown so far depends on the coordinates being small. Figure
A1 shows how well (cLN(Elin(

x1

c )))·cLN(Elin(
x2

c )) approximates a quadratic as a function of c
and how well the resulting exponential approximates a Gaussian. The scaling parameter c can be
learned by the input and output linear maps of the embedding or by the LayerNorm gain parameters.
In this way, all coordinates can be rescaled such that the previous sections produce arbitrarily good
approximations.

A.3 EMBEDDING PROOFS

A.3.1 TRIGONOMETRIC EMBEDDINGS

Consider the embedding Etrig:

Etrig(x) = (cos(x),− cos(x), sin(x),− sin(x)) (A1)

Then the mean, µ(Etrig(x)), is:

µ(Etrig(x)) = 0 (A2)
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Figure A1: Linear and quadratic approximation and resulting Gaussian approximation of
cLN(Elin(

x
c )) as a function of c. Target functions are shown in black and approximations are

shown in blue. Increasing the scaling parameter c results in a better approximation without chang-
ing the shape of the underlying Gaussian.

and the variance, σ(Etrig(x)), is:

σ(Etrig(x)) =

√
1

4
(sin(x)2 + (− sin(x))2 + cos(x)2 + (− cos(x))2)

=

√
1

2
(sin(x)2 + cos(x)2)

=
1√
2

(A3)

So

LN(Etrig(x)) =
Etrig(x)− µ

σ
=

Etrig(x)− 0
1√
2

=
√
2Etrig(x) (A4)

LN(Etrig(x1)) · LN(Etrig(x2)) =
√
2
2
(2 cos(x1) cos(x2) + 2 sin(x1) sin(x2))

= 4(cos(x1 − x2))

≈ 4− 2(x1 − x2)
2

(A5)

A.3.2 LAYER NORMALIZATION CAN LEARN APPROXIMATELY QUADRATIC FUNCTIONS OF
INPUT

Consider the first-order approximation of Etrig, Elin:

Elin(x) = (1,−1, x,−x) (A6)

We have
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µ(Elin(x)) = 1− 1 + x− x = 0 (A7)

σ(Elin(x)) =

√
1

4
(12 + (−1)2 + x2 + (−x)2)

=

√
1

2
(1 + x2)

≈
√

1

2
(1 + x2 +

x4

4
)

=

√
1

2
(1 +

x2

2
)2

=
1√
2
(1 +

x2

2
)

(A8)

1− µ

σ
=

1
1√
2
(1 + x2

2 )

=
√
2

1− x2

2

(1 + x2

2 )(1− x2

2 )

=
√
2
1− x2

2

1− x4

4

≈
√
2(1− x2

2
)

(A9)

x− µ

σ
=

x
1√
2
(1 + x2

2 )

≈
√
2(x)

(A10)

So,

LN((1,−1, x,−x)) ≈
√
2((1− x2

2
),−(1− x2

2
), x,−x) (A11)

In this way, layer normalization can be used to generate approximately quadratic functions of the
input. In particular,

LN(Elin(x1)) · LN(Elin(x2)) ≈
√
2
2
(2(1− x2

1

2
)(1− x2

2

2
) + 2(x1x2))

= 4(1− x2
1

2
− x2

2

2
+

x2
1x

2
2

4
+ x1x2)

= 4(
1

2
(2− (x2

1 − 2x1x2 + x2
2) +

x2
1x

2
2

2
))

= 2(−(x1 − x2)
2 + 2 +

x2
1x

2
2

2
)

≈ −2(x1 − x2)
2 + 4

(A12)

A.3.3 GATED LINEAR UNITS PROVIDE A BETTER APPROXIMATION

Lemma A.1. ReGLU and SwiGLU can produce functions of x2. In particular:

ReGLU(x) +ReGLU(−x) = SwiGLU(x) + SwiGLU(−x) = x2
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Proof.

ReGLU(x) +ReGLU(−x) = max(0, x)x+max(0,−x)x

= max(−x, x)x

= |x|x
= x2

(A13)

Similarly,

SwiGLU(x) + SwiGLU(−x) =
x2

1 + e−x
+

(−x)2

1 + e−(−x)

=
x2(1 + ex)

(1 + e−x)(1 + ex)
+

x2(1 + e−x)

(1 + ex)(1 + e−x)

=
x2(1 + ex) + x2(1 + e−x)

1 + e−x + ex + ex−x

=
x2(2 + ex + e−x)

2 + ex + e−x

= x2

(A14)

Theorem A.2. With input x⃗ = (1, x, x2), there exists a linear embedding, E, and a linear map L

such that L(LN(E(x⃗))) = (1, x, x2)/σ where 1 ≤ σ ≤ 1 + x4

8

Proof. Consider the second-order approximation of Etrig, Equad(x):

Equad(x) = (1− x2

2
,−(1− x2

2
), x,−x) (A15)

We have

µ(Equad(x)) = 0 (A16)

σ(Equad(x)) =

√
1

4
(x2 + (−x)2 + (1− x2

2
)2 + (−(1− x2

2
))2)

=

√
1

4
(2 +

2x4

4
)

=
1√
2

√
1 +

x4

4

≈ 1√
2

√
1 +

x4

4
+

x8

64

=
1√
2

√
(1 +

1

8
x4)2

=
1√
2
(1 +

1

8
x4)

