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ABSTRACT

Multimodal Large Language Models (MLLMs) have emerged as a central focus in
both industry and academia, but often suffer from biases introduced by visual and
language priors, which can lead to multimodal hallucination. These biases arise
from the visual encoder and the Large Language Model (LLM) backbone, affect-
ing the attention mechanism responsible for aligning multimodal inputs. Existing
decoding-based mitigation methods focus on statistical correlations and overlook
the causal relationships between attention mechanisms and model output, limit-
ing their effectiveness in addressing these biases. To tackle this issue, we pro-
pose a causal inference framework termed CAUSALMM that applies structural
causal modeling to MLLMs, treating modality priors as a confounder between
attention mechanisms and output. Specifically, by employing back-door adjust-
ment and counterfactual reasoning at both the visual and language attention lev-
els, our method mitigates the negative effects of modality priors and enhances the
alignment of MLLM’s inputs and outputs, with a maximum score improvement of
65.3% on 6 VLind-Bench indicators and 164 points on MME Benchmark com-
pared to conventional methods. Extensive experiments validate the effectiveness
of our approach while being a plug-and-play solution. Our code is available at:
https://github.com/The-Martyr/CausalMM.

1 INTRODUCTION

(a) Visual Contrastive Decoding

logits(𝑦|𝑥, 𝑣′)

logits(𝑦|𝑥, 𝑣)

(1 + α)logits(𝑦|𝑥, 𝑣)
−α logits(𝑦|𝑥, 𝑣′)

(b) CausalMM (Ours)

Is there a 
person in 
the image?

LLM

Causal 
Inference

Deciphering 

Attention 

Causality

Figure 1: The comparison of conventional halluci-
nation mitigation paradigm (e.g., VCD) and our pro-
posed CAUSALMM.

Recent research on Multimodal Large Language
Models (MLLMs) has achieved great progress in
diverse applications (Yin et al., 2023; Jin et al.,
2024; Yan et al., 2024; Zou et al., 2024b), partic-
ularly due to their reliance on Transformer mod-
els (Vaswani, 2017), where performance is driven
by the attention mechanism (Hassanin et al.,
2024). In particular, such a mechanism enables
the model to assign weights to input information,
such as images and text, guiding the generation
of outputs. However, the inherent bias in the ini-
tial parameters of the model, namely the modal-
ity priors, can negatively impact output quality
via the attention mechanism (Tong et al., 2024a;
Zhao et al., 2024; Lee et al., 2024; Chen et al.,
2024). In widely used MLLM architectures, at-
tention that most significantly influences output
can be divided into two components: visual en-
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coder attention and Large Language Model (LLM) backbone attention (Liu et al., 2024b). The
parametric knowledge of the visual encoder (i.e., visual priors) affects the alignment of multimodal
information by affecting the visual encoder’s attention (Tong et al., 2024a;b). Similarly, the knowl-
edge embedded in the LLM’s parameters, referred to as language priors, may compromise the
model’s fidelity to multimodal inputs through attention (Lee et al., 2024). These biases, stemming
from the visual encoder and the MLLM’s over-reliance on language priors, may lead to issues such
as multimodal hallucinations, ultimately degrading model performance (Yang et al., 2023). Sev-
eral approaches have been proposed to enhance model output without modifying the model weights
(Leng et al., 2024; Huang et al., 2024; Zou et al., 2024a). However, as illustrated in Figure 1 (a),
existing decoding strategies primarily rely on statistical correlations and predetermined conclusions
from posterior analysis to optimize outputs, without systematically studying the causal relationship
between visual attention, language attention, modality priors, and model output. In this context,
the attention mechanism adjusts weights solely based on parameter knowledge, which limits the
model’s ability to comprehend underlying dependencies in the reasoning process, exacerbates bias,
leading to problems such as multimodal hallucinations.

Modality priors are one of the confounding factors in the causal path of MLLM. We introduce a
causal reasoning framework CAUSALMM, which can help us better capture the causal impact of
effective attention on MLLM output in the presence of these confounding factors, thereby improving
the performance of multimodal tasks, as shown in Figure 1 (b). Specifically, we construct a structural
causal model (Pearl, 2009) for MLLM, and use intervention and counterfactual reasoning methods
under the back-door adjustment paradigm to derive the causal effects of visual and language atten-
tion on the model output despite the confounding effect of modal priors. The CAUSALMM method
is based on counterfactual reasoning at the visual and language attention levels, which ensures that
the model output is more consistent with the multimodal input, thereby mitigating the negative im-
pact of modal priors on performance. Experimental results show that CAUSALMM significantly
reduces modal prior bias and improves performance on different tasks, improving 143.7 points on
6 indicators of VLind-Bench, 164 points on the MME Benchmark, and an average improvement of
5.37% on the three benchmarks of POPE.

Our key contributions can be summarized as follows: ❶ We have constructed a structural causal
framework called CAUSALMM flexible for any MLLM, exploring the issues of visual and lan-
guage priors within the framework. ❷ We apply counterfactual reasoning at the levels of visual and
language attention, making the output more aligned with multimodal inputs. ❸ Through compre-
hensive experiments, we have demonstrated the superior performance of our method in alleviating
MLLM hallucinations. In addition, our framework is plug-and-play, and can be integrated with other
training-free methods for further improvement.

2 RELATED WORKS

Multimodal Large Language Models. In recent years, MLLMs have seen significant advance-
ments (Yin et al., 2023; Jin et al., 2024; Huo et al., 2024; Yan & Lee, 2024). Notable works in-
clude VITA (Fu et al., 2024b), the first open-source MLLM capable of processing video, image,
text, and audio, demonstrating robust performance across various benchmarks. Cambrian-1 (Tong
et al., 2024a) is a family of MLLMs designed with a vision-centric approach, achieving state-of-the-
art performance and providing comprehensive resources for instruction-tuned MLLMs. Addition-
ally, research on training-free reasoning stage improvements, such as VCD (Leng et al., 2024) and
OPERA (Huang et al., 2024), has focused on leveraging human experience to enhance model per-
formance without additional training (Li et al., 2023b; Zheng et al., 2024). In this work, we manage
to apply causal reasoning (Pearl, 2009) to make the MLLM automatically optimize the output.

Causal Inference in Multimodal Learning. The field of causal inference has seen significant
advancements (Pearl, 2009; Xu et al., 2020; Cheng et al., 2023; Gong et al., 2022; Fang & Liang,
2024; Wu et al., 2022), particularly in the context of LLMs and vision systems (Zhang et al., 2023a;
Rao et al., 2021; Zhou et al., 2024). Researchers have explored the integration of causal reasoning
to enhance the interpretability and robustness of these models (Xu et al., 2020; Zou et al., 2023).
For instance, LLMs have been shown to generate accurate causal arguments across various tasks,
surpassing traditional methods (Kıcıman et al., 2023). A comprehensive survey has highlighted the
potential of causal inference frameworks to improve reasoning capacity, fairness, and multimodality
in LLMs (Liu et al., 2024c). Additionally, recent work showcased the use of LLM-guided discovery
to significantly improve causal ordering accuracy (Vashishtha et al., 2023). Different from previous
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attempts, we tend to use causal reasoning to balance the visual priors and language priors of the
model output.

