Rethink to Check: Mitigating Confirmation Bias for End-to-End
Multimodal Fact-Checking

Anonymous ACL submission

Abstract

End-to-end multimodal fact-checking (MFC)
aims to assess the truthfulness of claims using
retrieved multimodal evidence. Existing meth-
ods rely on the stance extracted from the evi-
dence, achieving good performance with anno-
tated gold evidence, but performing poorly with
system-retrieved evidence. The key issue is
that the existing model is only exposed to anno-
tated gold evidence during training, inevitably
leading to confirmation bias. Such bias refers
to that the model tends to treat low-quality
system-retrieved evidence as high-quality gold
evidence during testing, thus resulting in low
robustness and generalization of the model. To
mitigate the bias, we propose a novel multi-
check framework with causal intervention and
counterfactual reasoning. It incorporates three
independent checkers to verify claims from di-
verse perspectives, thereby ensuring a more
balanced and accurate fact-checking. Specif-
ically, we first construct two distinct types of
counterfactual instances via causal interven-
tion. Then, we apply counterfactual reason-
ing to train three independent checkers with
tailored counterfactual instances or annotated
samples. During inference, we eliminate con-
firmation bias by synthesizing the verification
results of all checkers. Experimental results
demonstrate the superiority of our proposed
framework to state-of-the-art methods, show-
ing performance improvements of 5.5% and
16.9% with annotated and system-retrieved evi-
dence, respectively. Our code will be released
once the paper is accepted.

1 Introduction

Fact-checking aims to assess the authenticity of
a claim by analyzing the relevant evidence (Guo
et al., 2022). It can significantly mitigate the seri-
ous social harm inflicted by misinformation, such
as the crisis of medical trust during COVID-19
(Islam et al., 2020) and interference in the 2016
U.S. presidential election (Bovet and Makse, 2019).
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Figure 1: Illustration of evidence retrieval (top) and our
multi-check method (bottom).

However, current fact-checking requires analyzing
intricate multimodal evidence, and relying on man-
ual fact-checking is inefficient (Schlichtkrull et al.,
2023). Thus, it is crucial and urgent to develop
automated multimodal fact-checking (MFC).

The current MFC efforts include out-of-context
(0O0C) detection (Luo et al., 2021) and end-to-end
scenarios (Yao et al., 2023). The former is an ex-
tension of the image repurposing detection task
(Sabir et al., 2018), which requires determining
whether an image corresponds to the text. The lat-
ter is an expansion of textual fact-checking into
multimodal scenarios and consists of multimodal
evidence retrieval and fact-checking (Akhtar et al.,
2023). Compared to single OOC detection, end-to-
end MFC is more challenging and can be adapted
to more scenarios (including OOC (Geng et al.,
2024)), which is closely aligned with real-world
fact-checking. Thus, this work focuses on the end-
to-end MFC, which leverages retrieved multimodal
evidence to verify the claims.

The focus of existing MFC methods is verify-
ing the given claims according to the stance of
retrieved evidence (Yao et al., 2023; Yuan et al.,
2023). Unfortunately, the quality of retrieved evi-
dence often varies significantly, sometimes includ-



ing conflicting information with different stances
or false information. The unreliable evidence poses
great challenges to MFC and limits fact-checking
performance. The underlying reason is that the ex-
isting model is only exposed to authentic evidence
(gold evidence) during model training, leading to
the model suffering from confirmation bias (Nick-
erson, 1998). Specifically, this bias refers to the
model’s tendency to treat system evidence as high-
quality gold evidence during testing (checkerl in
Figure 1), which inevitably introduces the possible
conflicting or false information in system evidence
into fact-checking, thereby affecting the model’s
robustness and generalizability.

In this paper, we propose a multi-check frame-
work, introducing causal intervention and coun-
terfactual reasoning to alleviate the above confir-
mation bias. Our key motivation is to rethink the
evidence and check the claims from different per-
spectives. Specifically, we imagine a counterfactual
world where each claim is verified by three inde-
pendent fact-checkers, treating the same evidence
from different perspectives. As illustrated in Figure
1, checkerl considers the evidence reliable while
checker?2 considers the evidence partially reliable,
and checker3 considers the evidence unreliable.
During verification, checker2 and checker3 are
used to model possible conflicting and false infor-
mation in system evidence and eliminate confirma-
tion bias in checkerl from a causal perspective.

