
Enhancing User Intent Capture in Session-Based
Recommendation with Attribute Patterns

Xin Liu1∗ Zheng Li2 Yifan Gao2 Jingfeng Yang2

Tianyu Cao2 Zhengyang Wang2 Bing Yin2 Yangqiu Song1†
1Department of Computer Science and Engineering, HKUST 2Amazon.com Inc

{xliucr,yqsong}@cse.ust.hk
{amzzhe,yifangao,jingfe,caoty,zhengywa,alexbyin}@amazon.com

Abstract

The goal of session-based recommendation in E-commerce is to predict the next
item that an anonymous user will purchase based on the browsing and purchase
history. However, constructing global or local transition graphs to supplement
session data can lead to noisy correlations and user intent vanishing. In this work,
we propose the Frequent Attribute Pattern Augmented Transformer (FAPAT) that
characterizes user intents by building attribute transition graphs and matching
attribute patterns. Specifically, the frequent and compact attribute patterns are
served as memory to augment session representations, followed by a gate and a
transformer block to fuse the whole session information. Through extensive experi-
ments on two public benchmarks and 100 million industrial data in three domains,
we demonstrate that FAPAT consistently outperforms state-of-the-art methods by
an average of 4.5% across various evaluation metrics (Hits, NDCG, MRR). Besides
evaluating the next-item prediction, we estimate the models’ capabilities to capture
user intents via predicting items’ attributes and period-item recommendations.

1 Introduction

With the explosive demand for E-commerce services [44, 12, 23, 11, 43], numerous user behaviors are
emerging. Understanding these historical action records is critical in comprehending users’ interests
and intent evolution, particularly in a cold-start regime that lacks sufficient context. This has spurred
research on session-based recommendations (SBR) [8, 35, 37, 13] that capture user-side dynamics
from a short-time period (namely a session) using temporally historical information. Numerous SBR
algorithms have been proposed, ranging from sequence-based methods [27, 8, 16, 19, 31, 28, 9] to
graph-based methods [35, 38, 34, 37, 17, 30] for learning dynamic user characterization. However,
both lines of methods have their limitations. Specifically, sequence-based methods treat each
user behaviors in a session as an action sequence and model the local dependencies inside. This
can only capture users’ preference evolution via chronological order while failing to identify the
complex non-adjacent item correlation, especially when the session length is insufficient to support
temporal prediction [33]. To address this issue, graph-based methods adopt a higher perspective
by introducing a global item transition graph, which aggregates local session graphs constructed
from historical session sequences. Thus, a newly-emerging short session sequence can benefit from
the global topology (e.g., global co-occurrences) and representations (e.g., item semantics) [34].
Unfortunately, existing session graph construction ignores temporal signals. Figure 1 shows that two
different sessions result in the same session graph, leading to vanishing of user intent variation during
sequence-to-graph conversion. And such global graphs are fragile due to noise from random clicks.

∗Work was done during Xin’s internship at Amazon. Corresponding author: Xin Liu and Zheng Li.
†Prof. Yangqiu Song is a visiting academic scholar at Amazon.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Timeline

Session graph

(Item correlation)

Timeline

Session sequence

(Temporal information)

Figure 1: Local session
graph construction.

brand

color

type tablet→notebook→cell phone→cell phone→cell phone→cell phone→tablet→?

silver→silver→blue→blue→burgundy→blue→silver→?

Apple→Apple→Apple→Apple→Samsung→Apple→Apple→?

Attribute Sequences

Timeline

Session Sequence

(Temporal Information)

Multiplex Session Graph

(Intent Information)

?

Apple Samsung

?

blue burgundy

silver?

cell phone tablet

notebook

Attribute Graphs

Figure 2: A session graph enriched by multiplex attribute graphs.

Besides the global item transition graph, there are other possible solutions for item correlations. One
feasible solution involves item-side knowledge. Items can be connected through shared attributes,
such as being manufactured by the same company [28]. We argue that the current use of item-side
metadata provides little assistance in SBR models as user intent may change over time. However,
such meta-data are still useful from the view of graphs. As illustrated in Figure 2, session attributes
can be organized into attribute graphs and anchored to the local session graph to create multiplexes.
Such multiplexes provide several intent clues, in addition to item-side correlations. For example,
the color pattern silver ↔ silver ↔ blue ↔ blue reveals the user’s color intent, while the brand
pattern Apple ↔ Apple ↔ Samsung implies a potential change in intent. Different sessions can
benefit from shared attribute topologies and representations, which can ultimately entail implicit
high-order correlations. However, the session graph is essentially a general conditional random field,
and optimization becomes intractable due to the large candidate size. Graph neural networks (GNNs)
also face challenges due to the possibility of over-smoothing and data noise [46, 18, 45, 32].

To alleviate the aforementioned issues, we propose a novel framework called Frequent Attribute
Pattern Augmented Transformer (FAPAT) that considers highly frequent attribute patterns as supple-
mentary instead of directly learning multiplex graphs. In traditional graph learning, graphlets (such as
triangles, triangular pyramids, etc.) have been proven to be useful features in graph classification and
representation learning [29, 15]. Therefore, we employ frequent graph pattern mining algorithms to
find consequential graphlets and view them as compact hyper-edges (e.g., cell phone, tablet, notebook
in Figure 2). We then use these attribute patterns as accessible memory to augment session sequence
encoding. Before encoding patterns, we use Jaccard similarities to rank and retrieve the most highly
correlated patterns, which significantly reduces the graph density and computational cost. It has been
shown that GNNs can estimate the isomorphism and frequency of substructures [39, 21, 20]. Thus,
we leverage multi-head graph attention to learn pattern and local session graph representations in the
aligned space [10, 22]. To incorporate temporal signals and capture user intents, we distribute graph
representations back to session sequences and use external pattern memory to augment sequence
representations via memory attention with relative position bias. Finally, the sequence is fully fused
by a transformer block. In other words, graph information is used to aggregate attribute patterns,
while temporal actions are used to encode items.

To validate the effectiveness of FAPAT, we conduct extensive experiments on two public benchmark
datasets and three real-world large-scale industrial datasets with around 100 million clicks, and
experimental results demonstrate significant improvement with an average boost of 4.5% across
various evaluation metrics (Hits, NDCG, MRR). Compared with baselines, the attribute pattern
density can significantly relieve over-smoothing. Besides, we also extend evaluation to attribute
estimations and sequential recommendations to measure the model capability to capture user intents.
Code and data are availiable at https://github.com/HKUST-KnowComp/FAPAT.

2 Related Work

Neural Methods for Session-based Recommendation Systems. Table 1 presents a summary of
the distinctions between current neural techniques and our novel FAPAT. The concept of Temporal
Information implies Markov decision processes with previous histories. The technique of History
Attention employs attention for learning long-distance sequences. The approach of Local Session

2

https://github.com/HKUST-KnowComp/FAPAT

Table 1: Comparison with existing popular methods.
Methods Temporal Information History Attention Local Session Topology Global Item Correlation Attribute Association

FPMC ✓ ✗ ✗ ✓ ✗
GRU4Rec ✓ ✗ ✗ ✗ ✗

NARM ✓ ✓ ✗ ✗ ✗
STAMP ✓ ✓ ✗ ✗ ✗
CSRM ✓ ✓ ✗ ✓ ✗
S3-Rec ✓ ✓ ✗ ✓ ✓

M2TRec ✓ ✓ ✗ ✓ ✓
SR-GNN ✗ ✗ ✓ ✗ ✗
GC-SAN ✗ ✓ ✓ ✗ ✗
S2-DHCN ✗ ✗ ✓ ✓ ✗
GCE-GNN ✗ ✗ ✓ ✓ ✗

LESSR ✓ ✗ ✓ ✗ ✗
MSGIFSR ✓ ✓ ✓ ✗ ✗

FAPAT ✓ ✓ ✓ ✓ ✓

Topology involves modeling session sequences from the view of session graphs. Lastly, Global Item
Correlation and Attribute Association place emphasis on capturing item-side and attribute knowledge.

Sequence-based Models. FPMC [27] uses first-order Markov chain and matrix factorization to
identify sequential patterns of long-term dependencies. However, the Markov-based method usually
has difficulty exploring complicated temporal patterns beyond first-order relationships. Recently,
neural networks have shown power in exploiting sequential data in SBR tasks, such as GRU4Rec [8].
NARM [16] extends GRUs with attention to emphasize the user’s primary purchase purpose. Similarly,
STAMP [19] uses an attention-based memory network to capture the user’s current interest. These
attention-based models separately deal with the user’s last behaviors and the whole session history to
detect the general and latest interests. But they mainly focus on the user’s preference from a temporal
view but ignore the item correlations. Pre-training techniques [47] and multi-task learning [28] also
demonstrate effectiveness in injecting item metadata to embeddings and predicting item attributes.
Besides, some recent sequence-based approaches leverage generative pretrained language models to
provide explicit explanations for recommendation systems [4, 6].