Modality Priors. Research on modality priors in MLLMs has seen significant advancements (Tong
et al., 2024a; Peng et al., 2023; Lukics & Lukács, 2022; Gema et al., 2024). Studies focused on
overcoming language priors by integrating visual modules, enhancing the impact of visual content
on model outputs. For instance, (Zhao et al., 2022) proposed a method to improve visual content
in Visual Question Answering (VQA) tasks, which proved effective across multiple datasets. Addi-
tionally, benchmarks like VLind-Bench (Lee et al., 2024) have been developed to measure language
priors in MLLMs, revealing a strong reliance on textual patterns. On the other hand, visual priors
have been addressed by augmenting off-the-shelf LLMs to support multimodal inputs and outputs
through cost-effective training strategies (Zhang et al., 2024).

3 METHODOLOGY

In this section, we construct a structural causal model of MLLM and generate different counterfac-
tual attentions through intervention for counterfactual reasoning based on the back-door criterion.

3.1 STRUCTURAL CAUSAL MODEL

We construct a structural causal model (SCM) to describe the relationships among various compo-
nents of a MLLM (Yang et al., 2021; Pawlowski et al., 2020). In particular, our SCM captures the
interactions between the visual and language modalities by modeling causal dependencies among
input image (I), visual attention (Ai), visual token embeddings (Ti), language token embeddings
(Tt), language priors (Pl), visual priors (Pv), MLLM attention (At), and model output (O).

The causal graph is formulated as follows:

• I → Ai: The image input I influences the visual attention layer Ai.
• I → Ti: The image input I directly affects the visual token embeddings Ti.
• Pv → Ai: Visual priors Pv contribute to the attention in the visual attention module.
• Pv → Ti: Visual priors Pv also influence the formation of visual token embeddings Ti.
• Ai → Ti: Visual attention Ai impacts the encoding of visual tokens.
• Ti → O: Visual tokens Ti contribute directly to the model’s output.
• Tt → At: Language token embeddings Tt influence the MLLM’s attention At.
• Tt → O: Language token embeddings Tt directly impact the final output.
• Pl → At: Language priors Pl inform the MLLM’s attention mechanism At.
• Pl → O: Language priors Pl directly affect the model output O.
• At → O: LLM attention At shapes the final output O.
In this causal graph, both visual priors (Pv) and language priors (Pl) serve as confounding factors,
influencing the attention layers and embedding representations in both modalities. These priors are
mixed into the model and can lead to biased outputs. Our goal is to quantify the causal effect of
visual attention (Ai) and language attention (At) on the model output (O), while accounting for
these confounding effects through intervention and counterfactual reasoning.

3.2 INTERVENTION ON MULTIMODAL ATTENTIONS

We perform specific interventions on the attention layers of both the visual and language components
to investigate their causal effects on the model’s output. These interventions modify the attention
weights to generate counterfactual outputs, allowing us to isolate the impact of each modality.

For visual attention, we intervene by replacing the original attention map Ai with a counterfactual
state A∗

i , expressed as do(Ai = A∗
i ). The counterfactual state A∗

i can take various forms, such as
random attention weights, uniform distributions, reversed scores, or shuffled attention maps (Rao
et al., 2021). Each configuration reveals different aspects of how visual attention influences the
output, independent of other factors like the image I and visual processing Pv .

Similarly, we intervene in the language attention by applying do(At = A∗
t ), where A∗

t represents
alternative attention states that allow us to explore the impact of the language attention module on
the final output, free from the influences of Tt, Ti, and Pl.

The counterfactual attention states are specified as follows:
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Figure 2: Causal diagram of counterfactual reasoning. ❶ In vision-only counterfactual reasoning, we only
intervene in visual attention (i.e., the attention of the visual encoder). ❷ In language-only counterfactual reason-
ing, we only intervene in the multi-head self-attention of LLM. ❸ In multimodal collaborative counterfactual
reasoning, we intervene in both visual and language attention at the same time and obtain the sum of their
collaborative causal effects.

1. Random Attention: Replace the original attention scores with random values drawn from a uni-
form distribution. For the visual encoder, attention scores Ai(h,w) at spatial locations (h,w) are
replaced as follows:

A′
i(h,w) = U(0, 1) · σ · αv, (1)

where U(0, 1) is a random variable drawn from a uniform distribution, σ represents the scaling
factor for attention, and αv denotes the normalization parameter. Similarly, for the language
model, the random attention values At(n) over tokens n are given by:

A′
t(n) = U(0, 1) · β · αl, (2)

where β is the language attention scaling factor and αl is the language normalization term.
2. Uniform Attention: Assign a constant value to all attention scores. For the visual encoder, the

attention at location (h,w) is replaced by the average value:

A′
i(h,w) =

1

H ×W

∑
h,w

Ai(h,w) + ϵ, (3)

where H and W represent the height and width of attention map, and ϵ is a small perturba-
tion added to avoid exact uniformity. For the language model, the attention over N tokens is
distributed as:

A′
t(n) =

1

N

N∑
n=1

At(n) + δ, (4)

where δ is a small constant ensuring numerical stability.
3. Reversed Attention: Invert the attention map by subtracting each attention score from the maxi-

mum value of the map. For the visual encoder:
A′

i(h,w) = max(Ai)−Ai(h,w) + λ, (5)
where λ is an offset parameter to control the inversion. For the language model:

A′
t(n) = max(At)−At(n) + ζ, (6)

where ζ is the inversion factor for language attention.
4. Shuffled Attention: Randomly permute the attention scores across spatial locations for the visual

encoder. The new attention map A′
i is created by permuting the original scores Ai:

A′
i(h,w) = Ai(π(h), π(w)), (7)

where π(h) and π(w) are random permutations of the height and width indices. This intervention is
specific to the visual encoder and does not apply to the language model, as token order is significant
in language processing.

By conducting these interventions, we can observe the independent contributions of both visual and
language attention to the model’s output, controlling for confounding factors such as the image I ,
the tokens Tt, and the model’s intermediate representations Pv and Pl.
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3.3 COUNTERFACTUAL REASONING

To formalize the impact of counterfactual interventions on the model output, we perform counter-
factual reasoning based on the back-door adjustment principle (Pearl, 2009; Li et al., 2023a; Adib
et al., 2020; Zhang et al., 2023b). The back-door criterion ensures that we properly account for
confounding factors (I , Pv , Pl) when estimating the causal effect of attention mechanisms. Under
the framework of back-door adjustment, we are able to effectively obtain the causal effects of other
variables under the influence of the confounding factor of modal priors. The specific proof can be
found in Sec. A.1. To measure the causal effect of the attention mechanism, we use counterfactual
reasoning to simulate the case of attention failure. For the visual attention (Ai):
Peffect V = EAi∼Ãi

[P (O|Ai = Ai, I = I, Pv = Pv)− P (O|do(Ai = ai), I = I, Pv = Pv)] .

