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Abstract

Can autoregressive large language models (LLMs) learn consistent probability distributions
when trained on sequences in different token orders? We prove formally that for any well-
defined probability distribution, sequence perplexity is invariant under any factorization,
including forward, backward, or arbitrary permutations. This result establishes a rigor-
ous theoretical foundation for studying how LLMs learn from data and defines principled
protocols for empirical evaluation. Applying these protocols, we show that prior studies
examining ordering effects suffer from critical methodological flaws. We retrain GPT-2
models across forward, backward, and arbitrary permuted orders on scientific text. We
find systematic deviations from theoretical invariance across all orderings with arbitrary
permutations strongly deviating from both forward and backward models, which largely
(but not completely) agreed with one another. Deviations were traceable to differences in
self-attention, reflecting positional and locality biases in processing. Our theoretical and
empirical results provide novel avenues for understanding positional biases in LLMs and
suggest methods for detecting when LLMs’ probability distributions are inconsistent and
therefore untrustworthy.

1 Introduction

Transformer-based (Vaswani et al., 2023) decoder-only large language models (LLMs) owe their success
largely to a scalable architecture and an autoregressive loss function grounded in probability theory. These
models approximate the conditional probability distribution over a sequence of tokens, denoted as P (Xt |
X1:t−1), where Xt is the t-th token in a sequence X1, X2, . . . , Xt, and X1:t−1 = X1, . . . , Xt−1 represents the
prior context. The training objective minimizes the negative log-likelihood loss: L = − 1

n

∑n
t=1 ln P (Xt |

X1:t−1), where n is the sequence length, encouraging the model to assign high probabilities to correct tokens
given their context. This leverages vast text corpora to learn a probability distribution over sequences in
a vocabulary V. A valid probability distribution belongs to the set P, satisfying P (X1, . . . , Xn) ≥ 0 for
any sequence X1, . . . , Xn, and normalizing such that:

∑
(X1,...,Xn)∈Vn P (X1, . . . , Xn) = 1. The chain rule

ensures consistency in factorization: P (X1, . . . , Xn) =
∏n

t=1 P (Xt | X1:t−1).

The theoretical foundation of LLMs prompts a critical question: does a formal basis exist to guarantee
that probability estimates remain consistent across models trained on the same data but with different
token orderings, such as forward (X1, . . . , Xn) versus reverse (Xn, . . . , X1)? Do practical LLMs, which
approximate these probabilities, uphold this consistency? If so, under what conditions? If not, what causes
the discrepancies? Inconsistencies in probability estimates may arise from practical limitations, such as
learning order and data complexity (Lampinen et al., 2024; Zucchet et al., 2025), gradient-based optimization,
architectural biases and constraints (Liu et al., 2023; Latuske et al., 2015; Wu et al., 2025; Bondarenko et al.,
2023; Gu et al., 2025) or numerical precision limitations (Barbero et al., 2024). These deviations could
reflect gaps in our theoretical understanding of LLMs, potentially contributing to issues like hallucinations
(see Huang et al. 2025 for a review) or unfaithful or inconsistent reasoning (Lanham et al., 2023; Lindsey et al.,
2025; Chen et al., 2025). Investigating whether a theoretical framework ensures probability consistency and
identifying the conditions for its validity is crucial for understanding the learning dynamics of these models
and how to best evaluate them.
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In this contribution, we provide a mathematical proof addressing this theoretical consistency. We demon-
strate rigorously using the chain rule of probability that sequence perplexity, which is fundamentally deter-
mined by the joint probability P (X1, . . . , Xn), is theoretically invariant to the order of factorization. This
means that calculating perplexity using forward conditionals, backward conditionals, or indeed any fixed
permutation of the tokens, must yield the exact same result for a true probability distribution. While prior
work has suggested potential equivalence between forward and backward processing (Zhang et al., 2018;
Papadopoulos et al., 2024; Zhang et al., 2025), our proof formalizes this and generalizes it to arbitrary
factorizations, establishing a clear theoretical benchmark against which practical model behavior can be
assessed (detailed in Section 2).

Despite the theoretical expectation of perplexity equivalence across token orderings, empirical studies have
reported discrepancies. For instance, Kallini et al. (2024) found autoregressive transformers favor natural
language order. Similarly, Papadopoulos et al. (2024) and Luo et al. (2024a) observed lower perplexities in
forward-trained models. In contrast, Yu et al. (2025) noted inconsistent perplexity differences across text
domains, while Zhang et al. (2025) corroborated lower forward perplexities, aligning with Papadopoulos
et al. (2024). Additionally, Luo et al. (2024a) and Zhang et al. (2025) reported superior performance of
backward-trained models in multiple-choice tasks.

However, the aforementioned studies have failed to accurately address the theoretical equivalence of forward
and backward sequences because they lacked a coherent and complete theoretical foundation, which led to
critical errors in their experimental setups. When comparing joint probabilities of sequences with different
factorization orders, these studies inadvertently analyzed distinct text sequences, due to errors such as
omitting begin-of-sequence tokens (Kallini et al., 2024; Luo et al., 2024a; Yu et al., 2025), retraining tokenizers
on reversed text (Papadopoulos et al., 2024; Luo et al., 2024a), and conflating logical reversal with strict
token sequence reversal (Zhang et al., 2025; Papadopoulos et al., 2024) (Table 1; see Appendix A for details).
These errors undermine the reliability of sequence probability comparisons by violating the proof’s conditions,
underscoring the need for a rigorous theoretical framework to validate interpretations of empirical results.

Our proof serves to address the errors in prior studies and establishes precise protocols for empirically
investigating learning inconsistencies in LLMs. These protocols ensure proper handling of special tokens,
consistent tokenization strategies, and strict alignment of training orderings. To demonstrate their efficacy,
we revisit the experimental setup of Luo et al. (2024a) and conduct theory-aligned training and evaluations
in the neuroscience domain.

To precisely follow the proof and ensure valid sequence perplexity comparisons, we trained 27 GPT-2 models
(Radford et al., 2019) at three scales (124M, 355M, 774M) on twenty years of neuroscience publications, using
forward, backward, and permuted token orderings. We adhered to strict protocols: each sequence starts with
a begin-of-sequence (BOS) token, employs a tokenizer trained solely on forward text across all factorizations,
and applies token permutations within the context window. Models with different token orderings use
identical data sequences in the same order, differing only in token arrangement within the context (see
Appendix D for details). We evaluated model differences by analyzing consistencies of perplexity, attention
strategies, representational alignment and accuracy on BrainBench (Luo et al., 2024b), a neuroscientist-
curated benchmark that tests models’ ability to distinguish original experimental results from subtly altered
versions.

