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Abstract

Communication cost and privacy are two major considerations in federated learning
(FL). For communication cost, gradient compression by sketching the clients’
transmitted model updates is often used for reducing per-round communication.
For privacy, the Gaussian mechanism (GM), which consists of clipping updates
and adding Gaussian noise, is commonly used to guarantee client-level differential
privacy. Existing literature on private FL analyzes privacy of sketching and GM in
an isolated manner, illustrating that sketching provides privacy determined by the
sketching dimension and that GM has to supply any additional desired privacy.

In this paper, we introduce the Sketched Gaussian Mechanism (SGM), which
directly combines sketching and the Gaussian mechanism for privacy. Using Rényi-
DP tools, we present a joint analysis of SGM’s overall privacy guarantee, which is
significantly more flexible and sharper compared to isolated analysis of sketching
and GM privacy. In particular, we prove that the privacy level of SGM for a fixed
noise magnitude is proportional to 1/v/b, where b is the sketching dimension, indi-
cating that (for moderate b) SGM can provide much stronger privacy guarantees
than the original GM under the same noise budget. We demonstrate the application
of SGM to FL with either gradient descent or adaptive server optimizers, and
establish theoretical results on optimization convergence, which exhibits only a
logarithmic dependence on the number of parameters d. Experimental results
confirm that at the same privacy level, SGM based FL is at least competitive with
non-sketching private FL variants and outperforms them in some settings. More-
over, using adaptive optimization at the server improves empirical performance
while maintaining the privacy guarantees.

1 Introduction

Federated learning (FL) [44] is a widely used machine learning framework where a shared global
model is trained under the coordination of a central server using data distributed across various clients.
In FL, each client carries out training steps on its local data and sends only the model updates back to
the server, which then refines the global model by suitably aggregating these local updates. Because
the data remains on the clients, FL can offer enhanced privacy protection compared to traditional
centralized learning. Nonetheless, FL faces two significant challenges: (1) it lacks a rigorous privacy
guarantee (e.g., differential privacy (DP)) [L7] and has been shown to be susceptible to various
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inference attacks, leading to local information leakage during training [49, |50 75} 83} 184]; and (2) it
usually requires a high communication overhead due to the frequent communication between the
server and the client [35]. Many recent advances in FL have been motivated by these two challenges.

Towards reducing communication costs, a key goal has been to reduce the communication cost per
round by compressing local updates from clients to a lower dimension [30, [36[], including sparsi-
fication [40, [70, S]], quantization [4] 41} 152], and sketching [59, 154} 28]]. Among these approaches,
sketching methods stand out for its simplicity, making it easier to integrate with existing FL. methods.
As an unbiased compressor, it does not require bias correction using error feedback mechanisms,
unlike sparsification, which incurs additional memory costs [57,160]]. As a linear operation, sketching
ensures the geometric properties are approximately preserved after compression [[13]] as opposed to
quantization distorting the inner product structure, potentially slowing convergence [4]].

Towards preserving privacy, two DP definitions are commonly considered in FL algorithm design:
sample-level privacy and client-level privacy, where client-level privacy is the stricter guarantee in
the sense that it ensures the output remains statistically indistinguishable when an entire client’s
dataset is altered, rather than merely hiding the inclusion or exclusion of individual data samples
as sample-level privacy [81]. Various FL algorithms [21} 71} 163} 166]] have focused on client-level
privacy by adapting standard differential privacy techniques from centralized training (i.e., clipping
gradients and adding Gaussian noise to the clipped values [1,|19]) to the federated learning setting.

Though privacy and communication-efficiency have mostly been studied independently, there have
been some efforts towards solving these two challenges together. D*P-FED[[71]] combines stochastic
quantization and random rotation [44]] techniques to lower communication costs, to the discrete
Gaussian mechanism for privacy [9], along with secure aggregation [7]] to mitigate noise magnitude.
Alternatively, DPSFL [80] directly applies the standard Gaussian mechanism to the communication-
efficient federated learning algorithm FetchSGD [54]. However, these methods merely select individ-
ual compression and privacy components and stitch them together, treating communication-efficiency
and differential privacy as separate concerns rather than examining their intrinsic interplay.

[37] is one of the very few works to investigate the underlying relationship between differential
privacy and communication efficiency in distributed learning. It demonstrates that the Count Sketch
algorithm [10], despite being originally developed for communication efficiency, inherently satisfies
a form of differential privacy for distributed learning algorithms. However, their results have several
major limitations. First, when the privacy level e provided by the Count Sketch mechanism falls short
of the requirement, additional Laplacian or Gaussian noise must be injected, but there is no precise
characterization of the amount of noise required. Second, their theoretical guarantees require arguably
impractical assumptions, including the input (client gradients) to follow a Gaussian distribution and
the sketching dimension b < v/d where d is the input (gradient) dimension, which contradicts typical
empirical configurations in sketched distributed learning, where b is often a fixed fraction of d, e.g.,
b = d/100, to avoid derailing the optimization.

In this paper, we introduce the Sketched Gaussian Mechanism (SGM), which combines an isometric
Gaussian sketching transform [59] with the classical Gaussian mechanism. Leveraging tools from
Rényi differential privacy (RDP) [46]] with the subsampling, post-processing, and composition
theorems of differential privacy [[18], we derive a tight upper bound on the overall privacy level
e of SGM. Concretely, with all other hyperparameters held fixed, e = O(ﬁ), where b denotes

the sketch dimension and 03 the variance of the added Gaussian noise. Our new result for SGM

establishes a clear dependence of ¢ on both b and ag. Unlike prior work, our result imposes no
restrictive upper limit on b, thereby covering practical regimes in which b is a fixed fraction of the
ambient dimension d. More importantly, this bound implies that for suitably large b, SGM achieves
strictly stronger privacy guarantees than the standard Gaussian mechanism, demonstrating that the
sketching operation itself confers inherent privacy benefits.

We further integrate SGM into a federated learning (FL) framework, referred to as Fed-SGM,
supporting flexible choices of server optimizers to match practical deployment needs. We prove
that this Fed-SGM satisfies client-level privacy guarantees. Moreover, by fully leveraging the fast-
decaying spectrum of the deep-learning loss Hessian [[77, 82, [76]], which implies a small absolute
intrinsic dimension [26], we establish rigorous optimization convergence bounds that scale only
logarithmically in the ambient dimension d and linearly in this absolute intrinsic dimension, ensuring
scalability to high-dimensional problems.



We empirically validate our approach on deep learning models for both vision and language bench-
marks. Across these tasks, federated SGM requires strictly less Gaussian noises than the standard
DP-FedAvg algorithm [81]] to achieve the same privacy guarantee, and consistently delivers com-
parable or even superior model accuracy. Furthermore, when we replace vanilla gradient descent
on the server with an adaptive optimizer, we observe additional accuracy gains, highlighting the
practical benefit of incorporating adaptive optimization into our privacy-preserving federated learning
framework.

The remainder of the paper is organized as follows. Section [2]provides the description of our SGM
and establishes the privacy guarantee. Section [3]introduces Fed-SGM, the application of SGM into
federated learning setting, and establish optimization analysis of our framework. In Section[d] we
present experimental evaluations that assess performances of our Fed-SGM and compare them with
existing approaches. Finally, Section [5|concludes our contributions and highlight potential future
directions. Due to space limit, we present our discussion on related works in Appendix [Al

2 Privacy Guarantee of SGM
In this section, we will introduce the Sketched Gaussian Mechanism (SGM), and provide the privacy
guarantee with two different kinds of analysis.

Definition 2.1 (Sketched Gaussian Mechanism (SGM)). For any statistic 0(D) € R? of the dataset
D, the Sketched Gaussian Mechanism outputs SG(6; R, £) = RO + £, in which R € R**? is a
Gaussian sketching matrix with each entry sampled i.i.d. from N (0, %) and ¢ € R® follows the

Gaussian distribution A (0, 021,).

Algorithm 1 Sketched Gaussian Mechanism
Hyperparameters: learning rate 1, noise scale o, clipping threshold 7, number of iterations 7'.
Inputs: Examples D = {1,...,,}, loss function £() = L 3" | £(6, z;).
Initialize 6y randomly.
fort=0,...,7T—1do
Take a mini-batch By of m samples with sampling probability ¢ =
Computer gradient: For each ¢ € By, g:(x;) «+ VL(0;, x;)
Clip the gradient: §,(z;) = clip(g:(x;),7) = g¢(x;) - min {1, M}
Apply SGM: For each i € By, Gi(v;) = SG(gi(x:); R, &t.1)
Aggregate: §, = = > 5 Gi(z;)
Update parameter: 6,1 < OPT (6;, §;, ;)
end for

Outputs: final model 61

Algorithm [T|outlines a standard application of SGM in training a model with parameter ¢ in a similar
manner to the standard DP-SGD [l1]]. At each step of training, we compute the gradient for a random
subset of examples, apply clipping and SGM to each gradient, and update the parameter with the
optimizer OPT using the aggregated gradient.

Denote 7:(D) = Y e, Gt(w:), then ||7:(D)]|, < mT. Notice that sketching with the random matrix
Ry is a linear operation, so we can rewrite the aggregated gradient g, as:

= 1 - N i . N e i ) ) |
gt = m ieZBt gi(z;) = m ieZBt SG(9¢(x4); Rt,ft,z) = ieZBt (Rege(z;) + gm)

E <Rt (Z gt(xi)) & §> “ (RMD) v s) _ SG(u(D): Ru§)
m 1€ By i€B, m ieb, m

where &; = Zi B, & i is a Gaussian vector with covariance matrix magﬂb. Therefore, the aggregated
gradient g; is also an output of SGM based on the examples.

We study the privacy guarantee of Algorithm [I]subject to the rigorous privacy guarantees of Differen-
tial Privacy (DP)[17]], whose formal definition is given below.



Definition 2.2. A randomized algorithm M is (e, §)-differentially private if for any pair of datasets
D, D' differ in exactly one data point and for all event ) in the output range of M, we have

P{M(D) e Y} <eP{M(D') eV} +¢

where the probability is taken over the randomness of M.

2.1 Warm Up: Privacy Analysis by Moments Accountant

Compared to the standard Gaussian mechanism [18]], SGM incorporates an additional sketching
operation. By the Johnson-Lindenstrauss lemma [[13]], sketching can be interpreted as a distance-
preserving embedding that approximates the original high-dimensional update in a lower-dimensional
subspace. Under this viewpoint of sketching, we obtain the privacy guarantee for Algorithm [I]by
an extension of the moments accountant analysis of Gaussian mechanism [[I]. We state the main
theorem below with the full proof in Appendix [C.1]

Theorem 2.1. There exists constants ¢y and cy so that given the sampling probability ¢ = " and the
number of steps T, for any €, < c1¢*T, Algorithm is (ep, O )-differentially private for any 6, > 0
if we choose

T\/(l + %) mT log(2/5,)

nep

04> C2 (1)
Remark 2.1. This privacy bound decreases monotonically in the sketching dimension b. However,
since the dependence is of the form (1 + O(1/v/b)), even for large b, the requisite Gaussian noise
variance 03 remains asymptotically at par with that of standard DP-SGD [1]. Here, the analysis
attributes the entire privacy solely to the Gaussian mechanism, treating sketching purely as an
approximation and omitting any potential privacy that the sketching step might confer.

2.2 Main Result: Privacy Analysis by Rényi Differential Privacy

To more precisely characterize the privacy guarantees of the Sketched Gaussian Mechanism and to
investigate any privacy contributions imparted by the sketching step, we develop the following novel
privacy guarantee of Algorithm

Theorem 2.2. There exists constants c3 and c4 so that given the sampling probability q = ** and the

number of steps T, for any €, < csqV'T, Algorithmis (€p, Op)-differentially private for any 6, > 0
if we choose

c4q7*\/T log(24T/5,)
Vb, '
Remark 2.2. In Theorem for any fixed privacy target ¢, the required Gaussian noise variance
0'3 is a monotonically decreasing function of the sketch dimension b, so sketching to moderately
high dimensions b provably reduces the marginal variance of the Gaussian mechanism. Moreover,
compared to Theorem [2.1] one attains the same privacy guarantee with strictly less noise once the
2
sketch dimension satisfies b > (%). O
We refer readers to Appendix [C.2]for a detailed proof, and provide a high-level sketch here. Our
analysis leverages tools from the Rényi Differential Privacy (RDP) framework [46].

Definition 2.3 (Rényi divergence [53]]). For two probability distributions P and ) defined over R,

«
the Rényi divergence of order @ > 1 is Dy, (P[|Q) = —L5 logE, (ggg) .

From the definition of SGM, SG(,(D); Ry, &) ~ N (0, (% T mag) ]Ib), which can be used
to show the following result:

@

2
ng

Lemma 2.1. The Rényi divergence between SG(7; Ry, &) for neighboring datasets D, D' is

e (D)))* + mbo?

Do (8G(1i(D); Re, E)ISG (v (D)5 Ry &t)) = bfa 7 (D)|)* + mbo?

where fo(x) = logz + 2(a1_1) log Mgi_a.



llve(DN)]|? +mbo?
7 (D)[[*+mbo? °
of the statistic analogous to the classical sensitivity measure in the Gaussian mechanism [[18]].

Since this divergence purely depends on the ratio we define the ratio sensitivity

Definition 2.4 (Ratio Sensitivity). For any constant ¢ > 0, define the ratio sensitivity of 6 as

N2 2
rsens. () = sup w7 (3)
b\ 16 (D)7 +

where the supremum is over all neighboring datasets D, D’.
From the definition, a direct analysis shows

272 1 272
- < <1 <rsens s, (1) < 4|1+ s - )
bog ~ rsens /o, () g
Since f,(x) is monotonically decreasing for 2 < 1 and increasing for z > 1, we can obtain the
following bound on the Rényi divergence.

Lemma 2.2. For any neighboring datasets D, D’,

Da (SG(4(D)); Re, &) || SG(0(D)); Res &) < bmax{fa ( 1+ j) fo ( 1- 2;)} < o =Ty

o5
We are now ready to analyze the privacy of SGM using Rényi Differential Privacy (RDP).
Definition 2.5 ((«, €)-RDP [46]). A randomized mechanism f : D — R is said to have e-Rényi
differential privacy of order a, or (o, €)-RDP for short, if for any adjacent D, D’ € D, it holds that
Do (f(D)[IF(D) < e
Recall that RDP can be transformed into the standard (¢, ¢)-DP.

Lemma 2.3 (Relationship with (e, §)-DP [46]). If f is an («, €)-RDP mechanism, it also satisfies

(e + 1051{5 , (5) -differential privacy for any 0 < § < 1.

Based on Lemma [2.2]and Lemma[2.3] we immediately have the RDP and DP result for SGM.

Lemma 2.4. SGM on v is (e, 15 1)b @ 15557)-RDE, therefore (5% T)zgg + sl 5y pp

Optimizing over the Rényi order « (1n Lemma recovers the optimal (¢, §)-DP guarantee for
SGM at each step for the entire dataset D. Subsequently, by invoking the subsampling lemma, the
post-processing invariance, and the sequential composition theorem from [18]], we can establish the

complete privacy guarantee of Algorithm I

Remark 2.3. Theorem shows that, holding all other parameters fixed, the privacy level ¢,
is monotonically decreasing with the sketching dimension b. This can appear counterintuitive
at first, so we outline the intuition. According to the previous calculation, SG(v:(D); Ry, &) ~

N (O, (M + mog) Hb). As b grows, the signal term M vanishes and the noise term

mas dominates, making the output distribution increasingly independent of D. Consequently, for

any two neighboring datasets D and D', the distributions SG(y:(D); Ry, &) and SG(v(D'); Ry, &)
become increasingly similar, since both are essentially noise—driven. Lemma [2.2]formalizes this: for
a fixed noise multiplier o, /7, the a-Rényi divergence between these two distributions is bounded by

%, so that larger b strictly decreases the divergence. Therefore, increasing b makes it harder to
g
distinguish which dataset produces the sketch, which implies a higher privacy level.