Here, Peffect V represents the causal effect of the visual attention mechanism on the model output
O. The term Ai denotes the observed visual attention, whereas ai represents the intervention applied
to the visual attention. For vision-only:

tnext,v = argmax
i

(
emax(ℓi+γ(ℓi−ℓcf v,i)−log(ϵ)−maxj ℓj ,−∞)∑
j e

max(ℓj+γ(ℓj−ℓcf v,j)−log(ϵ)−maxk ℓk,−∞)

)
.

In this equation, tnext,v indicates the index of the next token chosen based solely on visual attention.
The variable ℓi stands for the original logits of the i-th token, and ℓcf v,i is the counterfactual logit
derived from the visual modality. γ represents the degree of confidence in the treatment effect. ”j”
iterates over all tokens in the denominator (to compute the softmax normalization). For the LLM
attention (At):
Peffect L = EAt∼Ãt

[P (O|At = At, Tt = Tt, Pl = Pl)− P (O|do(At = at), Tt = Tt, Pl = Pl)] ,

Where Peffect L denotes the causal effect of the language model attention on the output O. The no-
tation At is the observed language model attention, and at is the intervention applied to the language
model attention. For language-only:

tnext,l = argmax
i

(
emax(ℓi+γ(ℓi−ℓcf l,i)−log(ϵ)−maxj ℓj ,−∞)∑
j e

max(ℓj+γ(ℓj−ℓcf l,j)−log(ϵ)−maxk ℓk,−∞)

)
.

This equation describes the selection of the next token tnext,l based purely on language attention.
Here, ℓi is the original logits of the i-th token, and ℓcf l,i is the counterfactual logit derived from the
language modality. In a multimodal setting, the combined causal effect is given by:

Peffect M = EAi,At∼Ãi,Ãt
[P (O|Ai = Ai, At = At, I = I, Tt = Tt, Pv = Pv, Pl = Pl)]

− P (O|do(Ai = ai), do(At = at), I = I, Tt = Tt, Pv = Pv, Pl = Pl),

Where Peffect M represents the combined causal effect of both visual and language attention mecha-
nisms on the output O. When integrating visual and language modalities enhanced by counterfactual
reasoning, the final token selection is determined by:

tnext = argmax
i

(
emax(ℓi+γ((ℓi−ℓcf v,i)+(ℓi−ℓcf l,i))−log(ϵ)−maxj ℓj ,−∞)∑
j e

max(ℓj+γ((ℓj−ℓcf v,j)+(ℓj−ℓcf l,j))−log(ϵ)−maxk ℓk,−∞)

)
.

This equation defines the final token selection tnext by integrating the effects of both visual and lan-
guage attention mechanisms, thereby mitigating the negative influence of priors in both modalities
and enabling more robust decoding strategies. In all experiments we use direct sampling.

4 EXPERIMENTS

In this section, we verify the effectiveness of the CAUSALMM on different benchmarks and imple-
ment ablation for different categories of counterfactual attention and number of intervention layers.
The case study and gpt-aided-evaluation are in 4.4.

4.1 EXPERIMENTAL SETUP

4.1.1 BENCHMARKS

VLind-Bench. VLind-Bench (Lee et al., 2024) is a benchmark designed to measure language priors
in MLLMs. It disentangles language priors from commonsense knowledge (CK), visual perception
(VP), and commonsense biases (CB). There is significant reliance on language priors across models,
and the Pipeline Score (SLP) offers insights beyond task-level evaluation.
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POPE. POPE (Polling-based Object Probing Evaluation) (Li et al., 2023c) is a benchmark for eval-
uating MLLMs in accurately determining the presence or absence of specific objects in images,
assessing object-level hallucination. The framework utilizes Y/N questions derived from object
annotations. Evaluation metrics include standard binary classification measures — accuracy, pre-
cision, recall, and F1 score — offering a clear quantitative assessment of MLLM performance in
distinguishing real from hallucinated objects.

MME. MME (Multimodal Large Language Model Evaluation) benchmark (Fu et al., 2024a) quan-
titatively assesses MLLMs across ten perception-related and four cognition-focused subtasks. To
measure object-level hallucination, it uses subsets focused on object existence and count, while
attribute-level hallucinations are assessed through subsets concerning object position and color.

4.1.2 BASELINES

Regular setting. We use two baseline MLLMs LLaVa-1.5 (Li et al., 2023c; Liu et al., 2024a) and
Qwen2-VL (Wang et al., 2024) for our baseline setting.

VCD. Visual Contrastive Decoding (Leng et al., 2024) is a training-free technique that mitigates
object hallucinations in MLLMs. By contrasting output distributions from original and distorted
visual inputs, VCD reduces the model’s over-reliance on statistical biases and unimodal priors.

OPERA. Over-trust Penalty and Retrospection-Allocation (Huang et al., 2024) is an decoding-based
method that mitigates hallucinations in MLLMs. It introduces a penalty term during beam search to
address over-trust issues, and incorporates a rollback strategy for token selection.

4.2 MAIN RESULTS

Figure 3: Scores of different methods on VLind-Bench. CAUSALMM
method significantly improves the model’s score on VLind-Bench.

Results on VLind-Bench. As
shown in the figure 3, the
experimental results on the
VLind-Bench benchmark (Lee
et al., 2024) are particularly
interesting. On the LLaVA-
1.5 model, other methods failed
to achieve significant perfor-
mance improvements in bal-
ancing modality priors, while
the performance under the mul-
timodal collaborative setting
has made a significant leap, in-
dicating that the visual priors
and language priors of LLaVA-
1.5 are balanced. The visual
priors of the Qwen2-VL model
has been improved, so that the language setting and the multimodal collaborative setting have
achieved similar optimal performance.

This observation can be attributed to the nature of VLind-Bench, which comprises a suite of evalu-
ation frameworks designed to elucidate the influence of various factors and to quantify the reliance
on language priors. Such an evaluation paradigm imposes stringent requirements on the equilibrium
of the model’s multimodal prior knowledge. Our multimodal collaborative method has notably en-
hanced the baseline model’s performance across all metrics, effectively achieving a balance in the
model’s modal priors. Compared with other methods that follow human priors, the CAUSALMM
method’s automatic capture of the causal effect of attention enables it to balance the bias of differ-
ent modalities simultaneously. This outcome robustly substantiates the efficacy of our methodology
(Liu et al., 2024c).