To foreshadow key results, we find forward- and backward-trained models exhibit broadly similar perplexity,
attention patterns, and downstream performance, though small but systematic discrepancies emerge, con-
trary to our theoretical predictions. These discrepancies are greatly amplified in models trained on permuted
text, where we trace inconsistencies to positional biases in self-attention. Our analysis reveals that causal
self-attention exhibits both locality and long-range biases, extending prior observations of early-position bi-
ases. We further clarify that these biases arise not only from model architecture but also from the structure
of the training data, beyond current explanations of attention biases (Liu et al., 2023; Xiao et al., 2024).
While prior work has noted the theoretical equivalence of joint probabilities within specific settings, our
study strengthens the empirical foundation with an explicit mathematical proof. Our work not only corrects
errors in earlier research, but more importantly clarifies a key line of inquiry into probability consistency
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in LLMs, bridges the previously disconnected domains of probability learning and architectural biases and
illuminates some critical aspects of the way LLMs learn from data.

Table 1: Methodological Deviations from Theoretical Proof in Recent Studies
Deviation Category Study
Missing begin-of-sequence and/or final tokens Kallini et al. (2024), Luo et al. (2024a)

Yu et al. (2025)
Retraining tokenizer on backward text Papadopoulos et al. (2024)

Luo et al. (2024a)
Mixing logical reversal with token reversal Zhang et al. (2025)

Papadopoulos et al. (2024)

2 Proof of Perplexity Equivalence in Sequences of Arbitrary Factorizations

The perplexity of a sequence of tokens is typically calculated by factorizing the joint probability into condi-
tional probabilities in a forward direction, which allows for practical computation using language models that
predict next tokens given previous context. While this conditional decomposition suggests a directional na-
ture, we show that sequence perplexity fundamentally measures the joint probability of the entire sequence.
Calculations of sequences factorized in different orders are simply different paths to recover this same joint
probability, guaranteed equal by the chain rule of probability.

For practical autoregressive language models, which predict each token based on prior context, we introduce
a begin-of-sequence (BOS) token, X0, to provide the initial context needed for the model to predict the
first token. While not strictly necessary in a general mathematical context, X0 ensures the first conditional
probability is well-defined in this setting. We define P (X0) = 1, as it has no prior context. Let X1, X2, . . . , Xn

be a sequence of n tokens following X0. Let σ be a permutation of the indices {1, 2, . . . , n}, defining a
reordering: Xσ(1), Xσ(2), . . . , Xσ(n).

The perplexity for this ordering is defined as

PPσ = exp
(

− 1
n

n∑
i=1

ln P (Xσ(i)|X0, Xσ(1), . . . , Xσ(i−1))
)

.

By the chain rule of probability,

P (Xσ(i)|X0, Xσ(1), . . . , Xσ(i−1)) =
P (X0, Xσ(1), . . . , Xσ(i))

P (X0, Xσ(1), . . . , Xσ(i−1))
,

we rewrite the perplexity as

PPσ = exp
(

− 1
n

n∑
i=1

ln
P (X0, Xσ(1), . . . , Xσ(i))

P (X0, Xσ(1), . . . , Xσ(i−1))

)

= exp
(

− 1
n

n∑
i=1

[
ln P (X0, Xσ(1), . . . , Xσ(i)) − ln P (X0, Xσ(1), . . . , Xσ(i−1))

])
.

This sum telescopes:
n∑

i=1

[
ln P (X0, Xσ(1), . . . , Xσ(i)) − ln P (X0, Xσ(1), . . . , Xσ(i−1))

]
= ln P (X0, Xσ(1), . . . , Xσ(n)) − ln P (X0),

since P (X0) = 1, so ln P (X0) = 0, yielding

PPσ = exp
(

− 1
n

ln P (X0, Xσ(1), . . . , Xσ(n))
)

.
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Since {Xσ(1), . . . , Xσ(n)} is a permutation of {X1, . . . , Xn}, the joint probability is unchanged:

P (X0, Xσ(1), . . . , Xσ(n)) = P (X0, X1, . . . , Xn).

Thus,

PPσ = exp
(

− 1
n

ln P (X0, X1, . . . , Xn)
)

. (1)

This general result encompasses the equivalence of perplexities of forward and backward factorized sequences
as special cases. We provide the corresponding proof in Appendix B. We also provide intuitive examples
illustrating this equivalence in Appendix C.

Implications for Language Model Training The theoretical proof demonstrates that, in language
model training, the choice of token prediction order—left-to-right, right-to-left, or any fixed permuta-
tion—yields the same theoretical perplexity, provided the model accurately captures the conditional proba-
bilities. Notably, a model trained on one factorization, such as the forward order, does not explicitly model
conditionals from other factorizations in the backward order. To empirically verify this equivalence, sibling
models must be trained on different factorizations, as approximating intermediate conditionals of another
factorization from a single trained model via sampling is computationally infeasible for large text corpora.

3 Experiments

To evaluate whether LLMs approximate consistent probabilities across token orderings, we train 27 GPT-2
models (Radford et al., 2019) from scratch at three scales (124M, 355M, 774M parameters) on a 1.3-billion-
token corpus of neuroscience publications spanning 20 years. Prior work showed that models of this size,
trained on the same data, matched or exceeded expert performance on a neuroscience benchmark (Luo et al.,
2024c). Here, the models were trained with forward, backward, and permuted token orderings, each with
three different initializations. To align with the theoretical framework, all sequences include a begin-of-
sequence (BOS) token and fully span the model’s context window. A new tokenizer, trained on the same
neuroscience corpus using forward factorization, ensures all models process identical data in consistent orders.
All models are trained for five epochs to convergence. We assess model consistency through perplexity (Sec.
3.1), attention strategies (Sec. 3.2), representational alignment (Sec. 3.3) and accuracy on BrainBench
(Sec. 3.4; Luo et al. 2024b), a neuroscientist-curated benchmark that evaluates models’ ability to distinguish
original experimental results from subtly altered versions (see Appendix D, E for details).