Driven by the aforementioned motivation, the
proposed multi-check frame is divided into three
main steps: multimodal counterfactual instance
construction, multi-check training, and multi-check
reasoning. Specifically, 1) To effectively train di-
verse checkers, we leverage a causal model to con-
struct two distinct types of counterfactual instances
by intervening on the original training samples. 2)
Considering the causal effect of counterfactual in-
stances, we tailor distinct training objectives for
individual checkers. 3) During reasoning, we feed
retrieved evidence into all checkers and fuse all
verification results as the final prediction. Our con-
tributions are summarized as follows:

* To the best of our knowledge, we are the first
to investigate the confirmation bias under real-
world end-to-end MFC. We provide the theo-
retical foundation from the causal perspective
to analyze the confirmation bias.

* We propose a causal intervention and counter-
factual reasoning based framework that intro-

duces a novel multi-check process to mitigate
confirmation bias.

» Extensive experiments demonstrate the effec-
tiveness of our model compared to the state-
of-the-art (SOTA) MFC methods and LLMs
(GPT-3.5 and GPT-40).

2 Related Work

2.1 Multi-modal Fact-Checking

Some multimodal fact-checking (MFC) works (Ab-
delnabi et al., 2022; Yuan et al., 2023; Zhang et al.,
2023; Papadopoulos et al., 2023) focus on the out-
of-context (OOC) misinformation and serve it as
an image-text mismatch checking task. (Abdelnabi
et al., 2022) first introduce the multi-modal cycle-
consistency to detect the mis- or disinformation
of image-text pairs. (Yuan et al., 2023) models
the stance of external evidence to aid misinfor-
mation detection. (Zhang et al., 2023) introduce
an improved attention network to facilitate a com-
prehensive understanding of contextual informa-
tion. To foster MFC, (Yao et al., 2023) propose
end-to-end MFC, Mocheg, which encompasses
the complete phases of fact-checking and more
closely aligns with real-world MFC. Specifically,
end-to-end MFC requires automatically retrieving
evidence relevant to the claim and predicting the
label based on system-retrieved evidence.

However, due to the low accuracy of evidence
retrieval, existing methods are plagued by incom-
plete and unreliable evidence, which leads to poor
generalization performance of the models in prac-
tical application. In other words, current methods
overfit the gold evidence in the training phase and
exhibit low robustness during real-world testing
with system-retrieved evidence.

2.2 Confirmation Bias

Confirmation bias (Nickerson, 1998) is a psycho-
logical concept referring to the inclination to fa-
vor information that aligns with one’s preexisting
beliefs while disregarding conflicting information.
Such bias often occurs in semi-supervised or un-
supervised learning, referring to the noise accumu-
lation when the model is trained using incorrect
predictions (Tarvainen and Valpola, 2017).
However, in real-world end-to-end MFC, confir-
mation bias has not yet been studied or defined. We
are the first to investigate the confirmation bias in
this field. Specifically, we observed confirmation
bias during training which can lead the model to
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Figure 2: Example of the causal graph where X and
Y represent the cause and effect respectively, with x*
denoting reference values.

treat the system-retrieved evidence as normal anno-
tated evidence during real-world testing, reducing
the model’s robustness and generalizability.

2.3 Causal Inference

Recently, causal inference (Pearl et al., 2016) has
been widely used in various deep-learning tasks,
such as visual question answering (Niu et al., 2021),
multimodal information extraction (Zhou et al.,
2024), fake news detection (Tian et al., 2022; Chen
et al., 2023), etc. As for fact-checking, (Tian et al.,
2022) formulate dataset biases as causal effects and
debias it based on counterfactual reasoning.

Unlike debiasing dataset biases, we discover the
gap between the evidence used in training and test-
ing. To address this, we construct two types of
counterfactual instances to train multiple checkers
to rethink the evidence and recheck the claim.

