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Abstract

Accurate segmentation of lung nodules in computed tomog-001
raphy (CT) scans is challenging due to extreme class im-002
balance, where nodules appear sparsely among healthy tis-003
sue. We introduce a novel two-stage approach for lung004
nodule segmentation, framing it as an anomaly detection005
problem. The method consists of two stages: Stage 1 em-006
ploys a custom Detection Transformer architecture with de-007
formable attention and focal loss to generate region propos-008
als, addressing class imbalance and localizing sparse nod-009
ules. In Stage 2, the predicted bounding boxes are refined010
into segmentation masks using a fine-tuned variant of the011
Segment Anything Model (SAM). To address sparsity and012
enhance spatial context, a 5mm Maximum Intensity Projec-013
tion is applied to improve differentiation between nodules,014
bronchioles, and vascular structures. The model achieves a015
stage-2 DiceC of 91.4%, with stage-1 yielding an F1 score016
of 94.2%, 95.2% sensitivity, and 93.3% precision on the017
LUNA16 dataset despite extreme sparsity, where only 5%018
of slices contain a nodule, outperforming existing state-of-019
the-art methods. The model was additionally validated on020
a privately procured test dataset of 30 patients with signifi-021
cantly different characteristics, achieving a Dice coefficient022
of 78.3% despite significant distribution drift, demonstrat-023
ing strong generalization to clinical variability and estab-024
lishing our approach as the new state-of-the-art for lung025
nodule segmentation.026

1. Introduction027

Lung cancer is a leading cause of cancer-related deaths028
worldwide [3], with early detection and accurate assessment029
being crucial for improving outcomes. Tumor boards, com-030
prising oncologists, radiologists, surgeons, pathologists,031
and other specialists, collaboratively review complex lung032
cancer cases to determine the best treatment plan. Accu-033
rate segmentation of lung nodules in CT scans is essential to034
provide critical information about size, location, and spread.035
Tumor board evaluations typically involve manual segmen-036
tation, which slows decision-making and increases resource037

demands. 038
Implementing a clinical decision support (CDS) system 039

for auto-segmentation of lung nodules can enhance work- 040
flow efficiency, improve patient outcomes, and reduce costs 041
[26]. Despite the benefits, current models struggle with the 042
extreme class imbalance that appears in CT data, as lung 043
nodules appear infrequently among healthy tissue. Nodule 044
volumes are much smaller than the overall lung volume, 045
vary widely in size and location, and often have similar 046
shape and density to vasculature on an axial CT slice. These 047
challenges underscore the need for a customized architec- 048
ture that addresses these limitations to ensure a reliable tool 049
for clinicians. 050

We present a two-stage framework for automated lung 051
nodule segmentation tailored for tumor boards. The first 052
stage performs region proposal to detect sparse nodules in 053
lung CT scans, while the second stage refines these regions 054
for precise pixel-level segmentation. Maximum Intensity 055
Projection (MIP) is applied to enhance nodule visibility, and 056
custom Focal Loss is used to address class imbalance. Our 057
aim is to provide an architecture that can handle the sparsity 058
of lung nodules effectively, making it ready for deployment 059
in clinical applications. 060

2. Related Work 061

Thoracic Computed Tomography (CT) involves a series of 062
2D cross-sectional greyscale images that when combined, 063
form a detailed 3D representation of the patient’s thorax. 064
The LUNA16 dataset, derived from the LIDC-IDRI dataset, 065
consists of 888 thoracic CT scans containing 1,186 anno- 066
tated lung nodules, annotated by four radiologists with nod- 067
ules larger than 3mm considered relevant. The challenge 068
lies in the sparse occurrence of nodules, only 0 to 5% of 069
slices contain a nodule [24], and in the variability of voxel 070
sizes and scan resolutions across patients. This dataset 071
serves as a critical benchmark with numerous studies train- 072
ing architectures such as CNNs, 3D-CNNs, and U-Net [10]. 073
However, transformer architectures remain underexplored 074
in this domain. 075