Remark 2.4. For the original Gaussian mechanism, i.e., G(v:(D)) = (D) + & where & ~

N (0,0214), G(4(D)) and G(:(D')) are Gaussian distributions with the same variance o2, but

a? ||y (D)=~ (D)||?
[~ 2)02’7 €23]] <

different means v (D) and ~;(D’) respectively. So their Rényi divergence is <
*, which is fixed for any dimensions. In contrast, for the SGM, SG (7:(D)) and SG (y:(D')) are

QQT

20 52 2
two Gaussians with the same mean of 0 but different variances M + ma and M + ma
and their Rényi divergence is proportional to O( ) according to Lemma ThlS offers an 1ntu1t1ve

justification for the additional 1/ /b factor in Theorem ns privacy bound, as compared to the
privacy guarantee of the standard Gaussian mechanism [[1]. O



Algorithm 2 Fed-SGM
Hyperparameters: server learning rate 7giobal, local learning rate noca1, noise scale o, clipping
threshold 7, number of rounds 7.
Inputs: local datasets D, = {(2i.c, yi.c)};; and loss function L.(6) = -1 37, £(6, (%ic, i)
for clients ¢ € [C].
Initialize 6 randomly.
fort=0,..., T —1do
Take a subset C; of N clients with sampling probability g = %
On Client Nodes:
for c € C; do
Assign local initialization: 6. ; o < 0,
Local update:
fork=1,...,K do

oc,t,k — ec,t,kfl — Mocal * Ge,t k
end for
Compute update: A, ; < 6, — 0.,

Clip the update: A, = clip (ﬁ ’ T)

Apply~SGM: Ac,t = nlocalsg(Ac,t(xi); Rt7 Zc,t)
Send A to the server
end for
On Server Node: B
Aggregate: A, = > .o Aoy
Broadcast At to the clients
On Client Nodes: ~
Update parameter: 0, ; < GLOBAL_OPT (9157 R/ A, 77global>
end for
Outputs: final model 61

3 Application in FL: Fed-SGM

In this section, we introduce Fed-SGM, the application of the SGM within a federated learning

framework that simultaneously achieves communication efficiency and differential privacy guarantees.

We then establish its client-level privacy bounds and derive optimization convergence results.

We consider a federated learning setting with C' clients indexed by ¢ € [C]. Each client ¢

holds a local dataset D, = {(i.¢, Yi.c)} 1oy of size n. and defines its empirical loss by £.(6) =
Z"" l ( (T4, Ui, C)) where 6 € R¢ is the model parameter and ¢ the per—example loss. The goal

of the algorithm is to minimize the average empirical loss over clients, i.e.,L(0) := & ZC 1 L£c(0).

Algorithm [2] formalizes the Fed-SGM algorithm. At each communication round, the server samples a
subset of NV clients uniformly at random without replacement. Each selected client c then:

1. Performs local stochastic gradient descent (SGD) on its local dataset to obtain an update A ;.

3 Applles the SGM to the clipped update and transmits the resulting sketch to the server.

Upon receiving client sketches, the server computes their aggregate and broadcasts this aggregated
sketch back to every client. Each client inverts the sketch to recover the aggregated update in
the original ambient space, and then updates the global model parameters in a single step via the
GLOBAL_OPT operator. In this paper, we study the case with gradient descent (GD) and AMSGrad as
GLOBAL_OPT.

Remark 3.1. In the parameter-update step, we lift the aggregated sketch back to the ambient space

using the transpose RtT , rather than the least-squares estimator RI , .e., the Moore—Penrose pseudo-
inverse. This preference is motivated by the following points. First, since each entry of the sketching
matrix R; € R®*? is drawn i.i.d. Gaussian with mean 0 and variance ﬁ, so E [RtTRt] = 1.

Therefore, for any vector g, E [RtT R, g} = g, which shows that R/ can recover g in expectation,



implying R, is a near-optimal desketching operator for our use. Second, computing RI each round
requires solving a least-squares system, typically via QR/SVD, with per-round cost on the order of
o (b2d) plus the overhead of forming and inverting a Gram matrix. In contrast, the transpose map

R/ is a single matrix—vector multiplication with cost O(bd), which is substantially cheaper.

3.1 Privacy Guarantee

As a direct application of Theorem[2.2] we can obtain the following client-level privacy guarantee of
Algorithm 2]

Theorem 3.1. There exists constants c3 and c4 so that given the sampling probability ¢ = % and

the number of communication rounds T, for any €, < csqV'T, Algorithm@ is (€p, 0p)-client-level
private for any 6, > 0 if we choose

c4q7*V/T log(24T/5,)
Vhe, |

op > &)
3.2 Convergence Analysis

In this section, we analyze the optimization performance of Fed-SGM as specified in Algorithm 2]
Section [3.2.T]introduces our assumptions on the loss-gradient bounds and Hessian spectrum, and
justifies their empirical validity via prior work. Section [3.2.2]then establishes convergence guarantees
for Fed-SGM when employing AMSGrad as the GLOBAL_QOPT, with the corresponding gradient-
descent analysis deferred to Appendix

3.2.1 Assumptions

We begin by presenting a set of standard assumptions that are widely adopted in the literature on
first-order stochastic methods.

Assumption 1 (Bounded Loss Gradients). There exists a constant G > 0, such that for every 0 € RP
and c € [C], [VL:(9)|, < G.

According to the definition, VL(0) = & ZCCZI VL.(0), so we can directly see that || VL(0)|, < G.
Therefore, GG is the upper bound for both the client and global gradient norms. We also assume
the stochastic noise from mini-batches is sub-Gaussian, which is widely adopted in first-order
optimization [25. 48].

Assumption 2 (Sub-Gaussian Noise). The stochastic noise ||V L.(x) — gc(x)||, at each client is
a os-sub-Gaussian random variable, i.e. P(|[VL.(x) — g.(z)|, > a) < 2exp(—a®/c2), for all
a > 0.

Besides, we also assume a special structure on the Hessian eigenspectrum {\;, v; }%_; of the loss
function ¢.

Assumption 3 (Bounded Loss Hessian Eigenvalues). For each ¢ € [C], the smoothness of the loss
Sfunction L., i.e. the largest eigenvalue of the loss Hessian H, is bounded by L.

This local smoothness assumption is commonly used in many federated learning analysis [55} 20]].
Due to a similar reason as Assumption [I] this assumption also indicates the L-smoothness of the
average loss function L.

Assumption 4 (Loss Hessian Eigenspetrum). Denote { )\i}le the eigenvectors of the Hessian matrix
H/ of the average loss function L. Then we assume the absolute intrinsic dimension of H is
SLM S 7

max; \;

PN a
S . . 4N . e
The absolute intrinsic dimension considered here, ?n;;l_‘ /\7|, is close to the concept of intrinsic

dimension proposed in [26]], and the difference is that we consider absolute values of eigenvalues. A
growing amount of empirical research suggests that the absolute intrinsic dimension of the Hessian
in deep learning can be significantly smaller than the ambient dimension d. Studies by [22 [38],142]]
indicate that the eigenspectrum undergoes a sharp decay in magnitude. Additionally, research by
[56.139]] demonstrates that a substantial portion of the eigenspectrum is concentrated near zero. Further
investigations by [76/ |82]] reveal that the eigenvalues follow a power-law distribution, suggesting that
in such cases, the absolute intrinsic dimension remains a much smaller order than d.

bounded, i.e.,

3.2.2 Optimization Analysis

In this section, we will demonstrate the optimization result of Algorithm [2] with AMSGrad as
GLOBAL_OPT. We refer the reader to Appendix [E]for a more formal statement with the full analysis.



Theorem 3.1. [Informal version of Theorem | Suppose {Ot}tT:O is generated by Algorithm
with AMSGrad as GLOBAL_OPT. Denote £* the minimum of the average empirical loss. Under
Assumption with learning rate 7 = NglobalTiocal» W have that with probability at least 1 — © (§),

T

1 2

T g ||V£ (gt)HQ < E?MSGrad + E?MSGrad + E;;MSGmd
t=1

in which EAMSGrad | pAMSGrad gng pAMSGrd denote terms from sketching-based Fed Avg algorithm,
caused by clipping, and caused by Gaussian noises. Specifically, with 7 ¢ = min {7, KG},

_[* ~ ~ ~ ~ ocal T) T A
SR _ o) <£(00) L >+o ( 1 )+O(mle)+O ( T®,G >+o <(m 1+ )TK,G>+O <L)

nTK VNT NG = x
AMSGrad (6 +0 (Wlocal)) G(KG—1)
E, = max 0, IR
€

EVSGR _ 5 (%)

Remark 3.2. Regarding the term EAMSCrd most of the optimization results for sketching-based
algorithms are expectation results 59, 54], while ours is a high-probability optimization bound for
the sketching-based FedAvg algorithm. In addition, previous optimization results in expectation
either have a linear dependence on the ambient dimension d [S9]], or get around the dependence by
using Top-k components of the gradient vector with rely on heavy-hitter assumptions [54} 80]. As a
contrast, our result FAMSG™d only has a logarithmic dimensional dependence from the need of high
probability with no additional mechanisms.

Remark 3.3. When there is no clipping activated, i.e., 7 > KG, with learning rates 7jocay =

1) (%), n=0 (\/TLIK), we can get a the term EAMSGd at the order of O (ﬁ) When we
1

clip with a constant, i.e., 7 = O(1), by setting Mjocas = O (ﬁ), n=0 (ﬁ)’ the order of

EAMSGrad pecomes O ( TlvT + 7\/\%()

Remark 3.4. Regarding the term EAMSGrad caysed by clipping, it is a reasonable term in the sense that
it is monotonically decreasing with the clipping threshold 7. In the extreme case, when 7 = 0, all the
clipped updates will become 0, so that there is no training, then EAMSC6rd ~ (G2 is a natural bound of
+ Zthl IVL(6;) ||§ = |[VL(0) ||§ with Assumption when 7 > K G, there is no clipping activated

during training, which is aligned with the fact that EAMS6™ — max {O, (€+O(m"“})<)f(KG_T) } = 0.

Remark 3.5. Regarding the term E2M56™¢ caused by Gaussian noises, with the learning rates men-

- 2
EAMSGrad _ O \/f”g
g NVTK

on either the ambient dimension d or the sketching dimension b.

tioned in Remark . Besides, E;?Msc"ad does not have any dependence

Remark 3.6. From the proof in Appendix [E} we can see that our analysis on AMSGrad can be
generalized to any adaptive optimizers involved with first-order and second-order moments, including
Adam [32], Yogi [78]], etc.

4 Experiments

We conduct empirical evaluations of Fed-SGM on neural network training for both vision and
language benchmarks. Across various privacy budgets ¢,, we compare Fed-SGM using GD and
Adam as the global optimizer against their unsketched counterparts—DP-FedAvg [81] for the
GD variant and a matched unsketched Adam implementation, and additionally benchmark against
DiffSketch [37]]. The results are presented after a detailed description of the experimental setup.

Datasets and Network Structure. We adopt two different experiment settings including both vision
and language tasks. For the vision task, We use the full EMNIST ByClass dataset, which comprises
814K training samples and 140K testing samples across 62 classes, representing the complete set of
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Figure 1: (a)(b) Comparison of Fed-SGM with ADAM, Fed-SGM with GD, DP-FedAvg and its
Adam variant of ResNetl01 trained on EMNIST with ¢, = 1.6. The X-axis is the number of
communication rounds 7', and the Y-axis is the train/test accuracy. (c) The trend of test accuracy
over privacy levels. The X-axis is the €, and the Y-axis is the test accuracy. In all three subfigures,
‘sgd’ and ‘adam’ denote the selection of GD and Adam as the global optimizers, respectively; ‘4e5’
signifies a sketching dimension of 4 x 10°, and ‘no’ indicates that no sketching is applied.
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Figure 2: (a)(b) Comparison of Fed-SGM with ADAM, Fed-SGM with GD, DP-FedAvg and its Adam
variant of Bert finetuned on SST-2 with ¢, = 1.44. The X-axis is the number of communication
rounds 7', and the Y-axis is the train/test accuracy. (c) The trend of test accuracy over privacy
levels. The X-axis is the €,, and the Y-axis is the test accuracy. In all three subfigures, ‘sgd’ and
‘adam’ denote the selection of GD and Adam as the global optimizers, respectively; ‘2e5’ signifies a
sketching dimension of 2 x 10°, and ‘no’ indicates that no sketching is applied.

handwritten characters. We conduct experiments on ResNet101 [74] with a total of 42M parameter.
For the language task, we use the SST-2 dataset from the GLUE benchmark [69], which comprises
67349 training samples and 1821 test samples across two sentiment classes. We finetune a BERT-Base
model [14]], comprising approximately 100M parameters.

Parameter Setting We deploy C' = 625 clients in total, sampling N = 4 clients uniformly at
random in each communication round. Each selected client executes K = 18 local SGD updates on
mini-batches of size 64, with gradient clipping threshold 7 = 1. Sketching dimension and total rounds
are chosen per task: for the vision task, we set b = 4 x 10° (approximately 1% compression rate)
and run T' = 500 communication rounds; for the language task, we use b = 2 x 10° (approximately
0.2% compression rate) and 7' = 200 rounds.

Privacy Level and Noise calculation: For privacy, we fix the parameter §, = 107°. For both
tasks, we consider noise scales o, € {0.8,1,2,4} for the unsketched algorithms. By employing
the Moments Accountant method [} [8], we compute the cumulative privacy loss and obtain ap-
proximately {2.75,1.60, 0.42, 0.18} for the vision task and {2.45,1.44,0.35,0.12} for the language
task, each corresponding to the respective noise scales. For Fed-SGM, at each privacy level, we
compute the minimal noise scale o, by calculating the RDP and minimizing over the Rényi order
numerically [46]. This yields the noise levels approximately {0.0883,0.1013,0.1588,0.2265} for
the vision task and {0.0948,0.1071, 0.1664, 0.2580} for the language task. Across all considered
privacy budgets in both learning tasks, Fed-SGM attains the same privacy guarantee with strictly
lower Gaussian noise variance than the corresponding unsketched algorithm.



Experimental Results We report our experimental results in Figure[T|and 2] Additional figures and
ablation studies are presented in Appendix [F} For each task, Figures[Ta] and 2a] depict the training
accuracy of the five algorithms at a fixed privacy budget, whereas Figures [1b] and 2b] show the
corresponding test accuracy. Additionally, Figures[Ic|and [2c|present a trend of the test accuracies of
these algorithms under various privacy levels, providing deeper insight into their performance across
different privacy constraints. Based on these figures, the following observations can be made:

* Regardless of the choice of global optimizer, Fed-SGM consistently matches or surpasses its
unsketched counterpart, confirming the effectiveness of sketching within a differentially private
FL framework. Notably, when Adam is employed, Fed-SGM even outperforms the non-sketching
baseline. This improvement arises because Fed-SGM always requires a strictly lower Gaussian
noise variance than the unsketched mechanism to attain the same privacy level. The resulting
reduction in the amount of injected noise may compensate for any performance degradation
typically associated with sketching.

* Irrespective of whether sketching is employed, the variant using Adam consistently outperforms
the ones using gradient descent and the baseline DiffSketch. Notably, even the Adam variant with
sketching surpasses the gradient descent variant without sketching, and this trend is maintained
across different privacy levels. These results demonstrate the performance enhancement achieved
by employing Adam.