Graph-based Models. Graph neural networks (GNNs) have recently been explored in SBRs due to
the substantial implications behind natural transition topologies. SR-GNN [35] adopts a gate GNN to
obtain item embeddings over the local session graph and predict the next item with weighted sum
pooling, showing impressive results on benchmark data. Some advanced variants have further boosted
performance, such as GC-SAN [38] with self-attention mechanism and FGNN [24] with weighted
attention graph layers. To acquire further collaborative information, S2-DHCN [31] constructs line
graphs to capture correlations among neighbor sessions, and GCE-GNN [34] directly applies a graph
convolution over the global transitions to aggregate more relevant items for local sessions. However,
GNN-based methods still face challenges in capturing temporal signals, filtering noise, and leveraging
implicit high-order collaborative information. Other methods, such as LESSR [1] and MSGIFSR [7],
have also shown significant improvement by building multigraphs and shortcut graphs for session
representation learning and user intents from different granularities, respectively.

Pattern Mining for Recommendation Systems. Pattern mining is an important data mining technique
with board applications. In recommendation systems, sequential pattern mining assists in analyzing
customer purchase behaviors through frequent sequential patterns. Such mining focuses on item
patterns with frequencies above a threshold in all sessions, which reduces the diversity of the
recommended items [2]. Personalized sequential pattern mining [42] effectively learns user-specific
sequence importance knowledge and improves the accuracy of recommendations for target users.
It can be challenging to generalize to SBR systems when neural networks have already implicitly
captured such behavior patterns. But attribute graph patterns still need to be explored in SBR.

3 Background and Motivations

3.1 Problem Definition

Session-Based Recommendation (SBR) assumes that users’ historical behaviors outside the current
session are inaccessible, in contrast to general recommendations. For example, users do not log in
due to user privacy and security reasons. SBR predicts the next item that an anonymous user is most

3

likely to click on or purchase based on historical behaviors within a short period. Despite the lack of
personal profiles, this universal setting can better reflect the quality of item-side recommendations.
Suppose that there are N unique items in the database, and each session is represented as a repeatable
sequence of items S = [v1, v2, . . . , vL], vi ∈ V (1 ≤ i ≤ L) represents the i-th behavioral item
of the anonymous user within session S, where V is the item set collected from overall sessions,
and L is the length of the session. Given a session S, the goal is to recommend the top-K items
(1 ≤ K ≤ N) that have the highest probabilities of being clicked by the anonymous user.

3.2 Session Graphs and Transition Graphs

Session sequence modeling is not always sufficient for SBR as it only reflects transitions from the user
side. To account for item correlations, SR-GNN [35] converts session sequences to session graphs.
Each session graph GS = (VS , ES) is a directed graph with node set VS ⊆ V , consisting of unique
items in the session, and edge set ES , recording adjacent relations between two items in session
S. Edge weights can be normalized by indegrees or outdegrees to model transition probabilities.
GCE-GNN [34] extends this graph modeling by merging all session graphs as a global transition
graph, which aggregates more item correlations but faces over-smoothing and data noise [46, 18].

Instead of modeling global item transitions, we enrich session graphs with attributes and patterns.
Assume there are M different kinds of attributes, and the m-th attribute type A(m) (1 ≤ m ≤ M)

consists of |A(m)| possible values. Thus, each item v ∈ VS has attribute list [a(1)v , a
(2)
v , · · · , a(M)

v],
where a

(m)
v ∈ A(m) denotes the m-th attribute value of v. Each session sequence S corresponds to

M attribute histories, with the m-th attribute sequence denoted as S(m) = [a
(m)
v1 , a

(m)
v2 , · · · , a(m)

vL].
Using the sequence-to-graph transform, we convert S(m) to G(m)

S , whi is usually denser than the
session graph GS . Finally, the M attribute sequences are separately transformed into M attribute
session graphs in different property-specific channels, anchored in items VS . Finally, we add edges
for item vi and attribute a

(m)
vi to construct a multiplex session graph, preserving attribute values and

transitions. We represent the session graph with attributes as the multiplex GA
S (as Figure 2).

3.3 Frequent Pattern Mining

Frequent pattern mining aims to extract inductive clues from data to comprehend data distributions,
which includes two main categories: sequential pattern mining and graph pattern mining. The former
is concerned with sequence databases composed of ordered elements, while the latter statistics the
important graph structures. For two sequences S′ = [v′1, v

′
2, · · · , v′L′] and S = [v1, v2, · · · , vL],

we refer to S′ as the pattern of S if S′ is a subsequence of S. Similarly, a graph GS′ = (VS′ , ES′)
is a subgraph of GS = (VS , ES) if VS′ ⊆ VS and ES′ ⊆ ES . Compared with sequence pattern
mining, graph pattern mining is more general since it involves the structural topology and attribute
information. For instance, as depicted in Figure 2, {cell phone, tablet, notebook} corresponds to a
triangle. It may be challenging to discover the triangle from the temporal sequence, but it is a vital
clue from the graph view. Thus, we stick on frequent graph patterns rather than sequence patterns.

4 Methodology

We present the Frequent Attribute Pattern Augmented Transformer (FAPAT), a novel framework
that captures user intents and item correlations. Our method is built upon session sequences and
corresponding attribute graphs. Initially, we mine frequent attribute patterns from the attribute graphs
to explore coarse-grained item correlations. These patterns are then used as memory to enhance the
session encoder, which consists of graph-nested transformer layers. Figure 3 illustrates the overview.

4.1 Frequent Attribute Pattern Acquisition

In this subsection, we describe how to extract frequent patterns from training recommendation
sessions. The aim of frequent pattern mining is to minimize the impact of random clicks in the global
transition graph and avoid over-smoothing when learning multiplex attribute graphs. To achieve this,
we design a mining-filtering paradigm to ensure representativeness.

4

…

Multi-Head

Self Attention

Add & Norm

Multi-Head Graph

Attention

…

Multi-Head

Memory Attention

Gate

Graph2Sequence
Multi-Head

Memory Attention

Predictor

Multi-Head

Memory AttentionMulti-Head

Graph Attention

FF & Add & Norm
Pattern Structures

Pattern Mining

Training

Attribute

Graphs

…

Attribute Pattern

Retrieval

Multi-Head

Memory AttentionMulti-Head

Memory Attention

Multi-Head Graph

AttentionMulti-Head

Graph Attention

𝒫(1)
𝒫(2)

𝒫(𝑀)

𝒑 2
𝒑 𝑀

𝒑 1

Sequence2Graph
Attribute Pattern

RetrievalAttribute Pattern

Retrieval

ഥ𝒉𝑖
2 ഥ𝒉𝑖

𝑀ഥ𝒉𝑖
1

ഥ𝒉𝑖

ഥ𝒉𝑣𝑖

Pattern Filtering

Session Sequence 𝑆Attribute Multiplex 𝒢𝑆
𝒜

Figure 3: An overview of FAPAT.

4.1.1 Graph Pattern Mining

Small graph patterns, also called motifs or graphlets, are valuable features in graph learning and
property prediction [29, 15], exhibiting strong statistical correlations between graph structures and
node semantics. In this study, we focus on similar graphlet structures but extend to SBR scenarios.
We collect patterns consisting of no more than four nodes (representing different attribute values),
and further restrict them to those containing either a circle or a triangle to significantly reduce the
number of candidates. We adopt gSpan [40] to acquire undirected patterns from attribute session
graphs and keep patterns belonging to one of twenty types shown in Figure 3.

4.1.2 Loose Pattern Filtering

However, complex patterns may contain smaller ones. For instance, the first pattern in Figure 3 is a
subgraph of the second. While each subgraph has an equal or higher frequency than its supergraph,
such loose patterns do not convey much information. To eliminate them, we employ VF2 [3] subgraph
isomorphism algorithm to filter. If a pattern P ′ is a subgraph of another pattern P , then P ′ is excluded
from the pattern candidates. Finally, we retain compact and frequent patterns for session encoding.

4.2 Intent-aware Sequence Encoding

To recommend items of high interest to users, we use a GAT-based encoder to learn pattern represen-
tations from the item side, which are then served as memory to augment session encoding.

4.2.1 Relevant Graph Pattern Retrieval

The input item sequence is converted to a multiplex session graph representing the transitional
information of different item attributes, as depicted in Figure 1. To improve graph representations
by utilizing frequent attribute subgraphs, we retrieve relevant patterns from those mined in §4.1.
For the m-th attribute type A(m) (1 ≤ m ≤ M), we denote an arbitrary subgraph mined from the
previous step as G(m)

P = (V(m)
P , E(m)

P). Then we retrieve at most I subgraph patterns that have the
most considerable Jaccard similarities to the transition graph G(m)

S as Eq. (1). This can be done within
O(|V(m)

S | × |V(m)
P |), but this is always linear because of |V(m)

P | ≤ 4.