(A17)

16



Published at LMRL Workshop at ICLR 2025

2000 4000 6000 8000 10000
Epoch

0.00

0.02

0.04

0.06

0.08

Lo
ss

Rolling average loss per epoch
Raw validation
Raw train
Augmented validation
Augmented train

(a) Loss vs epoch

Raw Augmented
0.000

0.002

0.004

0.006

0.008

0.010

0.012

` 1
di

st
an

ce

`1 distance from prediction to truth or random rotation

Validation loss

SE(3) divergence

(b) Loss and SE(3) divergence

Figure A2: (a) Training and validation loss per epoch in a low data setting. The rolling average of the
last 500 epochs is shown. Raw coordinates show large divergence between training and validation
loss whereas randomly rotated coordinates show near perfect alignment, resulting in a substantially
lower validation loss. (b) The final validation loss is very close to the average predicted distance
between randomly rotated structures, indicating that the validation loss is minimized by learning a
more SE(3)-invariant measure of distance.

The error for the LayerNorm-only approximation of x and x2 was O(n3) and O(n4) respectively. In
comparison, the error given x2 as input for x and x2 is O(n5) and O(n6). Thus, simple combinations
of ReGLU or SwiGLU layers give us a better approximation of x and x2, which in turn gives us a
better approximation of d2. In practice, this may mean that x need not be as small for reasonable
approximations to hold which may allow for more stable gradients.

A.4 SE(3) TRANSFORMATIONS IMPROVE LEARNED SE(3)-INVARIANCE

We investigated whether Transformers will learn to overfit training data in a low data regime and
if this can be prevented. This could also correspond to a scenario where there is only a strong
structural signal in a small number of training examples. We reduced the number of training points
to 100 and measured the training and validation loss. To test the importance of data augmentation,
we trained models with and without the random rotations (Figure A2a). The raw coordinates clearly
demonstrate overfitting while the randomly rotated coordinates show near perfect alignment between
training and validation loss. Importantly, this form of data augmentation does not require creating
new data points, only rotating the training data each epoch.

We measured the average ℓ1 distance between predictions of randomly rotated structures for the
models trained with and without random rotations, as a measure of SE(3) divergence (Figure A2b).
In both cases the SE(3) divergence was almost the same as the validation loss, indicating that ran-
domly rotating training structures reduces overfitting by encouraging models to learn an SE(3)-
invariant measure of distance.

A.5 RAW ATTENTION PLOTS

In Section 3.2, we showed that the attention paid to positional and 3D distance are well-fit by Gaus-
sians. Here, in Figure A3, we provide the same plots but without isolating each of the factors. Note
that relative distance, position, and amino acid type are all correlated with one another, especially at
linear/3D distance 0.

A.6 EXTENDED EXPERIMENTS

Here, we report the results of two additional experiments on predicting biological process (Table 2)
and molecular function (Table 3) labels, also from the DeepFRI dataset. We were unable to com-
pare these results to DeepFRI because the PDB-only results were not reported. As in the molecular
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Figure A3: Average attention paid per layer to linear and 3D positional information (a-d) for the
unmodified inputs. Fit Gaussian functions are shown in blue for each plot. Amplitudes (e) and
standard deviations (f) of the fit Gaussians are shown. The amplitudes are higher and the fits are
worse due to the cross-correlation between relative position, 3D distance, and amino acid type.
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function experiments, the inclusion of structure improved the performance of all models. In these
experiments, the performance of the MLP and finetuned Transformers were comparable, and the
sequence-only MLP outperformed the sequence-only Transformer for cellular component predic-
tion. It is possible that this is the result of the more expressive Transformer model overfitting to
sequence training data, which is then mitigated by the inclusion of structure.

Table 2: GO biological process prediction results.

Pretraining (# seqs) Method Structure AUPRC (Gain from Max F1 (Gain from
structure) structure)

Ours (∼35K)
MLP ✗ 0.197 0.247

✓ 0.235 0.038 0.286 0.039

Finetuned ✗ 0.191 0.232
✓ 0.244 0.053 0.280 0.048

Table 3: GO cellular component prediction results.

Pretraining (# seqs) Method Structure AUPRC (Gain from Max F1 (Gain from
structure) structure)

Ours (∼35K)
MLP ✗ 0.281 0.335

✓ 0.306 0.025 0.350 0.015

Finetuned ✗ 0.230 0.271
✓ 0.308 0.078 0.343 0.062

A.7 MODEL PARAMETER COUNTS

In Table 4, we list the parameter counts for all models used in the paper. The simulated parameter
counts will vary slightly as described in the details of each experiment. The pretrained models have
the same number of parameters both with and without coordinates. The finetuned models have a
slightly higher number of parameters than the pretrained because of the final linear layer which
projects to the number of classes. The MLP parameter counts are relatively low because they are
conditioned on the (fixed) pretrained embeddings.

Table 4: Parameter counts for all models.

Model name count

Simulated model 1,597,504
Pretrained models 33,129,242

Finetuned models (cc) 33,375,322
Finetuned models (mf) 33,505,283
Finetuned models (bp) 34,623,409

MLP models (cc) 2,169,152
MLP models (mf) 2,342,377
MLP models (bp) 3,832,727
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