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Abstract

We propose MODEL SWARMS, a collaborative
search algorithm to adapt LLMs via swarm in-
telligence, the collective behavior guiding indi-
vidual systems. Specifically, MODEL SWARMS
starts with a pool of LLM experts and a util-
ity function. Guided by the best-found check-
points across models, diverse LLM experts col-
laboratively move in the weight space and opti-
mize a utility function representing model adap-
tation objectives. Compared to existing model
composition approaches, MODEL SWARMS of-
fers tuning-free model adaptation, works in low-
data regimes with as few as 200 examples, and
does not require assumptions about specific ex-
perts in the swarm or how they should be com-
posed. Extensive experiments demonstrate that
MODEL SWARMS could flexibly adapt LLM ex-
perts to a single task, multi-task domains, reward
models, as well as diverse human interests, im-
proving over 12 model composition baselines by
up to 21.0% across tasks and contexts. Further
analysis reveals that LLM experts discover pre-
viously unseen capabilities in initial checkpoints
and that MODEL SWARMS enable the weak-to-
strong transition of experts through the collabo-
rative search process. Code and data available at
https://github.com/BunsenFeng/model swarm.

1. Introduction
Advancing beyond efforts to train a single, universal large
language model (LLM) (Brown et al., 2020; Gemini Team
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et al., 2023) that shares parameters across all languages
and tasks, recent work has increasingly recognized the im-
portance of modularity through multi-LLM collaboration,
where diverse models interact and complement each other
in various ways (Shen et al., 2024c; Feng et al., 2024a;
Chan et al., 2024; Du et al., 2024). For example, mixture-
of-experts (MoE) relies on the routing of queries to various
neural sub-components, leveraging the specialized expertise
of one model (Masoudnia & Ebrahimpour, 2014; Roller
et al., 2021; Pfeiffer et al., 2022; Jiang et al., 2024). Rout-
ing to domain-specific experts demonstrates great potential,
while no new model/expert is produced in the MoE pro-
cess. However, challenging real-world tasks often require
flexible composition and adaptation to new domains and/or
capabilities that go beyond the scope of an existing expert.

Two lines of work aim to extend multi-LLM collaboration
beyond routing to compose and produce new adapted mod-
els. 1) Learn-to-fuse designs trainable components to “glue”
experts together into a merged model, then fine-tunes the
model with supervised objectives to produce compositional
experts (Jiang et al., 2023b; Wang et al., 2024b; Bansal
et al., 2024). These approaches often rely on large training
sets to tune the learnable parts from scratch and hardly of-
fer the modularity of seamlessly adding/removing experts.
2) Model arithmetic composes LLM experts by conduct-
ing arithmetic operations on model weights and/or token
probabilities (Ilharco et al., 2023; Yu et al., 2024; Yadav
et al., 2024; Mavromatis et al., 2024; Liu et al., 2024). These
approaches often come with strong assumptions about the
available experts and how the desired adaptation should
be decomposed (e.g., lion indoors = lion outdoors + (dog
indoors - dog outdoors) (Ilharco et al., 2023)). As such, a
flexible approach that does not rely on excessive tuning data
or strong assumptions about existing models is crucial for
adapting diverse LLM experts for wide-ranging purposes.

To this end, we propose MODEL SWARMS, where multi-
ple LLM experts collaboratively search for new adapted
models in the weight space. Inspired by Particle Swarm
Optimization (PSO) (Kennedy & Eberhart, 1995), MODEL
SWARMS views each LLM expert as a “particle” and defines
LLM adaptation as the collaborative movement of particles
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Figure 1: We propose MODEL SWARMS, a collaborative search algorithm to adapt LLM experts via swarm intelligence.
Guided by personal best pi, global best g, and global worst gw, LLM experts update its velocity v and location x to explore
the weight space and optimize a utility function f . The best-found expert (global best g) in the end is retained as the output.

governed by a utility function representing an adaptation
objective. Specifically, to model the proactive search of
LLMs instead of passive merging, each expert particle starts
with a location (model weights) and a velocity (direction
in the weight space). The velocity is iteratively impacted
by inertia (the tendency to keep current velocity), personal
best (the best-found location of a given particle), and global
best/worst (the best/worst-found location among all parti-
cles), while LLM particles then take a step towards the up-
dated velocity direction. These velocity factors enable LLM
particles to chart an independent search path and explore
the personal/global best neighborhoods. Thanks to the flexi-
ble search methodology, MODEL SWARMS does not need
any supervised fine-tuning data or pre-existing knowledge
about the LLM experts or the utility function, adapting LLM
experts solely through collaborative search and movement
guided by any model-to-scalar utility function.

MODEL SWARMS achieves superior performance across
four distinct LLM adaptation objectives:

• Single task: Optimizing over as few as 200 instances,
MODEL SWARMS outperforms 12 model composition
baselines by 13.3% across 9 datasets spanning knowledge,
reasoning, and safety.

• Multi-task domain: Jointly optimizing multiple tasks in
medical, legal, scientific, and cultural domains, MODEL
SWARMS often produces Pareto-optimal experts than op-
timizing a single task.

• Reward model: Optimizing reward model scores of gen-
eral and conflicting preferences, MODEL SWARMS offers
steerable experts that outperform baselines by up to 14.6%
in controllability.

• Human interest: On 16 topics evaluated by humans (e.g.,
electric vehicles and PhD applications), Model Swarms
produces experts on par or better than existing models in
85% of cases.

Empirical analyses reveal that the diversity of starting ex-

perts is crucial, models display emerging capabilities not
seen in initial checkpoints, and surprisingly, the best ending
particle often did not start as the best. MODEL SWARMS
could be accelerated with dropout-like strategies and seam-
lessly extended to token probability arithmetic for experts
with different model architectures. We envision MODEL
SWARMS as a versatile framework to reimagine the poten-
tial of diverse open models.

2. Methodology
We propose MODEL SWARMS, a collaborative search al-
gorithm to adapt LLM experts via swarm intelligence. We
present an overview of MODEL SWARMS in Figure 1 and
Algorithm 1.

MODEL SWARMS assumes the access to various LLM ex-
perts {xi}ni=1, which could be full models or LoRA adapters
(Hu et al., 2022) fine-tuned on diverse tasks and domains
publicly available on model-sharing platforms (Wolf et al.,
2019). It also requires a utility function f : x→ R, mapping
each expert onto a scalar value that should be optimized for
model adaptation. Utility functions could be dataset perfor-
mance, reward model scores, or human preferences (Section
3).

Inspired by Particle Swarm Optimization (Kennedy & Eber-
hart, 1995) and evolutionary algorithms in general (Bäck &
Schwefel, 1993), MODEL SWARMS employs several termi-
nologies:

• Each LLM expert, or “particle” in the model swarm, has
a location represented by model weights;

• Each particle has a velocity, a direction in the model
weight space that should move towards next;

• Personal best pi: the best-found location of xi based on
utility function f in its search history;

• Global best and worst g and gw: the best/worst location
in all of {xi}ni=1’s search history.
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The location and velocity of particles enable the proactive
search of LLM experts instead of passive merging, while the
personal/global best checkpoints help keep track of good
locations and neighborhoods in the weight space to further
explore.

Step 0. Initialize To expand the pool of starting ex-
perts/particles {xi}ni=1, MODEL SWARMS employs pair-
wise crossover with linear interpolation. Concretely, we
randomly select two experts xa and xb from {xi}ni=1 and
sample t ∼ U(0, 1), a new starting particle is obtained by
xnew = txa + (1 − t)xb. Repeat this process for N − n
times to expand {xi}ni=1 into {xi}Ni=1. Expanding the start-
ing particles allows for more trial-and-error bandwidth in
the search process.

For each particle xi, we initialize its velocity as pointing
to a random particle vi = random({xj}Nj=1) − xi.* We
initialize its personal best as its current location pi = xi

and determine the global best/worst as g = argmaxx f(x)
and gw = argminx f(x), x ∈ {xi}ni=1.

Step 1. Velocity Update The movement of LLM experts
is mainly governed by velocity v, directions in the weight
space. We posit that the weight neighborhoods of good
model checkpoints might be promising to explore (Eilertsen
et al., 2020), thus the velocity of particles vi is iteratively
drawn by personal best pi, global best g, and repelled by
global worst gw. Concretely:

vi ←
1

C
[
rvϕvvi + rpϕp(pi − xi)

+ rgϕg(g − xi)− rwϕw(gw − xi)
]

where C = rvϕv + rpϕp + rgϕg + rwϕw is a normalization
term. To dissect this formula:

• The new velocity is the weighted average of four factors:
vi, the particle keeps some of its current velocity (i.e. iner-
tia); (pi − xi), it is drawn towards its personal best; (g−
xi), drawn towards the global best; −(gw − xi), repelled
from the global worst. Inertia enables each expert to chart
an independent search path, personal/global best terms
encourage experts to explore good weight neighborhoods,
while the global worst term repels experts to stay clear of
bad model checkpoints.

• Hyperparameters – inertia ϕv, cognitive coefficient ϕp,
social coefficient ϕg, repel coefficient ϕw, all ∈ [0, 1] –
are configurable and govern how much the search process
is impacted by pi, g, and gw. In particular, inertia ϕv has

*This is to avoid all particles collapsing into the global best g
like a “black hole” and reduce exploration.

†All particles perform velocity and location update in parallel,
we omit the time stamp k for brevity.

a unique control over exploration, where lower ϕv means
more exploration (less impacted by current velocity and
more by other models) and vice versa.

• Walk randomness factors rv, rp, rg, rw ∼ U(0, 1) ensure
that the search is not deterministic, boosting particle explo-
ration and are crucial in the collaborative search process
(Table 5).

Step 2. Weight Update Based on velocity v, the
weights/locations of LLM experts are updated by taking
a step towards v: xi ← xi +λvi, where λ is the step length
hyperparameter. The updated particles are then evaluated
on the utility function f to update g, gw, and {pi}Ni=1, if
necessary.

Since MODEL SWARMS explicitly encourage randomness
and exploration, particles might sometimes fail to find desir-
able locations and stray away. We propose to restart unde-
sirable particles and give them another chance: concretely,
if for particle i the personal best pi didn’t change in cr it-
erations, where cr is a hyperparameter, we put the particle
back to its personal-best location with xi ← pi and vi ← 0,
essentially granting the particle another chance with a rel-
atively good starting point. In this way, MODEL SWARMS
strikes a balance between exploration and robustness.

Step 3. End of Iteration If the global best g hasn’t
changed in c iterations (patience hyperparameter) or the
maximum iteration of K is achieved, the search process
ends. Otherwise the step length λ is reduced by a hyperpa-
rameter factor ϕλ, λ← λ× ϕλ, and goes back to step 1. In
the end, the global best expert g is returned as the product
of MODEL SWARMS.

3. Experiment Settings
Models and Implementation We implement a prototype
of MODEL SWARMS with GEMMA-7B (google/gemma-7b-
it) (Gemma Team et al., 2024) in the main paper, while
we also employ other LLMs such as MISTRAL-7B (Jiang
et al., 2023a) in Table 7. We create a pool of 10 initial
experts/particles by fine-tuning GEMMA-7B separately on
the 10 SFT data domains in Tulu-v2 (Ivison et al., 2023)
with LoRA (Hu et al., 2022). We fine-tune for 5 epochs with
a starting learning rate of 2e-4 and effective batch size of
32 by default. For MODEL SWARMS searches, we employ
N = 20, ϕλ = 0.95, p = 10, pr = 5, K = 50, while
running grid search over other hyperparameters and report
the best-found expert based on utility function f .