3.1 Perplexity Differences Across Sequence Factorizations

Forward and backward-trained models show highly similar perplexities across validation set text sequences
(N = 9, 413; Fig. 1), with Pearson correlation coefficients greater than 0.99 (Table 2). However, forward-
trained models consistently exhibit lower perplexity than backward-trained models, with the gap widening
as model size increases (Table 2). Models trained on permuted text exhibit significantly higher perplexities,
diverging markedly from theoretical expectations (Fig. 1; Table 2). For perplexity differences on the training
set, the complete training and validation losses and initialization differences, see Appendix F (Fig. S.1, S.2;
Table S.1, S.2).

3.2 Tracing Ordering Effects to Self-Attention Biases

To understand the sources of the perplexity differences, we analyze the attention patterns in models trained
on differently ordered text sequences. If self-attention inherently biases toward certain token positions, these
positional preferences could cause discrepancies in perplexity across different factorizations.

Token Ordering Shapes Attention Entropy Across Models We investigate variations in attention
weight distributions across models by analyzing their entropy. Let A(l,h) ∈ RT ×T denote the attention
weight matrix for a specific head h in layer l, where T is the sequence length. Each entry A

(l,h)
ij represents
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Figure 1: Average validation perplexity differences across across model sizes and training direc-
tions. Forward and backward text training yields similar perplexities, though forward models consistently
achieve lower values (difference below zero). This gap widens slightly with model size. Permuted text train-
ing yields much higher perplexity than both forward and backward models, with similar differences to each,
causing the curves to overlap. Shaded regions indicate one standard deviation over the mean across three
random initializations.

Table 2: Comparison of Statistical Metrics Across GPT-2 Model and Directions Across Three Initializations
(∗ ∗ ∗ indicates p < 0.001)

Model Direction Pearson r t-stat Cohen’s d

124M
Fwd vs Bwd 0.995 ± 0.000∗∗∗ −18.486 ± 8.795∗∗∗ 0.191 ± 0.091
Fwd vs Perm 0.889 ± 0.001∗∗∗ −230.581 ± 2.081∗∗∗ 2.377 ± 0.021
Bwd vs Perm 0.888 ± 0.003∗∗∗ −230.148 ± 2.022∗∗∗ 2.372 ± 0.021

355M
Fwd vs Bwd 0.995 ± 0.000∗∗∗ −40.788 ± 1.958∗∗∗ 0.420 ± 0.020
Fwd vs Perm 0.930 ± 0.004∗∗∗ −199.889 ± 1.077∗∗∗ 2.060 ± 0.011
Bwd vs Perm 0.930 ± 0.004∗∗∗ −198.720 ± 1.040∗∗∗ 2.048 ± 0.011

774M
Fwd vs Bwd 0.995 ± 0.000∗∗∗ −64.484 ± 1.459∗∗∗ 0.665 ± 0.015
Fwd vs Perm 0.957 ± 0.001∗∗∗ −208.686 ± 0.935∗∗∗ 2.151 ± 0.010
Bwd vs Perm 0.958 ± 0.001∗∗∗ −207.833 ± 0.675∗∗∗ 2.142 ± 0.007

the attention probabilities from token i to token j. For each token i, its attention distribution is defined
over the preceding tokens and itself (j ≤ i), denoted a

(l,h)
i = (A(l,h)

i1 , A
(l,h)
i2 , . . . , A

(l,h)
ii ) with

∑i
j=1 A

(l,h)
ij = 1.

The entropy for the attention distribution of token i is then H(a(l,h)
i ) = −

∑i
j=1 A

(l,h)
ij ln A

(l,h)
ij . For i = 1,

we define H(a(l,h)
1 ) = 0. To account for varying context sizes, we normalize this entropy by the maximum

possible entropy for a distribution over i tokens, which corresponds to a uniform distribution (pj = 1/i for
j = 1, . . . , i). The maximum entropy is: Hmax(i) = −

∑i
j=1

1
i ln 1

i = ln i. For i = 1, Hmax(1) = ln 1 = 0.

The normalized entropy for token i is then: Ĥ(a(l,h)
i ) = H(a

(l,h)
i

)
Hmax(i) = H(a

(l,h)
i

)
ln i for i > 1, and Ĥ(a(l,h)

1 ) = 0.

We compute the normalized entropy by averaging across all heads and 64 text sequences per context size,
resulted in a scalar value representing the variation of attention for each context size for each model layer.
Sequences are sampled from the validation split of twenty years of neuroscience publications, each fully
spanning the model’s context window with a BOS token prepended.

We observe that models trained on forward and backward token orders show similar entropy patterns, while
the model trained on permuted token order exhibits much higher and more divergent entropy, especially
in early to middle layers (Fig. 2). We attribute this to disrupted grammatical dependencies caused by
consistent token permutation. Although attention entropy across models tends to converge in the later
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Figure 2: Attention entropy across three data orders (GPT-2 124M). Normalized attention entropy
(min = 0, max = 1) is measured across layers averaged over heads and sampled text sequences for varying
context sizes. Models trained on forward, backward, and permuted token orders show distinct patterns
despite using the same data. Forward and backward models exhibit similar trends, with larger differences at
early layers. The model trained with permuted token order displays substantially higher and more divergent
entropy, particularly in early to middle layers, suggesting distinct learning dynamics driven by unnatural
local and long-range dependencies. Models at initialization (Init) are shown for reference and display near-
maximal entropy. All test sequences fully span the context window each prepended with a BOS token.

layers, earlier discrepancies likely cascade, leading to overall divergence in perplexity despite theoretical
equivalence. Results for different initializations and model sizes are in the Appendix F.

Attention Weights Are Biased by Token Positions We complement our entropy analysis by exam-
ining how attention weights vary across token pairs within a sequence based on the distance of their relative
positions. To understand the relative importance of tokens within this context, we compute the rank of each
attention weight A

(l,h)
ij within the set a

(l,h)
i . Let R(A(l,h)

ij |a(l,h)
i ) denote the rank of A

(l,h)
ij among the i weights

in a
(l,h)
i , where ranks range from 0 (for the smallest weight) to i − 1 (for the largest weight). We normalize

these ranks to a [0, 1] scale to account for the varying context size i. The normalized rank for the attention
weight A

(l,h)
ij is R̂

(l,h)
ij = R(A

(l,h)
ij

|a(l,h)
i

)
i−1 for i > 1 and R̂

(l,h)
11 = 0.