3 Preliminaries

3.1 Causal Graph

Causal graph (Pearl et al., 2016) is used to help
analyze the causal effects between different vari-
ables, represented by a directed acyclic graph
G = {N,&}. N represents the set of variables,
and &£ represents directed causal edges between
variables. As shown in Figure 2(a), X — Y de-
notes the causal pathway between two variables X
and Y, where X is the cause and Y is the effect.

3.2 Counterfactual Reasoning and Causal
Effect

Counterfactual reasoning (Pearl, 2009) is a statisti-
cal inference technique employed to infer potential
outcomes under hypothetical circumstances diverg-
ing from the factual world. For instance, Figure
2(a) is a factual world where the calculation of
effect Y is denoted as Y, = Y (X = z).

To estimate the causal effect (Pearl, 2022) of a
treatment variable X on a response variable Y, we
conduct the counterfactual reasoning by causal in-
tervention. As shown in Figure 2(b), we construct

(a) Causal graph
with  confounder
(Factual world).

(b) Counterfactual
world by causal in-
tervention.

Figure 3: The causal graphs for fact-checking. £': multi-
modal evidence, C: claim, Y: label of claim, U: con-
founder. * denotes the reference value.

a counterfactual world where variable X is inter-
vened to be reference value z*. Empirically, we
denote the intervention operation as do(-). And we
define the causal effect (CE) of X on Y as:

C’E‘X—>Y =Y, — Y-

=Y (X =2)—-Y(do(X = z%)) %

4 Method

We first formalize the fact-checking task into a
causal graph to analyze confirmation bias and
causal effects between different factors in Section
4.1. Then we present our multi-check framework
consisting of multimodal counterfactual instance
construction (4.2), multi-check training (4.3), and
multi-check reasoning (4.4).

4.1 Causal Graph of Fact-checking

Figure 3(a) shows the causal graph of the fact-
checking process. Nodes E and C' denote the mul-
timodal evidence features and claim features re-
spectively. Node Y is the task label and £ — Y
represents the causation from variable F to variable
Y . Notable, U denotes the confounder variable that
influences both variables F and C, which implies
evidence annotator to collect claim-evidence pairs
(i.e., U — (C, E)). During training, U represents
the annotator to collect gold evidence (high qual-
ity), while during testing, U denotes the evidence
retriever to retrieval system evidence (low quality).
Confirmation bias arises when the model treats
system evidence as gold evidence during testing,
leading to low robustness and poor generalization.

4.2 Counterfactual Instance Construction

To alleviate the aforementioned confirmation bias,
we cut off the link U — E as depicted in Fig-
ure 3(b), and construct a counterfactual world by
forcibly changing the value of variable E through
intervention operation do(E = e*).
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Figure 4: Illustration of the training and reasoning processes of our multi-check framework.

As shown in Figure 4, in the counterfactual
world, we proposed a multi-check framework that
introduces three independent fact-checkers (pos-
itive checkerl, mixed checker2, and negative
checker3) to rethink evidence and recheck claims
from different perspectives. To train different
checkers, we require corresponding training data,
where checkersl is trained with the gold data
to reflect the factual world. For checkers2 and
checkers3, we construct two distinct counterfac-
tual instances for their training.

Given the raw gold sample (c, e, e;) which de-
notes claim, text evidence, and image evidence
respectively. The gold evidence (e, e;) in the train-
ing set is reliable. To introduce unreliable evidence
during training, we randomly select K irrelevant
text and image evidence from the multimodal evi-
dence set as reference unreliable evidence (e}, € ).
For the counterfactual instance of checker3, we do
the interventions do(E; = ef) and do(E; = €}) on
the variable E to cut off the link U — E. Empiri-
cally, the intervention can be operated by replacing
the gold evidence e; ; with the reference evidence
(false evidence) e*t to construct the counterfactual
sample (c, ef,e’). Similarly, we do the interven-
tions do(E; = e; + ef) and do(E; = e; + €7),
replacing the gold evidence with conflicting evi-
dence with different stances to construct the coun-
terfactual sample (c, e; + €}, e; +¢) for checker2.
Through the above process, we obtain the training
samples required for multi-check training.

