
Under review as submission to TMLR

Model Guidance via Robust Feature Attribution

Anonymous authors
Paper under double-blind review

Abstract

Controlling the patterns a model learns is essential to preventing reliance on irrelevant or
misleading features. Such reliance on irrelevant features, often called shortcut features, has
been observed across domains, including medical imaging and natural language processing,
where it may lead to real-world harms. A common mitigation strategy leverages annotations
(provided by humans or machines) indicating which features are relevant or irrelevant. These
annotations are compared to model explanations, typically in the form of feature salience,
and used to guide the loss function during training. Unfortunately, recent works have
demonstrated that feature salience methods are unreliable and therefore offer a poor signal
to optimize. In this work, we propose a simplified objective that simultaneously optimizes
for explanation robustness and mitigation of shortcut learning. Unlike prior objectives with
similar aims, we demonstrate theoretically why our approach ought to be more effective.
Across a comprehensive series of experiments, we show that our approach consistently reduces
test-time misclassifications by 20% compared to state-of-the-art methods. We also extend
prior experimental settings to include natural language processing tasks. Additionally, we
conduct novel ablations that yield practical insights, including the relative importance of
annotation quality over quantity. Code for our method and experiments is available at:
https://anonymous.4open.science/r/ModelGuidanceViaRobustFeatureAttribution-7417.

1 Introduction

Machine learning (ML) has seen tremendous progress in the last decade, culminating in mainstream adoption
in a variety of domains. Deep neural networks (DNN) sit at the core of this progress, due to their remarkable
performance and ease of deployment (Goodfellow et al., 2016). With applications in wide-ranging domains
(Bommasani et al., 2021), the promise of impact comes with the potential for substantial harm when deploying
models that may be dependent on irrelevant and misleading feature patterns present in their particular
training dataset (Ross et al., 2017).

A model misgeneralizing due to its reliance on incidental correlations is often referred to as shortcut learning
(Ross et al., 2017; Geirhos et al., 2020; Heo et al., 2023). Learning such shortcuts poses a great challenge
with deployment in safety-critical domains. For instance, models were documented to exploit dataset-specific
incidental correlations such as hospital tags in chest x-rays when diagnosing pneumonia (Zech et al., 2018;
DeGrave et al., 2021) or bandage in skin lesions when diagnosising skin cancer (Rieger et al., 2020). In natural
language processing, models often rely incorrectly on pronouns and proper nouns when making decisions
(McCoy et al., 2019), leading to bias in downstream tasks such as hiring and loan approvals (Rudinger et al.,
2018). Left unchecked, learning and relying upon such shortcuts may lead to unintended harms at deployment
time. Thus, understanding and mitigating shortcut learning has become an important area of research that
has accumulated rich benchmarks and methodologies (Ross et al., 2017; Geirhos et al., 2020; Singla et al.,
2022).

The best-performing approaches to mitigating shortcut learning involves the use of feature-level annotations
that indicate if a feature in a given input is a core feature or a non-core feature that may represent a shortcut
(e.g., the background of an image). Throughout the paper we will refer to non-core features simply as
masked features. Methods that make use of such annotations are commonly termed Machine Learning from
Explanations (MLX) methods. A variety of MLX approaches have been proposed Lee et al. (2022); Heo et al.
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(2023), and a common theme across state-of-the-art methods is the use of model explanations to regularize
dependence on masked features, pioneered in right for the right reasons (Ross et al., 2017). The model
explanations used in MLX methods come in the form of feature attribution explanations which assign a score
to each feature indicating how important the score is to the model prediction. By ensuring that masked
features have low importance (achieved via regularizing the loss function) MLX methods mitigate shortcut
learning (Jia et al., 2018; Kavumba et al., 2021; Heo et al., 2023; Ross et al., 2017; Jia et al., 2018; Kavumba
et al., 2021; Heo et al., 2023).

However, these methods assume that feature attribution explanations provide a faithful signal of model
behavior, an assumption increasingly called into question. Recent work shows that the most popular form
of feature importance, gradient-based attributions, can be unstable and easily manipulated, even without
changing model predictions (Dombrowski et al., 2019; Wicker et al.). This fragility stems from the non-linear
nature of deep networks, which allows imperceptible input changes to dramatically alter gradient-based
explanations—much like adversarial attacks on outputs (Goodfellow et al., 2014). As a result, using only the
gradient at a single input point in conjunction with annotation masks may not reliably suppress shortcut
learning because out-of-distribution data might render the explanations unusable. Moreover, prior MLX works
largely overlook how annotation quality and availability affect performance and inference-time generalizability,
leaving important practical considerations unexplored.

In this work, we address these shortcomings by first proposing that mitigating reliance on shortcut features
would be substantially more effective if one additionally optimizes for the reliability of the feature saliency
explanations. We propose a robust variant of right for right reasons (RRR) that accounts for the noise
in feature importance scores, which we dub robustly right for the right reasons (R4). R4 regularizes the
feature importance in a high-dimensional ball around the training points rather than regularizing the feature
importance at the training point alone. As a result, the objective required an inner optimization over a
high-dimensional manifold, which is intractable. Thus, we instantiate three variants of R4 each implementing
a different approximate solution to the optimization problem: Rand-R4 takes the maximum over perturbations
sampled from the domain of the optimization, Adv-R4 uses first-order optimization to search the domain
of the optimization, and Cert-R4 uses convex-relaxations of the problem to compute an upper-bound the
solution to the optimization problem. We compare each of these methods with a series of state-of-the-art
MLX approaches with various datasets. We employ two synthetic datasets: the well-studied DecoyMNIST
dataset (Ross et al., 2017) as well as a novel shortcut learning benchmark derived from a medical image
diagnosis problem (Yang et al., 2023). Through further evaluation on three real-world benchmarks, we
demonstrate consistent gains of R4 over the state-of-the-art by a substantial margin (a raw increase of 6%
accuracy on average). In summary, this paper makes the following contributions:

• We establish a novel, adversarial approach to machine learning from explanations that we name
robustly right for the right reasons or R4.

• We propose and implement three (approximate) solutions to the intractable inner optimization of R4:
a statistical approach, a first-order optimization approach, and a convex-relaxation based approach
and demonstrate their scaling to models as large as ResNet-18 and BERT.

• Through a series of experiments, we demonstrate that R4 outperforms prior state of the art MLX
approaches across all datasets and can effectively mitigate shortcut learning with annotations on just
20% of the examples in the training set.

2 Related Works

Shortcut Learning. The phenomena of models learning non-generalizing dataset artifacts is referred to as
shortcut learning and is well-studied (Geirhos et al., 2020; Shah et al., 2020). Mitigating shortcut learning has
been approached from multiple fronts, the three major themes are: (a) annotating training examples with
group identity (Sagawa et al.; Ye et al., 2024) to delineate examples with positive and negative incidental
correlation, (b) diversifying the training set bias-free or bias nullifying examples (Lee et al., 2022), learning
from explicit annotation of relevant and irrelevant parts of input called machine learning from explanations
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(MLX) (Ross et al., 2017; Rieger et al., 2020; Heo et al., 2023). MLX is the focus of our work, which enables
specifying the irrelevant features explicitly (Sagawa et al.; Ye et al., 2024; Ross et al., 2017). Additionally, a
line of works augments the provided human explanations with natural language (Selvaraju et al., 2019) or
through iterative interaction (Schramowski et al., 2020; Linardatos et al., 2020).