We analyze how normalized ranks relate to the distance d = |i − j| between the query token i and the key
token j, for each possible distance d ∈ {0, 1, . . . , T − 1}. We aggregate normalized ranks by averaging them
across all valid token pairs (i, j) such that j ≤ i and |i − j| = d, across all heads in a layer, and across 64
randomly sampled text sequences fully spanning the context window with BOS prepended) from the same
neuroscience dataset.

We observe in Fig. 3 that compared to models at initialization (Init), both forward and backward trained
models exhibit strong biases toward both adjacent tokens and those at the maximum context length, with
the strength of bias varying across layers. In contrast, the model trained on permuted text shows a distinct
trend, with positional bias generally decreasing as token distance increases across most layers.

We confirm that biases toward nearby tokens and those at maximal distances are a general phenomenon
across pre-trained models (e.g., GPT-2, Pythia, and Llama-2) when evaluated on general text corpora like
The Pile (Gao et al., 2020) (see Appendix F; Fig. S.3, S.4, S.5). While the exact form of the bias varies, we
attribute these differences to factors such as the greater diversity and scale of the pre-training data, which
likely support more nuanced learning across token distances. Full results across different initializations and
model sizes are provided in Appendix F.
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Figure 3: Positional bias in self-attention varies with training directions and layers (GPT-2
124M). Normalized attention rank (min = 0, max = 1) is plotted as a function of token distance within
the context, averaged across heads, sampled sequences, and layers. Compared to models at initialization
(Init), forward (Fwd) and backward (Bwd) trained models show strong positional biases toward both nearby
tokens and tokens at maximal distance, with the degree of bias varying across layers. In contrast, the model
trained on permuted text (Perm) displays distinct patterns, with positional bias generally decreasing as token
distance increases across most layers. All test sequences fully span the context window each prepended with
a BOS token.

3.3 Representational Divergence Across Token Orderings

Having established differences in attention strategies, we trace out how such differences across models affect
downstream representational semantics, focusing on how identical text sequences are represented in different
models. Specifically, we compare hidden state representations from each self-attention block of same-sized
models (Kornblith et al., 2019).

For layer l, hidden states H(l) ∈ RT ×D (T : sequence length, D: hidden dimension) are extracted from
64 randomly sampled sequences. Hidden states are reordered to forward sequence order. Representational
Dissimilarity Matrices (RDMs) are computed as RDM(l)

i,j = 1 − H
(l)
i

·H(l)⊤
j

||H(l)
i

||·||H(l)
j

||
. For two models, RSA is the

Spearman’s rank correlation coefficient of the upper triangular elements of their RDMs. RSA is aggregated
by averaging across batches and sampled sequences per layer.

We observe that as layers advance, representational alignment decreases across all direction pairs. Seman-
tic alignment is significantly higher between forward- and backward-trained models than with permuted
models. This mirrors our earlier observations on attention strategies, where forward and backward models
exhibited more similar attention patterns to each other than to the permuted model (Fig. 2, 3), underscoring
fundamental differences in learning dynamics.

3.4 BrainBench Evaluations

To provide an external performance measure of evaluation, we extend our analysis beyond perplexity incon-
sistencies to include downstream benchmark performance. We assess both forward- and backward-trained
models on BrainBench, a recognized benchmark task requiring differentiation of original experimental results
from altered versions, compared against human-expert performance (details in Appendix E), as utilized by
Luo et al. (2024a). This evaluation is critical, as our work rigorously follows specified protocols to ensure
perfect comparability between forward- and backward-trained models, correcting experimental errors in Luo
et al. (2024b) and enabling a robust reassessment of their results and interpretations. We exclude permuted-
text models, which converged during training (Fig. S.2), but cannot be evaluated on BrainBench, as its
items do not always span the full context window and become invalid under the training permutation.
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Figure 4: Representational similarities across training directions. Forward- and backward-trained
models show higher representational similarity to each other than to the model trained on permuted text.
Across all comparisons, similarity declines in deeper layers, with the permuted model’s representations
becoming increasingly orthogonal (toward zero correlation) to the others, indicating a diverging semantic
structure from models trained on forward and backward orderings.

Forward and Backward-Trained Models Perform Similarly on BrainBench We made similar
observation as Luo et al. (2024a) that GPT-2 models pre-trained on neuroscience rival or exceed human expert
performance (Fig. S.24). As model size increased, both forward and backward-trained models improved in
BrainBench performance (F = 133.397, p = 1.53e − 08). However, we found no advantage in backward-
trained models over forward-trained ones (F = 1.868, p = 0.1933) and the interaction between direction and
model size was not significant (F = 4.035, p = 0.0643; Appendix E).

Forward and Backward-Trained Models Align with Human Judgements Similarly Following
Luo et al. (2024a), we examined whether forward-trained and backward-trained models, alongside human
experts, identified the same BrainBench items as difficult. Difficulty was quantified for humans by calculating
mean accuracy across 200 test cases and for GPT-2 models by computing signed perplexity differences
between incorrect and correct abstracts per test case.

Consistent with Luo et al. (2024a), we found that regardless of training direction, model judgments correlated
more strongly with each other (M = 0.74, SD = 0.08) than with human judgments (M = 0.11, SD =
0.04; Fig. S.25, S.26). In contrast to Luo et al. (2024a), however, correlations between forward-trained
(M = 0.12, SD = 0.03) and backward-trained (M = 0.10, SD = 0.04) model judgments and human expert
judgments were comparable (t(8) = 1.009, p = 0.342; Fig. S.25). This differs from Luo et al. (2024a), who
reported significantly lower alignment for backward-trained models with human judgments. This difference
stems from corrections we made to their experimental setup: we ensured that forward- and backward-
trained models shared identical initialization conditions, were trained on exactly the same data sequences
fully spanning the context window with a BOS token prepended, and used consistent tokenizations. This
divergence in findings has important implications for model-human alignment and the design of effective
model-human teaming systems (Yáñez et al., 2025).