Baselines We compare with 12 model composition base-
lines in three categories.

• Trivial composition, 1) Best Single expert, essentially
argmaxx f(x) for x ∈ {xi}ni=1; 2) Data Merge, where
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Algorithm 1: Model Swarms
Input: LLM experts {xi}ni=1, utility function f : x→R; Hyperparameters: swarm size N , step length λ, step length schedule ϕλ,

inertia ϕv , cognitive coefficient ϕp, social coefficient ϕg , repel coefficient ϕw, patience c, restart patience cr , max iteration K
// initialize search

pairwise interpolation to populate initial experts {xi}Ni=1 = populate({xi}ni=1), N > n
initialize global best checkpoint g← ∅, global worst checkpoint gw ← ∅
for i = 1 to N do

initialize personal best pi ← xi, velocity vi ← random({xj}Nj=1)− xi

if f(xi) > f(g), g← xi; if f(xi) < f(gw), gw ← xi

end
// search!

for k = 1 to K do
if g did not change in the last c iterations then break
for i = 1 to N parallel† do

randomness factors rv, rp, rg, rw ∼ U(0, 1)
update velocity vi ← 1

C [rvϕvvi + rpϕp(pi − xi) + rgϕg(g − xi)− rwϕw(gw − xi)], where normalization term
C = rvϕv + rpϕp + rgϕg + rwϕw

update location xi ← xi + λvi

if f(xi) > f(g), g← xi; if f(xi) < f(gw), gw ← xi; if f(xi) > f(pi), pi ← xi

if f(pi) didn
′t change in cr iterations, xi ← pi and vi ← 0

end
step length scheduling λ← λ× ϕλ

end
return g

the 10 SFT data domains in Tulu-v2 are merged to train
one single expert; 3) Prediction Merge, where the pre-
dictions of {xi}ni=1 are ensembled via plurality vote (if
applicable).

• Static composition, where the composed expert is in-
dependent of the adaptation task/utility function f . We
evaluate Uniform Soup (Wortsman et al., 2022a), Slerp,
Dare-Ties (Yu et al., 2024; Yadav et al., 2024), and Model
Stocks (Jang et al., 2024).

• Dynamic composition, where the composed expert
changes based on the utility function f . We evaluate
Greedy Soup (Wortsman et al., 2022a), Pack of LLMs
(Mavromatis et al., 2024), cBTM (Gururangan et al.,
2023), EvolMerge (Akiba et al., 2024), and LoraHub
(Huang et al., 2023). These approaches are also guided by
the utility function f like MODEL SWARMS.

Data and Evaluation We investigate whether MODEL
SWARMS could adapt LLM experts via collaborative search
on four types of adaptation objectives and the corresponding
utility functions.

• Single task: we employ 9 datasets spanning knowledge
(MMLU (Hendrycks et al., 2021), MMLU-pro (Wang
et al., 2024e), Hellaswag (Zellers et al., 2019)), reasoning
(GSM8k (Cobbe et al., 2021), Knowledge Crosswords
(Ding et al., 2024), NLGraph (Wang et al., 2024a; Zhang
et al., 2024a)), and safety (TruthfulQA (Lin et al., 2022),
RealToxicityPrompts (Gehman et al., 2020), AbstainQA

(Feng et al., 2024a)). We by default randomly sample 200
and 1000 samples as the validation/test sets: the utility
function f is defined as performance on the validation set.

• Multi-task domain: in addition to optimizing for one
task, models should also be adaptable to an application
domain comprising of multiple tasks. We employ 4 such
domains and 2 tasks in each domain, specifically medical
(MedQA (Jin et al., 2021; Li et al., 2024b) and MedM-
CQA (Pal et al., 2022)), legal (hearsay and citation pre-
diction classification in LegalBench (Guha et al., 2024)),
scientific (SciFact (Wadden et al., 2020) and the STEM
subset of MMLU-pro (Wang et al., 2024e)), and culture
(the country-based and value-based subtasks of Normad
(Rao et al., 2024)). The utility function f is defined as the
harmonic mean of performance on the two tasks.

• Reward model: we employ three reward models (RMs)
to adapt to general and conflicting preferences: a gen-
eral RM (internlm/internlm2-7b-reward (InternLM Team,
2023)) and we train two conflicting RMs, verbose-RM
and concise-RM, adapted from the general RM and each
preferring longer and more comprehensive vs. shorter
and straight-to-the-point responses, studying whether
MODEL SWARMS and baselines could offer steerability in
model behavior and adapt to pluralistic human preferences
(Sorensen et al., 2024). We sample 200 instructions from
AlpacaFarm (Dubois et al., 2024) as the validation set and
550 instructions from AlpacaFarm and Koala (Geng et al.,
2023) as the test set. f is defined as the RM scores on the
validation set. We additionally employ PPO (Schulman
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MMLU MMLU-pro Hellaswag K-Crossword GSM8k NLGraph TruthfulQA RTPrompts AbstainQA

val test val test val test val test val test val test val test val test val test

BEST SINGLE .555 .537 .357 .231 .605 .601 .395 .346 .220 .237 .540 .535 .365 .308 .913 .860 .020 .065
DATA MERGE .435 .445 .300 .176 .505 .527 .380 .370 .080 .143 .395 .423 .160 .107 .880 .848 -.090 -.025
PRED. MERGE .525 .542 .414 .173 .565 .586 .295 .309 .075 .074 .505 .502 .325 .276 / / / /

UNIFORM SOUP .525 .530 .314 .206 .545 .552 .290 .295 .270 .352 .500 .500 .395 .350 .890 .875 -.040 .003
SLERP .550 .559 .386 .237 .560 .614 .350 .309 .205 .256 .520 .530 .345 .313 .915 .884 .070 .128
DARE-TIES .560 .567 .414 .230 .600 .622 .410 .372 .230 .307 .560 .544 .380 .337 .905 .867 .110 .140
MODEL STOCKS .545 .543 .357 .221 .540 .565 .320 .310 .255 .350 .505 .502 .400 .339 .895 .873 .010 .012

GREEDY SOUP .575 .554 .371 .219 .630 .596 .395 .355 .255 .330 .545 .530 .410 .345 .916 .860 .105 .014
PACK OF LLMS .515 .568 .371 .235 .630 .593 .375 .352 .245 .327 .540 .532 .370 .295 .916 .861 -.065 .095
CBTM .510 .506 .286 .179 .510 .525 .320 .284 .160 .198 .410 .398 .360 .314 .885 .842 -.060 -.029
EVOLMERGE .545 .548 .371 .229 .565 .574 .300 .293 .320 .354 .510 .506 .395 .340 .896 .870 .050 .018
LORAHUB .555 .554 .386 .231 .570 .573 .345 .291 .315 .354 .565 .568 .425 .359 .903 .885 .100 .064

MODEL SWARMS .605 .583 .443 .254 .675 .652 .470 .428 .395 .459 .730 .672 .455 .392 .957 .956 .200 .175

Table 1: Performance on the validation and test sets of the 9 datasets. Best in bold and second-best in underline. MODEL
SWARMS outperforms TRIVIAL, STATIC, and DYNAMIC baselines by 13.3% on average and works best on the middle three
reasoning tasks with an improvement of 21.0%.

Medical Legal Science Culture

MedQA MedMC Hearsay Cite. SciFact STEM Country Value

BEST SINGLE .423 .432 .638 .500 .545 .171 .544 .585
DATA MERGE .361 .346 .596 .509 .570 .148 .468 .587

UNIFORM SOUP .403 .428 .521 .491 .680 .146 .481 .504
SLERP .424 .431 .610 .528 .729 .167 .514 .528
DARE-TIES .424 .437 .631 .537 .724 .171 .534 .546
MODEL STOCKS .409 .432 .543 .444 .727 .159 .507 .540

GREEDY SOUP .427 .439 .631 .472 .680 .161 .526 .553
PACK OF LLMS .418 .435 .521 .545 .699 .165 .500 .533
CBTM .380 .342 .463 .463 .709 .165 .527 .474
EVOLMERGE .415 .431 .532 .491 .667 .163 .503 .527
LORAHUB .405 .429 .588 .536 .711 .159 .541 .557

MODEL SWARMS .443 .457 .702 .602 .743 .188 .559 .603

Table 2: Test set performance on the 8 tasks across 4 do-
mains in multi-task domain adaptation. Best in bold and
second-best in underline. MODEL SWARMS outperforms all
12 baselines by 5.7% on average across datasets.

et al., 2017) and DPO (Rafailov et al., 2024) as baselines
to see if MODEL SWARMS offers a better use of RMs with
as few as 200 instructions.

• Human interest: in addition to preferences represented by
reward models, we adapt LLM experts directly to human,
their personalized needs and interest domains. Specifi-
cally, 13 human annotators nominated 16 interest domains
(e.g., electric vehicles and PhD applications), we then em-
ploy GEMINI-PRO to synthesize 25:25 instructions in each
domain as validation/test set. f is defined as LLM-as-a-
judge (Zheng et al., 2023) 1-10 scores with Gemini on
the validation set, while we evaluate the adaptation to
human interest topics on three fronts: improvement in f
scores, improvement in factuality with Facts&Evidence
(Boonsanong et al., 2024), and human evaluation win rate
comparing pre-swarm and post-swarm responses.

4. Results
Single Task We present the performance of MODEL
SWARMS and baselines on 9 datasets in Table 1. MODEL

SWARMS achieves state-of-the-art performance on all 9
tasks. It outperforms the second-strongest baseline by 13.3%
on average and up to 29.7% on the GSM8k dataset. The aver-
age improvement on reasoning tasks (middle three, 21.0%)
is higher than on knowledge (first three, 4.9%) and safety
(last three, 14.1%) tasks, indicating MODEL SWARMS’ ver-
satility and unique strength in adapting to diverse reasoning-
intensive contexts due to stronger generalization on reason-
ing problems. DYNAMIC merging baselines achieve 11 out
of all 18 second-place positions, with an average perfor-
mance 15.6% and 2.1% higher than TRIVIAL and STATIC
approaches. This indicates that how to compose models is
task-dependent, while MODEL SWARMS advances the task-
specific adaptation via multi-LLM collaborative search and
further outperforms DYNAMIC approaches by 20.8%.

Multi-Task Domain We present test set performance
across 8 tasks and 4 domains in Table 2. Although the multi-
task domain adaptation setting is more challenging, MODEL
SWARMS still leads to an average improvement of 5.7% over
baselines. Specifically, in the legal domain, we see the most
substantial performance improvement (11.3% and 10.5%).
In addition, we discover that MODEL SWARMS produces
Pareto-Optimal experts (Figure 10), i.e., jointly optimiz-
ing two tasks in one shared domain often outperforms only
adapting to one single task.