Machine Learning from Explanations. MLX approaches operate through an augmented loss objective
that regularizes the model’s dependence on irrelevant features. Traditionally, an input feature attribution
method is used to compute the importance of various input features. Previous proposals differed greatly in
their choice of the feature attribution method: Ross et al. (2017) employed gradient-based feature explanation,
Rieger et al. (2020) employed contextual decomposition-based feature explanation (Singh et al., 2018),
Schramowski et al. (2020) employed LIME (Ribeiro et al., 2016), Shao et al. (2021) employed influence
functions (Koh & Liang, 2017). Heo et al. (2023) championed directly minimizing the function’s sensitivity
to irrelevant feature perturbations. As is evident from the focus of many previous work, the core difficulty
lies in approximating the importance of input features.

Fragility of Explanations. Feature attribution explanations are among the most popular explanation
methods and include shapely values (Lundberg & Lee, 2017), LIME (Ribeiro et al., 2016), smooth- and
integrated-gradients (Smilkov et al., 2017; Sundararajan et al., 2017), grad-CAM (Selvaraju et al., 2020),
among others Leofante & Wicker (2025). While each of these methods aim at capturing the per-feature
importance of a model decision with respect to a given input, they have recently been found to give opposite
feature importance scores for indistinguishable inputs (Dombrowski et al., 2019). Manipulating explanations
by slightly perturbing input values is similar to crafting adversarial examples (Goodfellow et al., 2014), thus
adversarial training techniques have been adopted and employed to enforce the robustness of explanations
(Dombrowski et al., 2022; Wicker et al.). However, current MLX approaches do not enforce robustness of
explanations and thus use an unreliable optimization signal. Moreover, adopting prior works such as Wicker
et al. cannot be done directly due to the complications of the MLX setting, that is, the existence of masked
features.

Robustness and MLX. The work most related to ours is Heo et al. (2023), which championed for directly
imposing robustness to ϵ-ball perturbations of irrelevant features per example. The methods presented in our
work instead explore robustness of explanations, the signal that is optimized, as opposed to robustness of
predictions. Despite their resemblance, R4 is more elegant with only one term added to the objective while
also being empirically superior. We further provide theoretical insights (§ 4) and empirical validation (§ 5)
on R4’s merit over Heo et al. (2023).

3 Preliminaries

We denote a machine learning model as a parametric function f with parameters θ ∈ Rm, which maps from
features x ∈ Rn to labels y ∈ Y. We consider supervised learning in the classification setting with a labeled
dataset D = {(x(i), y(i))}N

i=1. In the MLX setting, in addition to the feature-label pairs, we have access to
human or machine-provided explanations in the form of masks m(i) ∈ Rn, which highlight the important
regions or components of the input features relevant for the prediction. These masks provide a form of weak
supervision, guiding the model’s attention during training. Thus, in MLX, the dataset is extended to include
these annotations and is represented as DMLX = {(x(i), y(i), m(i))}K

i=1, where each m(i) is the explanation
associated with the i-th data point. In particular, the mask m(i) is a vector with entries in the interval [0, 1],
where 1 represents fully irrelevant features and 0 represents fully relevant features.

Right for the right reasons. The seminal approach to MLX, right for the right reasons (RRR or R3)
proposes to modify the standard loss by including a regularizing term to suppress gradient values for irrelevant
features as shown below.

LRRR(θ) = ℓ(fθ(x(i)), y(i))︸ ︷︷ ︸
right answer

+λ ∥m(i) ⊙ ∇xfθ(x(i))∥2
2︸ ︷︷ ︸

right reason

+β ∥θ∥2
2︸︷︷︸

regularize

(1)

In the above expression, ⊙ denotes the Hadamard product. The loss function LRRR involves three components.
The first, labeled “right answer,” is the standard loss used to train the model. The second, labeled “right
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reason”, penalizes the magnitude of the gradient along the feature dimensions determined to be irrelevant,
hence the element-wise multiplication with the mask m(i). The final term, labeled “regularize,” is the
standard weight decay term that has a smoothing effect on the final model.

Input-gradient robustness. The critical term in R3 is the “right reason” component: ∥m(i)⊙∇xfθ(x(i))∥2
2,

which depends on the input gradient ∇xfθ(x(i)) to ensure that the model does not leverage information
from irrelevant features to make predictions. However, the ineffectiveness of gradient explanations for highly
non-linear models is well-documented (Heo et al., 2023; Wicker et al.), owing to their poor robustness to
perturbations of spurious features. (Wicker et al.) employed a variant of Lipschitz smoothness to quantify
the robustness of an explanation method through input gradient fragility. The fragility (δ) of a function with
parameters θ in an ϵ-ball around x is defined as:

∀x′ ∈ Bϵ(x), ||∇xfθ(x) − ∇x′fθ(x′)|| ≤ δ (2)

We can understand this intuitively by observing that as δ → 0 we require that the gradients become identical
for all inputs in the ball and therefore the model is linear inside of Bϵ(x). On the other hand, when δ → ∞
we can interpret this as the model becoming more and more non-linear. Unfortunately, even for small
convolutional neural networks trained without regularization, typical values of δ will have extreme magnitudes,
denoting that even an imperceptible perturbation (≤ ϵ) in the irrelevant features can drastically alter the
feature importance, thus making it an unreliable feature to optimize.

4 R4 : Robustly Right for the Right Reasons

The primary motivation for our methodology is the observation that when the input gradient is non-robust the
R3 regularizer is optimizing a poor signal and can be substantially improved if one simultaneously minimizes
the R3 loss and δ. To do so, we propose an adversarial learning objective that we call robustly right for the
right reasons or R4.

LR4(θ) = ℓ(fθ(x(i)), y(i))︸ ︷︷ ︸
right answer

+λ max
ξ:∥ξ∥<ϵ

∥m(i) ⊙ ∇xfθ(x(i) + m(i) ⊙ ξ)∥2︸ ︷︷ ︸
robustly right reason

(3)

The inner optimization (the maximum) is the adversarial term that simultaneously enforces that the gradient
magnitude of irrelevant features is small and remains small for any small change to the irrelevant features.
Unfortunately, computing the solution to this maximization problem is intractable for complex models and
even for fully-connected networks is NP-Complete (Katz et al., 2017), thus approximate solutions must be
proposed in order to use this objective in practice. In the following sections, we present the theoretical
motivation for R4 in §4.1 then provide a series of approximations for intractable inner optimization §4.2 -
§4.4. The extension of the proposed approximations to language modeling tasks can be found in Appendix C.