Jaccard
(
V(m)
S ,V(m)

P

)
=

|V(m)
S ∩ V(m)

P |
|V(m)

S |+ |V(m)
P | − |V(m)

S ∩ V(m)
P |

. (1)

5

4.2.2 Attribute Pattern Representation

After retrieving the relevant patterns for the corresponding multiplex session graph, we encode them
using multi-head relational graph attention for further memory augmentation. For a pattern G(m)

P for
the m-th attribute, we compute the attention weight for two arbitrary nodes a(m)

i and a
(m)
j by:

α
(m)
ij = softmax

(LeakyReLU
(
r
(m)
ij

⊤
(e

a
(m)
j

◦ e
a
(m)
i

)
)

∑
a
(m)
k ∈N (a

(m)
i)

LeakyReLU
(
r
(m)
ik

⊤
(e

a
(m)
k

◦ e
a
(m)
i

)
)), (2)

where e
a
(m)
i

denotes the embedding of a
(m)
i , ◦ indicates element-wise multiplication, N (a

(m)
i)

represents the neighbors of a(m)
i (including itself), and r

(m)
ij corresponds to the relation-specific

vector. Then the representation of h
a
(m)
i

for node a
(m)
i in the pattern is aggregated by:

h
a
(m)
i

=
∑

a
(m)
j ∈N (a

(m)
i)

α
(m)
ij e

a
(m)
i

. (3)

After computing the representation of each node in pattern subgraph G(m)
P , a pooling layer (e.g,

average pooling) over all node representations is to aggregate the pattern presentation for G(m)
P :

p(m) = Pool
(
{h

a
(m)
i

|vi ∈ G(m)
P }

)
(4)

4.2.3 Attribute Memory Augmentation

Meanwhile, we also employ graph attention to obtain the native graph representations of the multiplex
session graph G(m)

S . We apply this to each m-th attribute transition graph G(m)
S , computing node

representations a(m)
i using Eq. (2) and Eq. (3) and denote the resulting node representation as h

(m)

vi .
To compute the aggregated attribute representation of each node vi in the original session graph GS ,
we combine its different representations from all attribute transition graphs by:

hvi =
1

M

∑
m

h
(m)

vi + evi , (5)

where evi is the representation of vi by the item embedding lookup.

Suppose all retrieved attribute patterns associated with A(m) are P(m), whose representations from
Eq. (4) are {p(m)|p(m) ∈ P(m)}. To preserve temporal information when utilizing these patterns,

we map graph representations {h(m)

vi |vi ∈ VS} to sequence representations {h(m)

i |1 ≤ i ≤ L}
with length L. Next, we concatenate all pattern representations {p(m)|p(m) ∈ P(m)}, all session

representations {h(m)

i |1 ≤ i ≤ L}, and two special embeddings eCLS and eMASK to separate the two
parts and indicate the item to predict:[[

∥
p(m)∈P(m)

p(m)

]∥∥eCLS
∥∥[∥

1≤i≤L

hi
(m)

]∥∥eMASK

]
.

Then, we augment sequence encoding with memory, taking inspiration from TransformerXL [5] and
Memorizing Transformer [36]. As shown in Figure 4, we introduce T5 relative position bias [25] to
distinct short and long-term histories. Furthermore, we utilize unidirectional attention to focus solely
on the user’s current intent instead of global intent, which may become increasingly noisy over time.

4.2.4 User Intent Aggregation

To aggregate memory-augmented representations from M different attributes and pattern sets, we
employ gating mechanism:

ĥi =

M∑
m=1

β
(m)
i ĥ

(m)
i + hi, s.t. β(m)

i = softmax(W (m)
β h

(m)

i + b
(m)
β), (6)

6

𝒑 𝑚 |𝑝 𝑚 ∈ 𝒫(𝑚) 𝒆CLS + 𝒕−𝑖 ഥ𝒉𝑗
(𝑚)

+ 𝒕𝑗−𝑖|𝑗 < 𝑖 ഥ𝒉𝑖
(𝑚)

+ 𝒕0 ഥ𝒉𝑘
(𝑚)

+ 𝒕𝑘−𝑖|𝑘 > 𝑖 𝒆MASK + 𝒕𝐿+1−𝑖

……

Figure 4: Schema of pattern
augmented attention: relative
position bias is added, and one
item can only access memory
and previous histories.

where W
(m)
β ∈ Rd×d and b

(m)
β ∈ Rd are trainable parameters (d is the dimension of hidden states),

ĥ
(m)
i is the memory-augmented results, and β

(m)
i controls the importance of attribute patterns. While

ĥi combines attribute information, it disregards long-range histories as h
(m)

i solely accesses one-hop
neighbors. Thus, we incorporate a transformer block to aggregate global session information:

H = Transformer
([

ĥCLS
∥∥[∥

1≤i≤L

ĥi

]∥∥ĥMASK

])
, (7)

where ĥCLS and ĥMASK are directly taken from Eq. (6) since they do not belong to the original session
but still observe the memory patterns and relative temporal signals.

4.3 Next-item Recommendation

Once the sequence representations are obtained, the next step is to predict the next item that may
interest the user for clicking or purchasing. We adopt the approach used in previous work [35, 34, 37]
to concatenate additional reversed positional embeddings as follows:

zi = tanh
(
Wz

[
hi ∥ tL−i+1

]
+ bz

)
, 0 ≤ i ≤ L+ 1, (8)

where hi is the i-th item representation H[i] from Eq. (7), and Wz ∈ R2d×d and bz ∈ Rd are
trainable parameters. This concatenation of positional embeddings is intended to prioritize nearest
intents over long-distance historical purposes. Figure 2 demonstrates this idea through two cases:
the male user is more likely to be interested in Android cell phones since his last click was in that
category, while the female user sticks to Apple products as she reviews iPhone and iPad once again.

We utilize the representation of the MASK to compute soft attention and then represent the session
and the user’s latest intent through a weighted average:

u =

L∑
i=1

γihi, s.t. γi = r⊤γ sigmoid(Wγzi + zmask + bγ), (9)

where Wγ ∈ Rd×d and bγ ∈ Rd are trainable parameters. We compute the prediction of the next
item using a similarity-based approach rather than a linear layer. This approach is similar to the
optimization of Bayesian Personalized Ranking (BPR) [26]. Alternatively, we can train the model
using cross-entropy minimization. Finally, the prediction is obtained by ŷ = argmaxv(u

⊤ev).

5 Experiment

5.1 Setup

Datasets. We first evaluate our method on public benchmarks. diginetica contains the browser logs
and anonymized transactions, Tmall collects anonymous users’ shopping logs on the Tmall online
website. We also acquire sessions from the browse and purchase logs from our E-commerce platform.
We target at beauty, books, and electronics and gather 20-minute interactions within last successful
purchases into one session after removing long-tail items. Appendix C provides more details.

Baselines. We compare our method with seven sequence-based baselines (FPMC [27], GRU4Rec [8],
NARM [16], STAMP [19], CSRM [31], S3-Rec [47], and M2TRec [28]) and six graph-based base-
lines (SR-GNN [35], GC-SAN [38], S2-DHCN [37], GCE-GNN [34], LESSR [1], and MSGIFSR [7]).
Model details are given in Appendix D. Each model is aligned with the official code implementation.

Evaluation. We evaluate SBRs as a ranking problem and employ Hits@K, NDCG@K, MRR@K as
standard metrics. Hits@K measures the percentage of ranks up to and including K, while NDCG@K

7

Table 2: Performance evaluation for next-item prediction, where standard deviations are enclosed
in brackets. The best and second-best results are respectively highlighted in bold and underlined.
Methods that use attributes are marked with ‡, and * indicates the p-value < 0.0001 in t-test.