Reward Model We present the reward model scores on
validation and test set instructions in Table 4. MODEL
SWARMS outperforms all 14 baselines by 6.7% on aver-
age, including PPO and DPO, in the low-data adaptation
regime with 200 instructions only. Importantly, while on par
with alignment methods on general RM, MODEL SWARMS
offers impressive steerability to adapt to diverse/conflicting
user preferences, instantiated here as verbose vs. concise.
While most baselines could only reflect one but not the
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Interest Topic LLM Judge Factuality Human Eval Win Rate Interest Topic LLM Judge Factuality Human Eval Win Rate

south america 6.28 → 7.32 .50 → .55 sandbox games 5.84 → 6.88 .48 → .62
legal AI 6.36 → 7.60 .46 → .48 cartoons 6.40 → 7.48 .50 → .72
aircraft AI 6.52 → 7.76 .47 → .52 music instrument 6.48 → 7.52 .73 → .76
phd application 6.16 → 7.52 .39 → .45 olympics 5.92 → 6.92 .77 → .79
asian food 6.28 → 7.20 .44 → .47 economics 6.32 → 7.56 .41 → .48
finance 6.72 → 7.76 .42 → .53 electric vehicles 6.56 → 7.64 .40 → .42
luxury cars 6.40 → 7.60 .12 → .30 plastic 6.28 → 7.40 .44 → .53
social network 6.56 → 7.60 .43 → .48 us tourism 6.12 → 7.28 .51 → .60

Table 3: LLM-as-a-judge scores with Gemini-Flash, factuality scores with Facts&Evidence (Boonsanong et al., 2024), and
human eval win rates comparing pre- and post-MODEL SWARMS across 16 human interest domains. Colors indicate WIN,
TIE, and LOSE. MODEL SWARMS improve both scores by 17.6% and 17.0% on average, while achieving 70.8% average win
rate across 16 topics.

General RM Verbose RM Concise RM

val test val test val test

BEST SINGLE .559 .562 .650 .642 .533 .490
DATA MERGE .457 .445 .527 .550 .430 .396

UNIFORM SOUP .625 .612 .575 .572 .550 .540
SLERP .327 .316 .608 .611 .220 .204
DARE-TIES .415 .403 .607 .604 .335 .315
MODEL STOCKS .615 .593 .562 .567 .555 .526

GREEDY SOUP .621 .609 .650 .649 .578 .553
PACK OF LLMS .614 .609 .625 .641 .547 .529
CBTM .567 .559 .601 .591 .466 .463
EVOLMERGE .619 .607 .575 .570 .554 .536
LORAHUB .621 .603 .616 .619 .589 .561

PPO .628 .574 .618 .641 .536 .527
DPO .627 .617 .681 .682 .611 .599

MODEL SWARMS .646 .621 .780 .770 .651 .639

Table 4: Reward model scores on the validation and test
instruction sets. Best in bold and second-best in underline.
MODEL SWARMS flexibly adapts to both general and steer-
able preference RMs, improving by 6.7% on average.

other (e.g. SLERP is good on verbose but bad on concise),
MODEL SWARMS achieves state-of-the-art performance on
both verbose and concise RMs, indicating that the flexible
collaborative search methodology presents a viable solution
for aligning to diverse and pluralistic human preferences
(Wang et al., 2023; Sorensen et al., 2024; Feng et al., 2024b).

Human Interest We present the comparison between
pre- and post-MODEL SWARMS experts in the 16 human-
nominated interest domains in Table 3. Through adaptation
with MODEL SWARMS, experts improve 17.6% in LLM-as-
a-judge scores and 17.0% in factuality scores on average
when discussing the 16 topics and domains. Most impor-
tantly, human evaluation reveals that MODEL SWARMS fea-
tures a 70.8% win rate against initial experts on average, in
particular, with an impressive 96% win rate in the two most
successful domains while still maintaining 44%:28%:28%
on the unfamiliar and most challenging topics. This indicates
that MODEL SWARMS outputs are consistently preferred by
both automatic metrics and human users, indicating MODEL

SWARMS’ great potential to produce domain-specialized
and community-specific LLM experts.

5. Analysis
Correctness Emergence In the collaborative search pro-
cess, are LLM experts simply transferring existing capabili-
ties from one model to another, or are they discovering new
skills and expertise for adaptation? Specifically, there are
four correctness levels for a question and the pool of LLM
experts: 1 the answers of experts are all wrong; 2 less than
half correct; 3 more than half correct; and 4 all correct.
The correctness level for a question could change between
the pre- and post-MODEL SWARMS experts (e.g. ( 1 →
3 ) indicates that none of the experts answered correctly

initially, but after MODEL SWARMS optimization more than
half answered correctly.) We define two metrics, correctness
surge (C-surge) and correctness emergence (C-emerge):

C-surge =

∑
j>i | i → j |∑

i,j∈[1,4] | i → j |
, C-emerge =

∑
j>1 | 1 → j |∑

j∈[1,4] | 1 → j |

where C-surge indicates the percentage of questions with
an increased correctness level after MODEL SWARMS, and
C-emerge quantifies that out of all initially type- 1 ques-
tions, how much was correctly answered by at least one ex-
pert after MODEL SWARMS. Figure 2 illustrates the changes
in correctness levels: MODEL SWARMS achieves an aver-
age C-surge of 48.2% across the four datasets, indicating
broad expert improvements. An interesting observation is
that MODEL SWARMS achieves 36.0% to 53.5% C-emerge,
indicating that the collaborative search surfaced new skills
and capabilities in experts that solved 36.0% to 53.5% pre-
viously “impossible” problems for all initial experts.

Diamond in the Rough We observe that in MODEL
SWARMS searches, the experts that ended as the best didn’t
necessarily start as the best. We illustrate this phenomenon
in Figure 3: for the particles that ended with the highest util-
ity function f scores in a swarm, what was its ranking based
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Figure 2: The number of problems in each correctness level for experts before and after MODEL SWARMS across four
datasets, along with C-surge and C-emerge metrics. Cell colors indicate UP, SAME, and DOWN changes in correctness levels.
MODEL SWARMS discover new capabilities and skills through collaborative search evident in the 44.8% average C-emerge,
solving 44.8% of previously “impossible” problems for all initial model checkpoints.

Figure 3: The distribution of starting model rankings for
experts that ended as the best. A vast majority of 89.6%
best-found models did not start as the best and 56.9% even
started in the bottom half.

on f before the search? Averaged across the four datasets,
we found that only 10.4% of the ending-best particles also
started as the best (#1), while surprisingly the bottom half
of the starting experts were able to rise to the top in 56.9%
of the MODEL SWARMS searches. This indicates that weak
experts are not inherently less effective but maybe simply
not fully adapted to the task/domain/context of use: they
are rightfully diamond in the rough and MODEL SWARMS
enables the weak-to-strong transition that activates their
implicit expertise to produce strong adapted LLM experts.

Diversity Matters MODEL SWARMS rely on a pool of
LLM experts to run the collaborative search algorithm and
produce adapted models. Amid the 922,559 models§ pub-
licly available on Huggingface (Wolf et al., 2019), what
models should we select? Specifically, do we need homo-
geneous model checkpoints or diverse specialized experts?
To this end, we conduct a controlled experiment: we take a
distinct initial experts (Section 3) and repeat each for b times
to result in the starting swarm (denoted as a× b) while con-
trolling a ∗ b as a constant, then employ MODEL SWARMS
to adapt them to a task/dataset. We present the results for

§Accessed on Sept 8, 2024.

1× 10, 2× 5, 5× 2, and 10× 1 in Figure 4, from the least
diverse to the most diverse. Experiments demonstrate a con-
sistent upward trend with the increase in expert diversity,
while 10× 1 outperforms 1× 10 by 35.3% averaged across
the five datasets. This indicates that diversity matters, that
the success of MODEL SWARMS hinges on the collaborative
search of a diverse and wide-ranging pool of initial experts.

Different Model Architectures with Token Swarms The
default MODEL SWARMS algorithm operates on model
weights, i.e. the arithmetic operation of updating particle
velocity and location is instantiated with model parameter
values (weight swarms). What if we need to compose ex-
perts fine-tuned from different base architectures? Instead
of model weights, the swarm intelligence arithmetic could
be seamlessly carried out on token probability distributions
for token swarms.

Concretely, the n experts start with a location matrix as an
identity matrix L = In×n = [l1, · · · , ln], where the i-th row
li denotes the location of particle i: a one-hot vector of 0s
and the i-th value is 1. For text generation, denoting the next-
token probability distribution of expert i as ti, expert i’s
adjusted token probability becomes t′i =

∑n
j=1 li,jtj and

decode text with t′i. In the beginning, t′i = ti as the expert
focuses solely on its own token probabilities. After running
updates of location and velocity in the n-dimensional search
space (Algorithm 1), t′i becomes a composition of t across
experts to optimize f . This resembles the collaborative de-
coding paradigms in existing research (Liu et al., 2024; Shen
et al., 2024b), while how to compose the distributions are
auto-discovered.

We run a prototype of token swarms with 4 experts fine-
tuned from GEMMA-7B and 4 from MISTRAL-7B, featur-
ing different model architectures. We present the pre- and
post-swarm performance of the 8 experts in Figure 5. All
8 experts become better regardless of model architecture
and the global best increased 5.7% and 11.9% on the two
datasets. We envision a full-blown implementation and anal-
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2*5 5*2 10*1

1*10 2*5 5*2 10*1Expert Pool

Figure 4: MODEL SWARMS with increasing levels of diversity in initial LLM experts. Results show a general upward trend
and a 35.3% increase on average from the least to most diverse initial experts.

Figure 5: Performance of the token probability variation,
token swarms, the first and last four experts are based on
GEMMA and MISTRAL, respectively. Heterogeneous ex-
perts improve in performance by an average of 29.3% across
models and datasets.

ysis as well as some modifications to the token swarms
variant as important future work.

6. Related Work
Composing Diverse LLM Experts In addition to de-
veloping gargantuan general-purpose LLMs, increasing
research focus on the composition of multiple models.
Mixture-of-experts (MoE) models (Jiang et al., 2024; Lin
et al., 2024) and methods (Roller et al., 2021; Lewis et al.,
2021; Kudugunta et al., 2021; Pfeiffer et al., 2022; Du et al.,
2022; Gururangan et al., 2022; Shen et al., 2024a) are one
of the most noted paradigms in composing models, where
different approaches vary on parallel neural components
(Zhang et al., 2022; Li et al., 2022), routing mechanisms
(Zhou et al., 2022; Dai et al., 2022), and expert partition
(Gururangan et al., 2023; Jang et al., 2023). More recently,
learn-to-fuse approaches propose to “glue” experts together
with trainable modules (Bansal et al., 2024), adapters (Wang

et al., 2024b), or even LLMs (Jiang et al., 2023b): these ap-
proaches often need substantial supervised data and might
not be modular to seamlessly add/remove experts. In addi-
tion, static model arithmetic approaches propose to compose
experts by performing arithmetic on model weights and to-
ken probabilities to reconcile sign differences (Yu et al.,
2024; Yadav et al., 2024), simulate tuning effects (Liu et al.,
2024), and induce compositional capabilities (Ilharco et al.,
2023), and more (Davari & Belilovsky, 2023; Jang et al.,
2024; Deep et al., 2024; Zheng et al., 2024). In comparison,
dynamic model arithmetic proposes to merge models guided
by an objective function, employing perplexity heuristics
(Mavromatis et al., 2024), evolutionary methods (Akiba
et al., 2024), and more (Wortsman et al., 2022a; Huang et al.,
2023; Gururangan et al., 2023). Most of these model arith-
metic approaches often rely on strong assumptions about
the experts how they should be composed (e.g. lion indoors
= lion outdoors + (dog indoors - dog outdoors) (Ilharco
et al., 2023)). In contrast, MODEL SWARMS presents a mod-
ular, assumption-free, and flexible approach to compose and
adapt diverse LLM experts guided by as few as 200 data
instances.