4.1 R4 Theoretical Intuition

We begin by describing the theoretical intuition of our learning objective describing its benefits relative to
prior works. We denote the set of all perturbations of an input x′ in the features determined by the mask m
with magnitude at most ϵ to be Bm

ϵ (x′) and highlight that an ideal model is insensitive to changes in the
input in this set for moderate to large values of ϵ. To think about the behavior of the model in this set we
employ a second-order Taylor expansion around x′ in the direction determined by m:

fθ
m,2(x) ≈ fθ(x′) + ∇xfθ(x′)⊤(m ⊙ (x − x′))︸ ︷︷ ︸

function change

+ 1
2(m ⊙ (x − x′))⊤Hx′(fθ)(m ⊙ (x − x′))︸ ︷︷ ︸

gradient change

, (4)

where the subscript 2 in fm,2 denotes the order of the approximation. We define the function fθ
1−m,2(x)

correspondingly to denote the function’s behavior when perturbing features not in m. The complete
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approximation of the function can then be expressed as:

fθ(x) ≈ fθ
m,2(x)︸ ︷︷ ︸

sens. to shortcuts

+ fθ
1−m,2(x)︸ ︷︷ ︸

sens. to core

−fθ(x′). (5)

The primary goal of the R4 algorithm can be stated as minimizing only the contribution of fθ
m,2(x). To

observe this, we assume a bound on the gradient magnitude for any point in Bm
ϵ (x′):

∀x⋆ ∈ Bm
ϵ (x′), ∥m ⊙ ∇xfθ(x⋆)∥ ≤ δ⋆ (6)

By rearranging the Taylor expansion fθ
m,2(x), applying the norm on both sides and using the triangle

inequality we can use Equation 6 to obtain:

∥fθ
m,2(x) − fθ

m,2(x′)∥ ⪅ δ⋆∥x − x′∥ + 1
2∥x − x′∥∥Hx′(fθ)∥∥x − x′∥

We have by definition that x′ ∈ Bm
ϵ (x), which implies ∥x−x′∥ ≤ ∥m⊙ ϵ∥ ≤ ∥ϵ∥, since m ∈ [0, 1]. In addition,

the norm of the input gradient at x′ is bounded by δ⋆ in an ϵ-ball then the norm of the Hessian at x′ is
bounded by δ⋆. Additionally, using Taylor’s Theorem with Lagrange remainder, we have that the bound
in Equation 6 allows us to make the above inequality strict regardless of the order of the approximation.
Therefore, we have:

∥fθ
m(x) − fθ

m(x′)∥ ≤ δ⋆∥ϵ∥(1 + 1
2∥ϵ∥) (7)

where the contribution from all higher-order terms is captured by δ⋆∥ϵ∥2/2. Full proof can be found in
Appendix G. The primary intuition for R4 is that ϵ is a moderate to large value (as it acts only on the masked
values m) and δ⋆ can be extremely large for complex models §(3). Since R4 directly minimizes the bound
in Equation 6, we can see how we effectively minimize the sensitivity of the function to perturbations of
the masked features. We highlight that though we suppress the change in fθ

m we leave the function fθ
1−m

unregularized thus encouraging models to learn from core features while suppressing spurious features. This
differs from the mechanisms employed in prior works (Ross et al., 2017; Heo et al., 2023), which require
weight regularization to achieve SOTA results.

Shortcomings of R3 (Ross et al., 2017). Heo et al. (2017) have shown that R3 is suboptimal because it
requires heavy parameter regularization (third term of Equation 1) to minimize the contribution of spurious
features. Additionally, suppressing the parameter norm in R3 also has the effect of minimizing δ. However,
since parameter smoothing is agnostic to feature saliency, regularizing the model, while minimizing the input
fragility and contribution of spurious features, will also significantly hamper learning from core features.

Shortcomings of IBP-Ex + R3 (Heo et al., 2023). The approach proposed by Heo et al. (2023),
IBP-Ex+R3, employs adversarial methods to minimize the change in output of the model, which serves to
partially suppress use of spurious features (the δ⋆||ϵ|| in our bound). However, they rely on R3 to minimize
the gradient change contribution. As we have established this overlooks the higher-order terms that contribute
the practically non-negligible term: δ⋆∥ϵ∥2/2 and therefore leads to a sub-optimal mitigation of shortcut
learning. In addition to our argument here, we report theoretical analysis in the same spirit as Heo et al.
(2023) to demonstrate the advantage of R4 over IBP-Ex + R3 in Appendix H.

4.2 Rand-R4: A statistical approach

The first approach we present to approximate the intractable inner maximization of R4 is a scalable statistical
approach based on sampling. The intuition for this approach is that our optimization is over all possible
perturbations of the input in the masked region. Thus, a loose but efficient approximation of the maximum
is to randomly sample perturbations and take the worst sample as the estimate of the maximum. Where
we define U(x, m, ϵ) as the uniform distribution over perturbations of x in the region determined by m with
magnitude at most ϵ, the approach that we will call Rand-R4 is given by:

r(i+1) = max{r(i), ||∇xfθ(x) − ∇x(i)f
θ(x(i))||}, x(i) ∼ U(x, m, ϵ),
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where r0 = 0. This approach is run for a fixed number of samples k and then the value rk is taken to
be the approximate solution to the R4 optimization problem. Naturally, the probability of sampling the
optimal solution is 0, however, as k → ∞ we expect to get close to the optimal solution. In practice, this
approach offers a good balance between computational complexity and result quality; its strength lies not in
its tightness but in its ease of implementation, scalability, and adaptability. While the method can become
time-consuming for large sample sizes, fewer samples are often sufficient for large datasets, and the approach
lends itself well to parallelization.

4.3 Adv-R4: An adversarial attack approach

The learning objective that we propose in this work closely resembles that of adversarial training for enhancing
robustness machine learning models. There are, however, two important distinctions that make traditional
adversarial training approaches incompatible with our objective. Firstly, in standard adversarial training all
features can be perturbed while in our objective only features in the masked region m can be perturbed. To
accommodate this change, one can perform projected gradient descent (PGD) with the projection being onto
the set Bm

ϵ (x). Additionally, and more importantly, standard adversarial attacks target changing the model’s
prediction/output. In contrast, our objective is to penalize the maximum change in the input gradients. This
is similar to what is proposed in the robust explanations literature (Dombrowski et al., 2019); however, that
line of work does not consider the constraints imposed by the MLX setting. Considering all the modifications
suggested by our approach as a whole, we have that a locally optimal solution to the optimization problem in
R4 can be found by k iterations of the following scheme, letting xadv

(0) = x:

x(i+1) = xadv
(i) + αsgn

(
∇x|∇xfθ(x) − ∇xfθ(xadv

(i) )|
)

xadv
(i+1) = Proj

(
x(i+1), Bm

ϵ (x)
)

The result xadv
(k) is then an input point which approximately maximizes the inner optimization of R4.

Unfortunately, owing to the non-convexity of the inner optimization R4, this approach will always under-
estimate the true solution to the optimization problem.

The benefits of this approach to the R4 learning objective that adversarial attacks are well-studied, and
thus there are many known heuristics for jointly improving model performance and adversarial performance.
Unfortunately, it is well-known that models with large capacity tend to learn the patterns within the attacks
themselves (Madry et al., 2017; Dong et al., 2022). For safety critical domains such as medical image
classification, overfitting to specific attack types may not be an acceptable approximation (Tramer et al.,
2020).