Results on POPE. The experimental analysis conducted on the POPE benchmark (see Table 1),
as delineated in prior studies (Li et al., 2023c; Lin et al., 2014; Schwenk et al., 2022; Hudson &
Manning, 2019), reveals that our proposed CAUSALMM demonstrates superior performance in mit-
igating object-level hallucinations across random, popular, and adversarial settings. CAUSALMM
consistently outperforms existing baselines on the most evaluation metrics, indicating a robust en-
hancement in performance, with an average metric improvement of 5.37%.
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Table 1: Main results on POPE tasks. We evaluate the POPE task accuracy of various MLLMs on the
MSCOCO, A-OKVQA, and GQA datasets with LLaVa-1.5 under different decoding settings. Regular refers
to the scenario where direct sampling is applied. Vision, Language and Multimodal refer to vision-only,
language-only, and multimodal collaboration variants of CAUSALMM. The bold and the underlined refer to
the highest and second highest metrics under each setting, respectively. Each value is followed by the difference
relative to regular setting.

Dataset Setting Method Accuracy Precision Recall F1 Score

Random Regular 83.53 (0.00) 92.12 (0.00) 73.33 (0.00) 81.66 (0.00)
VCD 86.40 (2.87) 94.68 (2.56) 77.13 (3.80) 85.01 (3.35)

OPERA 89.20 (5.67) 92.68 (0.56) 85.26 (11.9) 88.81 (7.15)
Vision 86.46 (2.93) 96.27 (4.15) 75.86 (2.53) 84.86 (3.20)

Language 88.00 (4.47) 95.96 (3.84) 79.33 (6.00) 86.86 (5.20)
Multimodal 88.93 (5.40) 95.20 (3.08) 82.00 (8.67) 88.10 (6.44)

MSCOCO

Popular Regular 81.10 (0.00) 87.89 (0.00) 72.13 (0.00) 79.23 (0.00)
VCD 83.53 (2.43) 89.29 (1.40) 76.20 (4.07) 82.23 (3.00)

OPERA 86.83 (5.73) 88.24 (0.35) 85.26 (13.1) 86.62 (7.39)
Vision 84.56 (3.46) 91.57 (3.68) 76.13 (3.00) 83.14 (3.91)

Language 87.03 (5.93) 91.80 (3.91) 88.13 (16.0) 87.17 (7.94)
Multimodal 87.13 (6.03) 86.35 (1.46) 88.20 (16.0) 87.26 (8.03)

Adversarial Regular 78.63 (0.00) 82.96 (0.00) 72.06 (0.00) 77.13 (0.00)
VCD 81.10 (2.47) 84.47 (1.51) 76.20 (4.14) 80.12 (3.99)

OPERA 81.13 (2.50) 78.79 (4.17) 85.20 (13.1) 81.87 (4.74)
Vision 82.20 (3.57) 86.64 (3.68) 76.13 (4.07) 81.05 (3.92)

Language 81.73 (3.10) 86.28 (3.32) 75.46 (3.40) 80.51 (3.38)
Multimodal 83.70 (5.07) 87.69 (4.73) 78.40 (6.34) 82.78 (5.65)

Random Regular 84.03 (0.00) 87.67 (0.00) 79.20 (0.00) 83.22 (0.00)
VCD 85.90 (1.87) 88.27 (0.60) 82.80 (3.60) 85.44 (2.22)

OPERA 88.23 (4.20) 86.13 (1.54) 91.13 (11.9) 84.59 (1.37)
Vision 87.66 (3.63) 90.24 (2.57) 84.46 (5.26) 87.25 (4.03)

Language 85.96 (1.93) 89.75 (2.08) 81.20 (2.00) 85.26 (2.04)
Multimodal 88.93 (4.90) 91.89 (4.22) 85.40 (6.20) 88.52 (5.30)

A-OKVQA

Popular Regular 80.23 (0.00) 80.87 (0.00) 79.20 (0.00) 80.02 (0.00)
VCD 81.96 (1.73) 81.44 (0.57) 82.80 (3.60) 82.11 (2.09)

OPERA 83.40 (3.17) 78.92 (2.05) 91.13 (11.9) 84.59 (4.57)
Vision 84.03 (3.80) 83.74 (2.87) 84.46 (5.26) 84.10 (4.08)

Language 85.96 (5.73) 89.75 (8.88) 81.20 (2.00) 85.26 (5.24)
Multimodal 85.70 (5.47) 92.60 (11.7) 77.60 (1.60) 84.43 (4.41)

Adversarial Regular 74.26 (0.00) 72.33 (0.00) 78.60 (0.00) 75.33 (0.00)
VCD 76.10 (1.84) 72.90 (0.57) 83.06 (4.46) 77.65 (2.32)

OPERA 73.90 (0.36) 67.77 (4.56) 91.13 (12.5) 84.59 (9.26)
Vision 76.86 (2.60) 73.43 (1.10) 84.20 (5.60) 78.44 (3.11)

Language 77.43 (3.17) 74.98 (2.65) 82.33 (3.73) 78.48 (3.15)
Multimodal 77.86 (3.60) 74.41 (2.08) 84.93 (6.33) 79.32 (3.99)

Random Regular 83.60 (0.00) 87.11 (0.00) 78.86 (0.00) 82.78 (0.00)
VCD 85.86 (2.26) 88.21 (1.10) 82.80 (3.94) 85.41 (2.63)

OPERA 88.50 (5.90) 85.45 (1.66) 92.80 (13.9) 88.90 (6.12)
Vision 87.40 (3.80) 90.53 (3.42) 83.53 (4.67) 86.89 (4.11)

Language 86.56 (2.96) 90.18 (3.07) 82.06 (3.20) 85.93 (3.15)
Multimodal 88.50 (5.90) 90.81 (3.70) 85.66 (6.80) 88.16 (5.38)

GQA

Popular Regular 77.86 (0.00) 77.32 (0.00) 78.86 (0.00) 78.08 (0.00)
VCD 79.06 (1.20) 77.04 (0.28) 82.80 (3.94) 79.82 (1.74)

OPERA 79.80 (1.94) 73.65 (3.67) 92.80 (13.9) 82.12 (4.04)
Vision 80.80 (2.94) 79.20 (1.88) 83.53 (4.67) 81.31 (3.23)

Language 79.93 (2.07) 78.70 (1.38) 82.06 (3.20) 80.35 (2.27)
Multimodal 82.36 (4.50) 80.36 (2.04) 85.66 (6.80) 82.92 (4.84)

Adversarial Regular 75.16 (0.00) 73.31 (0.00) 79.13 (0.00) 76.61 (0.00)
VCD 76.33 (1.17) 73.23 (0.08) 83.00 (3.87) 77.81 (1.20)

OPERA 75.00 (0.16) 68.43 (4.88) 92.80 (13.6) 78.77 (2.16)
Vision 76.80 (1.64) 73.43 (0.12) 84.20 (5.07) 78.44 (1.83)

Language 76.60 (1.44) 74.21 (0.90) 81.53 (2.40) 77.70 (1.09)
Multimodal 79.53 (4.37) 76.49 (3.18) 85.26 (6.13) 80.64 (3.03)
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Figure 4: Result comparison of different categories on MME Benchmark across different methods. In
most tasks, the scores obtained by CAUSALMM are higher than baselines, which verifies its effectiveness.