Model diginetica Tmall
Hits@10 NDCG@10 MRR@10 Hits@20 NDCG@20 MRR@20 Hits@10 NDCG@10 MRR@10 Hits@20 NDCG@20 MRR@20

FPMC 31.57* 17.40* 13.08* 43.19* 20.33* 13.88* 13.71* 9.02* 7.56* 16.44* 9.71* 7.74*
GRU4Rec 36.77* 20.71* 15.80* 49.68* 23.97* 16.70* 18.82* 12.28* 10.25** 22.68* 13.25* 10.51*
NARM 35.98* 20.18* 15.36* 48.89* 23.44* 16.26* 22.74* 15.46* 13.19* 26.73* 16.47* 13.47*
STAMP 33.59* 18.89* 14.41* 45.87* 22.00* 15.26* 24.32* 16.55* 14.12* 28.40* 17.58* 14.41*
CSRM 33.97* 19.43* 14.98* 45.83* 22.42* 15.80* 25.13* 18.56* 16.48* 27.94* 19.27* 16.68*
S3-Rec‡ 33.48* 18.58* 14.04* 45.97* 21.74* 14.90* 18.24* 12.30* 10.46* 22.31* 13.32* 10.74*
M2TRec‡ 29.67* 16.30* 12.23* 41.23* 19.22* 13.02* 11.42* 7.56* 6.36* 13.75* 8.15* 6.52*
SR-GNN 35.21* 19.68* 14.94* 47.99* 22.90* 15.82* 18.21* 12.11* 10.20* 21.34* 12.91* 10.42*
GC-SAN 35.25* 19.72* 14.97* 47.87* 22.90* 15.85* 19.29* 12.80* 10.78* 23.18* 13.78* 11.05*
S2-DHCN 30.76* 17.04* 12.86* 42.39* 19.98* 13.66* 22.00* 13.36* 10.68* 27.23* 14.69* 11.05*
GCE-GNN 36.32* 20.77* 16.02* 48.67* 23.89* 16.87* 28.33* 20.01* 17.32* 30.24* 20.50* 17.45*
LESSR 33.68* 18.71* 14.14* 46.23* 21.88* 15.01* 20.99* 14.64* 12.13* 25.92* 13.96* 10.50*
MSGIFSR 34.74* 19.43* 14.76* 46.23* 21.88* 15.01* 23.18* 15.19* 12.69* 27.78* 16.35* 13.01*
FAPAT‡ 37.42 21.31 16.39 50.41 24.59 17.29 32.45 22.02 18.72 36.18 22.97 18.99
Improv. 3.03% 2.60% 2.31% 1.46% 2.59% 2.49% 14.19% 10.04% 8.08% 19.64% 12.05% 8.83%

Table 3: Performance evaluation for next-item prediction on our 100 million industrial data.

Model
Beauty Books Electronics

Hits@10 NDCG@10 Hits@20 NDCG@20 Hits@10 NDCG@10 Hits@20 NDCG@20 Hits@10 NDCG@10 Hits@20 NDCG@20

CSRM 89.74 75.28 92.61 76.01 78.69 56.70 82.88 57.77 62.28 44.35 67.47 45.67
S3-Rec‡ 89.64 75.56 92.53 76.30 75.00 58.54 79.45 59.67 74.36 56.03 79.63 57.37
M2TRec‡ 80.13 65.97 83.66 66.87 32.56 22.58 35.39 25.70 57.32 44.84 61.70 45.95
SR-GNN 88.69 70.42 91.74 71.20 66.55 47.55 69.77 48.37 74.86 54.30 79.66 55.52
GCE-GNN 89.34 73.15 91.29 73.65 77.61 57.60 80.03 58.22 72.93 53.74 78.49 55.15
LESSR 89.95 71.29 92.98 72.06 73.72 53.86 82.31 54.77 72.91 50.46 78.78 51.96
MSGIFSR 90.18 73.62 92.50 74.21 72.93 52.23 76.33 53.09 73.56 53.83 77.45 54.73
FAPAT‡ 92.72 76.29 94.10 76.87 81.62 61.08 85.12 61.97 78.36 56.81 82.81 57.94
Improv. 2.82% 0.97% 1.20% 0.75% 3.72% 4.34% 2.70% 3.85% 4.68% 1.39% 3.95% 0.99%

assigns higher scores to hits at the top of the list. MRR@K is the average of reciprocal ranks, with
ranks above K assigned 0. For public benchmarking, we report the average performance across seeds
{2020, · · · , 2024}, while for industrial data, we use a fixed seed (see Appendix E for more details).

5.2 Next-item Prediction Evaluation

Experimental Results. We first compare our models with selected baselines on two public datasets
in Table 2. Overall, there is no huge difference between sequence and graph models when the session
historical information is limited (e.g., in diginetica). However, we observe a performance boost with
the history attention mechanism and session topology. FPMC that utilizes first-order Markov chains
and matrix factorization is the worst. This reveals the difference between traditional recommendation
and session-based recommendation. In contrast, RNN-based methods (GRU4Rec, NARM, STAMP,
and CSRM) show better generalizability, along with the benefits of attention and memory. But we do
not see further gains from pretraining and multi-task learning in S3-Rec and M2TRec. On the other
hand, GNN-based algorithms for local sessions also achieve comparable results even with the absence
of temporal signals. Moreover, the heterogeneous graphs of MSGIFSR beat the shortcut graphs from
LESSR, indicating over-smoothing and potential noise. Although explicit global collaborative graphs
enhance GCE-GNN, the implicit collaborative information from neurons and patterns in FAPAT
easily surpasses other baselines significantly. At the same time, we evaluate algorithms on our 100
million industrial data. Table 3 demonstrates that most sequence models become unstable except
S3-Rec. It employs incomplete data to predict masked items and attributes during pretraining and
identifies contextualized collaborations by determining whether two incomplete sequences belong
to the same session. But the multi-tasking learning for predicting attributes makes M2TRec hard to
recommend items. While most GNN methods are competitive, S3-Rec and FAPAT are still better.

Over-smoothing Relief. We examine different graph topologies in baselines and FAPAT by compar-
ing the graph density of different methods: the density of local session graphs (in SR-GNN), global
collaborative filtering graphs(in GCE-GNN), shortcut graphs (in LESSR), heterogeneous graphs (in
MSGIFSR), attribute patterns (in FAPAT) on E-commerce data are 3.658, 114.910, 25.447, 2.598,
and 1.117, respectively. The density decrease significantly relieves the over-smoothing. Detailed
analyses and expectations are provided in Appendix B.

8

 w/o Attr.

 w/ brand

 w/ category
w/ Attrs.

10

15

20

25

30

35

40

H
its

@
10

13.69

17.64

16.40 18.24

11.95
12.03

11.24
11.42

28.33

22.82

21.57

19.01
20.99

20.62
20.86

20.46
23.18

23.12
22.62

22.74

31.53
31.02 31.86 32.45

S3-Rec
M2TRec

GCE-GNN
LESSR

MSGIFSR
FAPAT

(a) Tmall

 w/o Attr.

 w/ category

 w/ publish
er

 w/ author

 w/ genre
w/ Attrs.

60

65

70

75

80

85

H
its

@
10

67.09
67.06

66.89 67.14

70.91

75.00
77.61

76.41
75.99 76.25

76.32

74.37

72.93

71.51

69.09 69.51 70.33
69.78

77.18

75.88
77.60 78.00 79.04

81.62

S3-Rec
GCE-GNN

MSGIFSR
FAPAT

(b) Books

Figure 5: Effects of different attribute settings.

Table 4: Results of encoder comparison, where * indicates the p-value < 0.05 in t-test.

Encoder diginetica Tmall Beauty Books
Hits@10 MRR@10 Hits@10 MRR@10 Hits@10 MRR@10 Hits@10 MRR@10

FAPAT w/o Attr. 36.82 16.29 31.53 18.86 88.70 67.11 77.18 49.66
GraphFormer 36.05* 16.17 30.05* 18.58 88.48 65.65 77.03 47.86
Transformer 36.30* 16.02* 28.83* 18.30* 88.10 65.90 74.67 46.54

5.3 Ablation Study

Attribute Pattern Augmentation. To evaluate the effect of attribute patterns, we conduct exper-
iments on variants with single attributes or without any attribute. The same soft attention strategy
from Eq. (6) is employed to fuse attribute embeddings for competitive baselines. Results in Figure 5
show that attribute pattern augmentation is more stable than attribute soft attention. FAPAT benefits
from graph-nested attention, where the graph attention aligns the hidden space, and the memory
attention captures item correlations and user intents. But attribute embeddings may have side effects
on optimization in baselines, especially in graph neural networks. We also discover that not all
attributes have a positive impact. Comparing among attribute pattern numbers, attribute patterns with
significant frequencies (slightly lower than or similar to the item number) can have adverse effects.

Graph-nested Attention. The graph-nested attention is one of our contributions, distinguishing it
from GraphFormer [41]. Unlike GraphFormer, our graph attention is integrated inside the blocks,
which allows for direct benefit from the broader attention in the following self-attention via back-
propagation. To ensure fairness, we replace the encoding module of FAPAT with GraphFormer and
vanilla Transformer. Results in Table 4 demonstrate the advantages of our proposed graph-nested
attention. Our experiments also show that even a simple vanilla Transformer can outperform previous
state-of-the-art models by a significant margin, indicating the importance of emphasizing temporal
information in SBRs and the appropriateness of attention for capturing long-distance dependencies.