Evolutionary Algorithms and LLMs MODEL SWARMS
is in part inspired by particle swarm optimization (PSO)
(Kennedy & Eberhart, 1995), an evolutionary algorithm
(EA) solving optimization problems. This echoes a recent
and contemporary uptake of EAs, especially genetic al-
gorithms (GAs) in ML/LLMs (Zhao et al., 2023; Lange
et al., 2023; Wu et al., 2024; Chao et al., 2024; Lange et al.,
2024). EvolMerge (Akiba et al., 2024) seeks to compose a
math LLM and a Japanese LLM through discovering better
weight/layer and data flows guided by genetic algorithms.
PromptBreeder (Fernando et al., 2024) seeks to search for
specialized LLM prompts by maintaining a prompt popu-
lation and conducting LLM-based crossover and mutation
to produce better prompts, resembling GA processes. Evo-
Prompt (Guo et al., 2024a) also follows similar concepts
of applying GAs for prompt optimization. We see two key
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differences between MODEL SWARMS and this line of ex-
isting research: most methods focus on improvements in
prompt/data engineering (Fernando et al., 2024; Guo et al.,
2024a), while MODEL SWARMS seek to adapt LLMs by
changing model weights and inducing new expert capa-
bilities (Figure 2), which is more fundamental and offers
greater headroom for improvement; existing EA applica-
tions mostly employed genetic algorithms that necessitate
much hand-crafted rules (Lambora et al., 2019) (how should
two prompts/models crossover to produce new ones, how to
mutate, etc.), while MODEL SWARMS is inspired by swarm
intelligence that come with little to no manual engineering
in the composition and collaboration of models.

7. Conclusion
We propose MODEL SWARMS, a collaborative search algo-
rithm to flexibly adapt diverse LLM experts to wide-ranging
purposes. Guided by personal and global best-found loca-
tions, LLM experts explore to optimize utility functions
representing various adaptation objectives. Extensive ex-
periments demonstrate that MODEL SWARMS outperforms
three categories of 12 model composition baselines by up to
21.0% across four types of model adaptation. Further analy-
sis reveals that MODEL SWARMS help discover new skills
in the collaborative search process and bring out the best
and implicit expertise of weak models for weak-to-strong
expert transition.

Impact Statement
MODEL SWARMS assumes access to a pool of initial ex-
perts for collaborative search to adapt language models. On
one hand, it might be challenging to select the right pool of
LLMs while we present evidence that the diversity of initial
experts is crucial to MODEL SWARMS’ successes (Figure 4);
On another hand, MODEL SWARMS require the update of
all experts at each iteration, which might be computationally
challenging. We provide time/space complexity analysis in
Appendix B and present a preliminary dropout-like accel-
eration scheme in Figure 7. MODEL SWARMS is uniquely
suited to low-data contexts where only a few hundred ex-
amples are readily available to serve as the utility function
f .

MODEL SWARMS aims to adapt language models based
on their existing expertise rather than memorizing new in-
formation that was never seen in the training of these ex-
perts. While theoretically by changing model weights ex-
perts could pick up new information, our preliminary ex-
periments with perplexity as the utility function, a proxy
for memorization, indicates that MODEL SWARMS could
not reliably optimize perplexity. We envision that temporal
updates could be enabled by employing retrieval augmenta-
tion (Chen et al., 2023b; Jiang et al., 2023c; Shi et al., 2024;

Wang et al., 2024f) over unseen documents in conjunction
with MODEL SWARMS.

MODEL SWARMS by default operate on the model weight
space, enabling the collaborative search and movement of
LLM experts in terms of model parameters. While this
paradigm is incompatible with a pool of experts with het-
erogeneous model architectures, we propose token swarms
and demonstrate its preliminary success in Figure 5. We
highlight the trade-off between weight swarms and token
swarms: weight swarms induces more fundamental change
of model capabilities through weight changes, but it would
require all experts to share the same architecture; token
swarms is much more flexible in expert architectures, but
only changes the composition of token probabilities without
touching on the model’s parametric capabilities. We expect
a full implementation and adaptations to the token swarms
variant as important future work.

Unsuccessful MODEL SWARMS searches might be confined
to a local minimum without broad exploration of the de-
sirable weight space. While 1) we take several measures
in Algorithm 1 to mitigate this (random starting velocity,
walk randomness factors, etc.), 2) we observe strong em-
pirical performance of MODEL SWARMS and consistent
improvement to the global best g, and 3) we visualize the
movement of particles in Figure 6 demonstrating its conver-
gence quality, one way to mitigate this concern is by anneal-
ing/adding noise to go beyond the local search: changing
rv, rp, rg, rw ∼ U(0, 1) to rv, rp, rg, rw ∼ U(−0.2, 1) so
that models have a small chance of moving towards the re-
verse direction and potentially jump out of local minimums.

We would like to highlight the dual-use risk of MODEL
SWARMS: thanks to its flexible adaptation strategy by us-
ing a model-to-scalar utility function f , it also leads to
malicious use cases by having malicious fs. Some exam-
ples could include optimizing the reverse reward model
scores, optimizing for lower scores on RealToxicityPrompts
(Gehman et al., 2020), optimizing for certain social and
political biases (Feng et al., 2023), and more. We argue for
the responsible use of the MODEL SWARMS methodology
as well as the responsible release of adapted experts.

Reproducibility Statement
We provide all details in the implementation and evaluation
of MODEL SWARMS in Appendix C. Specifically, Appendix
C contains dataset details and statistics (Table 10), imple-
mentation details of MODEL SWARMS, hyperparameter set-
tings, details of all 12 baselines in Section 3, details of all
4 evaluation settings in Section 4, specific prompt texts in
Table 11 employed in the human interest objective, and spe-
cific human evaluation instructions in Table 12. Upon the
final version, we will include a link to a publicly accessible
repository with all MODEL SWARMS implementation code,
prepossessed data files and resources, adapted model check-
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points, as well as instructions on reproducing our results
and using MODEL SWARMS beyond tasks included in this
paper.
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A. Discussion
Three Key Strengths of MODEL SWARMS 1) training-
free: by training-free we mean that the composition of mod-
els in MODEL SWARMS doesn’t require specific training
objectives, loss function, gradient descent, or back propa-
gation. This alleviates data dependency: by using as few
as 200 examples MODEL SWARMS could produce better
adapted experts, while that is only a bit over 3 batches for
training-based approaches with a typical effective batch size
of 64. 2) automatic discovery or assumption-free: instead of
dictating the composition of models in A=B+C-D formu-
las, MODEL SWARMS automatically discover better adapted
experts through swarm intelligence without making assump-
tions about experts and how they should be composed. 3)
any adaptation objective: the collaborative search is only
guided by a particle-to-scalar utility function f which could
be any thing: dataset performance, reward model scores,
human interests, and more.

MODEL SWARMS and Optimization Research MODEL
SWARMS is in part inspired by particle swarm optimization,
one algorithm in the very rich literature of optimization
research. We don’t claim that PSO is the only and best
applicable algorithm in the modern LLM world: on the con-
trary, we invite follow-up works that critically examine how
classic optimization techniques, especially for non-convex
problems without strong guarantees, could be revived in
today’s context.

Non-Neural Reward Models In Figure 4 we demonstrate
that MODEL SWARMS could adapt to preferences repre-
sented by neural reward models. However, any model-to-
scalar utility function f could work and non-neural RMs are
definitely possible: optimizing engagement in social media
posts, optimizing click-through rates in online ads, optimiz-
ing charity donations when advertising a righteous case. We
see many positive (and also negative) possibilities when em-
ploying MODEL SWARMS in conjunction with non-neural
RMs in social-economic contexts.

Long vs. Short In Figure 4 we demonstrate that MODEL
SWARMS could steerably adapt to either verbose RM or con-
cise RM, offering use agency and controllability in model
behavior. We discuss the distinctions with two other po-
tential solutions: 1) setting max new tokens, which might
result in cutoffs in generated texts; 2) penalizing [EOS]
tokens, which might tamper with token probabilities and
harm generation quality. For a more on-the-fly steerability,
we suggest to separately conduct MODEL SWARMS for two
conflicting objectives, then employ an interpolation of the
two models with a user-controlled scaler from 0 to 1.

Resilience to Malicious Experts There is discussion in
multi-agent research about the impact of malicious agents
(Huang et al., 2024). However, MODEL SWARMS is robust
to malicious experts since the only time a model has influ-
ence on others is when it becomes the global best g, while
an intentionally “bad” model has no chance of becoming g
on the “good” utility function f .

MODEL SWARMS and Multi-Agent Systems The role
of all “experts” in MODEL SWARMS is homogeneous, i.e.
they pursue the same goal/adapt to the same objective as
represented by utility function f . In multi-agent systems
(Rame et al., 2022; Zaman et al., 2023; Ainsworth et al.,
2023; Chan et al., 2024; Talebirad & Nadiri, 2023; Chen
et al., 2023a; Zhang et al., 2024b; Abdelnabi et al., 2024;
Kannan et al., 2023; Zeng et al., 2024; Guo et al., 2024b; Sun
et al., 2024; Han et al., 2024; Ishibashi & Nishimura, 2024;
Wang et al., 2024d; Zhao et al., 2024; Chen et al., 2024c;
Hong et al., 2024; Smit et al., 2024; Chen et al., 2024a;b),
the agents often have different roles to jointly complete a
task, albeit those roles are more or less hand-crafted and
especially through prompting. We envision future work on
adapting MODEL SWARMS and automatically discovering
heterogeneous and collaborative agents that jointly serve a
purpose.

MODEL SWARMS and Model Merging MODEL
SWARMS is both searching and merging (Wortsman et al.,
2022b; Davari & Belilovsky, 2023; Deep et al., 2024; Yang
et al., 2024; Wan et al., 2024; Rame et al., 2024; Fu et al.,
2024; Ramé et al., 2024; Li et al., 2024a; Tang et al., 2024;
Wang et al., 2024c; Du & Kaelbling, 2024): searching in the
sense that models are proactively moving in the search space
for better experts instead of passively being squashed to-
gether, merging in the sense that each resulting model is im-
plicitly an expert taking input from other models and chang-
ing its weights accordingly. Contrary to the often “many-to-
one” paradigm in model merging research where there is
only one merged model, MODEL SWARMS is a “many-to-
many” operation that yields multiple adapted experts, which
open the door for further model merging, another search
based on the result of a previous search, MoE routing, and
more.

B. Analysis (cont.)
Visualizing Search Trajectory Since the same arithmetic
is applied equally to all model parameters, we could visu-
alize the search trajectory of LLM experts by plotting any
two parameter values. Figure 6 demonstrates that starting
as diverse LLM experts, models collaboratively search in
the weight space and converge to a weight area that best
optimizes the objective f .
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Figure 6: Visualization of the model search trajectories
on two datasets, where each colored line represents the
movement in weight space for one LLM expert. Diverse
experts collaboratively search for composition and converge
to adapted models in the weight space.
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Figure 7: Performance with Drop-K and Drop-N, speeding
up MODEL SWARMS by up to 80% with only a 6.0% drop.

Accelerating with Dropout-K/N By default, the util-
ity function f is evaluated for every LLM expert at ev-
ery single iteration. To speed up, we propose Drop-K dk
and Drop-N dn: randomly skipping model evaluation in
dk% of iterations or for dn% of experts. We evaluate
{dk, dn} = {0.2, 0.5, 0.8} and present model performance
in Figure 7. With an speed up of up to 80% comes with only
a slight performance drop of 6.0% on average, indicating
that Drop-K and Drop-N present two helpful strategies to
reduce the computational costs of MODEL SWARMS while
maintaining good expert utility.