4.3 Multi-check Training

After obtaining training data including counterfac-
tual instances, we train our multi-check framework.

For each checker, given a claim c and multimodal
evidence {e}, €7, ...}&{el, €2...}. Following (Yao
et al., 2023), we use CLIP to extract fine-grained
representations and detect stance representation
from each claim-evidence pair. Finally, all stance
representations are used to predict the label of C.
Model details can be found in (Yao et al., 2023).
Notable, we use the same model architecture but
different training objectives for different checkers.

Checkerl. To learn the mapping between gold
samples and their truthfulness labels, we feed
(c, e, €;) into checkerl, obtain the output Y7, and
use the cross-entropy loss as the loss function:

Yi=Y(C=cE=e,E=e¢) (2)

exp (Y1)

Z?:o exp(Y1,5)
where ¢ denotes the index of the truthfulness label.

Checker2. As discussed in Section 1, checker2
aims to enhance the model performance under con-
flicting evidence with different stances towards to
the claim. We hope checker2 can assist the model
in identifying partial reliable evidence during test-
ing. Based on counterfactual reasoning, we feed
(c,er + ef, e; + €f) and obtain Y3 as follow:

L1 = —log N €)

Yo =Y (C = c¢,do(E: = et + ¢}),

do(E

4
= e+ 7)) @

To avoid checker2 learning the wrong mapping
between unreliable evidence and truthfulness la-
bels, we eliminate the causal effect of unreliable
evidence on the truthfulness label by subtraction
from the causal perspective. Specifically, we in-
put (c, ef, €f) and subtract the output Y5", and then



compute the cross-entropy loss as follow:

Yy =Y(C =c,do(E; =€), do(E; =€),
)
exp((Ya — Y5);) )
Lo = —log . (6
? (Z?O exp((Ya — Y5);)

Checker3. To further reduce confirmation bias,
we propose checker3 to capture the wrong map-
ping between unreliable evidence (i.e., false infor-
mation) and truthfulness labels. Therefore, during
training, we maximize the confirmation bias, i.e.,
we hope checker3 treats system evidence as unre-
liable evidence (see Figure 1) to verify the claim.
Such wrong mapping will be reduced during infer-
ence via subtraction. To do this, we feed (c, e}, €])
into checker3 and obtain Y3. The training loss is
calculated as follows:

Ys =Y (C = c¢,do(Ey = €}),do(E; = €})), (7)

exp(Y3,)
L3=—-log| ——""—|. )
’ <z§0 expo@,j))

Note that the three checkers mentioned in our
framework represent three sub-models that have the
same model structure but do not share parameters.
Therefore, they have high flexibility in training
and can be trained together or separately. To learn
the model parameters, we minimize a multi-check
training objective as follows:

L =ML+ XLo+ A3L3, 9

where A1, A2, and A3 are the trade-off hyperparam-
eters to adjust the effect of different views.

4.4 Multi-check Reasoning

During reasoning, we have claim c as well as the
multimodal evidence (e, e7) retrieved by the sys-
tem. To verify ¢, we feed (c, ef, €f) into our multi-
check MFC framework and obtain three outputs
(Y1, Y2, Ys) from different checkers. Y7 as the out-
put of checkerl, we use it as a benchmark output
with confirmation bias and employ Y> and Y3 to
mitigate such bias. Specifically, for the output of
checker2, we employ addition (Y7 + Y3) to en-
hance the causal effect of reliable evidence within
the system evidence on the truthfulness label. In
addition to the output of checker3, we use sub-
traction (Y7 — Y3) to reduce the aforementioned
wrong mappings between unreliable evidence (i.e.,
false information) within the system evidence and
truthfulness labels. Thus, we obtain two debiased

Data Train Val Test

# Claims 11,669 1,490 2,440
# Refuted Labels 4,542 488 825
# Supported Labels | 3,826 501 817
# NEI Labels 3,301 501 800

23,545 4,067 6,268
8,927 1,178 2,007

# Text evidence
# Image evidence

Table 1: Statistics of the MOCHEG dataset.

results Y7 + Y5, Y7 — Y3 and the result Y7 before
debiasing. Note that each of the above results may
be best in individual scenarios (e.g., Y7 + Y5 is
the best result in Figure 4). However, due to the
varying quality of system evidence, employing a
fusion strategy to integrate the above three results
is necessary and beneficial, such opinion is verified
in ablation experiments. Specifically, we employ
an averaging fusion strategy to integrate the above
three results. Besides, we explore more fusion
strategies in the experimental section.