Remark 4.1. For experiment results in Figure [T] and Figure [2] we use an IID split of the train-

ing dataset across all 625 clients. To assess robustness under heterogeneity, we rerun our image-

classification experiments with a non-IID partition using a Dirichlet distribution with concentration
parameter 0.05. Table [T compares test accuracy for models with and without sketching, under both

SGD and AMAGrad global optimizers. As expected, overall accuracy decreases under non-IID

settings; however, AMSGrad variants still outperforms SGD counterparts, and sketching methods

remains competitive with and sometimes outperforms non-sketching ones.

Table 1: Test accuracy under I1ID vs. Non-IID data.
GD, Sketching | GD, Non-Sketching | Adam, Sketching | Adam, Non-Sketching
11D 62.98% 63.34% 85.09% 78.60%
Non-1ID 40.71% 42.31% 52.55% 51.42%

Remark 4.2. We use Adam as a representative adaptive optimizer in our experiments. To assess
sensitivity to the optimizer choice, we repeated the image-classification experiments with AMSGrad
under the same settings as Figure[I] As shown in Table 2] the results with AMSGrad are comparable
to those with Adam.

Table 2: Adam vs. AMSGrad as the adaptive global optimizer.
Sketching | Non-Sketching
Adam 85.09% 78.60%
AMSGrad 85.04% 78.10%

5 Conclusion

In conclusion, we introduced the Sketched Gaussian Mechanism (SGM), which combines an isomet-
ric sketching transform with the classical Gaussian mechanism, and showed via Rényi differential
privacy—together with subsampling, post-processing, and composition theorems—that its privacy

1
Vbo?
mension b, thereby demonstrating inherent privacy amplification from sketching. We then embed
SGM into a federated learning framework (Fed-SGM) supporting arbitrary server optimizers and
prove convergence guarantees that grow only logarithmically in the ambient dimension d and linearly
in the empirically small absolute intrinsic Hessian dimension Z. Empirical results on vision and
language benchmarks confirm that Fed-SGM attains a fixed privacy budget with strictly less noise
than unsketched DP-FedAvg, consistently matches or exceeds model accuracy, and benefits further
from adaptive optimization. As a direction for future work, we note that our analysis is currently
limited to isotropic Gaussian sketching matrices. It therefore remains to establish whether comparable
privacy and convergence guarantees hold for more general classes of sketching transforms.

loss satisfies e = O

without imposing any restrictive upper bound on the sketching di-
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly state our theoretical and experimental claims in our abstract and
introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention the limitation of this research in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide proofs for all theoretical results in this paper in the appendix, and
also supply proof sketches and the associated intuition in the main paper.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose all the information needed to reproduce the experimental results
in Section 4.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide the link of the code in Appendix F.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We present the training and test details of our experiments in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Although we do not include error bars in the experiments, we repeat each
experiment five times and report the average results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The compute resources of our experiments are provides in Appendix F.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We fully comply with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work establishes a novel theoretical result on privacy in machine learning,
thereby deepening the formal understanding of privacy guarantees within this domain.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We discuss the data and models used in our experiments and cite all original
papers in Section 4.

Guidelines:
» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide the link of the code in Appendix F.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use LLM for the core method development of this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

Communication-Efficient Distributed Learning. The substantial cost of transmitting model updates
between clients and the central server has driven recent efforts to enhance communication efficiency
in both distributed and federated learning. One widely adopted method, FedAvg [44], reduces
communication frequency by allowing clients to conduct multiple local updates within each training
round before syncing with the server. Another prevalent approach is compressing model updates
before transmission, lowering the communication burden per round. These compression strategies
generally fall into five categories: sparsification [3l [70, 40], quantization [61} |4} 73], low-rank
factorization [67, 147, |68]], sketching [54}159,129], and sparse subnetwork training [27 |33} 134]. While
some of these techniques, such as certain quantization methods [4]], naturally maintain unbiasedness,
many introduce bias and require additional mechanisms to mitigate it for improved convergence [40,
54]]. Another important characteristic is linearity, which guarantees that the geometric properties
remain largely intact after compressing [13]. Among these techniques, sketching is particularly
notable for its simplicity as a linear and unbiased transformation, allowing computations to be
performed in the lower-dimensional space before reconstruction via desketching.

Privacy in Federated Learning. Differential Privacy (DP) [17] is the commonly used rigorous
privacy guarantees in machine learning. In centralized training, the standard approach for ensuring DP
follows a simple procedure of applying a clipping operation to the stochastic gradient, and introducing
random Gaussian noise to the clipped gradient [1]]. The clipping step plays a crucial role in enforcing
DP, as the required noise variance is directly influenced by the chosen clipping threshold. [18]].
Privacy mechanisms involving clipping are also widely applied in federated learning scenarios, but
various requirements and factors result in different clipping operations. For sample-level privacy,
clipping and injecting noise to every local update is proposed [65] while causing noticeable decline
in performance. For client-level privacy, local models are clipped before transmission and perturbed
bounded parameters [[72, 66]. Later the mechanism to clip local updates instead was raised and turns
out to have better numerical performance than model clipping [211 [71} 163]].

Sketching. For decades, sketching has served as a core tool across various applications, predating
the rise of deep learning in the 2010s [12, 23} 31]]. It has been widely used in tasks such as low-
rank approximation [64], graph sparsification [2], and least squares regression [[15]. More recently,
sketching has been increasingly employed in distributed and federated learning to compress model
updates, thereby improving communication efficiency [29, 28, 154, 59| 24} I58]]. Sketching-based
frameworks have also been seamless integrated with secure aggregation and differential privacy
mechanisms [[11} 59, 45| 85| 16]. However, most of these approaches restrict their privacy analysis to
the randomness injected after sketching and do not quantify any privacy amplification inherent to the
sketching transformation itself. [37] is among the few to investigate this intrinsic privacy contribution
of sketching.

Adaptive Optimizers [32] introduced Adam, an optimizer that has demonstrated rapid convergence
and robustness to hyper-parameter choices. Adagrad [16] and RMSprop [62] update parameters using
the gradient directly rather than relying on momentum. Additionally, Adadelta [79] modifies Adam’s
variance term to follow a non-decreasing update rule, and AdaBound [43] introduces both upper
and lower bounds for this variance component. Most of these adaptive optimizers rely on first-order
and second-order moment estimates, which is central to how these adaptive methods balance rapid
progress during early training with more stable convergence later on [32]]. [S1] introduces a general
federated optimization framework integrating adaptive server optimizers, demonstrating improved
convergence rates and empirical performance in heterogeneous federated learning settings.

B Sketching Guarantee

We have the following lemma of sketching guarantee from [S9] for Gaussian sketching matrix.
Lemma B.1 (Lemma D.24 from [59]). Let R € R?*¢ denote a random Gaussian matrix . Then for
any fixed vector h € R? and any fixed vector g € R?, the following property holds:

log"*(d/5)

7 lgll2llpll2] < ©(6).

TpT _ T
e |l B RBh) (g )| >
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C Privacy Analysis

In this section, we will provide the proof of Theorem [2.1|and Theorem [2.2] on the privacy guarantee
of Algorithm

C.1 Proof of Theorem

Following the analysis of [I]], we provide a proof of Theorem [2.1] We restate the theorem first.

Theorem C.1. There exists constants ¢; and ¢z so that given the sampling probability ¢ = 7* and the

number of steps 7, for any €, < ¢1¢°T, Algorithmis (ep, 0p)-differentially private for any §, > 0
if we choose

T\/(1 - gL/ ) 1T g (2/5))

Og Z C2
ney

Proof. Since the process after getting §; can be viewed as post-processing, and due to the post-
processing property of differential privacy, we only need to explore the privacy guarantee till the
aggregation step in Algorithm ]

According to Lemma foreach ¢ € [T], i € L, we have that

P (IRl > (14 SE BRI ) g ] < 2

Therefore, with probability at least 1 — 6—"“, forallt € [T] and i € Ly,

- log"? 2m1/e,) log"® (2m/5,)
”Rtgt(xl)n S \/1+\/Bgt(a:1) ST\/1+ \/B

Denote £ = {HRtfh(fEi)H < T\/l + bg15(2+T/5p)7vt € [T),Vie Lt}, then we have P (£) >

5 .
11— There are two difference cases:

Case 1: When & happens, the function f mentioned in Lemma 3 in [1] is still bounded by a constant.
Therefore, we can still follow the Moments Accountant (MA) method in Lemma 3, Theorem 1, and

Theorem 2 in [1]] to get that A]gorithmis (zsp, %’)) -differentially private for any §,, > 0 if

Og1'5 mT /8
7-\/(1 + log ~(@mT/0p) (\2/5 / ”)> mT log (%)
Og Z C3

nep

Case 2: When £ does not happen, we have P (£¢) < %”.

Combining these two cases, so we can get that Algorithm is (ep, 0p)-differentially private with

log!-®(2mT/5,)
T\/(1+g VR )mTlog (%)

nep

Then we finish the proof. O

0'9203

C.2 Proof of Theorem2.2]

We will establish our analysis in the framework of [46]]. We will restate the concepts and proposition
here.

Definition C.1 (Rényi divergence). For two probability distributions P and @) defined over R, the
Rényi divergence of order o > 1 is

Da (PJQ) £ ——

P(J”)>a.

logfana (Q(x)
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Definition C.2 ((«, €)-RDP). A randomized mechanism f : D — R is said to have e-Rényi
differential privacy of order «, or («, €)-RDP for short, if for any adjacent D, D’ € D, it holds that

Do (f(D)IF(D) < e
Lemma C.2 (Lemma/[2.1)).

e (D)]|* +mbo?
e (D) +mbo?

Do (S8G(7:(D); Ry, &)IISG(v(D"); Ry, &) = bfa

where

1‘2

ar?+1—a’

falz) =logz + log

2(a—1)

Proof. According to the definition of SGM,

SG(u(D); Ry, &) ~ N (o, <””(f)” +ma§> m) ;

SGOu(D'); R &) ~ N (0, (””(f)' + maﬁ) h)

Denote

2 _ (D3 2 2 _ (D)3 2
o] = b +mog, oy, = b +moy.

We need to compute the order-ow Rényi divergence between P = N(0,071,) and Q = N(0,031}).
According to definition of multivariate Gaussian distribution, for x € R?, we can write density
functions

P(z) = (2m0%) /2 exp<_”x“3> 7

2
207

2
Q(z) = (2m03) "/ exp<— ”;”;) :

wea|(5) | - Lo (55) =
= | P@ Q@) dr

= /b ((2770%)_gexp (”;023>>a~ ((27r0§)_ |x”§>>1_ad:v

_ab _ (o 2|2 (a0 1—a
= (2r02)” 2 (2702 2 / -2 (= d
( 7TO'1) ( 7r02) o exp 9 U% + O‘% X
b
2

_(d—a)b

M3
@D
M
o
7N
[N}
)
NI

o

a

2 (271’0’%)

i

= (QWU%)

_2
_ (1—a) [ O 11—« 2
Glabag( D‘) <2_|_ 5 )
01 03

—
=

b
= (aci+(1—-a)oi) * agbo—?"‘)’ﬁ

where (1) uses the standard Gaussian integral [, eall=llz/2qy — (27t/a)®/? for a > 0. Therefore,
following the definition of Rényi divergence in Definition[C.1]

Do (P|Q) = — E g logEano [(Ziii)]
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1 b
= | log ((a02 (1-a) 0%) 2 ogb (1- a)b)
o —

a—1

1 1
= ( log (o3 + (1 — ) U%)b +logol 4 (e —1)logob — (a — 1) log J?)

1 1
— L (3roe (s + (1—ao) +alogod + (1 - a) gt

a—1 2

1
= (log (O’%)b —log (o3 + (1 — a) O’%)b) + (log ob — logalf)
2(a—1)
b 2 b
02 1 o5
=1 —1
(%) 5w (v —am)
b
1 -
= log (02> +—log | ————
g1 2((1—1) O[%-i-l—a
91
tine o2 — I (D)3 2 and o2 — @)l 2 -
Substituting o7 = ———2 + moy and 05 = ~——2 + moy into the above equation, we can

obtain that
D, (SG ( )i Rt, &) 11SG (7e(D'); Ry, &)

¥ (D
D)3
D, (II% )z ma;) HN<°’”%(b >||2+m§>>
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Definition C.3 (Ratio Sensitivity). For any constant ¢ > 0, define the ratio sensitivity of 6 as
(D" 2
rsens. (0) = su w
p,o | (|0 (D)[I” + ¢
where the supremum is over all neighboring datasets D, D’.
Now we prove the monotonicity of f, and the bound on rsens Vo, (7).

Lemma C.3 (Monotonicity of f,). For any (x, ) such that f,, is well-defined, f, (x) is monotoni-
cally decreasing with respect to = for x < 1 and increasing for z > 1;

Proof. In fact,

/ 1 2 '
fi(x) = (1og:c + o —1) log )
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— (loga)' +

1 o x '
2(a—1) s’ t1-a

1 n 1 ar’+1—«a 2 '
2 2a—1) x? ar?+1—«
_1+ 1 ax?+1—a 2x~(am2+lfa)72ax~z2
z 2a-1) x? (az? +1—a)?
_1+ 1 ar’+1-a 2z(1 — «)
x  2(a-1) x? (az? +1—a)?
1 1
oz z(ax?+1-a)
1 1
= — 1 _—_—
x az?+1—«
_alz—1)(z+1)
- z(a2?+1—a)
Therefore, f/, > 0forxz > 1and f/, <0forz < 1.
Lemma C.4 (Bound on rsens_ /. (%))
272 1 D)|I> + mbo2
N g | OO i
bog ~ rsens s (ve)  D.D\| ||y(D)| + mbo?
[ (D")|* + mbo? 272
<rsens ,— () = sup < —
by 00 = S D)+ mbo? bo
Proof. According to Definition|C.3]
v (D)||* + mbo?
sup =rsens — () > 1;
p.5 \| (D)[[* + mbo? vimbos
D> + mbo2 1 1
o | eI bt _ -
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In addition,
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and we can get the lower bound

1 D)|I> + mbo2 272
I S 77T Sy
rsens, g (ve)  D.D\| ||v(D)| + mbo bog

with a similar calculation. O

Now we can obtain the upper bound of D, (SG(7:(D)); Ry, & ||SG(v+(D")); Ry, &t)-
Lemma C.5 (Lemma . For any neighboring datasets D, D’,

Do (8G(7¢(D)); R, & ||SG(ve(D")); Ry, &)

272 272 a2t
< — [ < -
bmax{fa< 1+ba§>’fa< ! bag>}(a—1)bag

Proof. According to Lemma[C.2}

lye(D))|* + mbo?

Dy (SG(:(D); R, €)|SG(1+(D"); Re, &)) = bfa
(SG(D); B L)NSG((D')s B, &) = b | \ o

From Lemma[C.4] we have

272 D)||? + mbo2 D)||? + mbo? D> + mbo2
2 [ bt [ o [ o
bog = D.D"\ |y (D)||I” + mbo? [v(D)II” +mboy — Do\ |[9(D)]|” +mboy

Based on the monotonicity of f, in Lemmal|C.3]
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In addition,
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And similarly we can also get that f, (, /1 — g%) < % Therefore,
g ) 9
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Definition C.4 ((«, €)-RDP [46]). A randomized mechanism f : D — R is said to have e-Rényi
differential privacy of order «, or («, €)-RDP for short, if for any adjacent D, D" € D, it holds that

Do (f(D)If(D')) < e

And RDP can be transformed into the standard (¢, §)-DP.
Lemma C.6 (Relationship with (¢, 4)-DP [46]). If f is an («, €)-RDP mechanism, it also satisfies
(e + %, 6) -differential privacy for any 0 < § < 1.

