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Abstract
The Segment Anything Model (Sam) and similar models build a family of promptable foun-
dation models (FMs) for image and video segmentation. The object of interest is identified
using prompts—user provided input such as bounding boxes or points—and the models
have shown very promising results when it comes to generalization to new tasks. However,
extensive evaluation studies are required for medical applications, to assess their strengths
and weaknesses in clinical settings. As the performance of those models is highly dependent
on the quality and quantity of their prompts, it is necessary to thoroughly benchmark the
different options. Currently, no dedicated evaluation studies exist specifically for bone seg-
mentation in CT scans. Leveraging high-quality private and public datasets on four skeletal
regions, we test the zero-shot capabilities of Sam-family models for bone CT segmenta-
tion, using non-interactive prompting strategies, composed of bounding box, points and
combinations of the two. Additionally, we design a guideline for informed decision-making
in 2D non-interactive prompting based on our insights on segmentation performance and
inference time. Our results show that Sam and Sam2 currently outperform medically fine-
tuned FMs, and prompted with a bounding box together with a center point have the best
performance across all tested settings.
Keywords: Segment anything model, Medical image segmentation, Foundation models,
Bone segmentation

1. Introduction

The release of Segment Anything Model (Sam) (Kirillov et al., 2023) started a family of
promptable foundation models (FMs) for segmentation. Spatial information in form of
bounding box and points inside and outside the object are used as prompts to identify
the object of interest. FMs are trained on huge datasets (i.e., hundreds of thousands of
images and masks) and their design allows them to generalize to unseen tasks and data. As
data scarcity and domain shifts are common problems in medical image segmentation, FMs
appear as an alternative to fully supervised, specialized models trained on annotated data.

Since Sam and Sam2 are trained on natural image materials, there remains a gap in
applicability for medical data due to the modality differences (natural images vs. medical
scans) and image size (2D vs. 3D, at much higher resolutions). Efforts to address this gap
have focused on fine-tuning and modifying the Sam-architecture to improve its suitability
for medical imaging, resulting in versions such as Med-Sam (Ma et al., 2024), Sam-Med2d
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(Cheng et al., 2023b), Sam-Med3d (Wang et al., 2024), Med-Sam2 (Zhu et al., 2024).
Beyond model adaptations, thorough evaluation studies are essential to understand the
current performance behavior, to identify potential weaknesses, risks and limitations in
clinical settings and to formulate application guidelines for medical use cases.

The conclusion of several evaluation studies (Mazurowski et al., 2023; He et al., 2023;
Mattjie et al., 2023; Cheng et al., 2023a; Huang et al., 2024; Dong et al., 2024) is that
performances are unstable across different datasets and task. The models tend to struggle
with small, irregular structures with low-contrast or fuzzy boundaries, leading to unsat-
isfying results. In contrast, they show promising results on larger structures with clear,
sharp boundaries. Given that bone appears in CT scans with high-intensity values and
well-defined boundaries, we hypothesize that Sam-family models are well-suited to achieve
promising results for this task. However, there is no dedicated study focused on CT scans
for bone segmentation. In addition, existing studies (Mazurowski et al., 2023; He et al.,
2023; Mattjie et al., 2023; Roy et al., 2023; Huang et al., 2024; Shen et al., 2024; Cheng et al.,
2023a; Huang et al., 2024; Dong et al., 2024; Sengupta et al., 2024; Yu et al., 2024) primar-
ily evaluate the performance of only Sam and Sam2 with a very limited set of prompting
options. As the model prediction is directly driven by the provided prompts, it is essential
to evaluate a broader variety of options (e.g., prompt combinations).

The aim of this study is to investigate different non-interactive prompting strategies for
Sam-family models on bone segmentation in CT scans under “ideal” 2D conditions, i.e.,
prompts are based on reference masks without manipulation or human error. We test 9
Sam-family models with up to 32 prompting strategies on four different skeletal regions
containing different bone and metal structures. Based on our analysis of segmentation
performance and model inference time, we introduce guidelines for choosing a 2D prompting
strategy and model considering prompting preferences and inference time constraints.