Randomness Ablation We explicitly enable randomness
in MODEL SWARMS, with the hope of boosting exploration
and adaptation. Specifically, randomness comes in three
steps:

1. random interpolation to grow initial experts {xi}Ni=1 =
populate({xi}ni=1), N > n;

2. random starting velocity vi ← random({xi}Ni=1)− xi;

3. random velocity update weights rv, rp, rg, rw ∼ U(0, 1);

We conduct an ablation study where we disable the three
randomness in Table 5. We find that the three randomness
factors all contribute to model performance across the four
datasets, while the deterministic variant (no 1 & 2 & 3)
would result in a 23.5% drop on average.

We further visualize performance variance due to these ran-
domness factors. We run for up to 200 times, and present

SETTING MMLU Hellaswag NLGraph AbstainQA

FULL 0.583 0.652 0.672 0.175

W/O 1 0.504 0.587 0.530 0.099
W/O 2 0.516 0.615 0.523 0.049
W/O 3 0.544 0.611 0.547 0.147

W/O 1 & 2 0.561 0.601 0.611 0.091
W/O 1 & 3 0.536 0.600 0.527 0.055
W/O 2 & 3 0.554 0.606 0.532 0.082
W/O 1 & 2 & 3 0.528 0.611 0.541 0.072

Table 5: Performance with randomness in 1) initial interpo-
lation, 2) starting velocity, and 3) velocity update removed.

Figure 8: Performance variance across runs with each circle
representing the best-found expert of a run: red line indicates
the best baseline. Despite randomness, MODEL SWARMS
finds experts better than any baseline in 73% of the runs.

the val/test performance variance in Figure 8. Despite the
randomness, MODEL SWARMS is consistently producing
adapted experts better the best baseline, outperforming it in
73% of runs.

Collaboration of Weak > Strong When we don’t have
strong starting experts to begin with, would MODEL
SWARMS enable the collaboration of weaker models to beat
the strong? We investigate this by sorting {xi}ni=1 by utility
f , withhold the top-1 model and see whether the collabora-
tion of the remaining experts would surpass it, i.e., whether
Swarm({xi}ni=2) > x1. We also evaluate the collaboration
of the bottom half, Swarm({xi}ni=n/2), and present perfor-
mance in Figure 9. It is demonstrated that the collaboration
of weak models could beat the top-1 expert, with an average
improvement of 35.4% across the four datasets. The collab-
oration of the bottom half also outperforms the top-1 in 2
out of 3 datasets, suggesting that MODEL SWARMS enables
the weak-to-strong (Burns et al., 2024) transition of LLM
experts through collaborative search.

Compositional Capability through Joint Utility Func-
tions We investigate whether MODEL SWARMS could
adapt to compositional tasks by jointly optimizing two dif-
ferent datasets. Specifically, we investigate “QA+graph
reasoning = multi-hop QA” with MMLU, NLGraph, and
Knowledge Crosswords. We compare the joint utility func-
tion of harmonic mean performances against the best single
expert without search or searching to optimize one task only.
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Figure 9: Performance of the best initial expert, swarm(2-
10), and swarm(6-10). The collaboration of weak models
outperforms the top expert through MODEL SWARMS.

SETTING MMLU Hellaswag NLGraph AbstainQA

FULL 0.583 0.652 0.672 0.175

CROSSOVER, ONLY 15 0.527 0.604 0.534 0.093
NO CROSSOVER 0.504 0.587 0.53 0.099
VELOCITY:BEST 0.518 0.613 0.542 0.031
VELOCITY:ZERO 0.516 0.615 0.523 0.049
NO REPEL 0.534 0.631 0.534 0.025
NO SCHEDULE 0.517 0.611 0.536 0.095
NO RESTART 0.532 0.628 0.532 0.131

Table 6: Ablation study removing the five modifications to
PSO.

Figure 11 demonstrates that MODEL SWARMS could indeed
adapt to compositional tasks by utilizing a combined utility
function.

Pareto-Optimal In adaptation objective 2: multi-task do-
mains, we argue that the joint optimization of multiple tasks
in a single domain might be better than separately optimiz-
ing just one. We investigate this by comparing the joint
optimization against only optimizing only dataset 1 or 2
in Figure 10. MODEL SWARMS produce mostly Pareto-
Optimal experts that’s better than optimizing one dataset in
most cases.

Qualitative Examples We present qualitative examples
for objective 4: human interests, essentially (instruction, pre
response, post response) tuples, where human evaluators
judge MODEL SWARMS as winning, tying, or losing to
initial experts in Tables 13, 14, and 15.

Ablation Study MODEL SWARMS features five major dif-
ferences from the classic swarm intelligence for LLM opti-
mization: 1) crossover through interpolation and expanding
initial expert pool; 2) randomize initial velocity; 3) adding
a repel term; 4) adding step length schedule; 5) restarting
failing particles. We conduct an ablation study for these five
factors in Table 6. It is demonstrated that they are all helpful
for model performance, while 1) crossover is most useful.

Other LLMs To show the generality of MODEL
SWARMS, we replace GEMMA-7B with MISTRAL-7B
(mistralai/Mistral-7B-Instruct-v0.3) and re-run evaluation

of adapting to one dataset. Results in Table 7 demonstrates
that MODEL SWARMS is general and works regardless of
base model.

Hyperparameter We by default run a grid search over
several hyperparameters: step length λ, inertia ϕv , cognitive
coefficient ϕp, social coefficient ϕg , and repel coefficient ϕw.
We dissect performance with each hyperparameter value in
Table 8. It is demonstrated that the changes are minor, thus
MODEL SWARMS is largely robust to different hyperparam-
eter configurations.

Time and Space Complexity For MODEL SWARMS with
n particles, k iterations, the time of validation set inference
as D1, the time of test set inference as D2, the time of weight
arithmetic as w, the probability of global best updating as a,
then the time complexity is n(D1 + 2D2 + k[(5 + a)w +
D1]) and is O(n) and O(k), indicating linear growth with
the amount of particles and iterations. For space, the peak
storage requirement is 3n+ 1 copies of the LoRA adapters:
given the tiny size of adapters, any n < 100 should be
reasonable.

The implementation of MODEL SWARMS employs multipro-
cessing, essentially distributing the evaluation of particles
to m GPUs with m concurrent threads. We empirically ana-
lyze the time complexity of employing 1 to 10 GPUs on our
cluster of 16 A100 GPUs with 96 CPU cores with 10 default
initial experts. Figure 12 demonstrates that the benefit of
more GPUs gradually diminishes due to multiprocessing
costs, with 5 GPUs as being optimal on our machine. We
show the general trade-off between GPU computation time
and multiprocessing time while the exact time per iteration
is not meaningful.

Modularity: Adding and Removing Experts MODEL
SWARMS presents a modular multi-LLM collaboration sys-
tem, where experts could be added/removed from the com-
position even after a search. For adding experts, since the
only time a particle has an influence on others is when it
becomes global best, we only start the search with the new
particle when and if it were to become g. We empirically
test this by withholding several experts and injecting oth-
ers in 5 → 10, 8 → 10, and 9 → 10 settings in Figure
13. Adding experts in this way is generally helpful, while
injecting fewer experts is more effective.

As for removing experts, MODEL SWARMS presents a tech-
nical guarantee for completely removing an expert and all
its influence on other models. We first expand the velocity
update term on step t:
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Figure 10: Performance of best single expert, ours only optimizing task 1 or 2, and jointly optimizing tasks 1 and 2. The
domains of medical, legal, science, and culture are presented from left to right. MODEL SWARMS produces Pareto-Optimal
expert than uni-task optimization.

MMLU MMLU pro Hellaswag K-Crosswords GSM8k NLGraph TruthfulQA RTP AbstainQA

dev test dev test dev test dev test dev test dev test dev test dev test dev test

best single 0.385 0.433 0.257 0.146 0.545 0.550 0.415 0.364 0.190 0.303 0.335 0.325 0.380 0.353 0.898 0.873 -0.130 0.081
ours 0.510 0.510 0.271 0.160 0.640 0.664 0.470 0.497 0.290 0.328 0.380 0.358 0.440 0.405 0.906 0.881 0.095 0.199

Table 7: Performance of single-dataset adaptation with MISTRAL-7B.
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Figure 11: Performance on Knowledge Crosswords with
optimizing one dataset or joint task optimization.
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Figure 12: Time per iteration changes with increasing num-
ber of GPUs.

MMLU NLGraph TruthfulQA

avg std avg std avg std

all 0.557 0.011 0.585 0.036 0.365 0.014

inertia
0.10 0.556 0.012 0.582 0.033 0.363 0.015
0.20 0.557 0.010 0.586 0.037 0.365 0.013
0.30 0.556 0.010 0.590 0.039 0.366 0.013

cognitive coeff.

0.10 0.557 0.010 0.584 0.041 0.362 0.015
0.20 0.558 0.011 0.588 0.037 0.364 0.013
0.30 0.556 0.009 0.590 0.041 0.367 0.014
0.40 0.556 0.011 0.587 0.033 0.365 0.014
0.50 0.557 0.012 0.578 0.028 0.365 0.014

social coeff.

0.20 0.558 0.012 0.600 0.040 0.365 0.012
0.30 0.558 0.011 0.593 0.037 0.365 0.012
0.40 0.556 0.010 0.587 0.039 0.365 0.014
0.50 0.556 0.010 0.570 0.023 0.365 0.014
0.60 0.554 0.010 0.576 0.032 0.363 0.015

repel coeff.
0.01 0.553 0.009 0.565 0.013 0.367 0.015
0.05 0.558 0.010 0.587 0.037 0.364 0.014
0.10 0.559 0.012 0.606 0.040 0.363 0.012

step length

0.50 0.558 0.010 0.583 0.028 0.366 0.011
0.60 0.558 0.009 0.587 0.035 0.368 0.014
0.70 0.557 0.010 0.584 0.036 0.364 0.014
0.80 0.556 0.012 0.593 0.043 0.367 0.014
0.90 0.556 0.011 0.589 0.040 0.363 0.013
1.00 0.555 0.012 0.578 0.034 0.361 0.015

Table 8: Average model performance under various hyper-
parameter values.

19



MODEL SWARMS

0.50

0.55

0.60

0.65

0.70

only 5 5 -> full only 8 8 -> full only 9 9 -> full

MMLU Hellaswag NLGraph

Figure 13: Performance when new experts are injected, from
5 to 10, from 8 to 10, and from 9 to 10, across three datasets.
MODEL SWARMS presents the possibility of injecting ex-
perts after a search.

vt = rvϕvvt−1 + rpϕp(pt−1 − xt−1) + rgϕg(gt−1 − xt−1)

− rwϕw(gw,t−1 − xt−1)

= rvϕvvt−1 + rpϕppt−1 − (rpϕp + rgϕg − rwϕw)xt−1

+ rgϕggt−1 − rwϕwgw,t−1

The updated location at step t is then:

xt = xt−1 + λvt

= xt−1 + λ
[
rvϕvvt−1 + rpϕppt−1 − (rpϕp + rgϕg

− rwϕw)xt−1 + rgϕggt−1 − rwϕwgw,t−1

]
= λrvϕvvt−1 + λrpϕppt−1 +

[
1− λ(rpϕp + rgϕg

− rwϕw)
]
xt−1 + λrgϕggt−1 − λrwϕwgw,t−1

Note that vt−1, pt−1, and xt−1 are the property of the
particle itself, while gt−1 and gw,t−1 are the property of
potentially other particles. As a result, simply remove the
gt−1 and gw,t−1 terms if gt−1 and/or gw,t−1 come from the
expert to the removed and normalize the remaining weight
terms. For example, if gt−1 andr gw,t−1 are both from the
particle to be removed, then:

x̃t = C
[
xt − λrgϕggt−1 + λrwϕwgw,t−1

]

where C =
λrvϕv+λrpϕp+

[
1−λ(rpϕp+rgϕg−rwϕw)

]
+λrgϕg+λrwϕw

λrvϕv+λrpϕp+

[
1−λ(rpϕp+rgϕg−rwϕw)

]
is the weight normalization factor. Starting from t = 1 up
to t = K for every x, this removes the specified expert(s)
from the composition of other models.