5.4 Intent Capture Inspection

Attribute Estimation. Beyond item predictions, we also estimate the awareness of user intents
from the product attribute side. We do not require models (except M2TRec) to predict attributes
but to retrieve attributes from predicted items instead. We consider it a successful estimation if the
top-ranked items have the same attribute value as the ground truth. M2TRec performs well on public
data with multi-task learning but struggles on industrial E-commerce data with four attributes, as
shown in Table 5. Pretraining in S3-Rec is not helpful due to catastrophic forgetting. GNN-based
models perform similarly, except on Tmall, where the data are too sparse so that global collaborative
information assists. On the contrary, FAPAT achieves robust predictions across four datasets. Even
when session data are sufficient, frequent patterns remain effective.

9

Table 5: Attribute estimation evaluation.

Model diginetica Tmall Beauty Books
Hits@10 MRR@10 Hits@10 MRR@10 Hits@10 MRR@10 Hits@10 MRR@10

CSRM 89.87* 87.91* 48.03* 34.97* 94.82 83.57 88.93 73.31
M2TRec‡ 94.10 89.76 59.44 39.72 95.93 84.95 83.80 71.22
S3-Rec‡ 89.66* 88.42* 44.95* 32.60* 95.35 84.79 88.11 75.63
GCE-GNN 89.89* 87.96* 55.88* 38.57* 95.44 84.16 89.78 75.68
LESSR 88.60* 86.24* 49.43* 32.61* 95.02 81.56 89.57 73.73
MSGIFSR 89.48* 87.19* 50.09* 33.95* 95.79 85.42 86.67 71.99
FAPAT‡ 89.99* 88.23* 59.49 40.56 95.94 86.87 90.77 76.83
w/o Attr. 89.35* 87.50* 58.22* 40.08 95.07 81.65 89.29 74.12

1 3 5 10
Period Length

0

5

10

15

20

25

30

35

(a) Tmall

1 3 5 10
Period Length

0

10

20

30

40

50

60

70

80

(b) Books

1 3 5 10
Period Length

0

10

20

30

40

50

60

70

80
FAPAT (Recall@10)
GCE-GNN (Recall@10)
S3Rec (Recall@10)
CSRM (Recall@10)

FAPAT (NDCG@10)
GCE-GNN (NDCG@10)
S3Rec (NDCG@10)
CSRM (NDCG@10)

(c) Electronics

Figure 6: Period-item recommendation evaluation.

Period-item Recommendation. In addition to single-step evaluation, we revisit recommenders.
A sound and robust SRB system must understand user intents in deep and foresee the possible
consistency and the potential change. Autoregressive settings pose challenges for GNNs due to short
click histories and error accumulation. Therefore, we evaluate period recommendations like search
engines by comparing the top-10 predicted items with the next 3/5/10 clicks. Figure 6 demonstrates
period-recommendation performance. Sequence models offer steady results in Recall, indicating
that temporal information is one of the prerequisites to analyzing users’ latest intents. However,
pretraining may hinder models’ ability to generalize over long periods, resulting in a severe decline
in NDCG. Our FAPAT achieves the best performance in all metrics, indicating the effectiveness of
attribute graphlets in capturing deep user intents.

6 Conclusion

Our paper introduces FAPAT, a novel framework that leverages attribute graph patterns to augment
anonymous sequence encoding for session-based recommendations. Compared to other GNN-based
methods, frequent attribute graphlets can reduce noise and topology densities for enhancing user
intent capture. Our sequence encoder can better preserve temporal signals and forecast the user’s
latest intents. Experimental results clearly illustrate the effectiveness, and extensive ablation studies
and intent capture inspections provide additional support. We discuss limitations in Appendix A. One
of the future works is to improve ranking priority by combining pretraining and pattern augmentation.

Acknowledgments

The authors of this paper were supported by the NSFC Fund (U20B2053) from the NSFC of China,
the RIF (R6020-19 and R6021-20) and the GRF (16211520 and 16205322) from RGC of Hong
Kong. We also thank the support from the UGC Research Matching Grants (RMGS20EG01-D,
RMGS20CR11, RMGS20CR12, RMGS20EG19, RMGS20EG21, RMGS23CR05, RMGS23EG08).

10

References
[1] Tianwen Chen and Raymond Chi-Wing Wong. Handling information loss of graph neural

networks for session-based recommendation. In SIGKDD, pages 1172–1180, 2020.

[2] Yen-Liang Chen, Mi-Hao Kuo, Shin-yi Wu, and Kwei Tang. Discovering recency, frequency,
and monetary (RFM) sequential patterns from customers’ purchasing data. Electronic Commerce
Research and Applications, 8(5):241–251, 2009.

[3] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub)graph isomorphism
algorithm for matching large graphs. TPAMI, 26(10):1367–1372, 2004.

[4] Zeyu Cui, Jianxin Ma, Chang Zhou, Jingren Zhou, and Hongxia Yang. M6-rec: Gener-
ative pretrained language models are open-ended recommender systems. arXiv preprint
arXiv:2205.08084, 2022.

[5] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc Viet Le, and Ruslan Salakhut-
dinov. Transformer-xl: Attentive language models beyond a fixed-length context. In ACL, pages
2978–2988, 2019.

[6] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation
as language processing (RLP): A unified pretrain, personalized prompt & predict paradigm (P5).
In RecSys, pages 299–315, 2022.

[7] Jiayan Guo, Yaming Yang, Xiangchen Song, Yuan Zhang, Yujing Wang, Jing Bai, and Yan
Zhang. Learning multi-granularity consecutive user intent unit for session-based recommenda-
tion. In WSDM, pages 343–352, 2022.

[8] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. In ICLR, 2016.

[9] Yupeng Hou, Binbin Hu, Zhiqiang Zhang, and Wayne Xin Zhao. CORE: simple and effective
session-based recommendation within consistent representation space. In SIGIR, pages 1796–
1801. ACM, 2022.

[10] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
WWW, pages 2704–2710, 2020.

[11] Jie Huang, Yifan Gao, Zheng Li, Jingfeng Yang, Yangqiu Song, Chao Zhang, Zining Zhu,
Haoming Jiang, Kevin Chen-Chuan Chang, and Bing Yin. Ccgen: Explainable complementary
concept generation in e-commerce. arXiv preprint arXiv:2305.11480, 2023.

[12] Haoming Jiang, Tianyu Cao, Zheng Li, Chen Luo, Xianfeng Tang, Qingyu Yin, Danqing Zhang,
Rahul Goutam, and Bing Yin. Short text pre-training with extended token classification for
e-commerce query understanding. arXiv preprint arXiv:2210.03915, 2022.

[13] Wei Jin, Haitao Mao, Zheng Li, Haoming Jiang, Chen Luo, Hongzhi Wen, Haoyu Han, Hanqing
Lu, Zhengyang Wang, Ruirui Li, Zhen Li, Monica Xiao Cheng, Rahul Goutam, Haiyang Zhang,
Karthik Subbian, Suhang Wang, Yizhou Sun, Jiliang Tang, Bing Yin, and Xianfeng Tang.
Amazon-m2: A multilingual multi-locale shopping session dataset for recommendation and text
generation. In NeurIPS, 2023.

[14] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

[15] Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. A survey on graph kernels. Appl.
Netw. Sci., 5(1):6, 2020.

[16] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. Neural attentive
session-based recommendation. In CIKM, pages 1419–1428, 2017.

[17] Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. Improving graph collaborative
filtering with neighborhood-enriched contrastive learning. In WWW, pages 2320–2329, 2022.

11

[18] Fan Liu, Zhiyong Cheng, Lei Zhu, Zan Gao, and Liqiang Nie. Interest-aware message-passing
GCN for recommendation. In WWW, pages 1296–1305, 2021.

[19] Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. STAMP: short-term attention/memory
priority model for session-based recommendation. In SIGKDD, pages 1831–1839, 2018.

[20] Xin Liu and Yangqiu Song. Graph convolutional networks with dual message passing for
subgraph isomorphism counting and matching. In AAAI, pages 7594–7602, 2022.

[21] Xin Liu, Haojie Pan, Mutian He, Yangqiu Song, Xin Jiang, and Lifeng Shang. Neural subgraph
isomorphism counting. In SIGKDD, pages 1959–1969. ACM, 2020.

[22] Xin Liu, Jiayang Cheng, Yangqiu Song, and Xin Jiang. Boosting graph structure learning with
dummy nodes. In ICML, volume 162, pages 13704–13716. PMLR, 2022.

[23] Chen Luo, William Headden, Neela Avudaiappan, Haoming Jiang, Tianyu Cao, Qingyu Yin,
Yifan Gao, Zheng Li, Rahul Goutam, Haiyang Zhang, and Bing Yin. Query attribute recom-
mendation at amazon search. In RecSys, page 506–508, 2022.

[24] Ruihong Qiu, Jingjing Li, Zi Huang, and Hongzhi Yin. Rethinking the item order in session-
based recommendation with graph neural networks. In CIKM, pages 579–588, 2019.

[25] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21:140:1–140:67, 2020.