4.4 Cert-R4: Convex relaxation approach

Both Rand-R4 and Adv-R4 are efficient, but only provide a lower bound on the maximization problem of
interest. Although a lower bound on R4 may suffice to avoid shortcut learning, in safety-critical domains
such as autonomous navigation and medical imaging, approximately avoiding shortcuts may not be sufficient
to prevent adversarial behavior, such as relying on unknown spurious features or reacting unpredictably to
imperceptible input changes. Thus, it is critical to provide practitioners in these domains with tools that
offer worst-case guarantees against any type of adversarial behavior. In this section, we present Cert-R4

which leverages advances in convex relaxation for neural networks to upper-bound the maximization in the
R4 objective, which corresponds to the bound in Equation 6 in our theoretical discussion. We emphasize that
the fact that we compute an upper bound in this case enables the strict inequality in Equation equation 7.
Here, we describe how one can use interval bound propagation (IBP) to over-approximate the R4 learning
objective.

Though the R4 objective can be applied to any differentiable model, we focus on neural networks. We begin
by defining a neural network model fθ : Rnin → Rnout with K layers and parameters θ =

{
(W (i), b(i))

}K

i=1
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as:

ẑ(k) = W (k)z(k−1) + b(k),

z(k) = σ
(

ẑ(k)
)

where z(0) = x, fθ(x) = ẑ(K), and σ is the activation function, which we assume is monotonic. We also state
the backwards pass here starting with d(L) = ∇ẑ(L)fθ(x), we have that backwards pass is given by:

d(k−1) =
(

W (k)
)⊤

d(k) ⊙ σ′
(

ẑ(k−1)
)

where we are interested in d(0) = ∇xfθ(x). The important observation for the above equations (both forwards
and backwards) is that they require only matrix multiplication, addition, and the application of a monotonic
non-linearity. As such, we can efficiently employ interval arithmetic to compute all possible values of δ(0)

by first casting the domain of the optimization problem as an interval: [xL, xU ] where xL = x − ϵm and
xU = x + ϵm for some positive constant ϵ. In Wicker et al. (2022) a procedure using interval bounds is given
that takes such an interval over inputs and computes an interval over gradients [ηL, ηU ] such that we have
the following property:

∀x′ ∈ [x − ϵm, x + ϵm], ∇x′fθ(x′) ∈ [ηL, ηU ]. (8)

We provide an account of how this propagation proceeded in Appendix I. To demonstrate the use of interval
bound propagation to the R4 objective, we first compute the interval over input gradients, [ηL, ηU ] and now
show how we can compute, in closed form, the solution to a maximum upper-bounding the inner maximization
of R4:

η⋆
i =

{
ηL

i if |∇xfθ(x)i − ηL
i | > |∇xfθ(x)i − ηU

i |
ηU

i otherwise

Finally, the value |η⋆ − ∇xfθ(x)| is an upper-bound on the maximum of the R4 objective. Unfortunately, due
to the fact that [ηL, ηU ] computed using interval bound will always be loose, thus the term |η⋆ − ∇xfθ(x)|
will always be larger than the true maximum. We note that if the upper-bound computed by Cert-R4 is
sufficiently small, then by the argument provided in our theoretical discussion we have that neither the models
prediction nor its input gradient changes in response to changes in the masked region.

5 Experiments

We conduct experiments on six datasets, comparing each R4 variant against baselines, including state-of-the-
art MLX methods. Appendix A contains a detailed description of the dataset characteristics and feature
annotations, while Appendix B outlines the model architectures used in our experiments. The datasets
include three synthetic ones and three real-world datasets: Decoy MNIST (Ross et al., 2017), Decoy
DERM (a variant of DermMNIST (Yang et al., 2023) created similarly to Decoy MNIST), Decoy IMDB
(a text dataset (Maas et al., 2011) created by mimicking Decoy MNIST in a discrete space), ISIC (Codella
et al., 2019), Plant Phenotyping, and Salient ImageNet (Singla et al., 2022). Additional results can be
found in Appendix D and E.

5.1 Baseline Algorithms

Empirical Risk Minimization (ERM). We consider the standard empirical risk minimization (ERM) as
our simplest benchmark. Without any regularization, ERM simply minimizes the categorical-cross entropy
loss using the Adam optimizer. This is equivalent to simply using the term represented by the “right answer”
term in equation 3.

Regularization-based methods. We describe the traditional approaches to MLX as regularization-based
and take the primary benchmark for this category to be R3 as described in Ross et al. (2017) and discussed in
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Table 1: Performance Comparison of MLX Methods. The best results, along with those not statistically
distinguishable from the best, are highlighted in bold. Values following the ± symbol indicate standard
deviations.

Synthetic Datasets
Decoy MNIST Decoy DERM Decoy IMDB

Learning
Objective ↓ Avg Acc Wg Acc Avg Acc Wg Acc Avg Acc Wg Acc

ERM 63.89 ± 1.2 22.39 ± 1.7 50.32 ± 0.0 48.39 ± 0.0 50.02 ± 0.0 0.1 ± 0.0
R3 92.22 ± 0.7 85.43 ± 5.9 68.44 ± 1.7 68.32 ± 8.8 71.43 ± 2.27 64.72 ± 19.66

Smooth-R3 93.31 ± 0.19 85.28 ± 1.9 70.95 ± 2.4 70.78 ± 7.1 73.96 ± 3.76 68.61 ± 25.25
IBP-Ex 89.69 ± 0.5 83.65 ± 4.2 68.85 ± 1.1 67.47 ± 9.6 - -

IBP-Ex + R3 93.07 ± 0.1 88.05 ± 1.9 70.15 ± 0.9 70.13 ± 5.6 - -
Rand-R4 93.29 ± 0.17 88.92 ± 1.4 71.13 ± 1.2 69.47 ± 0.4 78.17 ± 3.61 73.97 ± 5.36
Adv-R4 93.47 ± 0.2 89.51 ± 1.2 72.26 ± 0.6 70.47 ± 1.3 86.8 ± 2.68 83.02 ± 12.26
Cert-R4 97.02 ± 0.09 94.70 ± 0.4 78.24 ± 0.6 78.11 ± 4.9 - -

Real World Datasets
ISIC Plant Salient Imagenet

Learning
Objective ↓ Avg Acc Wg Acc Avg Acc Wg Acc Avg Acc RCS

ERM 82.02 ± 0.05 51.66 ± 3.1 70.83 ± 1.9 52.53 ± 10.0 99.10 48.48
R3 72.53 ± 0.9 63.00 ± 4.06 74.53 ± 6.2 64.80 ± 20.6 95.53 51.56

Smooth-R3 86.17 ± 1.4 64.59 ± 10.5 69.83 ± 9.9 61.86 ± 24.53 96.42 53.42
IBP-Ex 82.81 ± 1.7 69.62 ± 11.7 75.82 ± 6.4 72.44 ± 21.2 - -

IBP-Ex + R3 83.33 ± 1.1 70.91 ± 2.1 76.48 ± 1.6 75.97 ± 5.08 - -
Rand-R4 87.28 ± 1.8 78.15 ± 4.5 67.23 ± 8.2 66.45 ± 29.19 98.21 62.43
Adv-R4 85.65 ± 1.2 66.65 ± 1.9 79.58 ± 2.4 79.20 ± 5.7 99.10 68.51
Cert-R4 85.39 ± 1.3 71.52 ± 9.2 82.72 ± 2.3 82.25 ± 1.08 - -

Section 3. In order to understand if simply adopting a different, more robust, explanation method is sufficient
to overcome the lack of robustness of input-gradient information we additionally employ Smooth-R3, which
adopts the same loss as R3, but employs the smoothed gradient of Smilkov et al. (2017) as the explanation
method that identifies reliance on shortcut features.