2. Dataset

Medical SAM versions (e.g., Med-Sam, Sam-Med2D, or Sam-Med3d) are fine-tuned on
publicly available datasets containing bone segmentation from CT scans (e.g., TotalSeg-
mentator (Wasserthal et al., 2023), CTPelvic1K (Liu et al., 2021), VerSe2020 (Sekuboyina
et al., 2021)). Therefore, private datasets are required for a fair and independent evaluation
across all models, while public datasets enable other researchers to reproduce findings. To
achieve this balance, we compiled a private dataset from the department of Orthopedic
Surgery and Sports Medicine of the Amsterdam UMC of 80 CT scans from three skeletal
regions. Additionally, we selected the TotalSegmentator dataset (Wasserthal et al., 2023)
as the public dataset for comparison (D4), as it includes a pre-defined train-and-test split.
Although neither Med-Sam nor Sam-Med2D specify their exact dataset splits, all models in
our work are evaluated on a subset of the test set1. Thus, our dataset consists of 80 private
and 71 public CT scans of four different skeletal regions, annotated with labels for various
bone structures and one metal structure (Figure 1). Extra dataset details can be found in
Appendix A. The public samples are only used for the comparison to the private dataset,
the remaining evaluation is performed on the private dataset alone.

1. https://zenodo.org/records/10047292, dataset v2.01
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Figure 1: Dataset composition: private dataset containing 80 CT scans from three skeletal
regions: shoulder (D1), wrist (D2) and lower leg (two sets of tibia segmentation, cortical
(D3a) and full (D3b)); and public dataset containing 71 CT scans from two skeletal regions:
wrist (D4a) and hip (D4b).

3. Methods

3.1. SAM-family

SAM The Segment Anything Model (Sam) (Kirillov et al., 2023) was introduced as
promptable “foundation model for image segmentation”. Sam supports sparse prompts,
i.e., bounding box and points (positive and negative), and dense prompts, i.e., masks. The
architecture consists of three parts: First, the image encoder, a Masked Autoencoder (MAE)
pre-trained Vision Transformer (ViT), is run once per image to create image embeddings
of the 2D image input. Then, the prompt encoder creates prompt embeddings for each
prompt type. Finally, the lightweight mask decoder combines both embeddings and an
output token and predicts the final segmentation mask. The model is available in three
different sizes: base (B), large (L) and huge (H), which depends on the ViT encoder.

SAM2 (Ravi et al., 2024) is an extension of Sam with the additional capability of video
segmentation. This is realized by changes in the architecture: The ViT encoder is replaced
by a MAE pre-trained Hiera image encoder, and a memory mechanics is introduced to fuse
frame embeddings with past frame features and predictions. Due to different Hiera sizes,
four different versions are available: base plus (B+), tiny (T), small (S) and large (L).

Med-SAM (Ma et al., 2024) was introduced as “a foundation model for promptable
medical image segmentation”. Without any adaptions to the Sam architecture, Sam B is
fine-tuned on a medical image dataset with focus on cancer types. Med-Sam only supports
bounding boxes as it was only retrained for this prompt type.

SAM-Med2d (Cheng et al., 2023b) was developed by fine-tuning Sam B on SA-Med2D-
20M (Ye et al., 2023) with an adapter technique using learnable adapter layers. The model
keeps the functionality of both sparse prompts, i.e., bounding box and point.
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3.2. Prompting Strategies

We use non-interactive prompts, which are automatically extracted from the reference
masks. A prompt consists of at least one primitive and one component selection criteria.

Primitives There are 5 primitives which are the building blocks for a prompt (Figure 2):

(a) bounding box: Tight box enclosing the entire object.