4 Discussion

In this contribution, we formally prove that sequence perplexity is theoretically invariant to factorization
order under the chain rule of probability, establishing a mathematical benchmark for evaluating how consis-
tent LLMs are at approximating conditional probabilities. Empirically, however, models trained on forward,
backward, and permuted token orders exhibit systematic deviations from this equivalence. Forward and
backward models achieve similar (but not identical) perplexities, with forward models consistently outper-
forming backward models, while permuted training yields significantly higher losses. Attention analysis
reveals that forward/backward models develop strong positional biases—favoring adjacent and long-range
tokens—whereas permuted models exhibit distinct attention patterns. Representational alignment is higher
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between forward and backward models but degrades with depth, diverging sharply for permuted models.
Finally, evaluation on the BrainBench benchmark shows that both forward and backward models match hu-
man expert performance but align poorly with human judgment patterns, contradicting prior claims about
the inferior alignment of backward models. Together, these findings reveal how architectural and data-driven
biases disrupt theoretical equivalence and shape LLM learning dynamics.

While we trained GPT-2 models on backward and permuted text sequences to learn different factorizations
of joint probability and demonstrate discrepancies from theoretical equivalence, one might question whether
forward-trained models alone could recover different factorizations. In principle, we could sample from for-
ward models’ conditional probabilities to construct joint probabilities factorized in different orders. However,
this approach is computationally infeasible given the enormous sampling space across all possible text token
combinations. Therefore, training complementary models on various token orderings represents the most
practical approach for this investigation.

Understanding the discrepancies between the way models learn in practice and how they might be expected
to learn in theory has significant implications. Although we identified errors in prior work that need cor-
rection, we acknowledge their contributions in revealing interesting implications of such asymmetries. For
instance, Yu et al. (2025) suggested alternative sequence learning directions based on different factorizations
could reveal unique insights about data distributions and potentially indicate data quality. Papadopoulos
et al. (2024) and Zhang et al. (2025) proposed theoretical frameworks explaining why discrepancies occur,
informing our understanding of language model learning dynamics. We also see connections to Wu et al.
(2025), who identified position bias in self-attention—leading us to suspect this bias may contribute to
asymmetric perplexities that challenge theoretical equivalence.

Beyond theoretical considerations, researchers have found practical utility in backward training approaches.
Pfau et al. (2023) trained backward models to identify adversarial prompts for detecting toxic responses.
Zhang et al. (2018) optimized bidirectional agreement at sequence-level in machine translation. Nguyen
et al. (2023) jointly optimized forward and backward autoregressive language models, maximizing token-
level agreement to provide denser supervision signals.

Our findings on causal self-attention biases connect with and extend prior work, such as attention sinks (Xiao
et al., 2024; Yu et al., 2024; Gu et al., 2025) and the lost-in-the-middle phenomenon (Liu et al., 2023). One
observed bias is consistent with attention sinks (Xiao et al., 2024), where initial tokens dominate attention.
This manifests in our analysis (Fig. 3) as high attention from final tokens towards initial tokens, reflected
by the increased normalized attention at the far right of the axis. Additionally, we identify a pronounced
locality bias, consistent with prior studies on vanilla transformers (Qin et al., 2022) and bidirectional models
like BERT (Clark et al., 2019; Kovaleva et al., 2019), where attention tends to concentrate on nearby tokens.

Notably, our work highlights a more comprehensive view of causal self-attention biases across all token
distances irrespective of context size, unlike the focus on only the first few tokens in Xiao et al. (2024) (cf.
Yu et al. 2024). By using normalized ranked attention, we avoid the dilution of raw probabilities caused
by softmax in longer contexts, in contrast to Xiao et al. (2024)’s reliance on raw probabilities, which treats
attention as a limited resource. While Xiao et al. (2024) attributed sinks to early token visibility under
masked self-attention, our results with permuted models suggest sinks might not arise under different data
factorizations.

Furthermore, our findings offer an empirical explanation for the lost-in-the-middle effect (Liu et al., 2023),
where information at the start or end of the context is retrieved best. The strong attention observed for
both local tokens and long-range (initial-final) token pairs (Fig. 3) directly accounts for why intermediate
information might receive less focus and be harder to retrieve.

In hindsight, it may seem unsurprising that architectural biases toward specific token positions lead to
discrepancies in the theoretical equivalence we established. However, prior work on positional biases and
forward-backward inconsistencies developed largely independently, and the connections between them re-
mained unexplored. While Kallini et al. (2024) speculated that locality bias might contribute to forward-
backward differences, a systematic analysis linking attention patterns to these discrepancies had not been
conducted until now.
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Studying the discrepancies between theoretical expectations and practical implementations offers valuable
insights into learning dynamics and biases in transformer architectures, which dominate today’s AI land-
scape. We suspect that deviations from proper probability distributions may contribute to thorny problems
like hallucination and unpredictable out-of-distribution behaviors in LLMs. These deviations could poten-
tially serve as diagnostic metrics for identifying and modeling unexpected behaviors and inform designs of
mitigation strategies. One potential mitigation strategy could involve training two or more sibling models
simultaneously with a shared objective to minimize divergence in perplexity, encouraging more consistent
and stable learning. While this may evoke bidirectional models like BERT (Devlin et al., 2019), it is worth
noting that BERT achieves symmetric probabilities by design due to bi-directional attention, which does
not optimize joint probabilities—since masked tokens are predicted independently. While these connections
and proposed strategies are promising, they require extensive investigation beyond the scope of this work.
Our current contribution focuses on laying the theoretical groundwork and establishing experimental design
best practices as a foundation for such future efforts. Future research in this area holds significant promise
for developing more reliable and interpretable LLMs, with the potential to transform how we diagnose and
mitigate model limitations.

Broader Impact Statement

As a theoretical contribution, this work establishes a solid foundation and practical protocols for theory-
aligned model training. Although our empirical experiments are extensive, they do not extend to training
multi-billion-parameter, state-of-the-art LLMs on diverse datasets. We envision our theoretical framework
serving as a benchmark for such models at greater scale. Notably, prior work, despite identified errors, has
already observed inconsistencies in larger models for various training domains, lending support to our premise.
Further, in our current work, we observe consistent positional biases in larger LLMs trained on general text,
suggesting that training on data of varying factorizations would likely reveal corresponding inconsistencies.
Future work could involve training such models with varied factorizations, benchmarking their inconsistencies
against theoretical predictions, and investigating how these inconsistencies manifest across diverse LLM
applications — ultimately supporting the development of more accountable and interpretable LLM systems
with positive societal impact.
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A Existing Work’s Misalignment with Theory

Studies (Table 1) which have noted discrepancies of joint probabilities of forward and backward factorizations
of the same text sequence often deviate from the theoretical premise due to subtle experimental design or
data handling issues. Consequently, when they compared joint probabilities of sequences with different
factorization orders, they were in fact inadvertently analyzing distinct text sequences.