[26] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. BPR:
bayesian personalized ranking from implicit feedback. In UAI, pages 452–461, 2009.

[27] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized
markov chains for next-basket recommendation. In WWW, pages 811–820, 2010.

[28] Walid Shalaby, Sejoon Oh, Amir Afsharinejad, Srijan Kumar, and Xiquan Cui. M2trec:
Metadata-aware multi-task transformer for large-scale and cold-start free session-based recom-
mendations. In RecSys, pages 573–578, 2022.

[29] Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten M.
Borgwardt. Efficient graphlet kernels for large graph comparison. In AISTATS, volume 5, pages
488–495, 2009.

[30] Zhongwei Wan, Xin Liu, Benyou Wang, Jiezhong Qiu, Boyu Li, Ting Guo, Guangyong
Chen, and Yang Wang. Spatio-temporal contrastive learning enhanced gnns for session-based
recommendation. Transactions on Information Systems, 2023.

[31] Meirui Wang, Pengjie Ren, Lei Mei, Zhumin Chen, Jun Ma, and Maarten de Rijke. A collabora-
tive session-based recommendation approach with parallel memory modules. In SIGIR, pages
345–354, 2019.

[32] Ruijie Wang, Zheng Li, Dachun Sun, Shengzhong Liu, Jinning Li, Bing Yin, and Tarek
Abdelzaher. Learning to sample and aggregate: Few-shot reasoning over temporal knowledge
graphs. In NeurIPS, pages 16863–16876, 2022.

[33] Shoujin Wang, Qi Zhang, Liang Hu, Xiuzhen Zhang, Yan Wang, and Charu Aggarwal.
Sequential/session-based recommendations: Challenges, approaches, applications and op-
portunities. In SIGIR, pages 3425–3428, 2022.

[34] Ziyang Wang, Wei Wei, Gao Cong, Xiao-Li Li, Xianling Mao, and Minghui Qiu. Global context
enhanced graph neural networks for session-based recommendation. In SIGIR, pages 169–178,
2020.

[35] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based
recommendation with graph neural networks. In AAAI, pages 346–353, 2019.

[36] Yuhuai Wu, Markus N. Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing trans-
formers. In ICLR, 2022.

12

[37] Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Lizhen Cui, and Xiangliang Zhang. Self-
supervised hypergraph convolutional networks for session-based recommendation. In AAAI,
pages 4503–4511, 2021.

[38] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua
Fang, and Xiaofang Zhou. Graph contextualized self-attention network for session-based
recommendation. In IJCAI, pages 3940–3946, 2019.

[39] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[40] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern mining. In ICDM, pages
721–724, 2002.

[41] Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh,
Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested transformers for representation
learning on textual graph. In NeurIPS, pages 28798–28810, 2021.

[42] Ghim-Eng Yap, Xiaoli Li, and Philip S. Yu. Effective next-items recommendation via personal-
ized sequential pattern mining. In DASFAA, volume 7239, pages 48–64, 2012.

[43] Changlong Yu, Weiqi Wang, Xin Liu, Jiaxin Bai, Yangqiu Song, Zheng Li, Yifan Gao, Tianyu
Cao, and Bing Yin. FolkScope: Intention knowledge graph construction for E-commerce
commonsense discovery. In Finding of ACL, pages 1173–1191, 2023.

[44] Danqing Zhang, Zheng Li, Tianyu Cao, Chen Luo, Tony Wu, Hanqing Lu, Yiwei Song, Bing
Yin, Tuo Zhao, and Qiang Yang. Queaco: Borrowing treasures from weakly-labeled behavior
data for query attribute value extraction. In CIKM, page 4362–4372, 2021.

[45] Peiyan Zhang, Jiayan Guo, Chaozhuo Li, Yueqi Xie, Jaeboum Kim, Yan Zhang, Xing Xie,
Haohan Wang, and Sunghun Kim. Efficiently leveraging multi-level user intent for session-based
recommendation via atten-mixer network. In WSDM, 2023.

[46] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In ICLR, 2020.

[47] Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan
Wang, and Ji-Rong Wen. S3-rec: Self-supervised learning for sequential recommendation with
mutual information maximization. In CIKM, pages 1893–1902, 2020.

13

𝑆 : 𝑣1 𝑣2 𝑣3 𝑣2 𝑣4 𝑣5

𝑣1 𝑣2 𝑣3

𝑣4 𝑣5

𝑣1 𝑣2 𝑣3

𝑣4 𝑣5

𝑣1 𝑣2 𝑣3

𝑣4 𝑣5

𝑣1,2 𝑣2,3 𝑣3,2 𝑣2,4 𝑣4,5

𝑣1 𝑣2 𝑣3

𝑣4 𝑣5

…

𝑣1 𝑣2 𝑣3

𝑣4 𝑣5

Session Sequence

Local Session Graph Global Transition Graph Shortcut Graph Heterogeneous Graphs Attribute Patterns

Figure 7: Different granularities of graphs derived from a session, where the violet edges, blue edges,
and green edges correspond to the global collaborations, shortcuts, and higher-level heterogeneous
connections, respectively.

A Limitations

There are three limitations to our current proposed method and evaluation. First, our method separately
processes and retrieves patterns for each attribute type. We do not merge all attributes in a candidate
pool because we aim for our method to easily generalize to real recommendation systems with
hundreds of attribute types and category hierarchies. The current implementation supports adding a
new attribute type to a model as long as its embeddings align with the embeddings of other attributes.
Second, we conducted experiments based on "clean" session data. Most E-commerce platforms do
not have truly clean data on product attributes, so attribute data, in general, is very sparse and full of
invalid values. We performed human-centric attribute regularization to drop products without valid
attribute values, which may create a gap compared to a real industrial system. Third, the evaluation
does not consider the same products with different identifiers. Therefore, evaluating results (especially
MRR) cannot accurately reflect the performance. To better reflect the real performance with error
tolerance, a larger K is suggested. The current comparison is still fair for all algorithms, and we
address this synonym problem in attribute estimation in § 5.4, where we merge attribute values based
on semantics and syntax.

B Transition Graph Density

The graph structure is crucial for neural networks to capture explicit transitions and implicit connec-
tions. A local session records the history of a user’s clicks or purchases, which is usually sparse. In
contrast, the global collaborative graph could be extremely dense because each pair of items may have
a potential connection. From this perspective, the density indicates the explicit information provided
from session data. On the other hand, different graph topologies and densities also present different
focuses and challenges. The sparse local transition graph emphasizes current intents, while the global
collaboration indicates broader interests and revenues. Graph neural networks excel at capturing local
features, but a large number of neighbors can overshadow important connections with less significant
ones. Considering that previous methods have focused on different granularities individually, we
summarize them in Figure 7 and compare them in terms of optimization interpretations3.

• Local session graphs correspond to item transitions within a session, where edges are created
between two consecutively clicked/purchased items. The density is usually sparse (slightly greater
than 1.0), allowing exploration and global collaboration to be learned through model parame-
ters instead of explicit connections. Therefore, generalizing to unseen click patterns becomes
challenging.

• Global transition graphs record all collaborations. In a real industrial system, the density is usually
beyond one hundred or even one thousand. Ideally, any session can benefit from this global
collaborative information, including multi-hop connections. However, optimizing graph neural

3Graphs are typically considered undirected in practical algorithms.

14

networks to learn such topologies (due to oversmoothing) and building a large model for real-time
inference (due to latency and streaming processing) pose challenges.

• Shortcut graphs aim to avoid constructing global graphs and make session learning more efficient.
They were proposed by LESSR [1] to address information loss in graph convolutions. Specifically,
they allow latent items to be aware of all previous clicks, resembling shortcuts for multi-hop
neighbors in the directed local session graph. However, they lack the extensive exploration
capabilities of the global transition graph and suffer from oversmoothing issues due to dense
connections.

• Heterogeneous graphs strike a balance between shortcuts and local adjacency. Nodes with different
numbers of items are categorized into different groups, and transition edges capture varying levels
of spatial continuity. From a high-level perspective, this graph is sparser than the local session
graph, resulting in faster convergence for optimization. However, the propagation of high-order
information introduces additional processing costs and the risk of overfitting.

• Patterns, especially attribute patterns, should be the most efficient features for recommendations
in a large candidate item pool. Each pattern can be considered a higher-grained heterogeneous
graph. However, pattern filtering can significantly eliminate noise influence, not to mention the
benefits gained from offline indexing. Besides, the partial match of patterns can provide the intent
information from other sessions, making the learning and prediction more reliable and steady.

C Experimental Data

C.1 Public Benchmarks

We choose two public benchmarks for session-based recommendation evaluation: diginetica 4 is
CIKM Cup 2016 that contains the browser logs and anonymized transactions; Tmall 5 comes from a
competition in IJCAI-15 which collects anonymous users’ shopping logs on the Tmall online website.
We acquire attributes from the original data and drop items without attributes or with invalid values.
Therefore, the performance of baselines may not be exactly same as the reported numbers in the
original papers.