Figure 5: Result comparison of perception and cognition views on MME Benchmark across different
methods. In both perception and cognition dimensions, variants of CAUSALMM outperform the others.

Notably, both the vision-only and language-only variants of CAUSALMM exhibit significant im-
provements in effectiveness. Furthermore, the multimodal collaborative approach within our model
achieves the highest accuracy, underscoring the synergistic benefits of integrating multiple modali-
ties. Despite the observed performance decline in various baselines when subjected to popular and
adversarial settings, our model maintains remarkable stability. This observation suggests that our
CAUSALMM method is instrumental in enhancing stability. Moreover, the equilibrium of multi-
modal parameter priors is deemed crucial, as it can, to a certain extent, amplify the advantages
conferred by the balanced priors of distinct modalities. This equilibrium is pivotal in effectively
curtailing multimodal hallucinations.

Results on MME. The empirical investigations conducted on the MME benchmark (Fu et al.,
2024a) offer a thorough assessment of both object-level and attribute-level hallucinations. It
has been discerned that while models such as LLaVA-1.5 (Liu et al., 2024b;a) and Qwen2-
VL (Wang et al., 2024) exhibit commendable performance in evaluating the presence of ob-
jects, they encounter challenges when dealing with more intricate queries, notably those involv-
ing counting. As indicated in Figure 4 and Figure 5, our CAUSALMM has been instrumental
in significantly enhancing the performance of these models, yielding substantial improvements.

Table 2: Evaluation on the subset of MME perception.
While most of the data are similar, the CAUSALMM method
helps Qwen2-VL improve the performance of multiple indi-
cators in MME Benchmark.

Method OCR celebrity landmark count

Regular 147.50 147.64 182.05 160.00
Vision 162.50 150.29 182.75 165.00
Language 170.00 168.23 182.50 160.00
Multimodal 170.00 168.23 182.75 165.00

In the domain of attribute-level evalua-
tion, it has been observed that models
are more prone to hallucinations concern-
ing attributes like color. Our proposed
CAUSALMM, once again, demonstrates
significant improvements in this area. The
CAUSALMM methods have demonstrated
robust performance across various met-
rics, particularly excelling in numerical
computations and counting, which also
translates into an advantage in the overall score. Although the performance on tasks such as Position
remains relatively consistent, the overall enhancements in the perception and cognitive categories
underscore the effectiveness of these methods in reducing hallucinations.

In the context of poster and scene tasks, the language-only method has achieved the highest perfor-
mance, which serves as a compelling validation of the impact of language priors on model perfor-
mance. The MME fullset evaluation corroborates that our CAUSALMM method consistently main-
tains superior performance across a diverse array of tasks and models, thereby further substantiating
its practical utility in enhancing the precision and reliability of MLLMs.
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Figure 6: Ablation on different counterfactual
attentions. The specific value is obtained by taking
the average of all the results.

Figure 7: Ablation on intervention cross layers. We
explored the relationship between the number of layers
of intervention in the LLM and the causal effect.

4.3 ABLATION STUDY

Ablation on different counterfactual attention. To explore the generation of generalized coun-
terfactual attention through interventions (Pearl, 2009), we evaluated four distinct types of counter-
factual attention. Ablation experiments were conducted to systematically assess the impact of each
type on model performance, as presented in Figure 6. The results demonstrate that using random
attention as the anchor for the causal effect leads to the most substantial improvement in model
performance. This improvement arises because perturbed attention, when aligned with average at-
tention, can be more clearly distinguished from the original attention. This alignment aligns with
the principles of the average causal effect.

The reason for this finding is that perturbed attention, when close to the average attention level, better
reflects a generalizable attention distribution pattern. Such generalizability enables a more accurate
estimation of the causal effect, as it reduces the influence of outlier attention patterns that may not
be representative of the overall dataset. Therefore, this approach more effectively meets the criteria
for estimating the average causal effect, contributing to the observed performance improvement.

Ablation on intervention cross layers. Beyond the categorization of counterfactuals, the effective-
ness of counterfactual attention depends on its application across different layers of a large language
model. To investigate the influence of language priors at various depths, interventions were meticu-
lously conducted in the early, middle, and late layers of the model. This multi-layered approach is
based on the hypothesis that language priors exert varying levels of influence at different stages of
language processing.

By intervening at different layers, we aimed to determine whether counterfactual attention could
effectively modulate these priors. Based on the experimental results in Figure 7, interventions be-
tween shallow and middle layers proved to be the most effective. We hypothesize that these layers
represent the initial stages where language priors significantly impact processing. Interventions in
this range can effectively establish anchor points that are influenced by language priors, thereby
improving model output to a certain extent.

4.4 CASE STUDY

Table 3: GPT-4o-aided-evaluation. The evalua-
tion results of gpt4-o as an expert. The four indi-
cators represent the overall quality, conversational,
detailedness and complexity.

Method All Conv Detail Cplx

Regular 84.7 87.7 89.3 80.4
Vision 84.8 88.8 86.7 81.4
Language 84.7 88.8 88.0 80.4
Multimodal 85.0 88.8 89.3 80.0

Case Study on LLaVA-Bench. To provide a more
vivid illustration of the impact of our CAUSALMM
method, a case study was conducted on the LLaVA-
Bench dataset (Liu et al., 2024b). This study
employed specific visual questions and the corre-
sponding model responses to elucidate the enhance-
ment in model output quality and the mitigation of
adverse effects, such as hallucinations, attributable
to the CAUSALMM method. A representative ex-
ample is depicted in Figure 8. Objects like boat,
which frequently co-occur with the potential ground truth object ocean, are prone to being halluci-
nated. However, the application of our CAUSALMM method notably diminishes these hallucinatory
tendencies. It enables the model to discern the city situated at the base of the volcano while maintain-
ing a coherent and informative output text. This outcome underscores the efficacy of CAUSALMM
in refining the output and curtailing the emergence of spurious associations.
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GPT-4o-aided-evaluation. Supplementing the standard benchmark assessments, we have employed
the GPT-4o* as an evaluative referee to quantitatively measure the efficacy of our CAUSALMM
method. The evaluation was conducted using a 10-point scoring system, with the results compiled
in Table 3. The results indicate that CAUSALMM is more adept at generating responses that align
with the sophisticated evaluative standards set by GPT-4o.