5 Experiments

In this section, we conducted experiments for quan-
titative and qualitative analysis to validate the ef-
fectiveness of our proposed method.

5.1 Experimental Settings
5.1.1 Dataset

We conducted experiments on the only existing
end-to-end multimodal fact-checking dataset:
MOCHEG: a large-scale dataset consisting of
15,601 claims where each claim is annotated with
a truthfulness label and a ruling statement, and
33,880 textual paragraphs and 12,112 images in
total as evidence. We preprocess and divide the
dataset in the same way as in (Yao et al., 2023).
The dataset statistic is shown in Table 1. Follow-
ing prior works, we adopt Macro F1 as evaluation
metric to assess the performance of our model.

5.1.2 Implementation Details

Regarding evidence retrieval, we use the pre-
trained retrieval model from (Yao et al., 2023) to
retrieve top-5 text and image evidence respectively
for claim verification. We use frozen CLIP-ViT-
B/32 as our backbone. For hyperparameter settings,
the training batch size is 128, the training epoch is
50, and the Adam optimizer with a learning rate
le-5 is used to update the parameters. Besides,
the trade-off hyperparameters A1, Ao, A3 are set to
1.0. According to the early-stopping strategy, the



Methods F-score (%)
Majority Label 33.78
Average Similarity (Gold) 32.72
SpotFakePlus (Gold) 44.11
Pre-CoFactv2 (Gold) 47.17
Mocheg (Gold) T 51.64
Ours (Gold) 54.48
Mocheg (System) T 42.44
Ours (System) 49.61

Table 2: Main results comparing with the SOTA meth-
ods. Note that Gold denotes gold multi-modal evidence
while System means system-retrieved evidence. T rep-
resents our re-implemented results.

training process ends when the Accuracy on the val-
idation set does not increase within 10 epochs. We
evaluate the best model on the test set. To show the
superiority of our method in eliminating confirma-
tion bias, for the factual checkerl, we choose the
same model as mocheg and train our proposed two
counterfactual checkers separately. We conduct
the experiments in Ubuntu 18.04.5 with a single
NVIDIA A6000 GPU with 48GB of RAM.

5.2 Compared Methods

Due to the scarcity of end-to-end multimodal fact-
checking, we followed previous work (Yao et al.,
2023) and selected the current SOTA methods:

» SpotFakePlus (Singhal et al., 2020) focus on
capturing text and image’s semantic and con-
textual information. (Yao et al., 2023) adapts
it to the multi-modal fact-checking task.

e Pre-CoFactv2 (Du et al., 2023) is a novel
framework with parameter-efficient founda-
tion models that achieves SOTA results at the
Factify 2 challenge (Suryavardan et al., 2023).

* Mocheg (Yao et al., 2023) first propose end-
to-end MFC and introduce stance representa-
tion to help fact verification, achieving SOTA
performance on the challenging Mocheg.

5.3 Performance Comparison

Table 2 shows the experimental results of our pro-
posed framework compared with SOTA baselines
under Gold and System settings, respectively.
Note that the system-retrieved evidence used in
different methods is the same. From Table 2, we
observe that our method achieves the best perfor-
mance. Specifically, our method improves the av-
erage F-score by 5.5% and 16.9% compared to the
second-best method (i.e., Mecheg) under the Gold
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Figure 5: Performance comparison between Mocheg
and our method in different truthfulness labels.