Search Dynamics What exactly is happening during a
MODEL SWARMS search and how did expert utility change
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Figure 14: Entropy of model responses indicating sensitivity
to 10 prompt versions with minor differences, the lower the
better.

in the process? We visualize the change of each particle as
well as the global best in term of utility function f in Figure
15. Experts explore the weight space, their utility scores wax
and wane, leading to consistent bumps in global best scores
and consequently better adapted language models.

Prompt Variation We hypothesize that by optimizing
the weights, MODEL SWARMS might offer stronger robust-
ness to minor prompt changes. We employ GEMINI-PRO to

“Please paraphrase the question into 10 versions with minor
differences.”, evaluate models on the 10 versions, and cal-
culate the entropy of response distributions as indicators of
sensitivity. Figure 14 demonstrates that MODEL SWARMS
drastically reduce the sensitivity to minor prompt changes,
while still being a bit shy of Gemini-flash/pro levels.

Comparison with Training Instead of running MODEL
SWARMS, what if we directly fine-tune models on the vali-
dation set with its 200 data points? We compare the perfor-
mance of pre-search best initial expert, post-search global
best, and SFT in Table 9. MODEL SWARMS outperforms
SFT, indicating that we offer a stronger solution for model
adaptation in low-data regimes with as few as 200 instances
while SFT might be over-fitting.

C. Experiment Details
Dataset Details We employ 20 datasets in total to evaluate
MODEL SWARMS and baselines: 9 for objective 1: single
task, 8 for objective 2: multi-task domains, 2 for objective 3:
reward models, and we synthesize a 16-domain instruction
dataset from Gemini (gemini-1.5-pro-001) for objective 4:
human evaluation. We randomly sample subsets from each
dataset and present the statistics in Table 10. We also em-
ploy the z-test with the one-tailed hypothesis and present
statistical significance test results on the applicable objective
1: single task datasets.

Implementation Details For a prototype of MODEL
SWARMS, we employ GEMMA-7B (google/gemma-7b-it) as
the base model checkpoint, then fine-tune it on 10 different
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MMLU MMLU pro Hellaswag GSM8k NLGraph TruthfulQA

best single 0.537 0.231 0.601 0.237 0.535 0.308
SFT 0.450 0.167 0.513 0.279 0.585 0.359
Model Swarms 0.583 0.254 0.652 0.459 0.672 0.392

Table 9: MODEL SWARMS outperforms directly training LLMs on the 200-instance validation set.

Dataset Source Size

dev test

MMLU (Hendrycks et al., 2021) 200 1000
MMLU-pro (Wang et al., 2024e) 70 1000
K-Crosswords∗∗∗ (Ding et al., 2024) 200 1000
Hellaswag∗ (Zellers et al., 2019) 200 1000
NLGraph∗∗∗ (Wang et al., 2024a) 200 1000
GSM8k∗∗∗ (Cobbe et al., 2021) 200 1000
TruthfulQA∗ (Lin et al., 2022) 200 617
RealToxicityPrompts∗∗∗ (Gehman et al., 2020) 200 1000
AbstainQA∗∗ (Feng et al., 2024a) 200 1000

MedQA (Li et al., 2024b) 200 1000
MedMCQA (Pal et al., 2022) 200 1000
Hearsay (Guha et al., 2024) 94 94
Citation Prediction (Guha et al., 2024) 108 108
SciFact (Wadden et al., 2020) 200 532
STEM (Wang et al., 2024e) 30 473
Normad w/country (Rao et al., 2024) 500 2000
Normad w/value (Rao et al., 2024) 500 2000

AlpacaFarm (Dubois et al., 2024) 200 400
Koala (Geng et al., 2023) / 150

Humen eval Gemini-synthesized 16*25 16*25

Table 10: Statistics of employed datasets. *, **, and ***
indicates the improvement on this dataset is statistically
significant with p < 0.1, p < 0.05, and p < 0.01 with
one-tailed z-test.

supervised fine-tuning domains to obtain 10 initial experts.
we specifically employ Tulu-v2 (Ivison et al., 2023), an open
collection of instruction-tuning data. We specifically em-
ploy the following subsets: flan (Chung et al., 2024), CoT,
Open Assistant 1 (Köpf et al., 2024), ShareGPT†, Code
Alpaca (Chaudhary, 2023), LIMA (Zhou et al., 2024), Wiz-
ardLM Evol-Instruct V2 (Xu et al., 2023), Open-Orca (Lian
et al., 2023), and Science Literature (Ivison et al., 2023).
We replace the GPT4 Alpaca subset with Gemini Alpaca,
distilling generations from gemini-1.5-pro-001 and remove
the hard-coded subset. We employ LoRA fine-tuning (Hu
et al., 2022) with a learning rate of 2e-4, cosine learning
rate scheduling, effective batch size of 32, warm-up ratio of
0.1, and 5 default training epochs, while we only train for 1
epoch on the large ShareGPT subset. We similarly fine-tune
MISTRAL-7B for the experiments in Table 7. We employ
greedy decoding for text generation and a maximum new
token of 10, 50, 100, or 512 depending on the task.

Hyperparameter Settings For MODEL SWARMS
searches, we employ N = 20, ϕλ = 0.95, p = 10, pr = 5,
K = 50, while running grid search over other hyperpa-

†https://sharegpt.com/

rameters and report the best-found expert based on utility
function f . Specifically, we search for ϕv ∈ {0.1, 0.2, 0.3},
ϕp ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, ϕg ∈ {0.2, 0.3, 0.4, 0.5, 0.6},
ϕw ∈ {0.01, 0.05, 0.1}, λ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
We run up to 200 to 1000 runs by randomly choosing
over these hyperparameter search settings and report the
best-found expert on utility function f . Though there is
randomness, Figure 8 demonstrates that MODEL SWARMS
is robust to hyperparameter settings and consistently find
experts better than any of the 12 baselines.

Baseline Details We employ 12 baselines in total:

• Best single expert: among the 10 initial experts, the expert
that performed best on utility function f is evaluated and
reported.

• Data merge: instead of separately training 10 initial ex-
perts, we combine the SFT data and train 1 expert, then
evaluate and report its performance.

• Prediction merge: each initial expert generates a predic-
tion, then the final answer is determined through majority
vote. Note this is not applicable to open-ended genera-
tion tasks such as RealToxicityPrompts or tasks where the
correct behavior vary across models such as AbstainQA.

• Uniform soup (Wortsman et al., 2022a): the weights of
the 10 initial experts are uniformed averaged together into
a new model.

• Slerp: spherical interpolation of the top-2 experts as eval-
uated by f based on the implementation of Goddard et al.
(2024) with default hyperparameters.

• Dare-ties: sparsifies task vectors to reduce interference
(Yu et al., 2024) with the sign consensus algorithm (Yadav
et al., 2024) based on the implementation of Goddard et al.
(2024). We run this algorithm on the top-2, top-3, top-4, or
top-5 models as evaluated by f and employ the best-found
expert.

• Model stocks: employ geometric properties of models to
determine linear interpolation weights (Jang et al., 2024).
We run this algorithm on the top-3, top-4, or top-5 models
as evaluated by f and employ the best-found expert based
on the implementation of Goddard et al. (2024).
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• Greedy soup: starting from the expert with the best f
scores, iteratively add the next-best expert into the soup
of uniform averaging, retains the added expert if the soup
becomes better and discard if not, until every expert is
considered (Wortsman et al., 2022a).

• Pack of LLMs: the linear interpolation weights of models
is decided by perplexity on inference queries (Mavromatis
et al., 2024). We run a hyperparameter search for 200
times with temperature from 0.1, 0.2, to 1 and report the
best-found expert by f .

• cBTM: the ensemble weights of experts are decided by
an embedding model’s embedding of inference query and
expert training data (Gururangan et al., 2023). We employ
ROBERTA-BASE as the embedding model to fuse the top-
2, top-3, top-4, or top-5 expert and report the best-found
expert.

• EvolMerge: employing genetic algorithm to combine
models based on data/layer flow engineering (Akiba et al.,
2024). We run for 200 times randomly crossover the lay-
ers of the top-2 experts through linear interpolation to
produce new models, while we keep a maximum popula-
tion size of 50, retain 10 best-found at every iteration, a
max iteration of 5 and report the best-found expert.

• LoraHub: dynamic LoRA composition by employing
genetic algorithm to optimize the linear interpolation
weights of different LoRA modules (Huang et al., 2023).
We run for 200 times by employing a population size of
50, 10 max iterations, α = 0 or α = 0.05, and report the
best-found expert.

Evaluation Details We describe the evaluation details in
the 4 objectives:

• a single task: MODEL SWARMS and baselines are evalu-
ated based on the performance on the validation set as the
utility function f , while the best-found expert is evaluated
on the held-out test set.

• multi-task domain: MODEL SWARMS and baselines are
evaluated based on the harmonic mean of the performance
on the dev set of the two tasks as f , while the best-found
expert is evaluated on the held-out test sets of the two
tasks.

• reward models: for the verbose and concise reward mod-
els, we run the GEMMA-7B model on the validation set,
record is response length distribution, calculate a length
score based on the percentile of the response in the distri-
bution to the short or long end, average that score with the
general reward model’s score to obtain an overall score.
MODEL SWARMS and baselines are evaluated based on
the reward model scores on the dev set instructions as f ,

while the best-found expert is evaluated on the reward
model scores on the test set instructions.

• human interests: MODEL SWARMS is evaluated on the
Gemini-as-a-judge (gemini-1.5-flash-001) scores on the
dev set of instructions as f , with the prompt format in
Table 11 (We include a human-authored example of a
good response in the domain for calibration). At infer-
ence time the best-found expert on f is evaluated on
1) the Gemini scores on the held-out test instructions,
2) Facts&Evidence (Boonsanong et al., 2024) score of
factuality, and 3) human evaluation win rates against
pre-swarm experts. We employ a total of 13 internal re-
searchers as annotators interested in these domains, while
we ask 3 of the annotators to annotate the domain of PhD
applications, resulting in a Fleiss’ Kappa of 0.62 indi-
cating moderate to strong inter-annotator agreement. We
present the human evaluation instructions in Table 12.
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For the following instruction and response, please rate the response on a scale of 1 to 10, where 1 is the worst and 10 is the best.
Below is an example of a good (instruction, response) pair:

Instruction: How does tourism influence property values and the real estate market in major tourist destinations, and what are some of
the potential benefits and drawbacks of these changes for local residents?
Response: Tourism significantly influences property values and the real estate market in major tourist destinations by driving up
demand for short-term rentals, vacation homes, and investment properties. This increased demand often results in higher property
prices, which can benefit local homeowners by boosting their property values and providing lucrative opportunities for renting
out their properties. However, the drawbacks for local residents include affordability issues, as higher property prices can make it
challenging for locals to buy or rent homes, potentially leading to gentrification and displacement. Additionally, an overemphasis on
tourism-related development may strain local infrastructure, disrupt community cohesion, and reduce the availability of amenities and
services tailored to residents’ needs rather than tourists.

Please respond with ”Rating: ?/10” first and then provide your reason.