POSITIVE CASE

Regular: The image showcases a pic-
turesque scene of a mountainous island with
a large hill or mountain in the middle. The is-
land is surrounded by a beautiful blue ocean,
which adds to the serene atmosphere. The
mountain appears to be a volcano, giving it
a striking appearance. In the background,
there are several small boats scattered across
the ocean, likely enjoying the peaceful wa-
ters. The combination of the island, moun-
tain, and ocean creates a breathtaking view,
making it an ideal location for relaxation and
exploration.

CAUSALMM: The image features a breathtaking view of a large, rocky island with a lush
green hillside. The island is situated in the middle of a body of water, which could be an
ocean or a lake. The island’s terrain is a mix of rocky cliffs and green vegetation, creating
a stunning contrast against the water. In the background, a city can be seen, possibly on the
mainland or another island. The city’s buildings are visible against the backdrop of the large
island, adding to the overall beauty of the scene.

Figure 8: Positive case of CausalMM.

NEGATIVE CASE

Prompt: Is there any strawberry-flavored
yogurt in the fridge?

Regular: Yes, there is a container
of strawberry-flavored yogurt in the
fridge.

CAUSALMM: Yes, there is a con-
tainer of strawberry-flavored yogurt in
the fridge.

Figure 9: Unsolved case of CausalMM.

5 CONCLUSION
Though promising, MLLMs are prone to biases from visual and language priors, which can degrade
performance and cause multimodal hallucinations. These biases stem from the influence of the
visual encoder and LLM backbone on the attention mechanism, hindering the model’s ability to
align multimodal inputs effectively. To overcome this, we introduced a causal reasoning framework
termed CAUSALMM that applies structural causal modeling to MLLMs, treating modality priors as a
confounding factor. By leveraging back-door adjustment and counterfactual reasoning at both visual
and language attention levels, CAUSALMM demonstrates significant reductions in language priors
bias and offers a plug-and-play solution compatible with other training-free approaches, providing
a insightful path forward for trustyworthy multimodal intelligence.

*https://platform.openai.com/docs/models/gpt-4o
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A APPENDIX

A.1 FURTHER DEMONSTRATION

STRUCTURAL CAUSAL MODEL (SCM):

Take the three core variables mentioned in the article as an example.

VARIABLES AND THEIR ROLES:

• A (attention): This represents the model’s attention mechanism that we aim to evaluate or
manipulate.

• M (modality priors): Modality priors influence both the model’s attention (A) and the
output (O), thus creating confounding.

• O (model output): The outcome variable, which is affected both directly by A and indi-
rectly through M .

CAUSAL STRUCTURE AND BACK-DOOR PATHS:

• The back-door path in this SCM is A←M → O, which starts with an arrow pointing into
A and creates a confounding junction structure.

• To isolate the causal effect of A on O, the confounding influence of M must be blocked.

BACK-DOOR CRITERION:

To apply back-door adjustment, the adjustment set M must satisfy the following criteria:

1. M blocks all back-door paths from A to O.
2. M does not include any descendants of A (i.e., variables causally influenced by A).

By intervening on A and adjusting for M , we can isolate the causal effect of A on O.

BACK-DOOR ADJUSTMENT FORMULA:

Given a sufficient adjustment set M , the causal effect P (o | do(a)) is identified as:

P (o | do(a)) =
∑
m

P (o | a,m)P (m)

DERIVATION:

1. Starting with the interventional distribution:

P (o | do(a)) =
∑
m

P (o | do(a),m)P (m | do(a))

2. Using the property of the intervention do(a): Under the intervention do(a), the variable
A is no longer influenced by M . Thus:

P (m | do(a)) = P (m)

3. Replacing P (o | do(a),m) with the observational counterpart: Due to the back-door
criterion, M blocks all confounding paths, allowing:

P (o | do(a),m) = P (o | a,m)

4. Combining these results:

P (o | do(a)) =
∑
m

P (o | a,m)P (m)
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APPLICATION TO ATTENTION-OUTPUT FRAMEWORK:

In the context of our framework:

1. Back-door path: The back-door path A ← M → O reflects the confounding effect of
modality priors (M ) on the attention mechanism (A) and the model’s output (O).

2. Intervention: By intervening on A, we ensure that the causal effect of attention on the
output is isolated, free from the influence of modality priors.

3. Adjustment: To block the back-door path, we adjust for M , computing the summation
over all possible values of M to account for its confounding effect.

FULL FORMULA FOR THE FRAMEWORK:

In our framework, the causal effect of attention (A) on the model output (O) can be computed as:

P (o | do(a)) =
∑
m

P (o | a,m)P (m)

• P (o | a,m): The conditional probability of the output given attention A and modality
priors M .

• P (m): The marginal probability of modality priors M .

By applying the back-door adjustment formula, we mitigate the influence of confounding modality
priors, ensuring that the attention mechanism’s causal contribution to the output is properly esti-
mated.
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A.2 ADDITIONAL EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our approach on large multimodal language models of different
architectures, we added experimental data from the Q-former-based InstructBLIP model and the
embedding-autoregressive-based Chameleon model to the original experimental data from the vision
encoder-mlp-llm paradigm. See tab. 4 and tab. 5 for specific data. Comparisons with more baseline
methods can be found in tab. 6.

Table 4: Additional Experimental Results on POPE tasks: Chameleon. We evaluate the POPE task ac-
curacy of various MLLMs on the MSCOCO, A-OKVQA, and GQA datasets with Chameleon (Team, 2024)
under different decoding settings. Regular refers to the scenario where direct sampling is applied. Language
refer to language-only.

Dataset Setting Method Accuracy Precision Recall F1 Score

Random Regular 61.90 57.46 91.67 70.64
Language 69.23 63.17 92.27 74.99

MSCOCO

Popular Regular 65.10 59.86 91.67 72.43
Language 69.43 63.34 92.27 75.12

Adversarial Regular 60.20 56.28 91.40 69.66
Language 64.00 58.94 92.33 71.95

Random Regular 60.37 56.26 93.20 70.16
Language 65.70 60.14 93.13 73.08

A-OKVQA

Popular Regular 57.30 54.25 93.20 68.58
Language 63.07 58.16 93.13 71.60

Adversarial Regular 53.57 51.99 93.20 66.75
Language 56.83 53.96 93.13 68.33

Random Regular 60.37 56.26 93.20 70.16
Language 68.43 62.18 94.13 74.89

GQA

Popular Regular 59.37 55.76 90.67 69.05
Language 66.73 60.81 94.13 73.89

Adversarial Regular 52.73 51.55 90.67 65.73
Language 57.77 54.50 94.13 69.03
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Table 5: Additional Experimental Results on POPE tasks: InstructBLIP. We evaluate the POPE task
accuracy of various MLLMs on the MSCOCO, A-OKVQA, and GQA datasets with InstructBLIP (Dai et al.,
2023) under different decoding settings. Regular refers to the scenario where direct sampling is applied.
Vision, Language and Multimodal refer to vision-only, language-only, and multimodal collaboration variants
of CAUSALMM.