(b) (EDT) center: The point the most furthest away from the object boundary (with
respect to the Euclidean distance transform). In case of equality, a single candidate
is kept randomly. For simplicity, we refer to it simply as center from now on.

(c) centroid: Center of mass with homogeneous density. Note that there is no guarantee
that the centroid is inside the object. Despite this shortcoming, we include it for
completeness and as other existing work (He et al., 2023) used it.

(d) positive points: Random points within the region. To avoid random points on the
border, the reference mask is eroded by a 3 × 3 kernel before sampling.

(e) negative points: Random points outside the region but close to the border. The
mask is dilated in two steps: first with a 5 × 5 kernel and then with a 15 × 15 kernel.
The point(s) is (are) then sampled from the difference between these two dilations.

The prompt primitives are extracted for each component of the reference mask larger
than 15 pixels or larger than 5% of the entire component in a slice. Components smaller
than the defined criteria are unrealistic to be annotated as bounding boxes are collapsing
and not enough points are included to extract 10 diverse random positive points. The
thresholds were chosen empirically after dataset inspection.

Component selection criteria As shown in Figure 2, anatomical structures can consist
of multiple disconnected components in a 2D slice. In our datasets, the number of discon-
nected components does not exceed 6, which only occurs for less than 10 slices in our entire
dataset. Thus, for a prompt, the primitives of either the largest component (1C, denoted
as open symbols) or up to 5 components (5C, denoted as closed symbols) are used.

(a) bbox (b) center (c) centroid (d) positive (e) negative

Figure 2: 5 prompt primitives form the building blocks. The largest component’s prompt
is blue (i.e., one component, 1C )), while the others are white, resulting in the strategy with
multiple components (5C ), when all components are used.
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A 2D Prompting strategy (also referred to as “prompt”) is defined by one or more
prompt primitives and one component selection criteria. They can be divided into three
categories based on the primitive types:

• One-type prompts (OT prompts): bounding box ( ), center ( ), centroid ( ),
1, 3, 5 or 10 positive random points ( , , , ).

• bounding box + point combination prompts (BPC prompts): bounding box with
center ( ), with 1 or 5 positive random points ( , ), with 1 or 5 negative
random points ( , ).

• Point based combination prompts (PB prompts): center with 1 or 5 negative points (
, ), 1 or 5 positive and negative random points ( , ).

The centroid is an unreliable primitive since it may lie outside the object depending on
its shape, so it is not used for any combinations. Random points combinations are evaluated
with one and five points to compare against the center point and evaluate the impact of
increased number of points. In total, there are 32 prompting strategies per model, with
exception of Med-Sam, which only supports bounding boxes. Since the evaluation on D4
serves as a secondary objective to compare with D1 and expand the number of skeletal
regions, the prompting strategies are restricted to bounding box ( ), center ( ), and
bounding box with center ( ). We refer to the combination of a Sam-family model
prompted with a specific prompting strategy as “setting”.

3.3. Guidelines

We derive guidelines based on two key considerations: First, preference of prompts, influ-
enced by existing workflows or software solutions supporting specific annotations. Second,
constraints on inference time and resources, influenced by task-specific requirements (e.g.,
real-time processing). The guidelines are summarized in a flowchart, with the end-leaves
showing the best settings (i.e., highest DSC score on the private dataset) for each condition.

3.4. Evaluation

Two common segmentation metrics, Dice Similarity Coefficient (DSC) and 95%-percentile
Hausdorff Distance (HD95), were used to compare predictions with reference labels. More-
over, inference time for each model prediction was measured, including the recommended
image and prompt preprocessing and each prediction call, but excluding image and prompt
loading. For multiple prediction calls (as each individual class requires a separate prediction
call since binary segmentation masks are returned), the image embedding is done once and
reused for all class predictions. Implementation details are available in Appendix C.