Methods Acc. F-score (%)
Full Model | 55.57 54.48
wlo Cy 55.16 53.83
w/o Cs 54.79 53.19
Gold o ey | 5438 51.64
w/o CI 54.99 53.04
w/o CT 55.04 52.81
Full Model | 50.86 49.61
w/o Cy 50.49 48.93
System wlo C 49.67 47.41
w/o Co+C3 | 4791 42.44
w/o CI 48.40 44.70
w/o CT 47.83 43.81

Table 3: Evaluation results for ablation study.

and System settings respectively, highlighting the
superiority of our proposed method.

Notably, the performance improvement under
the System setting is larger than that under the
Gold setting (16.9% vs 5.5%). Moreover, our
method under the System setting outperforms
most baselines (e.g., SpotFakePlus, Pre-CoFactv?2)
under the Gold setting. This indicates that our
method has a significant advantage in real-world
MFC. We believe that our method benefits from
the evidence rethink and the claim recheck via our
proposed multi-check process.

We further compare the performance of our
method with Mocheg in detail truthfulness labels
under real-world System setting. Figure 5 shows
the precision and F-score in different labels. Specif-
ically, our method is superior in the majority of
cases and falls slightly short in a few cases (pre-
cision in N E1, F-score in Supported). Overall,
considering all types of labels, our method outper-
forms Mocheg, exhibiting more stable performance
across various labels and higher model robustness.

5.4 Ablation Study

To study the impact of each component of our pro-
posed method, we conduct ablation experiments by
defining the following variants:

w/o C or C3: Remove checker?2 or checker3.



Methods Acc. F-score (%)
Average | 55.57 54.48
Gold Max 54.83 53.98
Voting | 55.45 54.34
Average | 50.86 49.61
System Max 50.66 49.87
Voting | 50.75 49.80

Table 4: Results of different reasoning strategies.

—e— Acc. of Ours
F-Score of Ours

—o— Acc. of Ours
F-Score of Ours

—== Acc. of Mocheg
F-Score of Mocheg

-= Acc. of Mocheg
F-Score of Mocheg

Figure 6: Impact of different values of K. Note that
the left and right sub-figures represent the results under
Gold and System settings, respectively.

w/o CI: Construct counterfactual instances with
only text changes, leaving images unchanged.

w/o CT: Construct counterfactual instances with
only image changes, leaving textual unchanged.

The ablation results in Table 3 show that all
proposed components are beneficial. Specifically,
when we remove checker2 (w/o C5) or checker3
(w/o C3), the performance drops. When we re-
move both checker2 and checker3 (w/o Co+C’3),
the performance further drops, demonstrating the
effectiveness of the multi-check process. Besides,
we also perform the ablation study on the specific
construction of counterfactual instances. When
we construct counterfactual instances by changing
only the unimodal evidence (w/o CI or w/o CT),
the performance drops, indicating the superiority
of our counterfactual instance construction.

As shown in Table 3, the results show that
our proposed modules are more effective in the
System setting. This is consistent with our hypoth-
esis that our approach can mitigate confirmation
bias, and the harm of confirmation bias is more
pronounced in the System setting.

5.5 Impact of Different Reasoning Strategies

We investigated the impact of different fusion strate-
gies during multi-check reasoning. The Average
strategy refers to averaging the outputs from three
checkers while the M ax strategy aims to select the
output with the highest probability. The Voting
strategy refers to predicting the label with the most

Methods Acc. F-score(%)
GPT-3.5 | 53.64 45.76
Gold  GPT-4o | 58.52 50.63
Ours 55.57 54.48
GPT-3.5 | 46.15 39.44
System GPT-4o0 | 53.32 47.74
Ours 50.86 49.61

Table 5: Comparison results with LLMs.

Methods # Refuted # Supported # NEI
Raw Distribution 825 817 800
GPT-3.5 (Gold) 628 1,723 91
GPT-40 (Gold) 1,318 962 162
Ours (Gold) 1,176 614 652
GPT-3.5 (System) 437 1,833 172
GPT-40 (System) 1,267 935 240
Ours (System) 1,172 660 610

Table 6: Statistics on the results of different methods.

votes from all checkers. Note that if no consensus
in the Voting strategy, the Max strategy will be
used. From Table 4, we find that the Average strat-
egy achieves the best performance in the accuracy
metric. This suggests that integrating all checkers
is most effective, indicating the effectiveness of
our multi-check approach. We believe introducing
different checkers based on actual conditions and
applying various strategies is worth exploring.