Robustness-based methods. To benchmark against the recently proposed robustness-based methods, we
employ IBP-Ex (Heo et al., 2023) and use IBP-Ex+R3 which was found to have state-of-the-art performance
across all datasets.

5.2 Performance Metrics

Our objective is to suppress the influence of irrelevant features while preserving overall predictive performance.
To evaluate this, we report two complementary metrics: worst-group accuracy (Wg Acc), which reflects
the effectiveness of irrelevant feature suppression, and macro-averaged group accuracy (Avg Acc), which
captures overall model performance across groups. These metrics are computed over predefined groups
specific to each dataset and have also been used by the previous SOTA method of Heo et al. (2023). For
Salient-ImageNet, we utilize the relative core sensitivity (RCS) (Singla et al., 2022) which measures the
function’s sensitivity to perturbations of the core features and compares it to the function’s sensitivity to
perturbations of masked features. In order to understand if our hypothesis about the relationship between
robustness of input gradients and effectively regularizing shortcut features is correct, we also consider the
certified fragility of input gradients in the masked regions which we denote with κ (Wicker et al., 2022); this is
the average difference between certified upper and lower-bounds of the input gradient of all masked features.

8



Under review as submission to TMLR

5.3 Avoiding Shortcut Learning with MLX

Table 1 summarizes the performance of various state-of-the-art (SOTA) gradient regularization techniques
across our six benchmark datasets. We report average accuracy (Avg Acc), worst-group accuracy (Wg Acc),
as well as their respective standard deviations measured across runs. The overall results indicate a clear
advantage of robustness-based methods, particularly those employing interval bound propagation (IBP),
in mitigating shortcut learning across diverse datasets. The Cert-R4 model consistently ranks among the
top-performing methods which achieve accuracy better than previous SOTA: IBP-Ex+R3.

Although computationally cheap, gradient-based methods such as Smooth-R3 show improvements over
standard empirical risk minimization, while hybrid interval-and-gradient-based techniques such as IBP-Ex+R3

achieve the best accuracy among previous existing methods. Our method not only improves upon these
results, but also reduces computational overhead—thanks to the strength of our regularization objective—by
enabling by enabling the use of more computationally efficient variants such as Adv-R4. These findings suggest
that in safety-critical and high-resolution image classification tasks our method is a powerful approach to
overcome shortcut reliance and enhancing model reliability, while maintaining a low computational overhead,
if desired.

We highlight that in all but one metric across Decoy-MNIST, Decoy-DERM, ISIC, and Plant the Cert-R4

method performs best in terms of macro-average group accuracy and worst-group accuracy, suggesting that
Cert-R4 is effective in mitigating shortcut learning.

5.4 Can masked feature suppresion encourage core feature learning?

Table 2: Input Gradient Fragility Ratio (Masked/Core).

Dataset
Decoy MNIST Decoy DERM ISIC Plant

Learning Objective ↓ κm/κ1−m (κm)(↓)
ERM 1.497 (5.0e2) 0.851 (6.7e3) 0.933 (4.2e-1) 0.909 (4.0e3)

R3 0.565 (4.4) 0.992 (5.8e3) 0.835 (1.7e-3) 0.970 (4.5e3)
Smooth-R3 0.570 (4.3) 0.995 (3.9e3) 0.879 (1.0) 1.023 (2.1e3)

IBP-Ex 0.645 (5.6) 0.802 (3.0e3) 0.929 (1.8) 0.971 (4.7e3)
IBP-Ex + R3 0.536 (3.4) 0.785 (2.9e3) 0.941 (2.9) 0.904 (1.1e3)

Rand-R4 0.339 (2.1) 0.997 (3.8e3) 0.869 (1.4) 0.984 (1.3e3)
Adv-R4 0.321 (2.0) 0.985 (3.5e3) 0.889 (4.0e-1) 0.733 (1.8e3)
Cert-R4 0.024 (9.3e-1) 0.003 (1.3) 0.842 (9.0e-1) 0.914 (8.9e1)

In order to ensure that our proposed method fares better in suppressing the contribution of masked features,
while encouraging learning from core features, we compute the ratio between the input gradient fragility in
the masked (κm) and core (κ1−m) regions of the input. A low ratio and small κm value indicate reduced
input-gradient fragility (i.e., improved robustness) and reflect a model’s improved ability to prioritize core
features over non-core ones during learning, reflecting model sensitivity as discussed in §4.1. We report
this metric as κ1−m/κm in Table 2, and show the absolute value of κm in blue to indicate the order of
magnitude. Mathematically, this can be written as ∥ηL

m − ηU
m∥ ≤ κm and ∥ηL

1−m − ηU
1−m∥ ≤ κ1−m, where

ηL
m, ηU

m, ηL
1−m, ηU

1−m are defined as in property 8, with the only difference being that the latter two are
computed with respect to the core features (i.e. masks are inverted).

From Table 2, we observe that Cert-R4 significantly outperforms previous MLX approaches in DecoyMNIST
and DecoyDERM, being 14 and, respectively, 276 times better than the best performing previous technique.
Much lower ratio scores demonstrate that, in contrast to prior methods, our approach simultaneously
discourages masked feature reliance, while encouraging learning from core regions. Lastly, we see that in the
case of ISIC, a noisy, partially masked dataset, our method only competes with R3 in terms of this metric.
However, judging from the absolute κm value, we notice that R3 is insensitive to both core and masked
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features, which means that it learns poorly from any region, fact evident in Table 1’s Wg Acc as well. Thus,
this observation establishes Cert-R4 as the most performant approach on ISIC in terms of relative robustness.

5.5 Exploring the effect of noisy and partially specified masks

Figure 1: Experimental ablations to understand the performance of R4. Left column: We plot the worst-
group accuracy as we reduce the percentage of data and masks available at training time for DecoyMNIST
(top) and DecoyDERM (bottom) Center column: We plot the worst-group accuracy (top) and average κ
(i.e. explanation fragility) as we reduce the percentage of masks available at training time for DecoyMNIST.
Right column: We plot the R4 worst-group accuracy as we vary the percentage of masks considering
different types of corruptions for DecoyMNIST (top) and DecoyDERM (bottom).