Dataset Setting Method Accuracy Precision Recall F1 Score

Random Regular 80.71 81.67 79.19 80.41
VCD 84.53 88.55 79.32 83.68

Vision 87.17 92.72 80.67 86.27
Language 86.90 94.89 78.00 85.62

Multimodal 87.90 94.59 80.40 86.92

MSCOCO

Popular Regular 78.22 77.87 78.85 78.36
VCD 81.47 82.89 79.32 81.07

Vision 83.97 86.37 80.67 83.42
Language 83.53 87.71 78.00 82.57

Multimodal 84.90 88.35 80.40 84.19

Adversarial Regular 75.84 74.30 79.03 76.59
VCD 79.56 79.67 79.39 79.52

Vision 81.47 81.89 80.80 81.34
Language 82.00 84.73 78.07 81.26

Multimodal 82.43 83.71 80.53 82.09

Random Regular 80.91 77.97 86.16 81.86
VCD 84.11 82.21 87.05 84.56

Vision 87.33 85.94 89.27 87.57
Language 87.87 87.72 88.07 87.89

Multimodal 88.47 87.86 89.27 88.56

A-OKVQA

Popular Regular 76.19 72.16 85.28 78.17
VCD 79.78 76.00 87.05 81.15

Vision 81.07 76.69 89.27 82.50
Language 82.33 79.01 88.07 83.29

Multimodal 82.13 78.45 88.60 83.22

Adversarial Regular 70.71 65.91 85.83 75.56
VCD 74.33 69.46 86.87 77.19

Vision 74.83 69.11 89.80 78.11
Language 76.27 71.07 88.60 78.87

Multimodal 75.97 70.51 89.27 78.79

Random Regular 79.65 77.14 84.29 80.56
VCD 83.69 81.84 86.61 84.16

Vision 86.10 84.56 88.33 86.40
Language 86.67 86.86 86.40 86.63

Multimodal 87.23 86.67 88.00 87.33

GQA

Popular Regular 73.87 69.63 84.69 76.42
VCD 78.57 74.62 86.61 80.17

Vision 77.77 72.92 88.33 79.89
Language 79.17 75.48 86.40 80.57

Multimodal 78.97 74.99 86.93 80.52

Adversarial Regular 70.56 66.12 84.33 74.12
VCD 75.08 70.59 85.99 77.53

Vision 74.50 69.33 87.87 77.51
Language 76.30 71.81 86.60 78.51

Multimodal 75.83 71.19 86.80 78.22
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Table 6: More results on POPE tasks. We evaluate the POPE task accuracy of various MLLMs on the POPE
benchmark with LLaVa-1.5 and InstructBLIP under different decoding settings. In the table, the values taken
are the averages of the three parts of the POPE benchmark (MSCOCO, A-OKVQA, GQA). Regular refers
to the scenario where direct sampling is applied. Vision, Language and Multimodal refer to vision-only,
language-only, and multimodal collaboration variants of CAUSALMM. DOLA stands for DoLa: Decoding by
Contrasting Layers Improves Factuality in Large Language Models(Chuang et al., 2023).

Dataset Setting Method Accuracy Precision Recall F1 Score

Random Regular 80.42 78.93 83.21 80.94
DOLA 83.00 83.06 83.13 83.00
VCD 84.11 84.20 84.33 84.13

OPERA 85.07 88.39 80.73 84.39
AGLA 87.30 88.83 85.68 87.07
Vision 86.87 87.74 86.09 86.75

Language 87.15 89.82 84.16 86.71
Multimodal 87.87 89.71 85.89 87.60

InstructBLIP

Popular Regular 76.09 73.22 82.94 77.65
DOLA 78.99 77.12 83.13 79.85
VCD 79.94 77.84 84.33 80.80

OPERA 78.33 73.85 87.73 80.20
AGLA 81.86 80.17 85.68 82.58
Vision 80.94 78.66 86.09 81.94

Language 81.68 80.73 84.16 82.14
Multimodal 82.00 80.60 85.31 82.64

Adversarial Regular 72.37 68.78 83.06 75.42
DOLA 74.67 71.53 83.11 76.68
VCD 76.32 73.24 84.08 78.08

OPERA 75.50 70.49 87.73 78.17
AGLA 77.29 74.09 85.67 79.16
Vision 76.93 73.44 86.16 78.99

Language 78.19 75.87 84.42 79.55
Multimodal 78.08 75.14 85.53 79.70

Random Regular 83.72 89.30 77.13 82.55
DOLA 84.78 87.59 81.27 84.19
VCD 86.05 90.39 80.91 85.29

OPERA 88.64 88.09 89.73 87.43
AGLA 88.54 94.41 82.08 87.71
Vision 87.17 92.35 81.28 86.33

Language 86.84 91.96 80.86 85.68
Multimodal 88.79 92.63 84.35 88.26

LLaVA-1.5

Popular Regular 79.73 82.03 76.73 79.11
DOLA 79.75 84.11 76.22 80.61
VCD 81.52 82.59 80.60 81.39

OPERA 83.34 80.27 89.73 84.44
AGLA 85.14 87.88 82.08 84.68
Vision 83.13 84.84 81.37 82.85

Language 84.31 86.75 83.80 84.26
Multimodal 85.06 86.44 83.82 84.87

Adversarial Regular 76.02 76.20 76.60 76.36
DOLA 76.32 77.27 75.47 76.16
VCD 77.84 76.87 80.75 78.53

OPERA 76.68 71.66 89.71 79.46
AGLA 81.13 81.20 82.10 81.36
Vision 78.62 77.83 81.51 79.31

Language 78.59 78.49 79.77 78.90
Multimodal 80.36 79.53 82.86 80.91
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A.3 VISUALIZATION OF COUNTERFACTUAL ATTENTIONS

A.3.1 VISION ATTENTION

In this work, we used four commonly used counterfactual visual attentions (Rao et al., 2021): ran-
dom, reverse, uniform, and shuffle. They represent taking random values for global attention, revers-
ing global attention, using consistent attention values, and disrupting the original attention distribu-
tion. They can all effectively provide anchor points for obtaining causal effects, thereby helping the
model improve potential modal priors. Among them, the settings of random and uniform are closest
to the average value in value distribution, so they can provide the largest positive average causal
effect.

Figure 10: Normal vision attention of vision encoder.

Figure 11: Shuffled vision attention of vision en-
coder.

Figure 12: Random vision attention of vision en-
coder.

Figure 13: Reversed vision attention of vision en-
coder.