4. Results

Segmentation performance The segmentation performance of all settings averaged over
the private dataset is shown in Figure 3. Considering only segmentation metrics the bottom
right corner of Figure 3 shows an overview of the best performing methods with high DSC
and low HD95. Visual examples are shown in Figure 4 and Appendix B.3. The best
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prompting strategy across all models and private datasets is bbox+center 5C, which reaches
90.89% DSC and 1.87mm HD95. (Appendix B.1). Comparing different number of points
evaluated on the private dataset demonstrated that the settings with the highest DSC are
Sam H 10 random points 1C with 89.6% DSC for a point-based OT setting and Sam H
5 positive + negative points 5C with 91.1% DSC for a PB setting (Appendix B.2).

Figure 3: Performance of prompting strategies averaged over private dataset: Scatterplot of
(A) BPC prompts, (B) PB prompts, (C) OT prompts, and (D) zoom-in to the lower right
corner of subplots (A)-(C). The symbol size in (A)-(C) corresponds to the DSC standard
deviation (std), i.e., bigger symbol means higher std.

Figure 4: Selected visual examples for bounding box 5C predictions for Med-Sam and
Sam B with low (↓), medium (-) and high (↑) DSC (%).
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Analyzing the optimal prompting strategies for each dataset reveals variations across
datasets (Appendix B.3). These differences become clear when comparing shoulder CT
samples from the public and private data subsets, where, despite similar best DSC scores,
the private dataset consistently achieves better DSC across many settings (Appendix B.3.1).
Additional insights come from the lower leg dataset (D3), where different labeling protocols,
i.e. cortex versus full tibia bone segmentation, show that the full bone protocol yields supe-
rior metrics across all prompting strategies, as cortical bone is significantly over-segmented
by the models (Appendix B.3.2).

Inference time As inference time per slice (sec.) might be related to number of model
parameters, image size and prompting strategies, they are all reported in Table 1. The
fastest prediction time has Sam-Med2D with 0.054 sec per slice.

Table 1: Average prediction time per slice (sec.): The table on the left sorts the inference
time averaged over all prompting strategies in ascending order. The line plot on the right
shows the time per slice (sec.) for the different prompting strategies for each model.

Model Avg. time per
slice (s)

# Model
Parameter Image Size

SAM-Med2d 0.054 271 256x256
SAM2 T 0.068 38 1024x1024
SAM2 S 0.080 46 1024x1024
SAM2 B+ 0.113 80 1024x1024
SAM B 0.166 93 1024x1024
SAM2 L 0.240 224 1024x1024
SAM L 0.375 312 1024x1024
SAM H 0.657 641 1024x1024
Med-SAM 1.866 93 1024x1024

Guidelines Based on the insights from segmentation performance and inference time,
Figure 5 shows our proposed guidelines for non-interactive 2D prompting. Depending on
the prompt choice (i.e., no preference, bounding box, combination, one or multiple points)
and time restrictions (i.e., low, medium, high), at least one optimal setting is provided.

5. Discussion

Based on Figure 3, three trends emerge in segmentation performance of Sam-family models.
First, performance strongly depends on the prompting strategy. For Sam and Sam2, their
symbols form an arc from optimal to suboptimal metrics, with increasing symbol size (in-
dicating greater DSC standard deviation). Second, Med-Sam and Sam-Med2d, fine-tuned
on medical datasets, are generally outperformed by Sam and Sam2 with most bbox-based
prompts, likely due to the loss of general representations during fine-tuning. Third, zooming
into the lower right corner of Figure 3 (D) (high DSC, low HD95) reveals three groups of
strategies: bbox-only prompts, bounding box + point combinations, and point-based com-
binations (upper left quadrant). Overall, bbox+center 5C achieves the best performance
across models and datasets (Figure 6). The evaluation was performed on a shared server,
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Figure 5: Guidelines for non-interactive 2D prompting for bone segmentation in CT scans
based on evaluating 258 settings on 3 private data subsets.