In real-world scenarios, datasets are likely to contain few and potentially noisy masks, as obtaining high-quality
annotations is often costly. Therefore, we aim to evaluate how effectively our method can learn shortcut
feature patterns under such conditions, relative to baseline approaches. This provides a more informative
benchmark of how MLX techniques perform in realistic, non-ideal settings. Accordingly, in Figure 1, we
present a series of ablations examining the sample complexity of state-of-the-art MLX methods. We hope
this analysis serves as a foundation for developing more sample-efficient approaches, which are particularly
relevant in resource-constrained or safety-critical domains.

Resilience to data and mask variations. In the left column of Figure 1 we plot the results of
simultaneously reducing the amount of data and masks (e.g., we keep the original proportion of masks in
the dataset fixed). The general trend we observe indicates that while traditional regularization methods
(R3) struggle with limited mask and data availability, robustness-based techniques are far more effective in
maintaining worst-group accuracy. In particular, we notice that our novel method’s statistical and adversarial
variants fare better at maintaining effective in sustaining worst-group accuracy even in a low-data regime,
while Cert-R4 excels in preserving performance, losing less than 10% accuracy in both datasets with the
reduction of available information.

Resilience to mask variations. In the center column, we fix the dataset size and vary only the proportion of
masks available during training. For each mask fraction, we maintain a constant MLX regularization strength
(defined as the gradient magnitude for gradient-based methods or the adversarial loss for robustness-based
methods) and scale the weight decay coefficient proportionally to the mask percentage. This setup isolates
the effect of MLX regularization on sample complexity while minimizing the influence of weight regularization;
we defer an in-depth analysis of the effects of weight decay to Appendix D. We find that both statistical
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and first-order variants of R4 significantly outperform prior methods such as R3 and IBP-Ex, which degrade
rapidly as mask availability decreases. Notably, Cert-R4 remains unaffected by missing masks (except at 0%)
and achieves superior worst-group performance despite being trained without any weight decay, highlighting
its sample efficiency. Finally, the low variance across runs in both center and left column plots further
demonstrates the stability of our approach.

The center bottom plot shows a similar trend to the top plot, this time for explanation fragility. Although
IBP-Ex and R3 exhibit sharp increases in fragility as mask availability decreases, Cert-R4’s κ-input-robustness
remains stable until mask ratios drop significantly. This robustness stems from directly optimizing the bounds
of input gradients. Consequently, R4 not only avoids reliance on masked features but also remains resilient
to distributional shifts in those features, even when mask coverage is limited. This is further supported by
results on datasets such as ISIC (Table 1), where Cert-R4 performs well despite masks being available for less
than half of the samples in the dataset.

Robustness of R4 to mask corruptions. We also examine the impact of corrupted masks, which can
arise from human error or automated labeling inaccuracies. We consider four relevant corruption types: (i)
‘misposition‘, where the mask is placed far from the non-core region; (ii) ‘shift‘, involving slight displacement
with partial overlap; (iii) ‘shrink‘, and (iv) ‘dilation‘, which reduce or expand the mask area without altering its
position. Among these, ‘dilation‘ is the most detrimental, which is unsurprising given that it also downweights
the contribution of core features. Shift and ‘misposition‘ also degrade performance, particularly in datasets
with large masks such as DecoyDERM, while ‘shrink‘ has a minimal effect on R4. These results suggest
that ‘dilation‘ and ‘shift‘ corruptions are particularly harmful because they simultaneously suppress core
features, which should remain informative, and reinforce non-core ones in regions that no longer align with
the original, accurate masks. ‘Misposition‘ errors, by contrast, are partially offset by high gradient activity in
the misplaced regions. Therefore, interestingly, our ablation study suggests that practitioners should focus on
mask quality rather than mask quantity when employing MLX approaches.

6 Discussion

We introduced a novel gradient- and robustness-based method to mitigate shortcut learning. We find that
the strength of our proposed learning objective and its ability to lend itself well to a number of different
approximations, achieves superior results across all datasets. Notably, the method is particularly effective
in practical scenarios involving noisy annotations, highly complex models, and small, imbalanced datasets.
Promising directions for future work include developing a theoretical framework to understand the role of
weight regularization in these scenarios, leveraging techniques with statistical guarantees (e.g., randomized
smoothing), and improving bound propagation tightness using methods such as CROWN. In the long term,
advancing shortcut learning mitigation in large language models will require scalable methods that account
for both semantic understanding, as well as the structure encoded in learned representations.

Limitations. A key limitation, as noted by Li et al. (2023), is that when multiple shortcuts are present,
reducing reliance on only some can lead models to overcompensate by relying more heavily on others. While
this is a valid concern, we argue that it arises primarily during identification of non-core/shortcut features or
mask-acquisition. This highlights the importance of developing methods with low failure rates in detecting
such features and constructing accurate masks. However, provided that this condition is met, we believe that
our approach can effectively and efficiently mitigate shortcut learning in these types of settings.
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A Benchmark Datasets

Decoy MNIST. The first synthetic dataset we consider is Decoy-MNIST a popular MLX benchmark
proposed in Ross et al. (2017). This a modification of the classical MNIST dataset which is comprised of 28
by 28 pixel images each representing a digit 0 through 9. To test shortcut learning, a small patch is added
into the corners (with corners being selected randomly) of each image. The grey-scale color of the patch
added to the training samples is exactly correlated with the label of the image while at test time the color of
the patch has no correlation with the true label.

Decoy DERM. The second synthetic benchmark is a novel modification of the skin cancer classification
“DermMNIST” benchmark Yang et al. (2023) that we term DecoyDERM. As in DecoyMNIST, DecoyDERM
adds a small colored patch into the corner or each image, with the color of the patch being correlated with
the label for training images and uncorrelated with the label for test images. Advantage of this benchmark
compared to DecoyMNIST is (1) it mirrors a real-world, safety-critical scenario where shortcut learning has
been observed and has potential adverse affects (2) is comprised of full-color medical images at a variety of
resolutions from 28 by 28 up to 224 by 224. Thus this dataset is a strong benchmark for understanding the
scalability and potential real-world effectiveness of MLX approaches.

ISIC. The ISIC dataset Codella et al. (2019) contains a number of benign and malignant skin lesions,
which induce a skin cancer detection task for our MLX methods. Previous work that addressed shortcut
learning Rieger et al. (2020) showed that because approximately 50% of the benign examples contain colourful
patches, unpenalized DNNs rely on such spurious visual artifacts when attempting to detect sking cancer,
thus generalizing poorly at inference time. As such, we follow the setup described in Rieger et al. (2020) to
split the dataset into three groups: non-cancerous images without patch (NCNP) and with patch (NCP), as
well as cancerous images (C), out of which only the NCP group contains associated masks.

Plant Phenotyping. The plant phenotyping dataset of “plant” for short is a dataset of microscopy images
of plant leaves each representing a different phenotype that the model must classify. Previous studies have
revealed that machine learning models tend to rely on the augur or solution that the plant sample is resting
in rather than on phenotypic traits of the plant itself. Automatic feature extraction has been used identify
and mask regions of each image constitute background (spurious) and foreground (non-spurious).