These deviations from the theoretical setup weaken confidence in empirical findings, highlighting the need
for rigorous adherence to the proof’s conditions to ensure valid interpretations.

A.1 Missing Begin-of-sequence and/or Final Tokens

Kallini et al. (2024) and Luo et al. (2024a) omitted a begin-of-sequence (BOS) token during tokeniza-
tion when training and testing models on forward and reversed text. This oversight, though seemingly
minor, makes the perplexity of forward and backward factorizations of the same sequence incompara-
ble (Pfau et al., 2023). For a sequence of tokens X1, X2, . . . , Xn, without a BOS token, the forward
factorization computes the joint probability as P (X2|X1)P (X3|X1, X2) . . . P (Xn|X1, . . . , Xn−1), missing
P (X1), while the backward factorization computes P (Xn−1|Xn)P (Xn−2|Xn−1, Xn) . . . P (X1|X2, . . . , Xn),
missing P (Xn). This results in inequivalent factorizations of P (X1, X2, . . . , Xn). Including a BOS
token ensures consistent factorizations, with P (X1|BOS) and P (Xn|BOS), aligning the forward and
backward probabilities as equivalent, as supported by the proof. In Section 4 (RQ3) of Yu
et al. (2025), when comparing step-wise loss differences between forward and reversed-trained mod-
els, the first and last tokens of text sequences are excluded. For a sequence X1, X2, . . . , Xn,
this corresponds to comparing the probabilities: P (X2|X1)P (X3|X1, X2) . . . P (Xn−1|X1, . . . , Xn−2) and
P (Xn−1|Xn)P (Xn−2|Xn, Xn−1) . . . P (X2|Xn, . . . , X3), which is inconsistent with the theoretical compari-
son.

A.2 Retraining Tokenizer on Backward Text

Both Luo et al. (2024a) and Papadopoulos et al. (2024) explored retraining tokenizers on reversed text.
While Papadopoulos et al. (2024) did so for thoroughness and reported limited impact compared to reusing
the original tokenizer, this approach is conceptually flawed for precisely testing theoretical forward-backward
equivalence. As Luo et al. (2024a) demonstrated, retraining a Byte Pair Encoding (BPE) tokenizer (Rad-
ford et al., 2019; Gage, 1994) on character-reversed text necessarily generates a different vocabulary and
tokenization compared to the original forward text. Consequently, the forward and backward passes effec-
tively process distinct sequences, negating the theoretical foundation for comparing them.

A.3 Mixing Logical Reversal with Token Reversal

Papadopoulos et al. (2024) and Zhang et al. (2025) investigated theoretical reasons for the observed dis-
crepancy between forward and backward model perplexities, a deviation from theoretical predictions. Both
employed controlled experiments targeting computational asymmetry, such as Zhang et al. (2025)’s analysis
of multiplication (p×q=m vs. m=p×q). However, these experimental setups are flawed because they model
logical reversal rather than the strict token sequence reversal required by the underlying theoretical proof.
Papadopoulos et al. (2024)’s prime factorization study suffered from the same issue. Since the forward and
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backward tasks in these experiments do not operate on true token reversals, they fail to meet the condi-
tions for theoretical equivalence, thereby invalidating the authors’ explanations for the perplexity asymmetry
observed in language models.

B Proof of Perplexity Equivalence in Sequences of Forward and Backward Orderings

The general result (Sec. 2) encompasses perplexities of forward and backward factorized sequences as special
cases. Forward perplexity (PPfwd), corresponds to the natural token order, σ(i) = i with definition

PPfwd = exp
(

− 1
n

n∑
i=1

ln P (Xi|X0, X1, . . . , Xi−1)
)

.

As a direct instance of PPσ for the identity permutation, PPfwd immediately simplifies to the form in
Equation equation 1

PPfwd = exp
(

− 1
n

ln P (X0, X1, . . . , Xn)
)

.

Similarly, backward perplexity (PPbwd) corresponds to the permutation σ(i) = n − i + 1, processing tokens
in reverse order (Xn, Xn−1, . . . , X1), with each token conditioned on X0 and subsequent tokens:

PPbwd = exp
(

− 1
n

n∑
i=1

ln P (Xσ(i)|X0, Xσ(1), . . . , Xσ(i−1))
)

,

where Xσ(i) = Xn−i+1. This also simplifies to

PPbwd = exp
(

− 1
n

ln P (X0, X1, . . . , Xn)
)

.

The proof shows the theoretical equivalence of perplexity regardless of the factorization order chosen for the
sequence, provided the underlying probability model is consistent and adheres to the chain rule of probability.

C Intuitive Example with Three Variables

To make the generalization to arbitrary orderings more intuitive, consider a joint probability distribution
over three random variables A, B, and C. The joint probability P (A, B, C) can be factorized in several
equivalent ways using the chain rule:

Forward Order (A, B, C)

P (A, B, C) = P (A) · P (B|A) · P (C|A, B)

Backward Order (C, B, A)

P (A, B, C) = P (C) · P (B|C) · P (A|B, C)

Other Permutations

P (A, B, C) = P (B) · P (A|B) · P (C|A, B)
P (A, B, C) = P (B) · P (C|B) · P (A|B, C)
P (A, B, C) = P (C) · P (A|C) · P (B|A, C)
P (A, B, C) = P (A) · P (C|A) · P (B|A, C)
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These factorizations correspond to the six possible orderings of three variables: (A, B, C), (A, C, B),
(B, A, C), (B, C, A), (C, A, B), and (C, B, A). If we calculate the perplexity using any of these orderings, we
should arrive at the same value:

PPσ = exp
(

−1
3 ln P (A, B, C)

)

D Training Setups

Building on the theoretical proof and experimental deviations we identify in prior work, we re-evaluate (Luo
et al., 2024a) using theory-aligned experimental protocols. We highlight key training and evaluation details
to specify the conditions required for assessing perplexity equivalence across sequence factorizations.