So we immediately have the RDP and DP result of SGM from Lemma@] and Lemma|[C.6|
Lemma C.7. SGM on ; is («, W) -RDP, therefore ((a 1)b 4+ log(1/5) ,6)-DP.

Finally we can prove Theorem[2.2]
Theorem C.8. There exists constants c3 and ¢4 so that given the sampling probability ¢ = 7* and the

number of steps 7', for any €, < c3 VT, Algorithmis (€p, 0p)-differentially private for any 6, > 0
if we choose

25 caqr®V/Tlog(24T /5, )
> Vi,

(6)

Proof. According to Lemma SG(ye; Re; &) is (((Xal)b04 + 1og(1/50) 7 50) _DP. By taking the

N . . bod log(1/8
derivative, we can get the optimal choice « = 1 +4/1 + M

o2 log (1/8,) _ 2r* (1 . \/1 . bos 10g(1/50)>

, we can get that

(a—1)boy a—1  bol T4

4 bo) log(1/6
T 10g(41/50)},then oy 10g(1/%) co, we have that
e T

4
. T
in the case when b > cg max { oT1og(1/50)

bagl T4 - bU;1 co T4 co T4 T4

2(1+ Ve +1) 72\/log(1/6) . 72/log(1/d)

Vo \/Bag 0 \/503

2
so we get that M is (g, dp)-DP with g = ¢; %@.

Now we list the subsampling and composition properties of (e, §)-DP.

Lemma C.9 (Sub-sampling of (¢,0)-DP). If M is (e,d)-DP, then M’ = M o Sample,, obeys
(€¢',6")-DP with ¢’ = log(1 + p(e€ — 1)) and &’ = pd, in which p = " is the sampling ratio.

Lemma C.10 (Strong composition of (e, §)-DP). For all €, §, &’ > 0, the class of (e, §)-differentially

private mechanisms satisfies (¢/, ké + ¢)-differential privacy under k-fold adaptive composition for:

— ERTog (1/5)e + ke (e — 1)

so according to Lemma , M oSample,, satisfies (€1, pdg)-DP

. log(1/6
Since €y = ¢1 TTg(z/O)
a

< jé—o

with

pr2\/log(1/40)
\/503

€1 =log(1+p(e® —1)) < capeg = c102
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According to Lemma [C.T0, we can see that T-fold composition of M o Sample,, satisfies
(Gg,pT(SO —+ (S/)-DP Wlth

€a = /2T 1log(1/6")e; + Tey (e — 1)
< /2T log(1/6")er + c3T€?

2
2/log(1/6 2/log(1/6
< /2T log(1/d") - clcgp—T 0g(1/00) + 3T - clcgp—T 0g(1/0)
Vbo? Vbo?
C1C2\/2T10g(1/5')lf’g(1/50)177'2 + 22 Tp*r*log(1/do)
= CiCC3——————F
Vbo? 12 bot
c1eapy/2T 1og(1/8")  c3ckespT
< +
Vo co
By setting €2 = ¢, and choosing dg = QpLT’ § = g,
52 C'\Tpr? log(ZpT/(S)7
g Ve
then we can obtain (e, §)-DP. O
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D Optimization Analysis with GD as GLOBAL_OPT

First we write down Algorithm 3] which will be called as GLOBAL_OPT each round to do a one-step
GD update of the global parameter 6,_; with desketched aggregated updates desk (At_l).

Algorithm 3 GLOBAL_OPT (GD)

Inputs: model 0;_1, desketched update desk (1,5_1).
Qutput: model 7. ~
One-step GD: 0; < 0,1 — Ngiobai - desk(At_l).

Then we will introduce the optimization result of Algorithm 2] with Algorithm[3] We follow a similar
analysis to [59], but we exploit the second order structure of the deep learning losses, which helps
avoid picking up dimension dependence due to the sketching operation. We will state the formal
result.

Theorem D.1. Suppose {Qt}tTZO is generated by Algorithm [2| with Algorithm (3| as GLOBAL_OPT.
Denote £* the minimum of the average empirical loss. Under Assumption [I}4] with learning rate
n= nglobamlocal, we have that with probability at least 1 — 100,

“ 210g(2T/6)G? Mo LKG?  v/2G log(2T/6)0

VNT 2 NTK
— 2 2 9
+ max {0, GKG T)} 4 V2log*(NTd/6)GTr.c | log (2T/86)G
K VITK WTK
2nlog? (2T/8) 02 2na3TLt% o  2p02ILlog?(2dT/5)
- NK t—x 7 N
in which
log"®(NTd?/s .
a =1 g(\[b/)vTK,G = min {7, KG}

Remark D.1. To analyze the bound in terms of 7, we consider all other parameters as fixed and
distinguish between two principal regimes:

1. When 7 < KG: In this regime, clipping may be activated, and 7 acts as an upper bound
on the norm of each clipped update A.; according to our algorithm. The total bound in this

case is given by L(ff[)(;ﬁ + 210g(2%¥s)c2 + ”‘““‘LQKGZ Y26 10;;\[(;7;{/5)05 + max {O LKG_T)} +

2 2 2 9plog?(2T/8 2no2TL1 2dT/$
V2log (NTa/)Gr | log?QT/5)G" 21 o8’ 2T/ )5 | 200 (ZLr" | 20, ]\‘;i( /%) We can observe
2 2
that flog%TKd/ 9Cr 4 2”’“;” in the optimization bound of the sketching-based algorithm is

G(KG—1)
K

monotonically increasing in 7, while max {0, } caused by clipping is monotonically

decreasing in 7. This trade-off highlights the need for a careful choice of 7, as overly aggressive
clipping introduces clipping bias, while too loose a threshold amplifies optimization error of sketching
algorithms.

2. When 7 > KG: In this regime, the clipping operation becomes inactive under our algorithm,
as all updates fall within the clipping threshold 7. K G effectively bounds the norm of each update

A+, and the clipping no longer influences the computation. The total bound becomes % +

21og(2T/5)G? I Thocat LK G2 " V2G log(2T/8) 0 n V21og?(NTd/5)G? n log2(2T/8)G2 | 2nlog®(2T/6)o I
VNT 22 VNTK VbT nTK NK
2na?TLKG? + %ﬁ(@dﬂé). Consequently, the entire bound becomes independent of 7 and

remains constant as 7 increases further.

Proof. According to the algorithm, we can write the update in the sync step as:

Oip1 — 0 = —Tglobal desk (At)
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= —Tglobal desk (N Z(; )
1 . A,
—Nglobal desk Thocal 37 Z ( (chp < u T>> + Zc,t)
cC, Thocal
1 K
- (N 5 [r (chp (Soer) )+ )

1€Cy

Z R/ Ryclip (cht ko T ) - % Y Rz

cECt ceCy

in which 7 = giopaiNiocal- By Taylor expansion, we have

1 .
L(Or41) = L(0) + VLO) T (0141 — 00) + 5 (Ors1 — 0) " He (011 — 01)
By taking summation from 0 to 7" — 1, we can get that
T
1 .
L(0r Z (Or11) — Z VL) (Brgr —01)+5 > (Bry1 — 01) T He g (Brgr — 6r)
t=1

t=1

[\)

T Ts

N

D.1 Bounding 7}

For each term in 77, we have
VL0 (0141 — 0r)

=—VL(O,)" ( ZRtRfchp<Zg(tk,>+]1\7/_ZR;ZC¢>

c€Cy c€Cy
=— —Vﬁ (6:)" > R/ Ryclip (Z Geitkr T ) 7vc 0:)" > R/ ze,
ceCy ceCy

By taking summation from 0 to 7" — 1, we can get that

K
Zw (6:) " (Oe1 — 6:) = —WZ Nv,c (6:)" > R/ Ryclip (Z Geiter T ) ny. %Vﬁ(etﬁ > Rlz,

ceCy t=1 ceCy
Sl S2
(®)
D.1.1 Bounding 5,
For each term in S7, we have that
fw )7 3" R Ryclip (Z Jertos T )
ceCy
1 &
(0:) (0:) (0:) 0,) — = ¢
<v,c ) Zv,c t> <vz ) c;v,c 1) C;w >
1 K
+ <vc 0:), ZZ (VLe(Oct.1) vcc(et>>> <V£ (0), % Z(gc,t,k—vcc<ec,t,k))>
cecf k=1 ceCy k=1
1 K K
+ <v£(9t)7 N Z (Chp (Z gc,t,ka'r> - ch,t,k)>
ceCy k=1 k=1
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K K
1 . .
+ <Vﬁ(9t), N ) (RtTRtChP (E gc,t,k,7> — clip (E gc,t,k77—>>>
ceCy k=1 k=1

By taking summation from 0 to 7" — 1, we can get that

T
Z Z Rt Ryclip (Z Geyt ks T >
t=

1 c€eCy
c
:K§<vc 0,), szlvc 9t>+K;<Vﬁ (6,), C;fvc (6;) — 5; >
Y Yo
T T 1 K
+Z< ZZ VE cfk >+Z<v£91‘,NZZ Ge,t,k — 00,t,k’))>
t=1 cECt k=1 t=1 ceCt k=1
Y3 Yy
T K
+ Z <Vﬁ(‘9t)a -~ Z (Cllp (Z Je,t ks T ) - Z%,m)
t=1 c€Cy k=1

5

T K
+ Z <Vﬁ(¢9t), % Z (R Ryclip (Z Jet ks T ) — clip (Z gc,t,kﬂ')) > )
1

ceCy k=1

Ys

D.1.1.1 Bounding Y;

According to the definition,

c
< 52 > VL@l

SO

T c T
1 2
) <va<et>, G ;vcc<9t)> = g VL@ (10)
D.1.1.2 Bounding Y,

We first bound each term with a fixed ¢ € [T] in Y2. According to the assumption, each ¢ € C; is
uniformly randomly selected from [C], so by Hoeffding’s inequality, we have

<‘<vcet ~ VL) - CZVﬁ 9t>

('ECf

< 2Na? _ o Na?
SZexp —W = z€xXp _276;’4

21log(2T/8)G?

By selecting a = , we have that with probability at least 1 — %,

VN
< V210g(2T/5)G?
‘<vc (6,), (;tv,c (0) — Z:: >‘Sg\/ﬁ/)

Then denote Z; = %, _ <V£(9 D = N 2cec., VELe(07/) — & 25:1 V£5(6‘T/)>, we can see that
Z is a martingale with respect to the selection each round, and from the above analysis, we have that
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with probability at least 1 — 4, for all t € [T,

¢ V210g(2T/5)G?
|ZtZt_1||<V£6t =S VL6) - ; c,(ot)>'§°g\(ﬁN/)

cECt

Then by Azuma’s inequality, we have

a? Na?
P(Zr_1 < —a)<exp| — = exp (—>
9. 2log(2T/6)G? 2 4T 10g(2T/5)G4
A
By selecting a = %, we can get that with probability at least 1 — 24,

T c 2
Zroi=Y <va 6,), Z VL(6;) - Z (6, > > QﬁIO%T/é)G (11)
t=1 (’ECf c=1

D.1.1.3 Bounding Y3

For each term, we have

ceCy k=1

o

1 K
< aﬁ Z ctk V‘Cc(et))>
1
N

K
> (VLO) HE™ (Beri—00))

K k
=V z<w<9t>»ﬁ2’“2w~>
. k=1

K k
noca
> = PSS VL@ LY gl

ceCy k=1 k=1

K
:—nlocal~N~G2'LZk

N
k=1
. 7710calL](2GY2
- 2

o)

T K

1 TLK?G?

> <w (00): 5 D D (VLelberr) V£c<9t>)> > —””f (12)

t=1 ceCy k=1
D.1.1.4 Bounding Y,

We first bound each term with a fixed ¢ € [T] in Y.

K
|<V£(9t), % Z Z (gc,t,k - V[fC(ec,t,k))>‘
ceCy k=1
Z
€Cy
2.
€Cy

||V£, Ol - gtk — VL Octio)ll,

|gc,t,k - v£c(0c,t,k) ||2

HMN HMN

2\@ 2\
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According to the assumption, the stochastic noise ||gcsx — VLc(0ct,1), is @ o5-sub-Gaussian
random variable, so by Hoeffding’s inequality,

K 2
a
P (Z S ek = VEebers)ll, > ) <200 (- 772 )

ceC k=1

By selecting a = /N K log(2T'/0)os, we have that with probability at least 1 — %,

K
S° S 9otk = VELBeri)ly < VNK log(2T/0)0,

ceCy k=1
SO

<Vﬁ(9t), % Z Z (Ge,t. ke — VEC(ec,t,k))>‘

CECt k=1
G K
SN S etk = VLberr)l,
ceCy k=1
G G/K1og(2T/é)o,
<—.\/NKlog(2T/é)o, =
SN g(2T/d)o, Vi

Then denote W, = 3", _,, <V£(6"T)7 >, 22{21 (err b — VLC(HC,T/’,C))>, we can see that

W, is a martingale with respect to the stochastic noise, and from the above analysis, we have that
with probability at least 1 — 4, for all t € [T,

G\/Klog(2T/6)os
|WtWt_1||<V£ (61), ZZ et — VL ctk))>|§
cECtk 1 \/N

Then by Azuma’s inequality, we have

a2

Na?
P(Wpr_1 < —a)<exp| — = exp (— )
( ) 92.7. (G Klog(2T/6)os ) 2 2TG?K log(2T/5)O'g

VN

GV2TK log(2T/6)o s
VN

By selecting a = , we can get that with probability at least 1 — 24,

T

GV2TK log(2T/8) o

Wro1 =Y ( VL6, E:E:gcm VLe(Oorr)) ) > — 08(2T/0)s 43,
t=1 CECtk 1 N

D.1.1.5 Bounding Y5

For each term, for 7 < K, we have

K K
<V£(9t) (Cllp <Z et ks 7') - Z gc,t,k> >
ceCy k=1 k=1

K K
1 .
> Y IVE@l (chp <Z mw) - Zgw)
ceCy c€Cy k=1 k=1 2
>—-G(KG-7)

for 7 > K G, we have

K K
1 .
<Vﬁ(9t), N E (Chp < E g(;7t,k,7'> — E gc,t,k>> = O
ceCy k=1 k=1
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SO

K K
<Vﬁ(9t>, % > (chp (Z gc,t,k,f> - ch,t,k) > > —max {0,G(KG — 1)}
k=1 k=1

ceCy

By taking summation from 0 to 7" — 1, we can get that

T K
3 <vc<et) 3 <Chp (Z Jeut s T ) - ch,t,k> > > —max {0, TG(KG — 1)} (14)
t=1 ceCy k=1
D.1.1.6 Bounding Y5

We first bound each term with a fixed ¢ € [T'] in Yg. According to Lemma[B.1] we have that with
probability at least 1 — %,

K K
1 . .
’<V£(9t), N E (R:thhp ( g gat’k,T) —clip ( E Je,t ks 7'> > >|
ceCy k=1 k=1

1 < log"®(NTd/s) (&
<— ———— 2 |VL(O cli et ks T
_Nc;ct NG [ ( t)Hz p ;g,t,k

log'*(NTd/6)Grx
< :
Vb
with 7, ¢ = min {7, KG}. Then denote

¢ K K
Up = Z <V£(97/),]1f Z (RTT,RT/clip (Z gC,T/7k,7'> — clip (Z gc;/,kﬂ')) > ,
k=1

7/'=0 ceC s k=1

2

we can see that U, is a martingale with respect to the sketching matrices, and from the above analysis,
we have that with probability at least 1 — ¢, for all ¢t € [T,