Class imbalance often biases models toward the majority 076
class, often leading to high accuracy but poor detection ca- 077
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pabilities. To mitigate this several strategies exist: oversam-078
pling increases the minority class but misrepresents real-079
world prevalence [20], while class weighting forces models080
to focus on underrepresented cases but can increase false081
positives [5, 8]. Focal loss mitigates these issues by dy-082
namically adjusting the loss based on prediction confidence,083
down-weighting well-classified examples and emphasizing084
hard-to-classify, often maintaining precision while increas-085
ing accuracy [15].086

Maximum Intensity Projection (MIP) is a widely used087
radiology technique [9] that enhances nodule visibility by088
combining adjacent CT slices into a single 2D image, pro-089
jecting the highest attenuation voxel from a volume onto a090
2D plane to preserve 3D spatial information [9]. MIP helps091
distinguish nodules, which appear as blobs, from vessels,092
elongated tube-like structures, and improves detection of093
3–10mm nodules [11].094

Previous methods predominantly relied on Convolu-095
tional Neural Networks (CNNs) and variations such as 3D096
U-Nets, MRUNet-3D, and V-Nets, which utilize hierarchi-097
cal convolutional layers to segment nodules. While CNNs098
have proven effective at learning local features, their per-099
formance deteriorates significantly when capturing long-100
range spatial relationships, which are critical in differentiat-101
ing nodules from similarly dense structures such as bronchi-102
oles and vessels. Recent hybrid approaches like SW-UNet103
and DB-Net attempted to combine CNN architectures with104
attention mechanisms but remained limited by their funda-105
mentally convolutional base. Pure transformer approaches106
such as Detection Transformer (DETR) and Deformable-107
DETR have shown promise in general object detection tasks108
but require significant architectural adaptations and custom109
loss functions to be effective for medical imaging chal-110
lenges.111

Transformer architectures have emerged as a powerful112
alternative to CNNs in medical imaging. While CNNs113
excel at capturing local features, they struggle with long-114
range dependencies, relationships between distant regions115
in an image [21]. Transformer self-attention effectively116
models these dependencies, making it particularly valu-117
able for distinguishing nodules from vessels [21]. DETR,118
a vision transformer, directly predicts object locations via119
self-attention, replacing traditional region proposal meth-120
ods but struggles with slow convergence and small object121
detection [7, 27]. Deformable-DETR improves this by in-122
troducing a deformable attention mechanism which is spa-123
tially adaptive and computationally efficient. Unlike stan-124
dard self-attention, which attends to all pixels in an image,125
Deformable Attention selectively focuses on a small set of126
dynamically learned sampling points around a reference lo-127
cation. This allows the model to adaptively refine its recep-128
tive field and capture fine-grained details of small objects129
while significantly reducing computational overhead [27].130

Segment Anything Model (SAM), trained on 1 billion 131
masks, enables promptable segmentation and is shown to 132
effectively transfer knowledge to new datasets with fine- 133
tuning [12, 17]. MedSAM fine-tunes SAM on 1.5 million 134
medical image-mask pairs to focus on anatomical complex- 135
ities in clinical settings [17]. 136

3. Methodology 137

We present a novel approach to lung nodule segmentation 138
for tumor boards by framing the task as anomaly detec- 139
tion. Our method splits the task into two stages: Stage 1 140
serves as a region proposal phase to localize sparse nodules, 141
while Stage 2 refines these bounding boxes into pixel-wise 142
segmentation masks. While the building blocks are well- 143
known, our novelty lies in unification of key architectural 144
components such as DETR, SAM along with strategies such 145
as deformable attention, focal loss and MIP into a special- 146
ized framework. Our training dataset is based on LUNA16 147
and consists of 9,676 CT slices, preprocessed to enhance 148
nodule visibility through CLAHE, Otsu’s thresholding, and 149
a customized training regimen to improve convergence. Our 150
model is validated on an independent test set from the Uni- 151
versity Health Network (UHN), featuring 30 patients with 152
diverse imaging protocols to provide a more robust evalua- 153
tion. 154