D.1 Tokenization Direction

We adopt GPT-2’s tokenization strategy (Radford et al., 2019), based on Byte Pair Encoding (BPE) (Gage,
1994) for word segmentation (Sennrich et al., 2016). The tokenizer, trained on neuroscience publications
(1.3 billion tokens) in the forward direction with a vocabulary of 50,257 tokens, is used for all models.
Importantly, the same tokenizer is used for both backward and permuted models, contrasting prior work
(Luo et al., 2024a). For backward models, forward text is tokenized into token IDs and reversed within the
context window. For permuted models, the tokenized forward text is rearranged in a fixed order within the
context window.

D.2 Special Tokens

To align with the proof of perplexity equivalence, all training and validation sequences fully span the GPT-2
context window (1,024 tokens), each prefixed with a begin-of-sequence token (Papadopoulos et al., 2024),
excluding document separators (unlike the original GPT-2; Radford et al. 2019 and padding tokens). This
ensures the sequence of different factorizations whose joint probabilities are comparable, as the first real
token is not excluded from the joint probability factorization due to the shifted-by-one calculation in next-
token prediction loss, maintaining consistency across factorizations, unlike previous work (Pfau et al., 2023).
In addition, during loss computation, the starting token’s probability is masked out in the softmax operation
to align closely with the proof.

D.3 Model Variants

We train GPT-2 models of varying sizes using three data orders: forward, backward, and permuted. All
models are optimized with standard autoregressive loss. To ensure consistency, all models are trained on
identical data sequences with all randomness sources fixed, differing only in the arrangement of data within
the context window or the random seed.

D.4 Training Data

We trained GPT-2 variants from scratch using data collected by Luo et al. (2024b), comprising 1.3 billion
tokens from neuroscience publications (abstracts and full articles) spanning 2002–2022. The dataset was
split randomly, with 90% allocated for training and 10% for validation. To align with the proof of perplexity
equivalence, all training and validation sequences fully span the GPT-2 context window (1,024 tokens),
each prefixed with a begin-of-sequence token, excluding document separators and padding tokens. The last
sequences of training and validation sets shorter than 1,023 tokens were discarded, yielding 995,270 training
sequences and 9,413 validation sequences.

D.5 Training details

We trained variants of GPT-2 models using Huggingface implementations. We used a batch size of 16 for
GPT-2 124M (8 for GPT-2 355M and 4 for GPT-2 774M) and a chunk size of 1024. Training involved the use
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of the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of 2e-5 and a cosine learning rate
scheduler (i.e., learning rate decays following a cosine schedule over training epochs). We applied gradient
accumulation steps set at 8. Five training epochs were performed, along with a warm-up step of 0.03 and a
weight decay rate of 0.001. bf16 mixed precision training and data parallelism were employed. We used 4
Nvidia A100 (80GB) GPUs hosted on Microsoft Azure.

E Evaluation Setups

E.1 BrainBench

BrainBench (Luo et al., 2024b) is a benchmark consists of 200 test cases from abstracts in the Journal of
Neuroscience published in 2023. These abstracts are categorized into five sections: Behavioral/Cognitive,
Systems/Circuits, Neurobiology of Disease, Development/Plasticity/Repair, and Cellular/Molecular.

Each test case contains a published abstract and an altered version crafted by neuroscientists (see details
in Luo et al. (2024b)). These modifications, though minimal, significantly change the results—for instance,
by changing the roles of brain regions or reversing a result’s direction (e.g., from “decreases" to “increases").
The altered abstracts remain logically coherent despite the changes.

The BrainBench task is to identify the correct study outcome by choosing between the original abstract and
its altered counterpart.

E.2 BrainBench Model Evaluation

Two versions of the abstracts from each test case were presented to models separately. We measured the
perplexity of both passages and used perplexity as the indicator of whether models favor one abstract or the
other.

Perplexity measures the degree of uncertainty of a model when generating a particular sequence of text and is
defined as the exponentiated average negative log-likelihood of a tokenized sequence. If we have a tokenized
abstract sequence X = (X0, X1, . . . , Xt), then the perplexity of X, given a model parameterized by θ is,

PP (X) = exp
{

−1
t

t∑
i

ln pθ(Xi|X<i)
}

(2)

where ln pθ(Xi|X<i) is the log-likelihood of the ith token conditioned on the preceding tokens X<i according
to the model. Given both the original and the altered abstracts, we used the abstract with lower perplexity
as the model’s decision and evaluated the overall accuracy across the entire BrainBench dataset accordingly.

E.3 BrainBench Human Evaluation

Previous work (Luo et al., 2024b) collected human judgements from 171 neuroscience experts on BrainBench.
These data are publicly available1 and provide a useful comparison to LLM performance.

E.4 Statistical Testing

To test the effects of model size and training direction on prediction accuracy, we conducted a repeated-
measures Analysis of Variance (ANOVA). The dependent variable was prediction correctness for each Brain-
Bench item. Model size and direction were included as fixed factors, with model size coded as a continuous
variable and direction binary-coded as a categorical variable. Model was treated as a within-subjects fac-
tor to account for repeated measurements. The analysis was implemented using the aov() function in R,
with the Error term specified to accommodate the repeated-measures design. Both main effects and the
interaction between model size and direction were examined.

1https://github.com/braingpt-lovelab/BrainBench
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F Additional Results

Table S.1: Comparison of Statistical Metrics for Fwd and Bwd Directions Across GPT-2 Models Across
Three Initializations. Significance denoted by *** indicates p < 0.001.

Model Direction Pearson r t-stat Cohen’s d

124M Fwd 0.999 ± 0.000∗∗∗ 30.185 ± 11.349∗∗∗ 0.311 ± 0.117
Bwd 0.999 ± 0.000∗∗∗ 10.930 ± 28.250∗∗∗ 0.113 ± 0.291

355M Fwd 0.999 ± 0.000∗∗∗ −3.561 ± 1.476∗∗∗ 0.037 ± 0.015
Bwd 0.999 ± 0.000∗∗∗ 1.597 ± 3.837∗∗∗ 0.016 ± 0.040

774M Fwd 0.999 ± 0.000∗∗∗ −13.640 ± 6.063∗∗∗ 0.141 ± 0.062
Bwd 0.999 ± 0.000∗∗∗ −9.885 ± 3.716∗∗∗ 0.102 ± 0.038

Table S.2: Comparison of Statistical Metrics for Perm Direction Across GPT-2 Models Across Three Initial-
izations. Significance denoted by *** indicates p < 0.001.