Figure 14: Uniform vision attention of vision en-
coder.
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A.3.2 LANGUAGE ATTENTION

We visualize four similar counterfactual attentions: they represent taking random values for global
attention, negating global attention, using consistent attention values, and disrupting the original
attention distribution. We take three of them for visualization. Similarly, they can effectively provide
anchors for obtaining causal effects, thereby helping the model improve the potential modal prior.
Compared with visual attention, large language models with large parameters are not as sensitive to
changes in attention as visual encoders.

Figure 15: Visualization of normal LLM atten-
tion.

Figure 16: Visualization of random LLM atten-
tion.

Figure 17: Visualization of reversed LLM atten-
tion.

Figure 18: Visualization of uniform LLM atten-
tion.
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A.4 CASE STUDY

We have selected some typical cases to demonstrate the effect of our method. The CausalMM
method balances different modal priors to weaken the bias that may be caused by the model’s own
parameter knowledge from the perspective of vision and language, so that the model’s output can be
more aligned with multimodal input. This improvement is reflected in the model’s perception and
cognitive ability of specific things, and the potential hallucinations of the original model have been
effectively improved.

Prompt:
How many uncut fruits are in the image?

Regular:
There are four uncut fruits in the image.

Our Method:
There are three uncut fruits in the image.

Figure 19: Case of counting task.

Prompt:
Describe this photo in detail.

Regular: The image features a painting
of a dog wearing a Renaissance-style
dress, giving it a human-like appearance.
The dog is sitting on a chair, with its
head turned to the side, and appears to
be looking at the viewer. The painting
captures the dog’s unique and artistic
expression, making it an interesting and
eye-catching piece.

Our Method: The image features a painting of a dog wearing a Renaissance-style
dress and a hat. The dog appears to be sitting down, possibly posing for the portrait. The
dog’s dress is long, covering its body from the neck down. The painting captures the dog’s
unique appearance, making it an interesting and creative piece of art.

Figure 20: Case of description task.
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Prompt:
What material appears to make up the
creature?

Regular:
The creature appears to be made of a
combination of plastic and glass, as it has
a plastic body and glass eyes.

Our Method:
The creature appears to be made of
plastic.

Figure 21: Case of perception task.

Prompt:
Describe this photo in detail.

Regular:
The image showcases a tall skyscraper
towering over a cityscape. The tower
is prominently visible in the middle of
the scene, reaching high into the sky.
The cityscape around the tower includes
numerous buildings of various sizes
and shapes, creating a bustling urban
atmosphere. There are also several cars
scattered throughout the scene, indicat-
ing that the area is busy with traffic.
Additionally, there are three people
visible in the image, likely going about
their daily activities or enjoying the view
of the towering skyscraper.

Our Method:
The image features a tall, skinny building
with a large antenna on top of it. The
building is located in a city, surrounded
by other buildings, and it appears to be a
prominent landmark. The antenna is po-
sitioned towards the top of the building,
making it stand out. In the background,
there are several other buildings visible,
showcasing the urban landscape. The
scene captures the essence of a bustling
cityscape with a mix of architectural
styles.

Figure 22: Case of description task.
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Limitation of CAUSALMM

We further evaluated the effect of the CAUSALMM method based on a case study to explore
the limitations of the method. The specific example is in fig. 23. We found that even after
correcting some of the hallucinations caused by visual and language priors, our method still did not
significantly improve the acquisition of high-level semantics. We believe that the bottleneck of our
method is the performance bottleneck of the vision encoder and the LLM backbone. In future work,
we will explore how to maximize the positive impact of balanced modal priors when the backbone
model is fixed.

Prompt:

What is funny about this image?

Describe it panel by panel.

Regular:

The image is a collage of three panels, each showing a different aspect of the same
scene. The first panel features a cell phone plugged into a charger, while the second panel
shows a person holding a box of earphones. The third panel displays a close-up of the
person’s hand holding the earphones. The funny aspect of this image is that the person’s
hand is holding the earphones in the same position as the cell phone is plugged into the
charger in the first panel. This creates a humorous visual connection between the two
objects, as if the person’s hand is plugging the earphones into the charger.

Our Method:

The image is a collage of three panels, each showing a different aspect of a cell
phone being charged. The first panel features a close-up of the cell phone’s charging port,
which is plugged into a charger. The second panel shows a person holding a charger, likely
preparing to plug it into the cell phone. The third panel displays a person holding a USB
cable, which is also being used to charge the cell phone. The funny aspect of this image is
that the person in the third panel is holding the USB cable upside down, which is not the
correct way to plug it into the cell phone. This adds a humorous element to the otherwise
straightforward image of charging a cell phone.

Figure 23: Case of description task.
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A.5 GPT-AIED-EVALUATION TEMPLATE

For gpt-aided-evaluation, we have designed a variety of prompt templates to try to achieve a fairer
evaluation. The following is a more effective template for reference.

GPT-aied-evaluation Template
1. Image Description Evaluation: You will be provided with a set of image descriptions
and a list of comments about the image. Your task is to evaluate each comment for
hallucinations, which are inaccuracies or inconsistencies with the factual descriptions.

2. Hallucination Identification: Pay special attention to comments that claim the existence
of something not present in the descriptions, describe objects or attributes incorrectly, or
make unrelated statements.

3. Judgment and Revision: For each comment, provide a judgment (hallucination, correct,
or cannot judge) and, if necessary, rewrite the comment to accurately reflect the image
content. Ensure that the revised comments are detailed, coherent, and free of hallucinations.

4. Scoring Criteria: Rate the performance of the AI on a scale of 1 to 10 for each of the
following criteria:
Accuracy: How well the response aligns with the factual image content.
Detailedness: The richness of the response in necessary details, excluding hallucinated parts.

5. Output Format:
Judgment: List each comment with its judgment (hallucination, correct, or cannot judge)
and reason.
Revised Sentences: Provide revised comments where necessary.
Scores: Output the scores for accuracy and detailedness, with reasons.

Example:
Region Descriptions of the Image:
[10, 20, 50, 60]: A red apple on a white plate.
[70, 30, 120, 80]: A blue cup on a wooden table.

Comments for Evaluation:
1. The apple is green.
2. There is a spoon next to the cup.
3. The atmosphere in the room is cozy.

Your Output:

Judgement:
1. hallucination: The description states the apple is red, not green.
2. cannot judge: The region descriptions do not mention a spoon.
3. correct: The comment does not contradict the provided descriptions.

Revised Sentences:
1. The apple is red.
Scores:
Accuracy: 7 8
Reason: Assistant 1 had one hallucination, Assistant 2’s response is consistent with the
descriptions.
Detailedness: 6 8
Reason: Assistant 1’s response lacks necessary details due to the hallucination, Assistant 2
provides a richer description without hallucinations.
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