where varying utilization may affect exact inference times. Despite this limitation, clear
trends are observed: inference time is primarily influenced by image and model size, not
by the prompting strategies (Table 1). Med-Sam’s slowest time is potentially due to an
inefficient implementation. Based on our results, we propose guidelines for non-interactive
2D prompting that consider both prompt preferences and time constraints (Figure 5). This
gives practitioners a much simpler and clearer set of options to pick from, when using FMs
on a new applications. Currently, the evaluation and guidelines are limited to “theoret-
ical” conditions, without taking into account human interaction and eventual errors. A
protocol for evaluating the quality and properties of human-generated prompts is currently
being developed, which will be useful to refine the current guidelines. Another future work
(intertwined with the human reader study) is 3D prompting and 3D models like Sam2,
Sam-Med3d, and Med-Sam2. These models offer broader possibilities but also introduce a
higher prompting complexity, e.g., slice selection. Insights from our 2D analysis will guide
the design of future studies for human-generated prompts and 3D Sam-family models.

6. Conclusion

We tested 9 different 2D Sam-family models with 32 different non-interactive prompting
strategies containing one-type and combination prompts, for bone segmentation in CT
scans. Most notably, we found that “vanilla” Sam models consistently outperformed its
medically fined-tuned versions. From our results, we derived guidelines for non-interactive
2D prompting to guide practitioners when coming to new applications.
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Appendix A. Dataset details

Our dataset consists of 80 private and 71 public CT scans of four different skeleton regions
with various different labels for bone structures and one metal structure:

• D1 Shoulder: 15 private bilateral scans with 4 labels for left and right scapula and
humerus.

• D2 Wrist: 40 private unilateral scans with 6 labels for capitate, lunate, radius,
scaphoid, triquetrum, and ulna.

• D3 Lower Leg: 25 private unilateral scans with 2 labels for tibia bone and tibia
implant. There are two different labeling protocols for the tibia bone: cortical bone
(D3a) and full bone (D3b).

• D4a Shoulder: 35 public scans with same labels as D1.

• D4b Hip: 53 public scans with 5 labels for sacrum, right and left hip and femur.

All scans of the private dataset were acquired with a Brilliance 64-channel CT Scan-
ner (Philips Healthcare, Best, The Netherlands) or a Siemens SOMATOM Force (Siemens
Healthineers, Forchheim, Germany) with 160 mAs, 120 kV. The isotropic voxel spacing is
0.93 mm, 0.32 mm, and 0.48 mm, for D1, D2, and D3, respectively. The annotations were
generated using an in-house annotation software (Dobbe et al., 2014) and/or ITK-Snap
(Yushkevich et al., 2006).

The TotalSegmentator test set contains 89 scans, of which 18 have been excluded because
neither shoulder nor hip labels are present. Of the remaining 71 scans, 16 scans are included
in both subsets (D4a and D4b).

Appendix B. Ablation studies

B.1. Top 10 prompting strategies

The 10 best performing prompting strategies across different models and datasets are shown
in Figure 6. They are determined by ranking the prompting strategy from 1 to 32 (1 being
the best) for each model based on their averaged DSC over the private dataset. The best
method is bbox+center 5C, which reaches 90.89% DSC and 1.87mm HD95 on the private
dataset (D1-D3), and 91.24% DSC and 2.98mm HD95 on the public dataset (D4). To
compare FMs with fully supervised and task-specific models, 2D and 3D full resolution
nnUNets (Isensee et al., 2021) were trained for each private data subset. The training
details are reported in Appendix C.1.