K K 1.5
1 . . lo NTd/5)G
<W(9f)’zv 3 (RZ thhp<§ gc,t,k,r> chp<§ gc,t,m>>>‘§ g ﬁ)/ GG
k=1

ceCy k=1

|U, — Up—a| =

Then by Azuma’s inequality, we have

a?

ba?
P(Up_1 < —a)<exp| — =exp | —
(Ur-1 < —a) < exp 9. 7. (logl's(NT\%5)GTK,G)2 P ( 2T10g3(NTd/5)G27'12(,G>

log2(NTd/8)\V2T Gri.c

By selecting a = , we can get that with probability at least 1 — 20,

Vb
T K K 2
1 . . log®(NTd/§)V2T Gy,
Wr =Y (VL6 + S (BRI Reclip (Y geo | —clip (Y gee7 | | ) = -2 (NTd[5) LS
t=1 N k=1 k=1 Vb
(15)
Substituting [10] [15]into[9] we have that with probability at least 1 — 64,
Z VL) S R Riclip (chtk, )
ceCy
T T 1 e
=K <vz (0,), sz: (6,) >+KZ <vz(9t), ~ > VL(6r) - o sz:c(et)>
t=1 t=1 c€Cy =1
Y1 Y2
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T 1 K T 1 K
+y <vz:(9t>, N2 2 (VLe(lerr) — > +3° <V£ (00) 5 D D (e ep,t,k))>

t=1 ceCy k=1 t=1 ceCy k=1
Yg Y4
T 1 K
+ Z <V‘C(et)a N (clip (Z Ge,t k> T) gc t, k> >
t=1 ceCy k=1
Ys
T 1 K K
+) <vc(9t>, ¥ (RZ Ryclip (Z gc,t,k,7> —clip (Z ng)) > (16)
t=1 ceC, k=1 k=1
Ys
T
2K /T log(2T/6)G? ocad TLEK?G?  GV2T K log(2T/6)o
VN 2 VN
2 /o
—max {0, TG(KG — 1)} — log (NTd/f/)B 2TGTx.c (17)

D.1.2 Bounding S>

We first bound each term with a fixed ¢ € [T in S,. Noticing that - ZLEC Zer ~ N (0 ( ) and

RVL(O;)isa % sub-Gaussian random vector, so according to Bernstein inequality,
P <‘<RN£ (60,), Z z(t>
cECt

a2 a

b. %o IVLOIE o0 IVEO)I,
N b VN Vb

5 . Na? aVvbN
= 2exp | —min ,
o2 |VLE:); o9 IVLE)]

> a) < 2exp | —min

oglIVL(9:)]|5 log(27/6)

so taking a = vics , we have that with probability at least 1 — 2,
1 L(0:)|, log(2T /6 log(2T°/6
RVEO), L~ 3 ., )| < ZIVECO I 08RT/5) _ 0,Glos(2T /)
N ceCy \/N \/N

Then denote X; = Zi,zo <RT/V£(97/), % D occc, Zer! > we can see that X, is a martingale with

respect to the Gaussian noise, and from the above analysis, we have that with probability at least

1—4,forallt e [T],

Xy — Xia| =

04Glog(2T'/6)
R,VL(6,), Zz“>|_9
< cECt \/N

Then by Azuma’s inequality, we have

a? Na?
P(X7r_1 < —a)<exp | — 5| =exp | — .
9.7. (M) 2T02G? log?(2T/6)
VN
. _ log?(2T/8)V2T oG . .-
By selecting a = —— N Wecanget that with probability at least 1 — 20,
T 2
_log™(2T'/6)V2To,G
Xpo1=) <RtV£ (6:), Z z”> > g (18)
t=1 CECt \/N
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Substituting [T7) and [I§]into 8] we have that with probability at least 1 — 80,

T
D VL) (Bryr —61)
t=1
T T 1
=— 772 N L(6;) Z R/ Ryclip <Z Jet ks T ) Z NVL(Ot)T Z Rl 7.,
t=1 ceCy t=1 c€Cy
Sl SQ
T
20K ~/T log(2T/6)G? ol TLEK?G?  nGV2TK log(2T/6)os
< K S IVEG)IE + U 82T/0)G | Mhocal L g(2T/d)o
VN 2 VN
2 2
nlog®(NTd/6)V2T G, nlog”(2T/6)V2T0,G
+nmax {0, TG(KG — 1)} + =+
7 max { ( )} 7 i
T
29K +/Tlog(2T/6)G? ocad TLK?G?  nG\2T K log(2T/8) o
po VN 2 VN
log2(NTd /52T 20T log?(2T'/6)o2
Ty max {0, TG(KG — )} + 1108 dijg CTHG 4 10g2(2T/8)G? + 2! Og]é 0oy
(19)
D.2 Bounding 75
We first bound each term in T with a fixed ¢ € [T]].
X - \\WT [ -
Orp1 — )T B y(Brir — 01) = nPopu (desk (At)) (Z Avivg > (desk (A ))
=1
T 2
= 7ona Z A (desk ( )) v (20)

For each i € [d], we have

’(desk(&f))—r vi| = ‘<desk(£t),vi>

1 -
iﬁ <R:ZAC’t’Ui>‘
ceCy
- RT Z Thocal <Sk (Chp (A ot )> + Zc,t> , Ug
ceC, nlocal

N
<ZR thhp<chtk, ) > <Zthct,vz>
ceCy ceC

2D
For the first term, according to Lemma with probability at least 1 —

<ZRt Ryclip <chtk7 ) , U >|
ceCy

logl3(NTd2/§ (&
< (1 n Og(\[/>> vill, D |letip <Z gc,t,km>
b k=1

ceCr ’
log®(NTd?
< (1 N Og(\[bd/(s)> Nro 22)

nlocal nlocal

o
dT”>
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For the second term, (4 .cc, R/ Zct,vi) = (Rivi, % Xcce, Ze,r)-  Noticing that

ceCy
L N (0,%1), and Ryv; is a - -sub-Gaussian rand ding to B
N ZCECt Zey ™ y N L), an tU; 1S a %—Su -Gaussian random vector, SO accor ng to Bern-

[a? ot . [ Na? avbN
>a] <2exp | —cmin T o, = 2exp [ —cmin —5
]\; \/— O'g O'g

stein inequality,

1
P ( <Rtvi, ¥ zc,t>
ceCy

g log(2dT/6)

so taking a = N , we have that with probability at least 1 — =,
‘< 1 S Bz > _ 04 log(2dT/5) 23
-~ t Zey Vi )| S —— ="
N ceCy N

Substituting and ﬁ into we have that with probability at least 1 — j—%,

<ZR Ryclip <chtk, ) > <ZR zct,vz>‘
ceCy ceC

log' *(NTd?/3 ocalg 10g(2dT/ 5
Snlocal <1+Og(\/5/)) TK,G—‘,—”' lUg\j«%E /)

which implies that

nlocal nlocal

’ (desk(&)) Tl <

2

= T 2 1.5 2 ‘ 2
‘(desk(At)) ul <2 <m1 (1 + 10g(N\/BTd/‘s)> TK,G) o (nmmg 1;%(2@/5))
log" ®(NTd? /5 202 .10 2 log?(2dT/6)
= 2l <1 g(\/g/)) TKG 4 ocal g ~ (24)

Substituting H 1nt0 E we have that with probability at least 1 — =%
=T |?
(desk (At)) v;

14 2
log"?(NTd?/s) 2oy log (2dT/5)
< Ngiobal <27712oca1 (1 + Tha+— Z Al

(Or1 — 00) " He (01 — 0,) = Tgtobal Z Ai
=1

Vb
2 2
log1'5(NTd2/5)> 2n?02Z Llog*(2dT/5)
=2 <1 +—=——"2) TLrf g+ —~
n \/B K,G N
By taking summation from 0 to 7" — 1, we have that with probability at least 1 — 24,
T 1.5 2 2 2
- 1 NTd”/ 2 UILTIO 2dT/6
Z (Orpr —00)" Hp (01 — 0;) <207 (14 log “(NTd’/9) ILTTy g+ L 8" (24T/0)
NG , N
t=1
(25)
Substituting.andminto we have that with probability at least 1 — 100,
T
1 .
L(07 Zvc (0:)T (Bps1 — 04) + 3 > (Org1 = 01) "He (611 — 64)
t=1
T
2nK+/Tlog(2T/8)G? TLK2G? GV2T K log(2T/6)os
< _nKZ |‘v£(9t)||§ + n \/7 Og( / ) + Mocal + n Og( / )U
p VN 2 VN
log®(NTd/8)v/2T log®(NTd/8)v/2T
T ymax {0, TG(KG — )} + 108 WTAOVITCrca | nlog (NTA/OVITCT oo 07562
Vb Vb
22T log? (2T /6) 02 ) log" ¥ (NTd?/5)\" 20202 LT log? (24T /)
: 2 1+—=———"7) ILT7}
+ 5 +21 ( + 7 ) %G+ N
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Since
L(6o) — L(67) < L(0o) — L
we can get that with probability at least 1 — 104,

T
1 L) — L*  210g(2T/6)G?  Moca LKG?  2G1og(2T/6)0
LY Ivew) < A% CT/OG , Mol (27/9)
— n VNT NTK
. 2 2 2
+ e { 0. G(KG T)} N V21og®(NTd/8)Grr ¢ N log?®(2T/6)G
K VITK nr'K
2nlog®(2T/6)0?  2naiTLti o 2n02TLlog*(2dT/5)
i NK * K * NK
in which
1.5 2
a; =1 W,TKG =min {71, KG},

Vb

then we finish the proof.
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E Optimization Analysis with AMSGrad as GLOBAL_OPT

Similar to Appendix[D] we will state élgorithm@ which will be used as GLOBAL_QPT to do a one-step
adaptive update of 6,1 with desk (At, 1).

Algorithm 4 GLOBAL_OPT (AMSGrad)

Inputs: model 6;_1, desketched update desk (&:_1).

Qutput: model 7.

Update first moment estimate: m; = Sym;—1 + (1 — 1) desk(ﬁt,l)
Update second moment estimate: 0; = Sav;_1 + (1 — 52) (desk(gt_l))2
Update maximum of past second moment estimates: v; = mlax (04, ve—1)

. _1
Update parameters: 6, = 6; 1 — nglobalﬁ = Nglobal Ve Mi—1

Then we demonstrate the optimization result of Algorithm 2] with Algorithm[] which is the formal
version of Theorem 3.1

Theorem E.1. Suppose {Gt}tT:O is generated by Algorithm [2| with Algorithm @ as GLOBAL_OPT.
Denote £* the minimum of the average empirical loss. Under Assumption with learning rate
1) = NglobalMlocal, We have that with probability at least 1 — 190,

1 T
72 IVL@Dl
t=1

L (L(6p) — L") n 2000 log (2T /) G? n Mocatt2 LK G? n V2a2Glog(2T/6) o,

- nKT V/NTe 2¢ NTKe
+ max { o ©2G(KG —7) } N V2a3log?(NTd/8)Gri. ¢ N MocalG @2(2 4 B1)v/1 — BaGTi;  log(2dT/5)
, Ke VT Ke Ke2(1—p1)
. Mocat@2(1 + 281 )v/T — B202G log® (2dT /6) e log?(2T°/8) G2 . 2naz log® (2T /8) o2
NKe2(1- ) nTKe NKe
2aday (14261) (1+ B1)IL7E ¢ 2nas(1+2B81)(1 + B1)o2ZLlog?(2dT/9)
Ke2(1— p1)? * NKe2(1— 3,)2
in which

041=1

log™® (NTd? /) ( 1og1-5(NTd2/5)> Tiocal 0 log(2dT /5)

—— @ = Niocat | 1 + —————= | Tk + +e€
NG 2 Moe NG e VN

with 7, ¢ = min {7, KG}.

Remark E.1. To analyze the bound in terms of 7, we consider all other parameters as fixed and
distinguish between two principal regimes:

1. When 7 < KG: In this regime, clipping may be activated, and 7 acts as an upper bound on the

norm of each clipped update A, ; according to our algorithm. The total bound in this case is given

by as(L(00)—L*) 4 202 log(27/6)G? i Nocatotz LK G? + V202G log(2T/8)o . + max {0 asG(KG—7) } i
2 Y

nKT VNTe € VNTKe Ke
V2as log?(NTd/8)GT + Mocal 03 2 (24+81)v/1— B2 G2 log(2dT/ 5) n Mocal 2 (14281)vVI=B202 G log” (2dT/5) n
VT Ke Ke?(1-p1) NKe2(1-p1)
s log?(2T/8)G? | 2mazlog®(2T/8)o | 2maas(1428:)(14+8)ILT? | 2n02(14281)(1+p1)0 L L log? (2dT/$)
nTKe + NKe + Ke2(1—f1)2 + NKe2(1-61)? :
V2as logQ(NTd/(?)GT nlocalafa2(2+ﬁ1)\/lfﬁgGTQ log(2dT/$)
We2 can  observe 2that Vo Ke + Ke2(1=81) +
Znaj oz (11(;2 (ﬂll_)g;f DILT” h the optimization bound of the sketching-based algorithm is
monotonically increasing in 7, while max {O, %} caused by clipping is monotonically

decreasing in 7. This trade-off highlights the need for a careful choice of 7, as overly aggressive
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clipping introduces clipping bias, while too loose a threshold amplifies optimization error of
sketching algorithms.

2. When 7 > KG: In this regime, the clipping operation becomes inactive under our algo-
rithm, as all updates fall within the clipping threshold 7. K G effectively bounds the norm of
each update A, and the clipping no longer influences the computation. The total bound be-

as(L(00)—L*) +2aglog(2T/5)G +nlocala2LKG + V2a2Glog(2T/8)o + V2as log?(NTd/§)G? +

comes

nKT VNTe 2e NTKe bTe
Mocar@? v (24 61)v/T— B2 K G2 log(2dT/6) + Mocar 2 (14+251) v/ 1*B2U§G10g2(2dT/5) 4+ ez log?(2T/6)G?

2(1 B1) NKe?(1-p1) nTKe +
2nas log?(2T'/6 2 22 14281) (14 27L1og?(2dT/$
nazlog I<< : /9o T 2na1az<1+€22(ﬂlli<611+)51>zLKc 4 2mea( Bll)v(Kezﬁ(lfi% 1)20g (2dT/6) Consequently,

the entire bound becomes independent of 7 and remains constant as 7 increases further.