5.6 Impact of the Value of K

We tried different values of K, i.e., the number of
evidence selected to construct the counterfactual
instance. Figure 6 shows that our method always
outperforms Mocheg, and K = 5 leads to the best
performance. We analyze the reason accounting for
the results is that a small amount of evidence may
not be sufficient for multi-check training, while
too much irrelevant evidence may lead to biases
in model training. This indicates the effectiveness
of our approach and emphasizes the importance of
selecting an appropriate quantity of noise evidence.

5.7 Comparision with LLMs

We apply the OpenAI-API ! (gpt-3.5-turbo-01252
and gpt-40°) to the end-to-end MFC using the
prompt template. The implementation details are
described in Appendix A.1. From Table 5, we can
observe that our method outperforms GPT-3.5 in
both accuracy and F-score, demonstrating the ef-
fectiveness of our approach. Further, compared to
the current state-of-the-art GPT-40, our model is

"https://platform.openai.com/docs/api-reference
“https://platform.openai.com/docs/models/gpt-3-5-turbo
3https://platform.openai.com/docs/models/gpt-40
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Disney is replacing the 'Tower of
Terror' attraction with a
'Guardians of the Galaxy'
themed ride at their Disney
California Adventure Park.

Supported

The popular Twilight Zone Tower of Terror attraction at Disney California
Adventure Park will be transformed into a 'Guardians of the Galaxy' ...

The Guardians of the Galaxy ride is a much newer addition...

'Tower of Terror is a classic Disney ride and ... Guardians of the Galaxy?
Disney is replacing the vertigo-inducing '"Twilight Zone'-themed elevator
ride at its California theme park with ... space super heroes.

Tower of Terror to be Removed, Replaced With Elsa's Ice Castle Disney
announced ... replaced by Elsa's Ice Castle, featured in the movie, Frozen.
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Ellen DeGeneres has decided
to end her long-running
daytime talk show in 2022.

Supported

Let's start with the decision to end the show in 2022: ...

In June 2016, an ... disguised ... reporting that Ellen DeGeneres would be
leaving her popular daytime television talk show to sell skin care products.
Ellen Degeneres recently announced she will be leaving The Ellen Show in
November to promote a new skincare line that was recently voted...

In fact, NBCUniversal Owned Television Stations announced in January
2016 that the Ellen DeGeneres Show had been renewed through 2020.
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The Biden administration had to
start from scratch with a
comprehensive COVID-19 vaccine

distribution plan because the Trump ¢
administration had no working plan.

... the underlying claim was whether the Harris-Biden administration ...
‘start from scratch' with ... because their predecessors had no working plan.
... its so-called 'scoop' that Biden inherited 'no vaccine distribution plan
from the Trump administration' and had to 'start from scratch.'

The Trump administration has released no comprehensive plan to combat
COVID-19, except ... the development and distribution of vaccines.

it is false to claim that it was literally 'starting from scratch,' or that the
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Figure 7: Some representative cases, where green font indicates support for the claim, red indicates refutation, and
blue indicates insufficient information. Note that only some key evidence is shown.

lagging in accuracy. However, our method outper-
forms both LLMs in the F-score. We analyze the
reason accounting for the results is that ChatGPT
tends to answer with "support" or "refuted". The
statistics in Table 6 show that both LL.Ms exhibit
significant classification bias, especially GPT-3.5
(628/825, 1723/817 and 91/800 under gold setting).
GPT-40 outperforms GPT-3.5 but still exhibits no-
ticeable bias (1318/825, 162/800). In contrast, our
model demonstrates smaller classification bias, in-
dicating that our approach is more robust than cur-
rent LLMs in the MFC. Overall, our method is
more feasible for the end-to-end MFC.