B.2. Different number of points

In Figure 7, prompting strategies with different number of points evaluated on the private
dataset are compared. For point-based OT prompts, the best DSC is achieved by Sam H 10
random points 1C with 89.6%, followed by Sam L 10 random points 1C with 87.4% and
Sam2 B+ 5 random points 1C with 87.2%. For PB prompts 5 positive + negative
points performs best for Sam H (5C, 91.1%), Sam B (1C, 91.2%) and Sam L (1C, 90%).
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Prompt avg Ranking DSC (%)
avg (std)

HD95 (%)
avg (std)

2.38 90.89 (10.0) 1.87 (2.7)
2.88 90.80 (10.0) 1.79 (2.1)
4.38 90.49 (10.2) 2.50 (2.8)
4.50 90.44 (9.6) 2.50 (2.6)
5.33 88.68 (10.4) 2.25 (2.2)
6.25 90.15 (9.0) 2.26 (2.3)
7.38 90.22 (9.7) 2.49 (2.4)
9.67 88.03 (10.7) 2.39 (2.2)
10.38 87.91 (10.2) 7.32 (16.1)
10.75 87.67 (14.1) 12.20 (28.1)

Figure 6: 10 best performing 2D prompting strategies across models. The prompt ranking is
determined per model by means of the average DSC over all private data subsets (i.e., high-
est DSC corresponds to rank 1) and the averaged over all models. The visualization shows
the scatter plot with the performance distribution per model across different prompting
strategies. Note that the 10 best performing prompts are a subset of the prompts visualized
in Figure 3(D).
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(a) Center and positive random points

(b) Point combinations

Figure 7: DSC (%) performance for different number of points per model on the private
dataset: (a) center point and 1,3,5,10 random positive points; (b) point combinations of
center, 1 or 5 positive and negative random points.
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B.3. Dataset-specific analysis

As shown in Figure 8, different dataset have different “best” settings, here i.e., achieving the
highest DSC (%). Despite the dataset-specific differences, settings including the bounding
box prompt primitive perform the best, with only one exception (SAM performance for D1).
A comparison between the best SAM-family setting and a dataset-specific, fully supervised
model, such as nnUNet, shows a performance gap in favor of nnUNet.

Dataset Med-SAM SAM-Med2d SAM SAM2 nnUNet 2D nnUNet 3D full res
D1 52.74 (19.8) 75.48 (11.5) 92.79 (4.5) 92.27 (3.4) 98.04 (1.1) 98.52 (0.8)
D2 83.78 (4.8) 89.72 (2.4) 96.91 (0.7) 97.22 (0.5) 98.68 (0.7) 98.84 (0.4)
D3a 54.86 (29.3) 70.63 (14.4) 77.29 (13.5) 76.73 (13.3) 94.95 (3.0) 93.50 (4.5)
D3b 80.62 (6.7) 83.66 (3.0) 92.16 (3.1) 90.87 (3.1) 96.85 (3.0) 95.82 (4.9)
D4a 62.63 (0.2) 54.74 (0.2) 85.93 (0.1) 89.96 (0.1) –5 91.48 (5.9)5

D4b 69.67 (0.1) 64.09 (0.1) 88.78 (0.1) 89.92 (0.1) –5 95.11 (2.1)5

Figure 8: Best DSC (%) results per data subset: Radar plot with best setting across subsets
(i.e., bounding box for Med-SAM and bounding box + center for remaining models) and
with best setting per subset (indicated in table). The table reports the best setting per
dataset encoded in the setting symbols and the corresponding DSC (%) scores. The highest
scores by a SAM-family model are highlighted in bold for each subset.

5. Results from TotalSegmentator v1 for selected labels: https://github.com/wasserth/
TotalSegmentator/blob/master/resources/results_all_classes_v1.json, commit 9bd3ca1
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B.3.1. Public vs. Private

As we have access to shoulder CT samples with the same label classes from our private
dataset (D1) and the TotalSegmentator dataset (D4a), Figure 9 shows the difference in
DSC (%) between the two data subsets for a selected subset of settings. For Med-Sam
and some Sam2 settings, the DSC on public data is higher, wheras, for Sam-Med2D and
almost all Sam settings, the DSC on private data is higher. As the public dataset was in
the fine-tuning dataset of Sam-Med2D, the poor results are surprising. However, looking at
visual examples (Figure 10) shows that the shoulder joint and humerus are not always fully
visible on the CT scans, and, especially center-based prompting settings under-perform on
the scapula class, a thin structure with lower contrast.