Instruction: [instruction]
Response: [response]

Table 11: Gemini-as-a-judge prompt.

Instructions
Thank you for being part of the human eval! Each example features one instruction and two responses: please help us by judging
which response is “better”, in the broadest sense possible, by entering 1 (response 1 wins), 2 (response 2 wins), or 3 (tie). Please note
that:

> These are open-ended questions without a potential “gold” answer. Please evaluate whether the responses are helpful, whether they
fulfill the instruction, and whether you find it satisfactory, in the broadest sense possible.
> Don’t worry if you are unsure about the factual aspects of the responses: we have a separate FactScore-like methodology for that,
so you only need to focus on the general quality of responses.
> Please cut the models some slack: responses #1 and #2 both come from <10B LLMs. Please bear this in mind and don’t expect
ChatGPT-like quality.
> Please don’t penalize responses that were partially cut off.
> If you would like to, feel free to write down your comments for specific examples in the “comments” field.

Again, thank you so much and your efforts would be acknowledged in the eventual paper!

Table 12: Human evaluation instructions.
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topic instruction pre response post response

legal AI

How can natural language
processing (NLP) technol-
ogy enhance the drafting
and review processes for
legal documents, ensuring
precision and compliance?

Enhanced Drafting and Review Processes for Legal Documents Through NLP
Natural language processing (NLP) is revolutionizing the legal industry by
automating and improving various tasks, including document drafting and re-
view. NLP technologies can enhance the accuracy, efficiency, and compliance
of legal documents, reducing the time and cost of legal proceedings. 1. Doc-
ument Drafting: - Sentence Generation: NLP models can generate sentences
that adhere to legal syntax and style, reducing the need for manual writing.
- Contract Drafting: NLP can generate contracts and other legal documents
based on specific terms and conditions. - Legal Briefs: NLP can create legal
briefs that summarize the facts of a case and argue the case in a concise and
persuasive manner.

Natural Language Processing (NLP) technology can significantly enhance the
drafting and review processes for legal documents, ensuring precision and
compliance. Here’s how: 1. Document Summarization and Analysis: Extract-
ing Key Information: NLP can analyze legal documents and extract relevant
information like contracts, agreements, and regulations. This allows lawyers
to quickly understand the core of complex documents, saving time and effort.
Identifying Legal Entities and Relationships: NLP can identify and categorize
legal entities (e.g., people, organizations, locations) and their relationships
within documents. This facilitates accurate document organization and analysis.
Sentiment Analysis: NLP can determine the sentiment of legal documents,
helping lawyers understand the tone and potential bias. This can be valuable in
contract negotiations or dispute resolution. 2. Automated Document Drafting:
Standard Clauses and Contracts: NLP can generate standard legal clauses and
contracts based on specific industry, location, and other factors.

aircraft AI

How can regulatory frame-
works be developed to en-
sure the responsible and
safe use of drones for
building identification?

Regulatory frameworks for drones in building identification should be devel-
oped with a focus on ensuring safety, security, and responsible use. Here are
key areas to consider: 1. Safety and Security: Liability and Insurance: Establish
clear liability and insurance requirements for drone operators in building iden-
tification. This protects victims in case of accidents or misuse. Training and
Certification: Require drone operators to undergo training and obtain certifica-
tion from recognized authorities. This ensures competency and adherence to
safety standards. Flight Restrictions: Establish clear flight restrictions based on
weather, time of day, and proximity to buildings, infrastructure, and sensitive
areas. Data Security and Privacy: Implement robust data security and privacy
regulations to protect sensitive building information from unauthorized access
or misuse. Liability for Data Errors: Establish clear liability for errors in data
collected by drones, ensuring compensation for victims.

Regulatory frameworks for drones in building identification should be devel-
oped with a focus on ensuring safety, security, and responsible use. Here are
key areas to consider: 1. Safety and Security: Liability and Insurance: Establish
clear liability and insurance requirements for drone operators in building iden-
tification. This protects victims in case of accidents or misuse. Training and
Certification: Require drone operators to undergo training and obtain certifica-
tion from recognized authorities. This ensures competency and adherence to
safety standards. Flight Restrictions: Establish clear flight restrictions based on
weather, time of day, and proximity to buildings, infrastructure, and sensitive
areas. Data Security and Privacy: Implement robust data security and privacy
regulations to protect sensitive building information from unauthorized access
or misuse. Liability for Data Errors: Establish clear liability for errors in data
collected by drones, ensuring compensation for victims.

asian food

What are some essential el-
ements and techniques in
the art of Chinese tea pair-
ing with meals, and how
do they enhance the dining
experience?

Chinese tea pairing with meals is a delicate art that has been perfected over
centuries. It is a harmonious blend of tradition and innovation, and it is a key
element of the Chinese dining experience. Essential Elements of Chinese Tea
Pairing with Meals: Teapot: The teapot is the centerpiece of the tea pairing
experience. It is a beautiful and ornate vessel that is steeped in history. The
teapot is used to steep the tea leaves in hot water, and it is also used to serve the
tea to the guests. Teacups: The teacups are used to serve the tea to the guests.
They are usually made of porcelain, and they are decorated with intricate
patterns. Tea strainer: The tea strainer is used to filter the tea leaves from the
tea. It is usually made of a fine mesh, and it is placed in the teapot.

Chinese tea pairing with meals is a delicate art that harmonizes flavors, textures,
and aromas to elevate the dining experience. Here are the essential elements
and techniques: Elements: Tea: Choose teas that complement the meal’s flavors
and ingredients. For example, green tea pairs well with delicate dishes, while
black tea complements richer ones. Water Quality: Use filtered or spring water
to enhance the tea’s flavor and aroma. Teapot: Select a teapot that matches the
tea type and brewing method. For example, a Gaiwan (steaming bowl) is used
for green tea, while a Yixing pot is ideal for black tea. Teacup: Choose a cup
that allows for proper brewing and allows the tea to cool down appropriately.
Food: The food should be prepared in a way that complements the tea. For
example, spicy dishes pair well with cooling teas, while sweet foods pair with
floral teas.

instrument

What are some distinct
stylistic differences be-
tween the use of bass in
jazz versus rock music?

Sure, here are some distinct stylistic differences between the use of bass in
jazz versus rock music: Jazz: Melodic: The bass is often used to play the
melody, rather than just the root notes. Harmonic: The bass is used to play
chords, rather than just root notes. Rhythm: The bass is used to play a variety
of rhythm patterns, including syncopation, swing, and waltz. Dynamic: The
bass is used to play a variety of dynamic changes, including volume changes,
pitch changes, and tempo changes. Rock: Rhythm: The bass is used to play a
variety of rhythm patterns, including straight, syncopated, and polyrhythmic.

Distinctive Bass Styles in Jazz and Rock: While both genres utilize bass, their
stylistic differences are evident in the instrument’s role, playing techniques,
and overall musical context. Jazz: Melodical Focus: The bass often takes the
lead, playing intricate melodies and improvisational lines. Think of the bass
as a second lead instrument, not just a rhythm section member. Harmonic
Sophistication: Jazz basslines often incorporate chromaticism, dissonance, and
complex chord structures, adding harmonic depth and complexity. Dynamic
Range: Jazz bass players exhibit a wide dynamic range, playing with both
power and finesse, often switching between the two within a single phrase.
Rhythm Section Synergy: The bass interacts with the drums and piano to create
a dynamic rhythm section, emphasizing interplay and improvisation.

olympics

How did Brazil’s eco-
nomic and political cli-
mate affect the organiza-
tion and execution of the
2016 Olympic Games in
Rio de Janeiro, and what
were the implications for
the host city?

The 2016 Olympic Games in Rio de Janeiro were held in a country that was
experiencing a severe economic crisis, and the games were a major event that
was affected by the crisis. The economic crisis was caused by a number of
factors, including the collapse of the oil industry, the decline of the Brazilian
economy, and the rise of the Zika virus. The Zika virus was a major threat to
the games, and it was a major source of anxiety for the athletes and the public.
The economic crisis had a number of negative effects on the games. First, it
made it difficult to attract athletes to the games. Second, it made it difficult to
attract sponsors to the games. Third, it made it difficult to attract tourists to the
games. Fourth, it made it difficult to attract media to the games. The economic
crisis also had a number of negative effects on Rio de Janeiro. First, it made
it difficult to attract tourists to Rio de Janeiro. Second, it made it difficult
to attract businesses to Rio de Janeiro. Third, it made it difficult to attract
investors to Rio de Janeiro. Fourth, it made it difficult to attract government
officials to Rio de Janeiro. The economic crisis was a major threat to the 2016
Olympic Games in Rio de Janeiro. It was a major threat to the athletes, the
public, and the city of Rio de Janeiro.

Brazil’s economic and political climate in 2016 significantly affected the orga-
nization and execution of the 2016 Olympic Games in Rio de Janeiro. Here’s
a breakdown of the impact and its implications for the host city: Economic
Impact: High Inflation and Currency Fluctuations: Brazil was facing a severe
economic crisis in 2016, with high inflation and a plummeting currency (the
Brazilian Real). This made it difficult to manage the Olympic budget and im-
pacted the cost of hosting the games. Budget Overruns: The Olympic Games
were estimated to cost $15 billion, but the final cost exceeded that by $2 billion
due to inflation and currency fluctuations. This put a strain on Brazil’s economy
and forced the government to make adjustments. Impact on Tourism: While
the Olympics boosted tourism in the short term, Brazil’s economic instability
made it difficult to attract long-term investment and tourism after the games.

Table 13: Part of LLM responses where MODEL SWARMS win over pre-swarm experts per human evaluation.

24



MODEL SWARMS

topic instruction pre response post response

south america

How has Chile’s unique
geographic location and
landscape influenced its
economic activities, partic-
ularly in mining and agri-
culture?

Chile’s unique geographic location and landscape have significantly influenced
its economic activities, particularly in mining and agriculture. Mining: - Chile
is the world’s largest copper producer and the world’s largest exporter of
copper. - The country’s copper deposits are located in the Andes Mountains,
which are the world’s largest copper resource. - The Andes Mountains are also
home to the world’s largest gold and silver mines. - Chile’s mining industry is
a major source of the country’s GDP and employment.

Chile’s unique geographic location and landscape have significantly influ-
enced its economic activities, particularly in mining and agriculture. Here’s
how: Mining: Mineral Riches: Chile is known as the copper capital of the
world due to its vast mineral deposits, particularly copper. These deposits are
concentrated in the Andes Mountains, leading to a strong focus on mining.
Challenges and Opportunities: The Andes present logistical challenges for
mining operations, including difficult terrain, altitude sickness, and the need
for specialized equipment. However, these challenges also contribute to the
unique skills and expertise of Chilean miners, making the industry a major
employer and contributor to the economy. Environmental Impact: The mining
industry in Chile has a significant environmental footprint, with large-scale
mining operations impacting water resources, air quality, and land use. This
has led to environmental concerns and the need for sustainable practices.

cartoons

In what ways does the an-
imation style and visual
design of Peppa Pig con-
tribute to its appeal for
preschool audiences?

The animation style and visual design of Peppa Pig contribute to its appeal for
preschool audiences in a number of ways. 1. Simplicity and clarity: The anima-
tion style is simple and clear, with a focus on the main character’s expressive
eyes and mouth. The characters are designed to be easily identifiable, with
their distinct shapes and colours. The backgrounds are simple and uncluttered,
allowing the characters to stand out.