Proof. Let
B 1 B
-0 (.
1—51( 1) = 1—51 =g
and set #_1 = 6 so that g = 6. Then, the update on 7, can be expressed as

1 B1
q(eﬂrl —0;) — T-5

1 _ B, _
= _mnglobalm V2 m + fﬂlnglobalv},ll/z Sy

1 - A -

= oV 7 (Bimy—1 + (1 B1) desk(A,) + L77globalesfll/2 "1
1— 51 1- Bl

- Blﬂzgloﬁbfl <V¥:11/2 - thl/z) M1 = v V; /% desk(Ay)

_ ﬁll'rigloﬁblal (Vt:ll/Q _ Vt_1/2> My_q — ng]I:[bal Vt—1/2RtT Z Ac,t

ve=0; +

Vetl — Ve = (0 — 6;—1)

ceCy

B1Mglobal [+ ,—1/2 —1/2 Tglobal ¢ ,—1/2 1, T Z Acy
= —_ — k 1 C
1-— 61 <V;71 V; ) M1 N V R Mocal | 3 P nlocal T !

ceCy

- Bl“ig“’ﬁ"f' (Vo =i ) miy = 2V ST R Rycip (Z Gou s ) NV Rl e

ceCy

in which 7 = NgobaiNiocal- By Taylor expansion, we have

1 .
L(ye41) = L(ve) + VL) T (ve1 — 7)) + 5(%“ — ) " He (Y41 — 1)

ceCy

1
= L) + VLO) (ve1 = 70) + (VL) = VLO) T (g1 = 7e) + 5 (1 = ve)  He (o1 —

By taking summation from 0 to 7" — 1, we can get that

L(yr) — L(0o) = L(vr) — Z (Ve+1) — L( 7))

t=1
T T 1 X

=Y VLO) (v = 70) + D (VL) = VLO)) T (o1 — m)+g > (e =) THe o (ver — )

t=1 =1 t=1

T Ts T3

(26)

E.1 Bounding 7}

For each term in 77, we have

Vﬁ(et)T(%H —Yt)
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K
=VL(0:)" <Bf’}"g’f‘ (il = v V) ey = LV ST RT Riclip (Z gat’k,'r) - dvoeye Rjzc,t>

ceCy k=1 ceCy

B1Mglobal —1/2 —1/2 Ui -1/2 2
:VE(et)T?e& (Vt_l/ _vY )mt_l — ch(ety (Vt / =l ) ; R Ryclip chtk,

- 77 _1/2 Z RTthhp (Z etk T ) - *Vﬁ 9t _1/2 Z RTZC t

ceCy ceCy
By takmg summation from 0 to 7' — 1, we can get that

ZVC 07 (Ves1 — )

Z £(6,) Tﬁlnglobal (Vt:11/2 _ Vt—1/2) —_—

P - B
S1

T 1 K
_ nz Nvﬁ(at)T (Vt—1/2 —1/2) Z Rt Ryclip (Z gc,t7k,7'>

t=1 c€eCy k=1

Sa

T T 1

Z S VEO) TV, Y R Riclip (Z Jeter T ) —ny G VEO) VY Rl g

t=1 ceCy t=1 ceCy

S3 Sy

27)

E.1.1 Bounding S,

We first bound each term with a fixed ¢ € [T in Ss. According to Lemma[B.1] we have that with
probability at least 1 — 2.,

%V/:(Gt)T (Vt—1/2 —1/2) Z Rt Ryclip <Z Ge,t ks T )‘

ceCy
1 K
=5 <vc(et), (v;l/2 1/2) 3" R Riclip (Z gc}t’k,T>>’
ceCy k=1
1 10g1‘5(NTd2/5)> —1/2 —1/2 (&
< (142 2T v ’V H cli ety T
v ( N TN Josrmsl)
10g15(NTd2/5)) _1/2 _1/2
<G (14198 I i
K,G( 7 (28)
In addition, if v,; = v, then [14*1/2—14111/2] = 0. If v, > w1 then
[th/z - ‘/;11/2} <0, and
R e [ M
! L i te Juiitite
. VVt—1,4 — /Vti
(o +€) (Vo1 +e)
_ Vi—1,i — Uti
(\/Ut,i + 6) (\/'Utfl,i + 6) (\/'Utfl,i + \/'Ut,i)
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(1-Bs) ( (desk(A, ))QL _ vH’i)
T (Vo o) (Vo +e) (Vo + /o)
(1—B2) [(desk(é ))1

9

<
< —
2,/ (1— Bs) [(desk(At)) ] |
J1 = =
= 7262 [(desk(A
€
Vv 1- 52 Thocal ( (A ) )
= —" R/ Rcli +Rz
€2 N cEZC:t v Help 7710cal Lot )
va! ﬁinocal |: T . ( Ac t >:| va! /827710ca1
R, Riclip| —,7 R} Ze,
- N62 cezc:t t SCP Thocal i N62 Cezc:t ¢ t
(29)
Therefore, we have
[y = vy, = ma v vz |
1-— ocal . Ac \/ ocal
<max @ Z {R:thhp < t ,T>:| 52771 1 Z RTzC ¢
3 Ne e, Tocal i ceC,
1 - ocal . Ac \/ ocal
<max @ Z [R:thhp ( ot ,7)} + max 52771 ! Z Rl 7.4
! Ne ceC, Thocal i ! ceC,

(30)

For the first term, according to Lemma for each i € [d], with probability at least 1 — = d,
(A (A A, log"°(NTd?/s
‘ [R:thhp ( ! ,T>:| e;R] Ryclip < ’t ,T) ‘ = ‘<Rtei, Ryclip < . ,T>>‘ < <1 + os e /d ( / )> TK,G
Mocal i Thocal Mocal \/l;
€1y

then we can get that with probability at least 1 — %,

V31— Acy
max V1= Bothoca Z [Rt Ryclip ( 7')]
Mocal i

i Ne?
c€eCy
\/mnlocal |: ( A ):|
<max ————— R Rycli ST
S Ne? CGZCt ¢ e nlocal i
VT Bt (1, JoE NI E8)
- N€2 \/B K,G
_ mnlocalTK,G 1+ logl'S(NTdQ/d) (32)
- 2
€ Vb

1 s 1
For the second term, = [>° ¢, R;rzc,t]i = (Ri€i, 3 Yoeee, Zet)- Noticing that 17 Y- co Zep ~

N (O, ~ ) and R;e; isa ﬁ-sub—Gaussian random vector, so according to Bernstein inequality,

1 2 2 /PN

P Rie;, — Zet )| > a ] <2exp | —cmin a4 —, Ua = 2exp [ —cmin N—a, M
N § ; o2 o
ceCy N vVbN g g
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o4 log(2dT/4)

so taking a = 2

, we have that for each i € [d], with probability at least 1 — =,

ZRIL Zet

ceCy

< % log(2dT'/4)

< i (33)

then we can get that with probability at least 1 — T’

max YL P2Mhocal V1 = Bamocal Z R 2 m”]local ~0g4log(2dT'/9) _ V1 = Bamiocaog log(2dT /)
‘ Ne? ceC, ; € VN VNe
(34)
Substituting 32| and 4 1nt0 E we have that with probability at least 1 — %=
H V[l /2 1,-1 /2 H
< max {\/1_7]\[’8;771“&1 ;ct [RTRclip(i:’:l ; T))L } + max %nlowl (;Ct RTzct

1+

<V 1- BzzlocalTK,G ( 35)
€

10g1'5(NTd2/(5)> + \/Wnlocalo'g 1Og(2dT/6)
Vb vie

Substituting into we have that with probability at least 1 — 3?5,

‘Jbvﬁ(et)T (Vt—1/2 1/2) Z RT Riclip <Z Gotor T )

ceCy

logl‘S(Nsz/é))

Vb
- ( - log'*(NTd? /5)) ' <\/71 = Balocal TK.G < log' *(NTd? /5)) L VI = Paoeay log(2dT/5))
> K,G \/5 2 \/l; \/Nez

Mocal V1 — B2G T log" *(NTd2/5)\*  mocar/T = BaGric.c0, log(2dT /) log"?(NTd?/5)
= 5 1+ + 1+
€ Vb VNe Vb

<GTtk.G (1 +

-1/2 Vo 1/2H

1+

(36)
By taking summation from 0 to 7" — 1, we can get that with probability at least 1 — 34,

T
Z %VC(&)T (thl/Z 1/2) Z R/ Ryclip (Z Get k> T )
t=1

c€Cy

<mocan/1 — BTG} ( - log"®(NTd? /5)) N NocaV/'1 — B2 T GTrc oy log(2dT/5) ( - log"®(NTd? /5))

e Vb VNe? Vb
(37

E.1.2 Bounding 5

We first bound each term with a fixed ¢ € [T] in S;. According to the definition of m;_1, we have
that

VL) B17global (Vt:11/2 B Vt_1/2> e

1—p
B t—1 -
=VLQO) TR (VT - VT) Y- a0 desk(An)

1

oA
H\l

=VL(8:) Biigiobal (V V? V_I/Q) Z T Ndebk(ﬁ )
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t—1 !
=2 WW(W (Vt:ﬁ/z - v;l/?) RL > A
T'=0

t—1 t—1'
— ﬂl 77global T 71/2 1/2 T A
= ,Z Tvﬁ(et) (V;tfl -Vi > R, Z Tocal | sk | clip mocal + Ze

ceC s
/3 —-1/2 1/2 Ag
-V, R ,Rcli
’Z() ) ( =1 ) Z <P Mocal 7
T CEC ’
Wi
Z fr ”v,c ()7 (v,;ll/2 - Vt_1/2> S Rlz. (38)
CEC.,_/
Wa
E.1.2.1 Bounding W

We first bound each term with a fixed ¢ € [T'] in ;. By applying the same analysis as above, we can
get the same bound as 6| with probability at least 1 — 32,

%Vﬁ(etf (vi 2= vi®) 3 R Rpclip (Zgw o )

ceC/

€2

MocalV'1 — B2GTE ( log"®(NTd? /5)) ocalV'T — B2GTi .oy log(2dT/§) ( log"®(NTd? /5))
< =1+ + : 1+
Vb VNe Vb

By taking summation from 0 to ¢t — 1, we have that with probability at least 1 — 34,

t—1 ,Bt_T/U 1/9 1/2 Ac,r
3 1Tv£(9t)T (V;l/ -y ) >_ RrReclip (m1 T)

=1 ceC/
_ (Mo T= B <1+10g1'5(NTd2/5))2 M/ T= BaG 700, log<2dT/6>( ,log" (NTd2/6> Z .
- € Vb VNe? Vb
<777710ca151\/mG7’12(,G (1 n logl's(NTd2/5)>2 n NMocal 1V 1 — P2GTr o g log(2dT'/0) <1 n log" (NTd2/5))
= ei-a) v VR - ) v

(39)
E.1.2.2 Bounding W,

We first bound each term with a fixed ¢ € [T] in W5.

VL) (Vi V) Y Rl = <RT/ (Vi v ) e, + 3 Rz >

ceCs CEC ’
Noticing that
I — —1/2 o)
N (Vt—l/ -V / ) ; Ze,r! ~N <0’ Ngﬂ )

L el R\ZMONR

7 -sub-Gaussian random vector,

-
and R, (v,;ll/2 - V;VQ) VL(0,)is a |
so according to Bernstein inequality,

P <RT, (Vt:i/Z—V[W) VL), ZRTIZCT>

CEC ,
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a2 a

sesn | —emi
S o2 ViV -vi 2 Cive®n3’ 7 Vi =v ]IV el
"N b ’ NG
Na? avbN

=2exp | —cmin

2 ’ — —
o3 [V = v | ive@u o |V = v v e,
9 2 2

o HV;l/ 2=V, || IVL0)l; log(27/6)
VN

so taking a = , and combining with we have that with

probability at least 1 — 22

<RT/ (v —V;”) VL), Z R] z>

(‘GC ’

oy [Vir? = Vi 2| IV L) 10s(21/5)
B VN
L 0,Glog(2T/6) («/71 — Balocal TK.G (1 N log"®(NTd? /5)) N VI = Baliocal 0y log(2dT/6)>
= VN € NG VNe?

NocatV/'1 — P20y GTr  log(2T'/6) log"*(NTd?/6) Moca V1 — B202G log (2T /) log(2dT/6)
= 1+ + 5

VNe2 Vb Ne

By taking summation from O to ¢t — 1, we have that with probability at least 1 — 34,

t—1 /Bt_T/

Z 1Tnv‘c((gt)—r (‘/Ytill/2 - ‘/;571/2) Z RI’ZC,T'

T/=1 CECT/
< (mocar VT = B20,G7ic ¢ log (2T/6) ( 1+log1‘5(NTd2 /5)) +nmocan/ — B202Glog(2T/6) log(2dT/3) Z e
h VNe2 Vb Ne?

~ MoeaB1v/T = P20, G, 10g (2T /) ( log"®(NTd? /5)) N NMiocaB1v/T — 202G log(2T'/5) 1og(2dT/6)
- VNE(1 - py) Vb Ne2(1— fy)

(40)
Substituting 39) and 0] into [38] we can get that with probability at least 1 — 4,

B1Ngiobal [ ,— -
v£(0t)—r1_7g61 (‘/;711/2 - ‘/; 1/2) My_1

= 5t77/7 A ’
= VLEO) (V" =V, R R,.clip ,T
T/Zzo 1N ] -r( 1/2 1/2) Z < e >

ceC. Thocal

[ G
+ Z %vﬁ(et)T (V;;ll/Q B V;UZ) Z Rlzep
7/=1

ceCs

<nmocalﬁn/1 — PG (1 N log"® (NTd? /) > 2 N MMocal B1vV/T — B2GTr cog log(2dT/6) <1 N log'®(NTd? /5))

e v VR - 5) 7
+ MheeaB1vT= a0, Gric o 1og(27/9) <1 . log1'5(NTd2/§)> , Mhusa1y/T= a3 Glog(2T /) log(2d /)
VNe(1— By) Vb -5

_MocaP1v'1 = B2GT (1 N 10g1'5(-7VTd2/5)>2 L 2ocaBiv/T = B3G9 10g(2dT/9) (1 N log!®(NTd?/5) )
A Vb VNe(1-p) Vb
N MiocaB1v/T — B202Glog?(2dT'/5)
e2(1— )
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By taking summation from 0 to 7" — 1, we can get that with probability at least 1 — 49,

T
B1Mglobal [, — -
ZVﬁ(at)Tﬁ (‘/;711/2 _ V-t 1/2) my_1

t=1

(NTd?/6)

<777710ca151\/ 1- ﬁ2TGT;2<’G <1+ 10g1'5(NTd2/5) ) 2+ 2nMoca 1V 1 — BTG o log(2dT/6) (1-1- log'®

e2(1— ) Vb VNe(1 - f)
771003161 \Y4 1— 62TU2G10g (2dT/5) (41)
Ne2(1 - pr)

E.1.3 Bounding S,

We first bound each term with a fixed ¢t € [T] in Sj. %Vﬁ(&t)TV[lﬂ >eee, Bl zer =
2
<RtV[1/ VL0, £ Y e, zc,t>. Noticing that + 3 0 70, ~ N (0, ‘LNQH), and

—1/2
RV,V2VL(6,) is a w

inequality,

-sub-Gaussian random vector, so according to Bernstein

2@)
2

a a

_ 1
([ msem. o

ceCy

<2exp | —cmin

o2 Ive@B[vi | 5, IVE@OIL Vi3
b % a L. NG
Na? avbN

=2exp | —cmin

NI H s A A Z=CAl HVJWHQ

oo VLO, ||V, 7?|| 108(27/6)
N

so taking a = , and noticing that HVt 1/2 H =, we have that with

probability at least 1 — %,

|< RVVL,) ch >| < 9 IVL@)I los(2T/5) _ 0,Glos(2T/5)

V/Ne a V/Ne

cECt

s N V!
with respect to the Gaussian noise, and from the above analysis, we have that with probability at least
1—4,forallt e [T],

_ Glog(2T/9)
X — Xeo1| = [{ VL(O:) /2 Rz, < Zo 08122 70)
R S R

Then denote X; = Z <V£( ") Ly /2 D oecc, R:/zc7f/>, we can see that X is a martingale

Then by Azuma’s inequality, we have

a? Ne2a?
P(X7_1 < —a)<exp| - 5| =exp | — >
9.7. (M) 2T02G? log?(2T/6)
VNe
By selecting a = W/ﬁﬁ%, we can get that with probability at least 1 — 20,
T 2
_ 1l 2T/0)v2T
Z VL(6,), 1/2 Z RTth > og”(21/9) 0,G (42)
t=1 c€Cy \/NG
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E.1.4 Bounding S;3