3.1. Data Preprocessing & Datasets 155

Our preprocessing pipeline prepares CT scan data for in- 156
put into our Stage 1 network shown in Figure 1. We 157
first standardize anatomical structures by resampling CT 158
slices to a consistent voxel spacing of 1 × 1 × 1mm, en- 159
suring uniformity. In order to isolate lung tissue from 160
the surrounding background, we employ Otsu’s method for 161
thresholding[19]. This is followed by morphological oper- 162
ations, including connected component analysis and region 163
erosion to obtain cleanly cropped lung regions. Slices at 164
the superior and inferior cranio-caudal extremes, which pro- 165
vide minimal diagnostic value, are removed based on non- 166
zero area size. This reduces the model’s search space from 167
15M to 5.25M pixels per patient improving focus on rel- 168
evant areas. Post segmentation Contrast Limited Adaptive 169
Histogram Equalization (CLAHE) is applied to improve the 170
visibility of subtle features like small nodules [23]. Images 171
are cropped to dimensions of 256x256, and a 5mm MIP is 172
finally applied to improve visibility of lung nodules by pro- 173
ducing a 2D image that highlights the densest features. This 174
follows the expression 175

IMIP(x, y) = max
z

{I(x, y, z)} (1) 176

. IMIP(x, y) is the 2D image intensity at each (x, y) loca- 177
tion, and I(x, y, z) is the intensity of the original 3D im- 178
age at voxel location (x, y, z). A slab thickness of 5mm 179
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Figure 1. Data processing pipeline with nodule visible at the top left of lung. a) Original CT slice b) Post Otsu segmentation and CLAHE
c) Post 5mm MIP

was chosen as a compromise between differentiating the180
shapes of vessels and nodules and limiting overlap be-181
tween structures. The final training dataset consists of 9,676182
MIP CT slices, with 1,226 containing nodules, split 70%-183
20%-10% before augmentation. Non-nodule slices were184
slightly undersampled during training resulting 12.7% pos-185
itive class. This adjustment was necessary because lower186
nodule rates made training less effective due to excessive187
sparsity. The test set maintained a 5% nodule rate to re-188
flect real-world conditions, with the adjustment leading to189
higher test accuracy. Additionally, the training set contained190
augmentations to enhance variability including flips, rota-191
tions (±15◦), brightness shifts (±15%), and Gaussian noise192
(0.001–0.18% SD).193

A supplementary test dataset was obtained in collabo-194
ration with University Health Network (UHN), compris-195
ing 400 treated patients imaged with a TOSHIBA Aquil-196
ion scanner. The CT images have a 3mm slice thickness,197
0.781mm pixel spacing, and patient ages ranging from 29198
to 90 years (median: 68). All images were segmented199
by a radiation oncologist. A subset of 30 patients (5,610200
CT slices) was randomly selected as a second validation201
set. Figure 2 highlights nodule diameter variations between202
UHN and LUNA16. LUNA16 primarily contains small203
nodules (3–10mm), whereas UHN includes a broader dis-204
tribution, with many tumors between 25–55mm. UHN’s205
3mm slice thickness exceeds LUNA16’s 2.5mm cutoff, po-206
tentially reducing nodule visibility. Pixel spacing also dif-207
fers, with UHN at 0.781mm and LUNA16 varying from208
0.46–0.98mm. These differences introduce significant dis-209
tribution drift, making UHN a strong test for model gener-210
alizability.211

3.2. Stage One and Two Model Architecture 212

Figure 3 overviews our two-stage approach, where Stage 1 213
generates region proposals to localize potential lung nod- 214
ules in CT scans. Input images pass through a ResNet-50 215
CNN backbone for multi-scale feature extraction, then aug- 216
mented with 2D sine-cosine positional encodings and pro- 217
cessed by the encoder’s DSA layers, which refine features 218
by attending to a sparse set of learnable sampling points 219
around each nodule. DSA aggregates features as 220