C.2 E-commerce Data Collection

We collect E-commerce data from our log systems in two months. We follow the same procedure to
clean and process session data in beauty, books, and electronics domains6:

I We focus on successful purchases so that we only keep sessions ending with “purchase” actions.

II To make sure previous clicks can reflect the purchase intent, we drop actions 20 minutes ago.

III We filter out items with missing attributes (i.e., books without publishers, authors, or genre, and
electronics without colors and brands).

IV We adopt the 20-core setting to finalize the item sets, in which items appear on at least 20
different days.

V Only sessions whose length is no greater than 50 are preserved.

VI We retrieve item attributes in our attribute databases.

VII For GNN models that requires the global transition graph from training data, we maintain 12
neighbors based on the co-occurrence, which is consistent with GCE-GNN [34].

4https://competitions.codalab.org/competitions/11161
5https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
6The sampled data scales and distributions are different in real systems due to out-of-domain items filtering.

15

https://competitions.codalab.org/competitions/11161
https://tianchi.aliyun.com/dataset/dataDetail?dataId=42

Table 6: Statistics of datasets based on timestamps.

Public Industrial (E-commerce)
diginetica Tmall Beauty Books Electronics

#User 57,623 7,576 2.6 M 3.2 M 10.2 M
#Item 43,074 39,768 39.2 K 94.8 K 244.7 K
#Click 993,163 438,315 27.2 M 38.8 M 115.6 M
Avg. Len. 4.850 6.649 10.325 11.912 11.249
#Train 630,789 303,181 19.6 M 28.2 M 84.1 M
#Valid 78,708 33,735 2.4 M 3.5 M 10.5 M
#Test 78,907 35,481 2.5 M 3.8 M 10.6 M

#Attribute category : 995 category : 821
brand : 4,304

category : 359
color : 1,101
brand : 4,359
size : 1,883

category : 18
publisher : 2,751
author : 27,651
genre : 2,634

type : 123
category : 881
color : 2,096

brand : 24,196

#Pattern category : 1,866 category : 33,582
brand : 2,497

category : 970
color : 4,059
brand : 254
size : 1,091

category : 24
publisher : 4,370

author : 1,399
genre : 12,535

type : 9,289
category : 13,991
color : 146,402
brand : 14,043

Density

Local: 0.886
Global: 11.329
Shortcut: 2.512

Heterogeneous: 0.543
Pattern: 1.023

Local: 1.249
Global: 10.222
Shortcut: 4.983

Heterogeneous: 0.707
Pattern: 1.165

Local: 4.510
Global: 70.504

Shortcut: 29.827
Heterogeneous: 3.412

Pattern: 1.095

Local: 3.554
Global: 99.389

Shortcut: 26.649
Heterogeneous: 2.333

Pattern: 1.085

Local: 2.910
Global: 128.041
Shortcut: 19.865

Heterogeneous: 2.049
Pattern: 1.189

C.3 Data Split

We follow previous settings that split training/validation/testing data based on timestamps. For
diginetica, we gather the last 8-14 days as validation, the last 7 days as testing, and remaining as
training. For Tmall, we use the last 101-200 seconds as validation, the last 100 seconds as testing,
and remaining as training. For our industrial E-commerce data (i.e., Beauty, Books, Electronics), we
select the last 6-10 days as validation, the last 5 days as testing, and remaining as training.

C.4 Data Statistics

Table 6 summarizes the statistics of the experimental datasets based on timestamps. The density is
calculated based on undirected graphs, which would be doubled during graph convolution in practice.
Local density, as used in SR-GNN and GC-SAN, corresponds to the average density of local session
graphs in E-commerce sessions. On the other hand, global density, as used in GCE-GNN, refers to
the density of the global collaborative graph obtained by connecting all adjacent items appearing
in all sessions. Shortcut density, as used in LESSR, is the density resulting from connecting all
items in a single session as a complete graph. Heterogeneous density, as used in MSGIFSR, refers
to the average density of the heterogeneous graphs obtained by regarding the consecutive adjacent
two nodes as a fine-grained intent unit. Lastly, pattern density, as used in FAPAT, is the density
of the acquired frequent and compact patterns. From Table 6, it is evident that leveraging patterns
is the most effective way of characterizing user intents because other graph topologies vary with
data sources and scales, making it difficult to generalize and provide stable performance. Besides,
patterns can be preprocessed as indicies to aid recommendations, making them more practical in
industrial scenarios. Moreover, it is easy to update attribute patterns dynamically, whereas other graph
structures are more closely coupled with input sessions and are more sensitive to tiny variations.

D Baselines

We compare our method with the following baselines:
Sequence-based methods

• FPMC [27] learns the representation of session via Markov-chain based methods.

• GRU4Rec [8] is the first RNN-based approach that simulates the Markov Decision Process (MDP)
but has a better generalization.

• NARM [16] is a attention-based RNN model to learn session embeddings.

• STAMP [19] adopts attention mechanism between the last item to previous histories to represent
users’ short-term interests.

16

• CSRM [31] proposes to engage an inner memory encoder and external memory network to capture
correlations between neighborhood sessions to enrich the collaborative representations.

• S3-Rec [47] is the first pretrained SBR model that predicts items, attributes, and segments during
the pretraining stage.

• M2TRec [28] is a metadata-aware multi-task Transformer model. In the original paper, the authors
ignore item embeddings. For a fair comparison, we also regard the item ids as one of metadata.

Graph-based methods

• SR-GNN [35] is the first GNN-based model for the SBR task, which transforms the session data
into a direct unweighted graph and learns the representation of the item-transitions graph.

• GC-SAN [38] uses gated GNNs to extract local context information and then self-attention to
obtain the global representation.

• S2-DHCN [37] transforms the session data into hyper-graphs and line-graphs and encodes them
via GCNs to enhance the session representations.

• GCE-GNN [34] aggregates two levels of item embeddings from session graphs and global graphs
with soft attention.

• LESSR [1] preserves the edge order and constructs shortcuts to encode sessions for GNNs.
• MSGIFSR [7] captures the user intents from multiple granularities to relieve the computational

burden of long-dependency. In experiments, we search the best model from the level-1, level-2,
and level-3 consecutive intent units.

E Experimental Settings

We fix all embeddings and hidden dimensions as 100, and the batch size is searched among {100,
200, 500} for all methods. We also choose the number of layers/iterations (if applicable) from the
validation performance (e.g., MRR@10). A learning scheduler with 10% linear warmup and 90%
decay is associated with the Adam optimizer [14]. The initial learning rate is set as 1e-3, and the
regularization weight is tuned among {1e-4, 1e-5, 1e-6}. We seek the dropout probability between
two modules from {0.0, 0.2, 0.4}, but fix the attention dropout rate as 0.2. The number of attention
heads is empirically set as 4. We follow the setting of GCE-GNN that the maximum one-hop neighbor
number in GAT is 12. In the interest of fairness, we also set the maximum selected pattern number as
12. Hyper-parameter tuning is time costly on our industrial data so that we use the best combinations
obtained from one day transactions. We implement our methods and run experiments with Python
and PyTorch over 8 x A100 NVIDIA GPUs.

F Experimental Results

Due to the space limit, we only report some results in the main content. More comprehensive
comparisons are shown in Tables 7-11, where standard deviations are enclosed in brackets. The
best and second-best results are respectively highlighted in bold and underlined. Methods that use
attributes are marked with ‡, and * indicates the p-value < 0.0001 in t-test.

17

Table 7: Performance evaluation for next-item prediction on diginetica.