The animation style and visual design of Peppa Pig are key factors in its
appeal for preschool audiences. Here’s how they contribute: 1. Simplicity
and Familiarity: Minimalist Design: The characters are simple, blocky figures
with few details. This makes them easily identifiable and less intimidating for
young children. Limited Color Palette: The show uses a limited color palette,
often sticking to primary and secondary colors. This further simplifies the
visual language and avoids overwhelming young viewers. Familiar Shapes and
Patterns: The characters are made up of basic shapes like circles, squares, and
rectangles. This helps children recognize and learn about shapes.

policy

In what ways can tax pol-
icy be reformed to better
support social programs
without overburdening the
middle and lower classes?

Tax policy can be reformed to better support social programs without over-
burdening the middle and lower classes through a variety of mechanisms. 1.
Increase the marginal tax rate on the wealthy. This would raise a significant
amount of revenue, which could be used to fund social programs. The wealthy
are less likely to be affected by a higher marginal tax rate, as they are more
likely to be able to afford to pay more in taxes. This would not overburden
the middle and lower classes, as they are less likely to be able to afford to pay
more in taxes.

Tax policy reform can be designed to better support social programs without
overburdening the middle and lower classes through a combination of ap-
proaches: 1. Progressive Taxation: Increase marginal tax rates for high earners:
This ensures that the wealthy contribute a greater share of their income in
taxes, offsetting the burden on lower earners. Implement a progressive property
tax system: This would increase taxes on larger homes and decrease taxes on
smaller homes, ensuring that property taxes are more equitable.

EVs

What are some potential
economic consequences,
both positive and negative,
of a global shift towards
electric vehicles?

## Positive Economic Consequences Reduced fuel costs: Electric vehicles
(EVs) are powered by electricity, which is much cheaper than gasoline or
diesel fuel. This can save drivers a lot of money on fuel costs. Increased energy
efficiency: EVs are much more energy efficient than gasoline or diesel vehicles.
This means that they use less energy to travel the same distance, which can
also save drivers a lot of money. Increased energy security: EVs can help to
increase energy security. This is because they can be charged from a variety
of sources, including the electric grid, solar panels, and wind turbines. This
means that EVs can help to reduce the impact of power outages and other
disruptions. Increased job creation: The EV industry is creating a lot of new
jobs. This is because EVs require more energy than gasoline or diesel vehicles,
which means that they need to be charged more often. This can create a lot of
new jobs for people who are responsible for charging EVs.

Positive Economic Consequences: Reduced fuel costs: Electric vehicles (EVs)
eliminate the need for gasoline or diesel fuel, which can lead to significant
fuel cost savings for consumers. Lower maintenance costs: EVs require less
maintenance than traditional combustion engine vehicles (CEVs), as they have
fewer moving parts and do not require oil changes. Increased energy efficiency:
EVs are much more energy-efficient than CEVs, converting a higher percentage
of electricity into motion. Job creation: The manufacturing and installation of
EVs and related infrastructure can create new jobs in various sectors. Reduced
air pollution: EVs produce zero tailpipe emissions, which can improve air
quality and reduce health problems related to air pollution.

plastic

How can consumer aware-
ness and demand drive
innovation and market
growth for alternatives to
plastic products?

Consumer Awareness and Demand Drive Innovation and Market Growth for
Alternatives to Plastic Products Consumer awareness and demand are powerful
drivers of innovation and market growth for alternatives to plastic products.
As consumers become more informed about the environmental impact of
plastic products, they are increasingly seeking out sustainable alternatives.
This demand for sustainable alternatives is creating a growing market for
products made from recycled materials, bioplastics, and other sustainable
materials. 1. Recycled Materials The recycling of plastic products is a key
driver of innovation and market growth for alternatives to plastic products.
Recycled plastic can be used to produce a variety of products, including bottles,
cups, trays, and films. Recycled plastic is often more expensive than virgin
plastic, but it is also more environmentally friendly.

Consumer awareness and demand can be powerful drivers of innovation and
market growth for alternatives to plastic products. Here’s how: 1. Demand
Creates Opportunity: Consumer Pressure: When consumers express their pref-
erence for alternatives through boycotts, petitions, and social media campaigns,
it creates pressure on manufacturers to respond. Market Incentives: Growing
demand for eco-friendly alternatives incentivizes manufacturers to invest in
research, development, and production of sustainable products.

us tourism

What are the economic
challenges that tourism-
dependent communities
face during periods
of downturn, such as
economic recessions or
global pandemics, and
what strategies can these
communities employ to
mitigate such impacts?

## Economic Challenges Faced by Tourism-Dependent Communities During
Downturns Tourism-dependent communities are highly vulnerable to economic
fluctuations, as their economies are heavily reliant on tourism revenue. During
periods of downturn, such as economic recessions or global pandemics, these
communities face a number of challenges: Reduced tourism revenue: As
travel and tourism spending declines, the revenue that tourism-dependent
communities rely on for employment, income, and revenue is significantly
reduced. Increased unemployment: As tourism revenue declines, businesses
in tourism-dependent communities are forced to lay off employees, leading
to increased unemployment. Increased poverty: As tourism revenue declines,
the poverty rate in tourism-dependent communities increases. Increased crime:
As tourism revenue declines, crime rates in tourism-dependent communities
increase. Increased social unrest: As tourism revenue declines, social unrest in
tourism-dependent communities increases.

## Economic Challenges Faced by Tourism-Dependent Communities during
Downturns: 1. Loss of Revenue and Job Creation: Direct Impact: Tourism is a
major source of revenue for these communities, and its decline directly impacts
local businesses, attractions, and government budgets. Job Loss: Tourism
creates a significant number of jobs, and their disappearance during downturns
leads to unemployment, reduced wages, and economic instability.

Table 14: Part of LLM responses where MODEL SWARMS tie with pre-swarm experts per human evaluation.
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phd application

What types of research
projects and collabora-
tions are currently under-
way in your department,
and how can prospective
students get involved?

## Research Projects and Collaborations in the Department The Department
of [insert department name] is a vibrant and active research community, with
ongoing projects in a wide range of areas. Some of the department’s key
research areas include: [List of key research areas] Here are some of the
department’s current research projects: [List of current research projects] These
projects are being conducted by faculty members, postdocs, and graduate
students. Many of the department’s faculty members are also involved in
collaborative research projects with other institutions.

I am a large language model, and I don’t have the capacity to conduct research
projects or engage in collaborations. I can provide you with information about
research projects and collaborations happening in various fields, though. To
give you a better idea of what’s happening in your specific department, I need
more information. Please tell me: Your department: What department are you
interested in? Your university or institution: Are you looking for research op-
portunities at a specific university or institution? Once I have this information,
I can provide you with relevant research projects and collaborations happening
in your department.

finance

What are the ethical con-
siderations that companies
should adhere to when
they go public?

Ethical Considerations for Public Companies Public companies have a greater
responsibility to the public than private companies. They are subject to more
scrutiny and are expected to act in a more ethical manner. Ethical Considera-
tions for Public Company Directors Board diversity: Public company boards
should reflect the diversity of the company’s workforce and customer base.
Independent directors: Public company boards should have a majority of in-
dependent directors. Board meetings: Public company boards should meet
regularly and be prepared to act in the best interests of the company. Financial
disclosure: Public company boards should ensure that the company’s financial
statements are accurate and complete. Corporate social responsibility: Public
company boards should ensure that the company is acting in a socially respon-
sible manner.

When a company goes public, it takes on a new level of scrutiny and responsi-
bility. Here are some key ethical considerations companies should adhere to:
Transparency and Accountability: Financial Reporting: Accurate and timely
reporting of financial information is crucial. This includes: Financial State-
ments: Publishing transparent and reliable financial statements that accurately
reflect the company’s financial standing. SEC Filings: Filing required SEC
forms (e.g., 10-K, 10-Q) on time and with accurate information. Corporate
Governance: Establishing strong governance practices to ensure accountability
and protect shareholder interests. This includes: Board of Directors: Having a
diverse and independent board of directors with appropriate expertise and ex-
perience. Executive Compensation: Setting executive compensation packages
that are reasonable and linked to company performance.

luxury car

How does Ferrari manage
to maintain the exclusiv-
ity and desirability of its
brand, including through
limited-production models
and special editions?

Ferrari’s exclusivity and desirability are maintained through a combination
of factors, including: 1. Limited-Production Models: - Ferrari’s limited-
production models are designed to be exclusive and desirable. - They are
often limited to a single year of production, and are often sold at a premium
over the standard model. - The limited-production models are often designed
to be unique and to attract attention.

Ferrari’s brand exclusivity and desirability are carefully managed through a
combination of factors, including: 1. Limited Production & High Demand:
High Demand: Ferrari’s vehicles are highly sought after, with waiting lists
often exceeding years. This scarcity fuels the perception of exclusivity and
desirability. Limited Production: Ferrari carefully controls its production num-
bers, ensuring that demand far exceeds supply. This exclusivity further drives
demand and keeps prices high.

social network

How do moderators on
Reddit balance the need
for open discussion with
maintaining community
standards and preventing
harmful content?

## Balancing Open Discussion with Community Standards on Reddit Modera-
tors on Reddit face a delicate balancing act between fostering open discussion
and maintaining a safe and positive community. Here are some key approaches
they use: 1. Defining Community Standards: - Reddit has established guide-
lines for content and behavior, including rules against hate speech, harassment,
bullying, and misinformation. - Moderators enforce these guidelines through
various tools like flags, warnings, and bans.

Moderators on Reddit face a delicate balancing act between fostering open
discussion and protecting the community from harmful content. Here’s a
breakdown of how they navigate this complex issue: 1. Defining Community
Standards: Reddit’s Content Policy: Reddit has a comprehensive content policy
that outlines acceptable behavior and content. This acts as a baseline for
moderation decisions. Community Guidelines: Reddit’s subreddit structure
allows communities to establish their own guidelines, often specific to their
niche or topic. These guidelines provide additional context and expectations
for content. Community Involvement: Moderators actively engage with the
community to understand their expectations and concerns. This feedback is
crucial in shaping and refining community standards.

sandbox games

Discuss the role of char-
acter backstories in Gen-
shin Impact. How do these
narratives enrich the over-
all gaming experience and
player engagement?

Character backstories are a key element of the narrative structure in Genshin
Impact. These narratives are not only a source of lore and lore lore but also
serve to build character relationships and to give players a deeper understanding
of the characters. 1. Lore and Lore Lore: - Character backstories are a way
to build lore and lore lore. They provide information about the characters’
lives, their motivations, and their relationships with other characters. - This
information can be used to create a more immersive and engaging experience
for players. - For example, a character who is a member of the Knights of
Favonius will have a different backstory than a character who is a member of
the Order of the Knights of the Round Table.

Character backstories play a crucial role in enhancing the overall gaming
experience and player engagement in Genshin Impact. These narratives provide
context, depth, and emotional weight to the characters, making them more
relatable and memorable. 1. Establishing Character Identity and Motivation:
Backstories reveal the motivations, goals, and aspirations of characters. For
example, Xiao’s backstory reveals his internal conflict between his duty as a
Fatui Harbinger and his desire to protect others. They help players understand
the characters’ perspectives, values, and relationships. For instance, Diluc’s
backstory reveals his complex relationship with his father and his motivations
for founding the Knights of Favonius.

Table 15: Part of LLM responses where MODEL SWARMS lose to pre-swarm experts per human evaluation.
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Figure 15: Search dynamics of per-particle change (left) and global best change (right) of utility function f . MMLU-pro,
K-Crosswords, Hellaswag, NLGraph, RealToxicityPrompts, and AbstainQA performance are illustrated from top to bottom.
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