yq =

M∑
m=1

Wm

(
K∑

k=1

Amqk · x
(
pq +∆pmqk

))
(2) 221

where M is the attention head count, K the sampled points 222
per head, Wm the projection matrices, and Amqk the at- 223
tention weight. The learnable offsets allow the model 224
to dynamically adjusts its receptive field for small and 225
irregular nodules. Regular self-attention has complexity 226
O(H2W 2C), but DSA reduces this to O(HWKC) where 227
height H, width W, channels C and K representing the num- 228
ber of sampled points per attention head. Final decoder 229
heads refine object queries into bounding boxes and con- 230
fidence scores, which serve as inputs for Stage 2 segmen- 231
tation. Stage 1 was trained for 15 epochs using AdamW 232
with a learning rate of 10−4, scheduled to reduce every 10 233
epochs. Training used an L4 GPU with mixed precision 234
(16-bit), batch size of 4, gradient clipping (0.1), and accu- 235
mulation over 6 batches. A grid search optimized hyperpa- 236
rameters for stability and performance. 237

We fine-tuned MedSAM’s pretrained weights on a 238
dataset of 1,400 CT slices, where ground truth bounding 239
boxes were used as prompts for SAM to simulate Stage 240
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Figure 2. Comparison of Size Distributions in LUNA16 (left) and UHN Test Dataset (right). LUNA16 contains primarily nodules, while
UHN includes nodules and tumors.

Figure 3. Overview of the proposed LN-Transformer architecture, illustrating a sample CT MIP with a nodule in the top left corner. MIP
deconstructed into its 5 associated slices for Stage 2.

1 predictions. These acted as attention cues enabling241
targeted refinement while maintaining full-image context.242
The dataset included 1000 slices with ground truth nod-243
ule bounding boxes and 400 non-nodule slices to enhance244
false positive discrimination from Stage 1. Ground truth245
segmentation masks served as labels, and training was con-246
ducted using Dice-CrossEntropy loss with the Adam opti-247
mizer. Once trained, the Stage 2 auto-segmentation model248
processed MIP slices and associated bounding boxes from249
Stage 1, reconstructing individual CT slices to generate pre-250
cise pixel-wise segmentation masks as illustrated in Fig-251
ure 3.252

3.3. Implementation Details253

We trained our Stage 1 Deformable-DETR and Stage 2 fine-254
tuned SAM on a single L4 GPU with mixed precision (16-255

bit). For Stage 1, we used the AdamW optimizer with an 256
initial learning rate of 1e-4 for the main parameters and 1e- 257
5 for the ResNet-50 backbone, reducing by a factor of 10 258
every 10 epochs. A batch size of 4 was used, and gradi- 259
ents were accumulated over 6 steps for stable learning. In 260
practice, processing each 256× 256 MIP slice required ap- 261
proximately 6 GB of GPU memory, with an average infer- 262
ence speed of about 50 ms per slice. These hardware con- 263
straints motivated our choice of deformable attention, which 264
is more memory-efficient than naive attention while retain- 265
ing fine-grained focus on small objects. 266

3.4. Focal Loss 267

To address class imbalance, we incorporated focal loss into 268
the DETR loss function to enhance nodule detection by 269
down-weighting easy samples and emphasizing hard-to- 270
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classify cases [14]. The focal loss is defined as271

FL(pt) = −αt(1− pt)
γ log(pt) (3)272

, where pt is the predicted probability of the correct class,273
αt balances positive and negative examples, and γ adjusts274
focus towards challenging samples. Hyperparameter tuning275
found γ = 2 and αt = 0.25 to provide an optimal balance276
between precision and recall.277

4. Results278

Table 1 summarizes the performance metrics with nodules279
size categories: small (up to 7mm), medium (7-15mm), and280
large (over 15mm). Precision measures the proportion of281
correctly identified nodules among predictions, while sen-282
sitivity captures the percentage of actual nodules detected.283
The F1 score balances these metrics, and the Dice Coef-284
ficient evaluates the overlap between predicted and actual285
segmentation masks. Slice accuracy quantifies the propor-286
tion of CT slices correctly classified as containing or not287
containing a nodule, providing a high-level assessment of288
the ability to distinguish nodule-present and absent slices.289
For medium and large nodules, the model achieves high pre-290
cision (96.7% and 97.8%) and recall (97.0% and 99.2%).291
Stage 2 yields a 91.4% DiceC, with only a 3% drop from292
the Stage 1 F1-score, indicating strong segmentation accu-293
racy. On the UHN test set, the model attains 86.8% slice-294
wise accuracy, 79.1% F1-score, and 78.3% Dice, reflecting295
robustness despite greater tumor heterogeneity (25–55mm)296
and distribution drift. The model maintains high precision297
(74.9%) and sensitivity (83.5%), confirming generalization298
across diverse clinical conditions.299