Figure 9: Comparison of private (D1) and public shoulder dataset (D4a) with respect to
DSC (%) for selected settings. Red corresponds to private dataset performs better, blue to
public dataset performs better.
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Figure 10: 3D model examples of public shoulder dataset (D4a) for selected predictions
(i.e., Med-Sam ( ), Sam-Med2D ( ), Sam B ( ), Sam2 B+ ( , )) and reference
labels in the lightgrey box in the lower left corner of each cell with low (↓), medium (-) and
high (↑) DSC (%). The labels are color-encoded: blue - scapula, brown - humerus.
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B.3.2. Cortex vs. Full bone segmentation

As shown in Figure 8, a noticeable difference can be seen between the two subsets of the
lower leg (D3). The highest dataset-specific DSC scores in both cases are achieved with
Sam B. However, for D3a, the optimal setting reaches only 77.29% DSC and 5.8mm HD95,
while for D3b, the best setting yields 92.16% DSC and 1.9mm HD95. Figure 11 presents the
performance of both subsets for Sam B across all 2D prompting strategies. The full bone
labeling protocol outperforms the cortical protocol, achieving higher DSC and lower HD95
for each prompting strategy. Figure 12 showcases examples of different Sam B prompting
strategies, which illustrates the over-segmentation in the cortical protocol. A more task-
tailored prompting strategy, such as placing negative points in the bone inside (i.e., error
regions), might achieve better performance by incorporating dataset-specific knowledge.

Figure 11: Sam B performance (top - DSC (%); bottom - HD95 (mm)) for different labeling
protocols in the lower leg dataset (D3), i.e., cortical tibia bone (D3a) and full tibia bone
(D3b).
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Reference

Figure 12: Examples of knee dataset in axial view for reference labels, 2D nnUNet and
Sam B with different prompt strategies. In each row, the same axial slice is displayed
with cortical (top) and full (bottom) tibia bone segmentation. The labels/prompts are
color-encoded: yellow - tibia; green - tibia implant; brown - prompts for Sam B inference.

Appendix C. Implementation details

The official github repositories (i.e., Sam2, Sam23, Med-Sam4, Sam-Med2d5) are used
for all models. Data preprocessing and weight download is performed as instructed. The
evaluation is performed on GPUs NVIDIA Geforce RTX 2080 Ti 12GB and an Intel Core
Xeon Gold 6128 3.40GHz CPU, which are embedded in a server accessible to multiple users.
Evaluation code is adapted from Isensee et al. (2021) and Jia et al. (2024). Visualizations are
created with 3D Slicer (https://www.slicer.org/) and plotly (https://plotly.com/).

2. https://github.com/facebookresearch/segment-anything, commit 6fdee8f
3. https://github.com/facebookresearch/sam2, commits 0e78a11 & 29267c8, weights from July 29, 2024
4. https://github.com/bowang-lab/MedSAM, commit 2b7c64c
5. https://github.com/OpenGVLab/SAM-Med2D, commit bfd2b93
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C.1. nnUNet training details

A 2D and a 3D full resolution nnUNet (Isensee et al., 2021) were trained on each of the
datasets individually. The default training settings have been retained, except for the data
augmentation for D1 and D3 and the division into training and validation folds. For D1, the
mirroring on the vertical axes is removed since bilateral scans contain right and left labels.
For D3, the mirroring on the horizontal axes is removed since a horizontally flipped femoral
bone and implant show some similarity with the tibial counterparts. The models for D1 and
D2 are trained and evaluated on a 5-fold, for D3 on a 4-fold patient-based cross-validation
split. The results are denoted as .
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