Model diginetica
Hits@10 NDCG@10 MRR@10 Hits@20 NDCG@20 MRR@20

FPMC 31.57(0.04)* 17.40(0.01)* 13.08(0.02)* 43.19(0.05)* 20.33(0.03)* 13.88(0.03)*
GRU4Rec 36.77(0.14)* 20.71(0.05)* 15.80(0.03)* 49.68(0.06)* 23.97(0.03)* 16.70(0.03)*
NARM 35.98(0.10)* 20.18(0.06)* 15.36(0.06)* 48.89(0.12)* 23.44(0.06)* 16.26(0.06)*
STAMP 33.59(0.15)* 18.89(0.18)* 14.41(0.19)* 45.87(0.15)* 22.00(0.18)* 15.26(0.19)*
CSRM 33.97(0.08)* 19.43(0.03)* 14.98(0.03)* 45.83(0.02)* 22.42(0.02)* 15.80(0.02)*
S3-Rec‡ 33.48(0.13)* 18.58(0.09)* 14.04(0.10)* 45.97(0.08)* 21.74(0.09)* 14.90(0.10)*
M2TRec‡ 29.67(0.43)* 16.30(0.24)* 12.23(0.18)* 41.23(0.63)* 19.22(0.29)* 13.02(0.20)*
SR-GNN 35.21(0.02)* 19.68(0.04)* 14.94(0.04)* 47.99(0.04)* 22.90(0.04)* 15.82(0.04)*
GC-SAN 35.25(0.09)* 19.72(0.04)* 14.97(0.03)* 47.87(0.09)* 22.90(0.04)* 15.85(0.03)*
S2-DHCN 30.76(0.07)* 17.04(0.14)* 12.86(0.16)* 42.39(0.07)* 19.98(0.13)* 13.66(0.16)*
GCE-GNN 36.32(0.09)* 20.77(0.07)* 16.02(0.07)* 48.67(1.12)* 23.89(0.23)* 16.87(0.03)*
LESSR 33.68(0.05)* 18.71(0.03)* 14.14(0.03)* 46.23(0.11)* 21.88(0.05)* 15.01(0.03)*
MSGIFSR 34.74(0.09)* 19.43(0.06)* 14.76(0.07)* 46.23(0.11)* 21.88(0.05)* 15.01(0.03)*
FAPAT‡ 37.42(0.10) 21.31(0.03) 16.39(0.04) 50.41(0.15) 24.59(0.06) 17.29(0.04)
Improv. 3.03% 2.60% 2.31% 1.46% 2.59% 2.49%

Table 8: Performance evaluation for next-item prediction on Tmall.

Model Tmall
Hits@10 NDCG@10 MRR@10 Hits@20 NDCG@20 MRR@20

FPMC 13.71(0.16)* 9.02(0.02)* 7.56(0.03)* 16.44(0.23)* 9.71(0.04)* 7.74(0.02)
GRU4Rec 18.82(0.17)* 12.28(0.11)* 10.25(0.09)* 22.68(0.21)* 13.25(0.12)* 10.51(0.10)*
NARM 22.74(0.20)* 15.46(0.12)* 13.19(0.10)* 26.73(0.26)* 16.47(0.13)* 13.47(0.10)*
STAMP 24.32(0.31)* 16.55(0.29)* 14.12(0.29)* 28.40(0.35)* 17.58(0.30)* 14.41(0.29)*
CSRM 25.13(0.19)* 18.56(0.18)* 16.48(0.18)* 27.94(0.15)* 19.27(0.17)* 16.68(0.18)*
S3-Rec‡ 18.24(0.11)* 12.30(0.07)* 10.46(0.06)* 22.31(0.17)* 13.32(0.08)* 10.74(0.06)*
M2TRec‡ 11.42(0.21)* 7.56(0.06)* 6.36(0.11)* 13.75(0.35)* 8.15(0.04)* 6.52(0.10)*
SR-GNN 18.21(0.51)* 12.11(0.32)* 10.20(0.28)* 21.34(0.49)* 12.91(0.31)* 10.42(0.28)*
GC-SAN 19.29(0.14)* 12.80(0.07)* 10.78(0.13)* 23.18(0.23)* 13.78(0.04)* 11.05(0.12)*
S2-DHCN 22.00(0.36)* 13.36(0.21)* 10.68(0.17)* 27.23(0.33)* 14.69(0.20)* 11.05(0.17)*
GCE-GNN 28.33(0.13)* 20.01(0.12)* 17.32(0.13)* 30.24(0.16)* 20.50(0.13)* 17.45(0.13)*
LESSR 20.99(0.26)* 14.64(0.18)* 12.13(0.19)* 25.92(0.23)* 13.96(0.22)* 10.50(0.23)*
MSGIFSR 23.18(0.19)* 15.19(0.11)* 12.69(0.10)* 27.78(0.25)* 16.35(0.11)* 13.01(0.09)*
FAPAT‡ 32.45(0.21) 22.02(0.15) 18.72(0.13) 36.18(0.21) 22.97(0.14) 18.99(0.13)
Improv. 14.19% 10.04% 8.08% 19.64% 12.05% 8.83%

Table 9: Performance evaluation for next-item prediction on Beauty.

Model Beauty
Hits@10 NDCG@10 MRR@10 Hits@20 NDCG@20 MRR@20

FPMC 72.00 57.20 52.42 75.91 58.19 52.70
GRU4Rec 73.95 58.19 53.13 78.54 59.36 53.45
NARM 88.09 70.44 64.68 91.50 71.31 64.93
STAMP 80.08 63.76 58.47 83.84 64.72 58.73
CSRM 89.74 75.28 70.56 92.61 76.01 70.77
S3-Rec‡ 89.64 75.56 70.99 92.53 76.30 71.19
M2TRec‡ 80.13 65.97 61.65 83.66 66.87 61.65
SR-GNN 88.69 70.42 64.44 91.74 71.20 64.65
GC-SAN 86.67 70.80 64.71 88.98 72.50 65.97
S2-DHCN 7.25 5.38 4.80 8.87 5.79 4.91
GCE-GNN 89.34 73.15 67.80 91.29 73.65 67.94
LESSR 89.95 71.29 65.18 92.98 72.06 65.40
MSGIFSR 90.18 73.62 65.18 92.50 74.21 65.65
FAPAT‡ 92.72 76.29 71.09 94.10 76.87 71.24
Improv. 2.82% 0.97% 0.14% 1.20% 0.75% 0.07%

18

Table 10: Performance evaluation for next-item prediction on Books.

Model Books
Hits@10 NDCG@10 MRR@10 Hits@20 NDCG@20 MRR@20

FPMC 36.51 24.32 20.49 41.90 25.69 20.87
GRU4Rec 47.21 31.86 27.02 53.55 33.47 27.46
NARM 76.09 54.22 47.13 80.83 55.43 47.36
STAMP 61.49 42.13 35.95 67.46 43.65 36.37
CSRM 78.69 56.70 49.54 82.88 57.77 49.83
S3-Rec‡ 75.00 58.54 53.23 79.45 59.67 53.55
M2TRec‡ 32.56 22.58 24.98 35.39 25.70 22.78
SR-GNN 66.55 47.55 41.32 69.77 48.37 41.55
GC-SAN 72.56 54.92 49.25 75.73 56.05 50.14
S2-DHCN 4.69 3.42 3.03 5.60 3.65 3.09
GCE-GNN 77.61 57.60 51.00 80.03 58.22 51.17
LESSR 73.72 53.86 47.36 82.31 54.77 47.61
MSGIFSR 72.93 52.23 45.66 76.33 53.09 45.66
FAPAT‡ 81.62 61.08 54.39 85.12 61.97 54.64
Improv. 3.72% 4.34% 2.18% 2.70% 3.85% 2.04%

Table 11: Performance evaluation for next-item prediction on Electronics.

Model Electronics
Hits@10 NDCG@10 MRR@10 Hits@20 NDCG@20 MRR@20

FPMC 37.87 26.91 23.42 42.07 27.97 23.71
GRU4Rec 58.46 40.69 35.02 64.42 42.21 35.44
NARM 61.10 41.20 32.05 77.36 44.56 33.75
STAMP 59.30 42.04 36.53 67.94 45.07 36.97
CSRM 62.28 44.35 38.59 67.47 45.67 38.96
S3-Rec‡ 74.36 56.03 50.16 79.63 57.37 50.53
M2TRec‡ 57.32 44.84 40.85 61.70 45.95 41.15
SR-GNN 74.86 54.30 47.66 79.66 55.52 48.00
GC-SAN 72.76 53.37 45.98 77.34 46.34 49.91
S2-DHCN 4.18 2.65 2.18 5.08 2.88 2.24
GCE-GNN 72.93 53.74 47.59 78.49 55.15 47.98
LESSR 72.91 50.46 43.26 78.78 51.96 43.67
MSGIFSR 73.56 53.83 47.77 77.45 54.73 48.02
FAPAT‡ 78.36 56.81 49.80 82.81 57.94 50.12
Improv. 4.68% 1.39% -0.07% 3.95% 0.99% -0.81%

19

	Introduction
	Related Work
	Background and Motivations
	Problem Definition
	Session Graphs and Transition Graphs
	Frequent Pattern Mining

	Methodology
	Frequent Attribute Pattern Acquisition
	Graph Pattern Mining
	Loose Pattern Filtering

	Intent-aware Sequence Encoding
	Relevant Graph Pattern Retrieval
	Attribute Pattern Representation
	Attribute Memory Augmentation
	User Intent Aggregation

	Next-item Recommendation

	Experiment
	Setup
	Next-item Prediction Evaluation
	Ablation Study
	Intent Capture Inspection

	Conclusion
	Limitations
	Transition Graph Density
	Experimental Data
	Public Benchmarks
	E-commerce Data Collection
	Data Split
	Data Statistics

	Baselines
	Experimental Settings
	Experimental Results