Table 2 presents a comparison of our proposed DETR-300
SAM approach against comparable models on LUNA16.301
Our DiceC of 91.4% outperforms next best models such302
as MRUNet-3D, a multi-resolution U-Net with 3D convo-303
lutions (89.0%), and DB-NET, a dual-branch CNN with at-304
tention mechanisms (88.9%). For sensitivity and specificity,305
our scores of 95.2% and 93.3% exceed prior state-of-the-306
art models such as ConvLSTM (92.2% sensitivity) and SW-307
UNet, a sliding window U-Net (89.0% specificity).308

Figure 4 illustrates full pipeline results, showing Stage309
1 bounding box predictions (LUNA16: red, UHN: blue)310
and Stage 2 segmentation masks from MIP-reconstructed311
slices. The top slices highlight complex vascular struc-312
tures and bronchioles that mimic or obscure small nodules,313
while UHN tumors are larger and more numerous. Bound-314
ing boxes exhibit high IoU, leading to accurate Stage 2 seg-315
mentation, where most tumors are nearly perfectly delin-316
eated. However, the model occasionally misclassifies con-317
nected pulmonary vessels as part of the nodule, as seen in318
the bottom-left mask.319

5. Discussion 320

Our two-stage approach outperforms CNN and U-Net ar- 321
chitectures. Models like MRUNet-3D [1], DB-Net [4] en- 322
hance feature extraction but are constrained by fixed recep- 323
tive fields. Hybrid models such as 3D-MSViT [18] improve 324
specificity (97.8%) and sensitivity but focus more on de- 325
tection than segmentation. Bi-FPN and MV-DCNN empha- 326
size sensitivity but lack a balanced trade-off with specificity. 327
Unlike prior hybrid methods, we train end-to-end trans- 328
former models that make predictions without intermediary 329
processing [7, 27]. Other models oversample LUNA16 nod- 330
ule slices during training, distorting real-world prevalence, 331
and lack external validation [6]. By preserving natural nod- 332
ule sparsity and validating on independent clinical data, our 333
method surpasses previous models across all metrics and 334
ensures greater generalization to variability. 335

While Stage 1 struggles slightly with nodules under 336
7mm, clinical significance is limited as nodules ¡6mm 337
rarely warrant follow-up [13]. Stage 1’s ability to sift 338
through highly sparse data and still detect nodules and tu- 339
mors at state-of-the-art rates is the key contribution of this 340
work. However, errors in Stage 1 propagate to Stage 2, 341
highlighting dependency on precise region proposals. Fu- 342
ture work could explore adaptive confidence thresholds to 343
reduce error propagation. Unlike balanced classification, 344
our approach follows an anomaly detection paradigm where 345
accuracy holds greater significance due to the rarity of pos- 346
itive instances. Despite lower performance on UHN, the 347
model generalizes despite large nodule variability, imaging 348
protocols, and distribution shifts. 349

We acknowledge the limitations of performing all pre- 350
processing and modeling steps in 2D. Segment- ing lung 351
nodules in 2D may introduce challenges in differentiating 352
lesions near the thoracic wall and could impact visibility 353
for subsolid and ground-glass opacity (GGO) nodules, par- 354
ticularly in thicker MIP slices. Future work will explore 355
extending our framework to 3D volumetric processing to 356
enhance spatial continuity and improve detection of these 357
challenging cases. Additionally, a subclass analysis could 358
provide deeper insights into performance across different 359
nodule types. 360