For each term in S;, we have that

fVﬁ at _1/2 Z RTRtChp (Z et ky T )

ceCy
C
<v,c(9t) t‘ll/QCZv,c at)> +K<vz:(9f v,_V/? ( S VL) - Z >>
c=1 ceCy =1
K
<vc 0,), =V, \/* ZZ (VLe(Oer 1) wc<et))> <vc (61), ZZ etk — ec,t,k))>
ceCy k=1 eCy
K
+ <V£(et), VY (chp (Z Gty ) - ch,t,k>>
ceCy k=1

K
<v,c<et> S <R:thnp (z g) ~cip (z g))>
ceCy k=1 k=1

By taking summation from 0 to 7" — 1, we can get that

T
% 1/2 Z R/ Ryclip (Z Ge,tks T )
t=1 ceCy
T C
—k 3 (vew), v L ng (9) >+KZ<V£ 0:), 1/2< ST VL) - ng (9t)>>

(‘ECf i=1

Yl Y2

T
+Z VL _1/222 VLAOct) Vﬁc(9t))>

<
fra
<

Y3

VL0 WZZ (Gerte — VLA actk>)>

ceCy k=1

Yy

T 1 K K
+ 3 (VLO), VY <cnp (Z gc,t,k,7> - ch,t,k>>
k=1 k=1

ceCy

Ys

K K
+) <v,c 0, =Viy* > (R;thlip (Z gc,t7k,7'> — clip (Z gw,k,T)) > 43)
k=1 k=1

t=1 ceCy

Ys
E.1.4.1 Bounding Y;

According to the definition of V;_;, we have that

v = (Ve = (mm*

Substituting [31|and [33|into [29] we can see that with probability at least 1 — 22, for any ¢ € [T,
= 2 A
Tocal T T
desk(A, ) } - (R Reli + Rz, )
|:( ( ) i [ N CGZCf p( 7710(:&1 )) ¢ ]
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< Thocal nloca]

> Rz
ceCy
log'®(NTd? /5 o4 log(2dT /s
< Thocal (1 + s (\/B / )) TK,G + Mocal g\/‘%( / )
Then according to the definition of second order moment, we have that with probability at least

29
1-2,

A
> {RZ thlip< c’t,7'>]
Thocal i

ceCy

202 log"*(NTd?/5) Thocal 0g 10g(2dT'/5)
VVi—1,i < %1?3(1 [(deSk(Ar)) L < Miocal (1 + T TK,G + N

so we can get that with probability at least 1 — 24, for all i € [d],

log"*(NTd?/6) > Mocal0 g 10g(2dT'/5) >
ocal |1+ —————LL ) 6 + te
(771 1 < NG K,G VN

-1

[V—1/2] (ere) 1 >

which implies that with probability

<V£9t el ng 9t>
1

. 2 - C
> <7710ca1 (1 + log(NTd/5)> TK,G + Thoca 7 108(2dT/9) + 6> Vﬁ(Gt)T% Z VL:O)

Vb VN —~
—1

log' *(NTd? /5)) Niocal 0y log(2dT /5) > 5

— oca 1 + -~ T —+ + € V£ 0
(1 - . N V(0.2

so with probability at least 1 — 24,
£ 1.5 2 -1 7T

_ log™°(NTd?/9) Mocal0 g 10g(2dT'/6) 2

VL), Vo2 S v 0, ( ( 4o T ) e g +e VL0
z< ) z D)= (e SELEL) PN L | S e
(44)

E.1.4.2 Bounding Y5

We first bound each term with a fixed ¢ € [T] in Y5. According to the assumption, each ¢ € C; is
uniformly randomly selected from [C], so by Hoeffding’s inequality, we have
> a)

<<vc(9t ‘1/2< S TVL(0) - CZVE 9t>>

ceCy i=1
<5 2Nt? | 5 Ne2t?
e (22 )2 i WYe7

€

2
By selecting a = %, we have that with probability at least 1 — %,
_ \/210g (2T/6)G?
VL), VY VLe(0:) VL.(6;)
(et (g o= o) ) < RS

Then denote Z, = S*,_ <w( R e (% e, VL(0) — L 30 vcc(ef,)) > we
can see that Z; is a martingale with respect to the selection each round, and from the above analysis,
we have that with probability at least 1 — 4, for all ¢ € [T,

C
_ \/21 (2T 2
Z, — Zoa| = [ VL(8,), V-V §jvz: (6,) — §j V2108(2T/0)G"
cECt =1 Ne
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Then by Azuma’s inequality, we have

a?

N 2.2
P(Zr-1 < —a) <exp | — = exp (—>
1 VT ( mog(gT/a)c,ay ATG'log(2T/0)

VNe

21log(2T/8)VTG?

TN , we can get that with probability at least 1 — 24,

By selecting t =

T

~ 2log(2T/5)VTG?

Zr_q = Z <V£ 6y, Z VL:(0;) — Zv,c (6,) > > (45)
t=1 cECt C Ne

E.1.4.3 Bounding Y3

For each term, we have

<V£ gt _1/2 Z Z V»C c t, k v£c(9t))>

ceCy k=1
K

:% Z Z <V‘c(9t) 1/2H2t’k (907t7k . 9t)>
K
:77110\?1 Z<Vﬁ(9t _1/2H”ngcm>

K
Mocal
> = D D IVE@l, - Zugmng

SO

T 22
_1/2 > 77710C21]TLK G
E <VE (6:), g E (VL(Oct 1) Vﬁc(Ht))> Z T 9. (46)

ceCy k=1
E.1.4.4 Bounding Y,

We first bound each term with a fixed ¢ € [T in Y.

<V£ 9t 1/222 gctk V£ 9ctk))>|

ceCy k=1

K
1 1
N SO IVLE)], - p 9e,t.e = VLe(Oc,t,n)l

CECt k=1
G K
=2 20 D gek = VLLbek)ly
ceCy k=1

According to the assumption, the stochastic noise ||gc.s.x — VLc(0c,t,k)||5 i a o5-sub-Gaussian
random variable, so by Hoeffding’s inequality,

K 2
a
P (Z S e~ VLelOeri)l, > ) < 2exp (m)

ceC k=1
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By selecting a = /N K log(2T/8)o,, we have that with probability at least 1 — 2.,

K
ST lgesi — VEelberi)ll, < VNK 10g(2T/8)0,

ceCy k=1
SO

<V£ 0t _1/222 gctk_v»c ctk))>’

ceCy k=1
a K
<2 2 2 ek = VELLber i),
ceCy k=1
G+/ K log(2T'/d)o
V/Ne

Then denote W; = >, _ <V£(9’ ), & ;1/2 > cec., Zk 1 (G — VCC(QC,T/,]C))>9 we can

see that W; is a martingale with respect to the stochastic noise, and from the above analysis, we have
that with probability at least 1 — ¢, for all ¢ € [T,

|Wt—Wt—1|=‘<V/J (04), I/QZZ (Ge,te — VLA 9ctk))>

G
<— - /NKlog(2T =
< 05 2T/5)7,

G\/Klog(QT/(S)US

ceCy k=1 VNe
Then by Azuma’s inequality, we have
a? Ne2a?
P(Wr_1 < —a) <exp | — = exp <— )
9.7 Gy/Klog(2T/d8)os 2 2TG2K10g(2T/5)J§
o VN
By selecting a = G QTK\I/ON‘%(EQT/ 9= we can get that with probability at least 1 — 24,
T
GV2T K log(2T/6)o
Wr =% <vz: 00, V2 Z Gek — VLe( 9c,t,k))> > \/E( /%)
t=1 ceCy k=1 N€
(47)
E.1.4.5 Bounding Y5
For each term, for 7 < K G, we have
K K
<V£(0t) NV_1/2 (Chp (Z gc,t,ka7_> - ZQc,t,k) >
c€Cy k=1 k=1
1 K K
—~1/2 .
> - = S IvL@l, | VirY* Y <chp (ch,t,k,f) - ch,t,k>
ceCy ceCy k=1 k=1 2
GG -1
o €
for 7 > K@, we have
K
<VL(9t) v,y > (Clip (Z gc,t,kﬂ') Z%,t,k>> =
ceCy k=1
o)
K K
—1/2 . G(KG - ’7')
<V£(9t) —V,_ 1/ ; <chp <; Je,t ks 7'> — ;gcv,%k) > > —max {O7 —
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By taking summation from 0 to 7" — 1, we can get that

T K K
. TG(KG—T1
5 (500 10037 (a0 () o)) o TR0
=1 ceC k=1 k=1 €
(48)
E.1.4.6 Bounding Y5

We first bound each term with a fixed ¢ € [T'] in Yg. According to Lemma[B.1] we have that with
probability at least 1 — %,

K K
<vz<et> VYA y (RI Ryclip (Z gc,t,k,f> — clip (ch,t,k,7>)>‘
ceCy k=1 k=1

1 log'®(NTd/5) you
<=y =" vL cli et s T
_NCEZQ T VL@ Vs lip thk

- log"®(NTd/8)Grx.c
< N
Then denote U; = 3%, _ <V£( DAV Y e, (RTT,RT/clip (Z,ﬁ; et o 7) — clip (Zfﬂ Ger' 1o T)) >

we can see that U, is a martingale with respect to the sketching matrices, and from the above analysis,
we have that with probability at least 1 — §, for all ¢ € [T7,

K K
<vz<ot> vty <RZ Ryclip (Z gc,t,w> — clip (ch,t,k,r>>>|
c€Cy k=1 k=1

log"®(NTd/8)Grx.c
S 3
Vbe

Then by Azuma’s inequality, we have

2

‘Ut - Ut—1| =

a? be?a?
P(Ur_1 < —a) <exp | - — 5| =exp| - 5 53
9.7 . (los" (NTd/é)GTK,G) 2T'log™(NTd/6)G? i &
(=
By selecting a = log” (¥ T%‘?‘/ﬁGT, we can get that with probability at least 1 — 26,
T K K
Wroi=Y <v5(9t) VYA (RJthnp (Z et ks T> — clip (Z gc,t’k,7>> >
t=1 ceCy k=1 k=1
_log*(NTd/6)V2T G ¢ 49)
> \/56
Substituting [44] 43| [49]into 3] we have that with probability at least 1 — 84,
Z \# 9t _1/2 Z R Ryclip (chtk, )
ceCy
T 1 c
KZ<V£ A sz (6) >+KZ<V£ (0), ‘1/2< ST VL) - sz (ot)>>
t=1 t=1 ceCy i=1
T
£y <vc S (VL) m<et>>>
t=1 ceCy k=1
T
+Z<Vﬁ _1/222 (Ge,te — VL ctk))>
t=1 ceCy k=1

53



T K K
+ Z <V£ t_11/2 Z (clip (Z Ge,t,ks 7') - ch,t,k> >
t=1 ceCy k=1 k=1
T K K
+ Z <V£ (01), < Vi- 11/2 Z (R;thlip (Z gc,t7ka7-> —clip (Z 9ot ks T>)>
t=1 c€eCy k=1 k=1
log'5 (NTd? /5)) Tocal @ log(2dT'/5) )1 T »  2K/Tlog(2T/8)G?
> Mocal | 1 + ———LF2 + + K VLG —
> (1 T e o ) KXIvewl: N
Moca TLK?G?  GV2TK log(2T/8)0 e {0 TG(KG — 1) } log?(NTd/8)V2T Gy
_ _ ~maxd0, 3
2e V/Ne € /be
(50)

Substituting 37] 41} A2} [50] into 27} we have that with probability at least 1 — 174,

Z VL 9t ’7t+1 )

T

B1MNglobal [ ,— -
-Sva S

K
VE(Gf)T (Vt—l/Q —1/2) Z Rt Ryclip (Z gc,quﬂ')

ceCy k=1

T
1/2 Z Rt Ryclip (Z etk T > Z

1 ceCy N
log'®(NTd2 /s ocal0 g log(2dT/5)
< - (nlocal (1 + g(/)) TK,G + Mhocal 79 g / > KZ ||V£ Ht ||2
N
K ~/T log(2T/8)G2 e TLK2G? \/2TK1 2T /8)o, TG(KG —
L VT1og(2T/8)G . MMoca G N nG 0g(27/0)o +nmax{07 G(KG T)}
VNe 2e VNe
nlog*(NTd?/6)V2TGric.c MocaV'T — BTG log"*(NTd?/8)\ "
+ + > 1+
Vbe Vb
n Miocalv'1 — BT GTr oglog(2dT'/6) (1 n log1'5(NTd2/5)>
VNe2 Vb
MhocatB17/T — BT G2 ( | log"?(NTd /5))2
e2(1 - p1) Vb
277771(>calﬁ1 V 1— /B2TGTK,GUg 1Og(2dT/6) (1 + 10g15(CKTd/5)>
VNe2(1 - By) Vb
NMiocal B1v/1 — 52T03G10g2(2dT/5) N nlog?(2T/8)\/2T0,G
Ne2(1— By) VNe
log"®(NTd? /5)) Tocat 0y log(2dT/5) ) I )
= ocal 1+ —=——7—1—2 + + K VL
(m 1 ( ) ric e ) wSIven;
K ~/T log(2T/8)G2 o TLE2G? V2TK log(2T/68)o TG(KG —
L VT1log(2T/8)G L MMoca G N nG 0g(27/0)o +nmax{07 G(KG T)}
VNe 2e VNe
N nlog?(NTd/8)V2T Gy ¢ N NocaV'1 = B2 TGTE: (1 log"?(NTd? /5))2
Vbe €2(1—B1) Vb
7)n10cd1(1 + 51)V1 — BT Gri goglog(2dT/6) (1 n logl's(NTdQ/é))
VNe2(1 - py) Vb

M=
=

-n
t

Il
—

M=
Z\H

—1/2 S Rz

ceCy

n
t

€

+

—1

€
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N NMiocal B1v/1 — 52T03G10g2(2dT/5) N nlog?®(2T/6)V2To,G

Ne(1 - f1) VNe
log"5(NTd?/5) > Mocal0q 10g(2dT'/ ) > -z )
< — Mot ([ 1+ —=—Z—1" + + K VL
(771 1( NG TK,G JN € n ;” (02l
KT log(2T/5)G2 e TLEK2G? VATK log(2T/8)o. TG(KG —
L VT log(2T/6)G L Mo TLE?G? | nGV2TK log(2T/8)o +nmax{07 G(KG—1)
VNe 2¢ V/Ne €
N nlog?(NTd/8)V2T Gy ¢ N Nocal (2 + B1)v1 = B TGTE: (1 N logl"r’(Nsz/(5)>2
Vbe (1= p1) Vb
7]7710&11(1 + Qﬁl)\/ 1-— ﬁQTUQGIOg (QdT/(S)
Ne*(1 - p1)
2 22T 1 2T/6)o?
n log (21;/5)6’ n n OgN(G / )Ug (51

E.2 Bounding 75
For each term in 75, we have
(VL(%) - Vﬁ(et))T(’YtH - )
=7 - at)T ﬁlﬁ,t (Ve+1 — )

B T g < 1 B )
= 0 —0:—1) H ——— (041 — 0 0, — 0
1—51(t tl) L.t 1_61(t+1 ) —ﬁl(t tl)
B 00T By (B —0)— (0, 0T L, (0, 6,)
(A=) o (1-p1)2 ot

By taking summation from 0 to 7" — 1, we can get that

T

D> (VL) = VLOD)) T (g1 —7)

t=1

__ b XT:@ O—1)" Hpy (01— 00) — Ay (0 — 0,—1) " Hp (0, — 0,—1)
OB & t - 2! :
S5 SS
(52)
E.2.1 Bounding S5
We first bound each term in S5 with a fixed ¢ € [T).
A — T kel —
(0r — O—1) " H7y (01 — 02) = Db (‘/}711/27”#1) Hp (V 1/2mt)
= 77g210ba1 (V 1 mt 1) <Z i iUV, > ( 1/2mt>
T T
nglobalz)‘ ( t— 1 mt 1) V; ‘(‘/’tl/zmt) (o (53)