Model Direction Pearson r t-stat Cohen’s d

124M Perm 0.995 ± 0.000∗∗∗ 106.154 ± 83.993∗∗∗ 1.094 ± 0.866
355M Perm 0.995 ± 0.000∗∗∗ 44.731 ± 23.499∗∗∗ 0.461 ± 0.242
774M Perm 0.994 ± 0.000∗∗∗ 30.051 ± 17.785∗∗∗ 0.310 ± 0.183
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Figure S.1: Training perplexity differences across model sizes and training directions.

17



Under review as submission to TMLR

100

102

104

Tr
ai

n
pe

rp
le

xi
ty

GPT-2 (124M) GPT-2 (355M) GPT-2 (774M)
Fwd

100

102

104

Va
lid

at
io

n
pe

rp
le

xi
ty

GPT-2 (124M) GPT-2 (355M) GPT-2 (774M)
Fwd

100

102

104

Tr
ai

n
pe

rp
le

xi
ty Bwd

100

102

104

Va
lid

at
io

n
pe

rp
le

xi
ty Bwd

Logging Steps100

102

104

Tr
ai

n
pe

rp
le

xi
ty

Logging Steps Logging Steps

Perm

Logging Steps100

102

104

Va
lid

at
io

n
pe

rp
le

xi
ty

Logging Steps Logging Steps

Perm

Figure S.2: Training and Validation perplexities across model sizes and training directions.
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Figure S.3: Self-attention is biased toward adjacent and long-range tokens (GPT-2 124M Pre-
trained). Normalized attention rank (0–1) is plotted as a function of token distance within the context,
averaged across heads, sampled sequences, and layers. Sequences are all 1,024 tokens with BOS prepended,
sampled from the first 10K entries from the Pile (Gao et al., 2020).
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Figure S.4: Self-attention is biased toward adjacent and long-range tokens (Pythia 70M Pre-
trained). Normalized attention rank (0–1) is plotted as a function of token distance within the context,
averaged across heads, sampled sequences, and layers. Sequences are all 1,024 tokens with BOS prepended,
sampled from the first 10K entries from the Pile (Gao et al., 2020).
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Figure S.5: Self-attention is biased toward adjacent and long-range tokens (Llama-2 7B Pre-
trained). Normalized attention rank (0–1) is plotted as a function of token distance within the context,
averaged across heads, sampled sequences, and layers. Sequences are all 1,024 tokens with BOS prepended,
sampled from the first 10K entries from the Pile (Gao et al., 2020).
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Figure S.6: Attention entropy across three data orders (GPT-2 355M, seed1).
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Figure S.7: Attention entropy across three data orders (GPT-2 774M, seed1).
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Figure S.8: Attention entropy across three data orders (GPT-2 124M, seed2).
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Figure S.9: Attention entropy across three data orders (GPT-2 355M, seed2).

21



Under review as submission to TMLR

0

0.5

1

At
te

nt
io

n
No

rm
 E

nt
ro

py

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

0

0.5

1

At
te

nt
io

n
No

rm
 E

nt
ro

py

Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12

0

0.5

1

At
te

nt
io

n
No

rm
 E

nt
ro

py

Layer 13 Layer 14 Layer 15 Layer 16 Layer 17 Layer 18

0

0.5

1

At
te

nt
io

n
No

rm
 E

nt
ro

py

Layer 19 Layer 20 Layer 21 Layer 22 Layer 23 Layer 24

0

0.5

1

At
te

nt
io

n
No

rm
 E

nt
ro

py

Layer 25 Layer 26 Layer 27 Layer 28 Layer 29 Layer 30

0 1000
Context Size

0

0.5

1

At
te

nt
io

n
No

rm
 E

nt
ro

py

Layer 31

0 1000
Context Size

Layer 32

0 1000
Context Size

Layer 33

0 1000
Context Size

Layer 34

0 1000
Context Size

Layer 35

0 1000
Context Size

Layer 36

Init Fwd Bwd Perm

Figure S.10: Attention entropy across three data orders (GPT-2 774M, seed2).
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Figure S.11: Attention entropy across three data orders (GPT-2 124M, seed3).
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Figure S.12: Attention entropy across three data orders (GPT-2 355M, seed3).
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Figure S.13: Attention entropy across three data orders (GPT-2 774M, seed3).
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Figure S.14: Self-attention biases (GPT-2 355M, seed1).
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Figure S.15: Self-attention biases (GPT-2 774M, seed1).
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Figure S.16: Self-attention biases (GPT-2 124M, seed2).
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Figure S.17: Self-attention biases (GPT-2 355M, seed2).
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Figure S.18: Self-attention biases (GPT-2 774M, seed2).
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Figure S.19: Self-attention biases (GPT-2 124M, seed3).
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Figure S.20: Self-attention biases (GPT-2 355M, seed3).
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Figure S.21: Self-attention biases (GPT-2 774M, seed3).
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Figure S.22: Representational similarities across model training directions (seed2)
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Figure S.23: Representational similarities across model training directions (seed3)
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Figure S.24: BrainBench performance of GPT-2 models trained forward and backward. GPT-
2 models, trained from scratch on two decades of neuroscience literature, rival or exceed human expert
performance, demarcated by the blue dashed line. Models trained on the same data reversed at the token
level performed similarly to their forward-trained counterparts. Error bars are standard errors of the mean.
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Figure S.25: Comparison of model and human judgments on BrainBench difficulty. Model judg-
ments (both forward and backward-trained) correlate more strongly with each other than with human expert
judgments. Backward-trained models show similar correlation to human judgments compared to forward-
trained models. Error bars are one standard deviations of the mean.
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Figure S.26: Comparison of model and human judgments on BrainBench difficulty. Model judg-
ments (both forward and backward-trained) correlate more strongly with each other than with human expert
judgments. Backward-trained models show similar correlation to human judgments compared to forward-
trained models.
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