5.1. Ablation Study 361

To assess the impact of each component in our pipeline, we 362
conducted an ablation study (Table 3). Applying SAM di- 363
rectly to lung CT scans resulted in a Dice coefficient of only 364
3.4%, confirming its inability to segment nodules without 365
guidance. MedSAM, despite being pre-trained on medi- 366
cal imaging datasets, exhibited similarly poor performance, 367
achieving 14.1% when applied directly and 26.7% after 368
fine-tuning, indicating that pre-training alone does not en- 369
sure generalization to lung nodule segmentation. Introduc- 370
ing a detection stage significantly improved results. Using 371
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Figure 4. Qualitative results from Stage 1 (top row) region proposals for LUNA16 (red) and UHN (blue), followed by Stage 2 (middle and
bottom rows) masks from deconstructed MIP images.

Table 1. Performance Metrics for Region Proposal (Stage 1) and Auto-Segmentation (Stage 2) on LUNA16 and UHN Test Sets. IoU
threshold = 0.5.

Metric LUNA16 UHN Test Set
F1/Dice Precision Sensitivity F1/Dice Precision Sensitivity

Stage 1: Region Proposal
F1 Score 94.2% – – 79.1% 74.9% 83.5%
Avg IoU (All) – 93.3% 95.2% – – –
IoU (Small) – 78.4% 83.3% – – –
IoU (Medium) – 96.7% 97.0% – – –
IoU (Large) – 97.8% 99.2% – – –
Slice Accuracy 97.1 – – 86.8% – –

Stage 2: Auto-Segmentation
Dice Coefficient 91.4% – – 78.3% – –

DETR in Stage 1 increased the Dice coefficient to 48.5%,372
demonstrating that bounding box proposals help narrow the373

search space for SAM. However, DETR struggled signifi- 374
cantly with small nodules with detection rates of only about 375
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Table 2. Comparison of Nodule Segmentation on DiceC, Sensitivity, and Specificity

Author Architecture DiceC (%) Sensitivity (%) Specificity (%)

Agnes et al. [1] MRUNet-3D 89.0 94.8 84.2
Bhattacharyya et al. [4] DB-NET 88.9 90.2 77.9
Song et al. [22] ConvLSTM 84.0 87.8 81.5
Ma et al. [16] SW-UNet 84.0 82.0 89.0
Annavarapu et al. [2] Bi-FPN 82.8 92.2 78.9
Cao et al. [6] DB-ResNet 82.7 89.4 79.6
Wang et al. [25] MV-DCNN 77.9 87.0 77.3

Our Method DETR-SAM 91.4 95.2 93.3

Table 3. Ablation Study Results: Performance of Different Configurations in the Proposed Pipeline

Configuration F1 Score (%) Dice Coefficient (%)

Direct SAM Application – 3.4
Finetuned SAM Application – 19.7
Finetuned MedSAM Application – 26.7
S1: DETR + S2: Finetuned MedSAM 52.1 48.5
S1: Def.-DETR + S2: Finetuned MedSAM 94.2 91.4

30%. Replacing DETR with Deformable-DETR yielded376
particularly striking results more than doubling segmenta-377
tion accuracy, underscoring the critical role of adaptive at-378
tention in rare object detection.379

These results underscore the necessity of a two-stage380
approach and how a robust detection stage mitigates class381
imbalance. One possible reason for DETR’s superiority is382
its self-attention mechanism enables more flexible, context-383
aware feature representations of lung anatomy, allowing384
it to distinguish nodules from normal structures even in385
ambiguous cases, potentially learning hierarchical relation-386
ships between tissue types and structural anomalies in a way387
that segmentation models alone cannot.388

6. Conclusion389

This study introduces LN-Transformer, a two-stage trans-390
former framework tailored for sparse lung nodule segmen-391
tation. Key contributions include integrating Deformable-392
DETR with focal loss, MIP, SAM for mask refinement393
to address class imbalance and segment nodules. Our394
method achieves state-of-the-art results on LUNA16 (F1:395
94.2%, Dice: 91.4%) and demonstrates robust general-396
ization on an independent clinical dataset (F1: 79.1%,397
Dice: 78.3%), highlighting its potential for clinical appli-398
cation.399
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