For each ¢ € [d], we have that

(7 ome) | = a =)

I_Bl ZBtlT

7/'=0

t—1 _ T
(Zﬂi-l—fvt_lf desk(A»)

(Vt:ll/Q desk(zT/)) ! v;
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- T
1/2 A
< .
_T/Iél[?iil] (Vt 7~ desk(A, )) v; (54)
Similarly,
T - T
‘(Vt_l/th) V; gir/lea[ic] (V /2desk(A )) V; (55)

Foreach 7/ € [t — 1],

‘ (‘/;:11/2 desk(zT/)) ' v;
‘ <desk Vi 11/ 21)1>
1

=¥ <RT > AV 1/2”>

ceC s

1 A s —1/2
=— > k ( cli :
N < ceCs ocl (S (C P < 77100d1 )) * Zer ) 7‘/;_1 v

nlocal <Z R R, clip (chr L ) 1/2Ui> 7710cal <Z RrT Tz V; 11/2Uz>
ceC ceC s
(56)
For the first term, according to Lemma with probability at least 1 — —,
<Z R, Rrclip (Zg” kT ) _1/2v1>
ceC s
< <1 n log1.5(NTd2/5)> H —1/2 Z clip <§: )H
>~ - = 1 Ui Ge,m' ks T
\/B 2 ceC k=1
log" °(NTd?/5)\ N
< <1+ og ( / )) TK,G (57)
NG €

1 T —1/2 \ _ -1/2 1 ..
For the second term, <ﬁ ECGC,_/ Rz.-,V, 7 vi> = <RT/Vt_1 Vis 7 Zcecf, Z. ). Noticing
. o2 RV
~ %q PETIPON | St | PP A ;
that ZcecT, Zer ~ N (O, ~ ]I) ,and R/V,_[“v;isa 7 sub-Gaussian random vector, so

according to Bernstein inequality,

2
P <R7—/V ]i/zvlﬁ N Z ZC,T'> zal| < 2eXp — min 2 . 1/2 ’ 1/2
=, i M H .
= 2exp | —cmin Na®
o2 vt?/?Hj %\ ‘”QH

og Hv;:ll/2 Hz log(2T'/5)

so taking a = N

=, we have that with probability

1/2H

at least 1 — T

—1/2
LS Rl v _ 7o |V lomGaT/S) g rogoarye 5
R | VN =T UNe
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Substituting and ﬁ into E we have that with probability at least 1 — dT,

‘ (Vtill/2 desk(zﬂ)) ' v;

nlocal <Z R \R.clip (chr T ) —1/2Uz> nlocal < Z RrT Tz, -r’;V 11/2Uz>
ceC ceC s
<nlocal7_KA,G (1 + 10g ] (NTd2/5)> + Mocal 0 g 10g(2dT/(5) (59)
T« Vb VNe

Similarly, we can get that for 7/ € [¢], with probability at least 1 — dT,

_ = AT . log " ®(NTd?/6)\  Mocaroy log(2dT/5)
VY2 desk(AL)) v;| < Mol THG (1+ 4 ocal%g 60
(& (Be) w2 Vb VNe ©
Substituting into and we have that with probability at least
T = T
0 2m) < e, |2 0B
_ MoeaTK.G ( - log" *(NTd? /5)) . Mhoca 7y 108(2dT /9) 6D
€ Vb VNe
T = T
(7 m) o] (7 e B.)
< Thocal TK,G (1 + loglhs(NTdZ/a)) + Tocal T g 10g(2dT/6) (62)
Vb VNe

Substituting [61] and [62] into [53] we have that with probability at least 1 — 24,

(00 = 0r—1)" Hpy (i1 — 02)
a T
~1/2
=Tgiobal Z Ai (V;,l/ mt,l) v
i=1

d 2
<2 Z Il (nlocalTK,G (1 n 10g1-5(NTd2/(5)> n Mocal T g log(2dT/6)>
—"/global par 7 c \/B \/Ne

logh3(NTd2/6)\\~ ocal0g log (2dT/6)
Sng}()ba] <2 (771 IETK,G <1+ og (\@ /))) +2(771 10g\;§6 / > >Z|/\|

_2PTLtig (|, log"*(NTd?/s) ? 2P02TLlog?(2dT/9)
- 2 NG Ne2

By taking summation from O to 7" — 1, we have that with probability at least 1 — 24,

T
(Vfl/th) Vi

€

T 2 2 1.5 2 2 2 2
. 2n°ILTT lo (ZVTd2/6) 2?0 2T LT log®(2dT /)
T K,G g
t:EI (Gt — Gt_l) Hlﬁ,t (9,5.;,.1 — Ht) < 2 (1 + \/B ) g Vo2
(63)

E.2.2 Bounding S5

We first bound each term in Sg with a fixed ¢ € [T7].

(0 = 0r—1) " Hp (00 = 011) = i (Vi 2mt_1) iy, (Vi)

d
—1
nglobaﬂ( t— 1 mt 1 Z )( t— 1/ My — 1)
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T 2
nglobaIE Ai (t 1 mt 1) Ui

Substituting [61]into [64} we have that with probablllty at least 1 — 24,

T2
( t_ll/zmt 1) Vi
1.5 2 2
2 Mocal TK, G log™”(NTd*/6) Mocal0 g 10g(2dT'/5)
*Uglob;ﬂz |Aql (e (1 + 7 + g\/ﬁ6
2*TL7i g (1 | log"*(NT P /5)) 202027 L 1og?(2dT/5)

= €2 Vb Ne?
By taking summation from 0 to 7" — 1, we have that with probability at least 1 — 24,

X M2 TLTT2 loel B (NTd2/5)\>  2n202ZLT log?(2dT /5
SO —0) Hpy (0, —0py) > —— = TKG <1+ o /)> _ 2oy LLT log"(2dT/0)
t=1

(64)

(0,57925 1) H’Ct(et*et 1)*nglobalz)\

i=1

€2 Vb Ne2
(65)
Substituting [63| and [63] into [52] we have that with probability at least 1 — 24,
T
D (VL) = VLEO) (1 =)
t=1
T A 52 T )
1_51 2; —0i1) Hz,t(9t+1—9 1—51 ; —0:1) Hz,t(et_etfl)
B+ 51) M*ILTTE <1 N log"?(NTd? /5)) N 20202 LT log?(2dT/9)
T (1-B)? e Vb Ne?
:277%(1 + B)ILT T (1 N log'®(NTd? /) ) 22281 (1 + B1)oTLT log?(2dT/9)
(1 - p)? Vo (1 - pr)?
(66)

E.3 Bounding 73

For each term in T3, we have

T -
(Ye+1 — 1t) Hey (Ye+1 — 7t)

1 . 1

:(1 _151)3 (011 — 6) HL,t (0rr1 — 6;) — q 3%11)2 (Or41 — 0y) }AILJ (6 — 0:—1)
2 A
+ Oﬁlﬂl)g (Or41 —0) Hep (Br41 — 01)

By taking summation from 0 to 7" — 1, we can get that
T

T
(Yer1 —ve) He (i1 —7e)
1

t

T T
1 . 2
:(17_ 5:)? ; (Op11 —0) He g (B0 — 01) — 5l _ﬁﬂll 3 ; Ori1— 0:) He o (60— 0:1)
57 SS
61 -
+ =5 Z O — 00) He o (041 — 0;) (67)
=1

So
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E.3.1 Bounding S,

We first bound each term in S7 with a fixed ¢ € [T]].

(01 — 6%) ﬁg,t (0i41 —0,) = nglobal (Vt*1/2mt) ﬁct <Vt71/2mt)

= Tobal <Vt )(Z”i )( o t)

= DB Z | (Vi me) (68)
Substituting [62]into [68] we have that with probability at least 1 — 24,
(0t+1 - 915) -H[: t (6t+1 - et)
T 2
voL/2
_nglobal Z Ai ( / ) Ui
log' S (NTd2/5)\  miocacy log(2dT/6)\ "
< 2 s (nlOCﬂlTK,G <1 + + ocal0 g
TMglobal ; ‘ 7/| € \/6 \/NE
_2PTLig (|, log"?(NTd?/s) ? | 2rPoiTL10g" (2d7/0)
- € Vb Ne?
By taking summation from 0 to 7" — 1, we have that with probability at least 1 — 24,
T 1.5 2 2 2.2 2
- 202 T LT T2 log™*(NTd?/$) 2n?oT LT log=(2dT'/6)
Z (Op41 —0)) He y (0141 — 0;) < <1 + g
t=1 € Vb Ne2
(69)
E.3.2 Bounding Sg
We first bound each term in Sg with a fixed ¢ € [T7].
(0141 — 6¢) He (Or —b1) = nglobal (‘/;71/2,”%) He (V:ll/th,l)
—1/2
= Nglobal (Vt ) (Z)\ V;V; ) (Vt—1/ mt,l)
T T
= Tgiobal Z Ai ( e ) v; (‘/;5:11/277%—1) v; (70)

Substituting [61] and [62] into [70] we have that with probability at least 1 — 24,

T T
(Vfl/zmt) v; (‘/'till/zmtq) v
2 i |)\| (nlocalTK,G (1 + 10g1'5(NTd2/5)> + Mocal 0 g IOg(2dT/5) ) ?

nglobal 2 € \/5 \/NE
2°IL7} o (1 . 1og1~5(zvm2/5>)2 2n*021 L log® (24T /3)

= €2 Vb Ne?
By taking summation from 0 to 7" — 1, we have that with probability at least 1 — 24,

C2PILTTE log" *(NTd?/6)\*  2n?02ILT log*(2dT/9)
; 9t+1_9t Hﬁt(et—et 1) 62 (1+ \/E ) _ g N62

(71)

d
(011 — 0r) ﬁ[:,t (0 — 0r—1) = nﬁlobal Z Ai
i=1

Y

i=1
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E.3.3 Bounding Sy

We first bound each term in Sy with a fixed ¢ € [T]].

(00 = 00-1) e (00 = 00-1) = i (Vi3 Pmaca ) e (VY P

_nglobal( 1 g 1) (Z)\ ;U >( 1/2mt 1)
nglobalz/\ ( 1 mt 1)Tvi2

Substituting [61]into[72] we have that with probability at least 1 — 24,
(it m) o
t—1 Mt—1 (%%

1.5 2 2
Tocal TK,G 10g (NTd /5) MocalO 10g(2dT/5)
Snglobalzl/\ | < : (1+ + !

(72)

(0r — Os—1) He g (41 — 61) = Tiopal Z)\

i=1 ' € \/g \/NE
_ 2P TLricg (| log" "(NTd*/5) 2 | 2oL log?(2dT'/5)
- €2 Vb Ne?

By taking summation from O to 7" — 1, we have that with probability at least 1 — 24,
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Substituting [69] [71} [73into [67] we have that with probability at least 1 — 24,
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Substituting [51] [66} [74]into 26] we have that with probability at least 1 — 194,
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Since
L(6o) — L(yr) < L(bo) — L"
we can get that with probability at least 1 — 196,
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with 7, ¢ = min {7, KG}, then we finish the proof. O
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F Additional Experimental Results

We will present more experiment results under different privacy levels. These figures further verifies
our observations and conclusions in Section 4l[1]

F.1 Vision Tasks

F1.1 ResNetl01 on EMNIST
F.1.1.1 Different Privacy Level ¢,

Training dynamics and test accuracies of Fed-SGM with ADAM, Fed-SGM with GD, DP-FedAvg
and its Adam variant, and DiffSketch training ResNet101 on EMNIST with ¢, = {2.75,0.42,0.18}
are presented in Figure [B]f5} Furthermore, in Figure [6] with a fixed privacy level ¢, = 1.6, we
also show the comparison of training dynamics and test accuracies among sketching dimension
be {4x10%4 x 1054 x 10,4 x 107 }.

F.1.1.2 Ablation Studies

We conduct the following groups of ablation experiments, mirroring the setup of Figure[T]and varying
only the clipping threshold 7 and the number of local steps K.

* We compare our original setting (7 = 1) with 7 = 0.5 and 7 = 2, holding all other
hyperparameters constant. As shown in Table 3] in our current experimental setup, test
accuracy increases as grows, indicating that a looser clipping bound allows larger gradient
norms and yields better utility under our noise regime.

Table 3: Test accuracy (%) for different clipping thresholds 7.

GD, Sketching | GD, Non-Sketching | Adam, Sketching | Adam, Non-Sketching
7=0.5 62.91% 62.89% 85.03% 78.42%
T=1 62.98% 63.34% 85.09% 78.60%
T=2 63.18% 63.57% 85.33% 78.75%

* We compare our original setting (K = 18) with K = 9 and K = 36, keeping all other
hyperparameters fixed. Table ] shows that, in our current experimental setup, increasing
allows each client to perform more optimization steps, which leads to better test accuracy.

Table 4: Test accuracy (%) for different local steps K.

GD, Sketching | GD, Non-Sketching | Adam, Sketching | Adam, Non-Sketching
K=9 56.54% 56.66% 83.63% 76.57%
K =18 62.98% 63.34% 85.09% 78.60%
K =36 71.81% 72.18% 86.72% 81.04%

F.1.2 ResNet50 on MNIST

Training dynamics and test accuracies of Fed-SGM with ADAM, Fed-SGM with GD, DP-FedAvg
and its Adam variant training ResNet50 on EMNIST with €, = {2.75,0.42, 0.18} are presented in

Figure [7HI0]
F.2 Language Tasks

Training dynamics and test accuracies of Fed-SGM with ADAM, Fed-SGM with GD, DP-FedAvg
and its Adam variant finetuning Bert on SST-2 with ¢, = {2.45,0.35, 0.12} are presented in Figure

[THI3l

'All experiments in this section and Section E] are conducted on a computing cluster with an AMD
EPYC 7713 64-core processor and an NVIDIA A100 Tensor Core GPU, and the code is provided at
https://github.com/lucmonl/mlopt/tree/main.
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Figure 3: Vision Task: EMNIST, ¢, = 2.75
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Figure 4: Vision Task: EMNIST, ¢, = 0.42
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Figure 5: Vision Task: EMNIST, ¢, = 0.18
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Figure 6: Vision task: EMNIST, ¢, = 1, 60, Comparison with Different Sketching Dimensions
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Figure 8: Vision task: MNIST, ¢, = 1.60
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Figure 9: Vision task: MNIST, ¢, = 0.42
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Figure 10: Vision task: MNIST, ¢, = 0.18

100% A
90% A
>
§ 80% A
=3
o
g 70% 4
£
g 60% - sgd-2e5
—— sgd-no
50% - —— adam-2e5
—— adam-no
40% T T T T T
0 100 200 300 400 500
Communication Round
(a) Training Accuracy
100% A
> 80%
o
e
=3
Q 60%
c
‘© sgd-2e5
= 40% —— sgd-no
—— adam-2e5
20% —— adam-no
0 100 200 300 400 500
Communication Round
(a) Training Accuracy
90% A
3 809
g 80% A
5
o
O
< 70% A
c
‘© sgd-2e5
= 60% - —— sgd-no
—— adam-2e5
50% A —— adam-no
0 50 100 150 200

Communication Round

(a) Training Accuracy

Test Accuracy

90% A
80% -
70% A
sgd-2e5
60% - —— sgd-no
—— adam-2e5
50% —— adam-no
0 50 100 150 200

Communication Round

(b) Test Accuracy

Figure 11: Language task, ¢, = 2.45
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Figure 12: Language task, €, = 0.35
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Figure 13: Language task, ¢, = 0.12
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