5.8 Case Study

Figure 7 shows some representative cases of our
approach. Some key information is highlighted
in different colors and the results before and af-
ter multi-check debiasing are illustrated. For the
refuted example (first one), before debiasing, the
model supports the claim based on partial evidence
(green), yet ignores conflicting information that
contradicts the claim (red). However, our multi-
check method can capture such conflicting infor-
mation and then make correct predictions after de-
biasing. For the NEI examples (last one), the model
also ignores conflicting information in the evidence
and relies on some piece of evidence. For the sup-

ported examples (second and third ones), we can
see that the model is misled by the retrieved un-
reliable evidence (e.g., “Replaced With Elsa’s Ice
Castle”, “June 2016 ... leaving The Ellen Show”)
and makes incorrect predictions. Our multi-check
process can rethink the evidence, and find reliable
evidence (e.g., “be transformed into a ‘Guardians
of the Galaxy’", “the decision to end the show in
2022...") to recheck the claims. These cases show
the superiority of our proposed framework, which
eliminates the confirmation bias by introducing
counterfactual checkers to rethink the evidence.

6 Conclusion

In this work, we observe the confirmation bias in
real-world end-to-end MFC. To eliminate this bias,
we propose a novel causal intervention and coun-
terfactual reasoning based multi-check framework
for end-to-end MFC. We formulate the end-to-end
MEFC as a causal graph and reduce the confirma-
tion bias by multi-check learning. Specifically, we
imagine a counterfactual world and construct two
types of counterfactual instances via causal inter-
vention for multi-check training. The outputs of
all checkers are fused to verify claims during rea-
soning. Eventually, experiments on a public large-
scale dataset and some cases are given, showing
the excellent performance of our proposed method.



7 Limitations

We recognize the following limitations in our ap-
proach: (1) While employing random sampling
to construct counterfactual training examples for
checker2 and checker3 is efficient, it may not al-
ways yield suitable counterfactual examples for
every case. (2) This paper does not thoroughly in-
vestigate explanation generation. From Table 8 in
Appendix A.3, given the same evidence, more ac-
curate prediction results (ours) do not significantly
improve the performance of explanation generation.
This suggests that current explanation generation
models do not fully leverage the information from
verification results, relying instead on summarizing
the provided evidence. Moreover, from Table 3, it
is evident that counterfactual construction signif-
icantly impacts real-world MFC (system setting),
especially image counterfactual instances construc-
tion. This indicates the low performance of current
multimodal evidence retrieval (especially image
evidence retrieval, see Table 8 in the appendix for
details). In future work, we plan to explore more
appropriate methods for counterfactual instances
construction and to delve deeper into the study of
explanation generation and evidence retrieval.
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A Appendix
A.1 Prompt Template

Prompt:

Given the following claim and relevant evi-
dence, please determine the label of the claim.
You can only answer (support, refuted, or not
enough information).

Claim: { }

Evidence: { }

Label: support, refuted, or not enough infor-
mation?

Note that when using GPT-40, we did not pro-
vide image evidence. This is because uploading
images via the API is very expensive now.

A.2 Results of Multimodal Evidence Retrieval

Media | N | Rec@N Pre@N NDCG@N MAP@N

Image 5 17.84 4.87 14.39 12.49
10 | 23.20 3.17 16.22 13.30

Text 5 18.35 14.26 22.49 16.27
10 | 23.00 9.57 23.01 15.51

Table 7: Performance of multimodal evidence retrieval.

Following (Yao et al., 2023), we retrieve the top-
5 text and image evidence for every claim, the
performance of multimodal evidence retrieval is
shown in Table 7.

A.3 Results of Explanation Generation

Evidence Truthfulness ROUGE-1 ROUGE-2 ROUGE-L
Gold Mocheg 45.80 26.89 35.33
Ours 45.84 26.90 35.34
System Mocheg 35.71 16.44 25.22
Ours 35.81 16.39 25.15

Table 8: Performance of explanation generation.

We used the pre-trained BART-large model (Lewis
et al., 2020) as a generator for our explanation gen-
eration experiments. Specifically, we provided the
generator with the same evidence and fact-checking
results obtained from different methods. The re-
sults are shown in Table 8,
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