Salient ImageNet. The Salient ImageNet dataset (Singla et al., 2022) provides a series of human identified
spurious correlations in the popular ImageNet dataset. Each mask determines if pixels belong to a “core”
(non-shortcut) or “spurious” (shortcut) feature group. We use the 5000 available image and masks for this
datset to understand the effectiveness of our approach when fine-tuning models (e.g., ResNet-18) rather than
training from scratch.

Decoy IMDB. The IMDB dataset (Maas et al., 2011) is made up of 50000 IMDB movie text reviews, half of
which (25000) are in the train set and the other half (25000) in the test set, and induces a binary classification
sentiment analysis task. Previous works such as Wang & Culotta (2020) have identified and automatically
extracted spurious features from this dataset, namely words that are correlated with a specific class. An
example is the word "spielberg", which is the name of a well-known movie director that is correlated with
a positive sentiment, due to the largely successful and appealing to audience movies he has produced. We
make this task harder by prepending to every train set positive-sentiment review the word "spielberg" and at
the beginning of every train set negative-sentiment review the word "jonah". For every example of the test
set, one of the two words above is chosen at random and inserted at a random position in the sentence. We
employ the method of Wang & Culotta (2020) to extract spurious words.

B Model Architecture

Decoy MNIST.

Sequential(
(0): Linear(in_features=784, out_features=512, bias=True)
(1): ReLU()
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(2): Linear(in_features=512, out_features=10, bias=True)
)

Decoy DERM.

Sequential(
(0): Conv2d(3, 32, kernel_size=(3,3), stride=(1,1), padding=(1,1))
(1): ReLU()
(2): Conv2d(32, 32, kernel_size=(4,4), stride=(2,2), padding=(1,1))
(3): ReLU()
(4): Conv2d(32, 64, kernel_size=(4,4), stride=(1,1), padding=(1,1))
(5): ReLU()
(6): Conv2d(64, 64, kernel_size=(4,4), stride=(2,2), padding=(1,1)),
(7): torch.nn.ReLU()
(8): Flatten(start_dim=1, end_dim=-1)
(9): Linear(in_features=14400, out_features=1024, bias=True)
(10): ReLU()
(11): Linear(in_features=1024, out_features=1024, bias=True)
(12): ReLU()
(13): Linear(in_features=1024, out_features=2, bias=True)

)

ISIC.

Sequential(
(0): Conv2d(3, 16, kernel_size=(4,4), stride=(2,2), padding=(0,0))
(1): ReLU()
(2): Conv2d(16, 32, kernel_size=(4,4), stride=(4,4), padding=(0,0))
(3): ReLU()
(4): Conv2d(32, 64, kernel_size=(4,4), stride=(1,1), padding=(1,1))
(5): ReLU()
(6): Flatten(start_dim=1, end_dim=-1)
(7): Linear(in_features=43808, out_features=100, bias=True)
(8): ReLU()
(9): Linear(in_features=100, out_features=2, bias=True)

)

Plant Phenotyping.

Sequential(
(0): Conv2d(3, 32, kernel_size=(3,3), stride=(1,1), padding=(1,1))
(1): ReLU()
(2): Conv2d(32, 32, kernel_size=(4,4), stride=(2,2), padding=(1,1))
(3): ReLU()
(4): Conv2d(32, 64, kernel_size=(4,4), stride=(1,1), padding=(1,1))
(5): ReLU()
(6): Conv2d(64, 64, kernel_size=(4,4), stride=(2,2), padding=(1,1)),
(7): torch.nn.ReLU()
(8): Flatten(start_dim=1, end_dim=-1)
(9): Linear(in_features=173056, out_features=1024, bias=True)
(10): ReLU()
(11): Linear(in_features=1024, out_features=1024, bias=True)
(12): ReLU()
(13): Linear(in_features=1024, out_features=2, bias=True)

)
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Salient ImageNet.
As the pre-trained backbone model, we use ResNet-18 (He et al., 2016), to which we attach the following
classification head:

Sequential(
(0): Identity()
(1): Dropout(p=0.5)
(2): Linear(in_features=512, out_features=6, bias=True)

)

Salient ImageNet.
As the pre-trained backbone model, we use BERT (Devlin et al., 2019), to which we attach the following
classification head:

Sequential(
(0): Linear(in_features=768, out_features=384, bias=True)
(1): ReLU()
(2): Linear(in_features=384, out_features=2, bias=True)

)

C Extension of Gradient-Based Regularization Techniques to Language Modeling
Tasks

R3. This extension requires minimal modifications to the standard training pipeline. First, we identify the
positions of spurious tokens within the input sequence. For each of these tokens, we extract their embedding,
which includes both token and positional components. Lastly, we compute the gradient of the model’s loss
with respect to these embeddings and augmenting the original loss function with the norm of the computed
gradients.

Smooth-R3 and Rand-R4. In contrast to approaches that use continuous normal noise (e.g., Gaussian
perturbations applied to image pixels), we propose a discrete perturbation mechanism suited to language.
Specifically, we define a hyperparameter α ∈ [0, 100] that controls the percentage of token substitutions
applied to a given input text.

In Smooth-R3, α% tokens are randomly sampled from the entire input text and replaced with alternatives
drawn uniformly at random from the full vocabulary. In Rand-R4, replacements are restricted to a predefined
set of spurious words (for example, the ones identified in the IMDB dataset (Maas et al., 2011) by Wang &
Culotta (2020)), and substitutions are applied only to tokens in the input that match this spurious set.

This randomized substitution process is repeated n times per input example, where n is a user-defined
sampling hyperparameter. For each perturbed sample, we compute the gradient of the loss function with
respect to the token embeddings. Finally, the regularization term added to the original loss function is the
mean of the gradients across the n samples in the case of Smooth-R3, and the element-wise maximum of the
gradients across samples for Rand-R4, respectively.

Adv-R4. To enhance the adversarial regularization capabilities of Adv-RF, we draw methodological inspiration
from the GCG attack proposed by Zou et al. (2023). This extension leverages gradient-based token substitution
in an iterative manner to construct adversarial variants of input sequences.

The process begins by identifying an ordered sequence of spurious tokens present in the original input. For
each token in this sequence, we perform a search over a predefined vocabulary of spurious words to identify
the candidate replacement that maximizes the gradient of the model’s loss with respect to the embedding of
the current token. Formally, for a given spurious token wi in the input, we select a replacement w′

i ∈ S such
that:

w′
i = arg max

w∈S
∥∇e(w)L(x(i→w))∥
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where S is the set of known spurious words, e(w) is the embedding of token w, and x(i→w) denotes the input
sequence with the i-th token replaced by w.

After each substitution, the modified input sequence is updated, and the process is repeated for the next
spurious token in the sequence. This greedy, iterative attack continues until all spurious tokens have been
considered and replaced. The resulting adversarially perturbed sequence is then used to compute the
regularization term added to the original loss function.

D Impact of Weight Decay

As discussed in Section 5, we opted to set the weight decay coefficient to be proportional to the ratio of masks
when performing mask sample complexity ablations. However, prior to this experimental design decision, we
set out to perform a vanilla ablation, leaving all the training parameters, including the ones pertaining to
weight regularization, the same as in the case of the best performing model achieving the results show in Table
1. However, this yielded surprising results, namely that all methods which used weight regularization varied
insignificantly in worst (and macro average) group accuracy, regardless of the mask percentage available at
training time. This, naturally, led us to hypothesize that in numerous previous MLX methods, either the
weight regularization is the parameter that actually controls the robustness to spurious features the most, or,
at the very least, it is indispensable in achieving previous literature results and must be used in addition to
the MLX objective.

Figure 2: Sample complexity ablation varying the percentage of masks available at train time for different
amounts of weight regularization. We show the results for DecoyMNIST in the two leftmost columns and the
results for DecoyDERM in the rightmost two columns.
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To explore the connection between spurious feature reliance and weight regularization, we perform the same
ablations as in Section §5.5 for different values of weight decay, and then plot the results as a heat map for each
MLX technique, as shown in Figure 2. We first note that the initial weight decay parameter used corresponds
to the y-axis label of the fourth row, for every heatmap. Starting with the results on DecoyMNIST (first and
second columns starting from the left), we observe that for non-R4 methods, the performance of the algorithm
quickly decreases as weight decay strays away from its initial value, where the best performance, or “mode“
is achieved. Adv-R4’s behaviour is similar, but the effect is slightly weaker. Notably, the accuracy of all these
four methods does not vary at all along the x-axis, suggesting that independence from spurious features is
highly correlated with weight decay, but less with the mask ratio. Lastly, Cert-R4 (second top-most plot),
which we highlight is trained on this dataset for performance without any weight regularization has
little variation in group accuracy regardless of the ℓ2 regularization magnitude due to the strength of the
MLX term used in training. The only parameter space location where its accuracy collapses is when we do
not have access to any masks whatsoever, which uncovers an interesting behaviour: weight decay does not
influence it at all, since the performance in the middle row (weight decay 0) is the same as any other row.

The heat maps for DecoyDERM are slightly harder to interpret, because it is (i) a much more complex
dataset and (b) a harder MLX objective (regions taken up by swatches are larger). For the majority of
methods, the ablations performed on this dataset do indeed show a decrease, albeit slight, along the x axis
(i.e. varying the mask ratio), showing that in a real-world scenario, as complexity of the task increases, so
does the importance of high-quality masks. Turning back to the impact of weight decay, we can see that
especially in methods such as R3 or IBP-Ex+R3 it plays a huge role, noticeable from the little variation across
both x and y axis, whereas in, for example, Cert-R4 (top-right corner), the accuracy seems to be varying
more. Lastly, one thing that can equally be learned equally from all algorithms used to ensure robustness to
spurious features in DecoyDERM is that for complex datasets weight decay is, next to the strength given
to MLX regularization, one of the most critical parameters. As such, practicians must make sure not to
over, nor under-regularize with respect to weights, because the large number of model parameters in certain
architectures (especially large convolutional ones) might determine the weight decay term to far exceed the
MLX one and thus determine the optimizer to ignore the latter, or viceversa, might make the objective
impossible to optimize due to the difficulty of the MLX term.

E Model Size Ablations

We also perform ablations of model architecture sizes, by varying the number of layers at train time for
DecoyMNIST and DecoyDERM, as can be seen in Figure 3. For the first, the performance results obtained
in Table 1 are achieved by using a 1 layer fully-connected network with 512 hidden units (corresponding to
the ’1-layer’ x-axis label), and we vary the number of layers, while maintaining the amount of hidden units in
each layer, which is to say we ablate the depth. For the latter, the performance results are obtained with
the ’Medium-Large’ architecture, consisting of 4 convolutional layers and 3 fully-connected layers, and we
perform the ablation by adding or removing 1 convolutional layer and 1 fully connected layer per x axis step.

Looking at the top row, depicting the worst group accuracy per model architecture for different MLX
techniques in both datasets, we can observe that the statistical and first-order adversarial R4 approaches
yield improved generalization when compared to IBP-Ex and R3 for different architectures, being in some
cases 40% more worst group accurate (for example at the ’3 layers’ x label value). Reassuringly, for complex
architectures as is the case with DecoyDERM, both the variations between subsequent architectures and
their respective standard deviation (measured across runs) stay low, property which might be desirable for
end users when deployed in critical systems. One interesting behaviour emerges, though, in Cert-R4: it
achieves significantly higher accuracy by using the initial performance-optimized architecture. When varied,
the accuracy drops rapidly, suggesting that Cert-R4 requires a very specific set of parameters to function as
expected, and thus might need re-optimizing when a certain parameter changes. This effect is compounded
with the usage of convex relaxation techniques (i.e. IBP), which are know to generalize poorly to large
architectures, achieving vacuous bounds, and the complexity of the task, which requires a large number of
parameters in order to be expressive. However, lastly, a positive behaviour we can notice is the fact that the
explanation fragility remains constantly very close to 0, meaning that even if we might be independent to a
subset of spurious features, we are very sure this particular algorithms will never be fooled by noise added
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Figure 3: Model size ablation varying the number of layers in the model architecture at train time. We plot
worst case group accuracy (top) and explanation fragility (bottom) for DecoyMNIST (left column) and
DecoyDERM (right column).

to those features. This leads us to think that there is a trade-off between explanation fragility and group
accuracy (in Cert-R4), and coming up with a way of dynamically loosening the δ-input-robustness guarantees
during training might yield improved worst-group accuracy.

F Additional Experimental Details

Table 3: Robustness to Perturbation of Spurious Features

Learning Objective
ERM R3 Smooth-R3 IBP-Ex IBP-Ex + R3 Rand-R4 Adv-R4 Cert-R4

Dataset ↓ Avg δ Avg δ Avg δ Avg δ Avg δ Avg δ Avg δ Avg δ
DecoyMNIST 497.44 4.35 4.33 5.61 3.43 2.10 2.02 0.93
DecoyDERM 6742.41 5762.81 3906.13 2979.48 2892.32 3790.20 3504.75 1.297

ISIC 0.423 0.00167 1.029 1.784 2.878 1.392 0.400 0.901
Plant 4011.40 4519.85 2082.06 4742.33 1105.28 1285.71 1787.99 89.38
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Table 4: Robustness to Perturbation of Core Features

Learning Objective
ERM R3 Smooth-R3 IBP-Ex IBP-Ex + R3 Rand-R4 Adv-R4 Cert-R4

Dataset ↓ Avg δ Avg δ Avg δ Avg δ Avg δ Avg δ Avg δ Avg δ
DecoyMNIST 332.3 7.7 7.6 8.7 6.4 6.2 6.3 39.4
DecoyDERM 7918.7 5811.9 3925.1 3714.5 3684.6 3800.2 3558.9 453.7

ISIC 0.45 0.002 1.17 1.92 3.06 1.6 0.45 1.07
Plant 4410.9 4657.3 2034.7 4881.83 1223.02 1307.2 2439.8 97.8

G Model Outputs Upper Bound for Adversarially Perturbed Spurious Regions - Proof

We firstly restate our claim and then provide a proof.
Proposition 1. Given a function f induced by a model parametrized by θ, trained on dataset D =
{(x(i), y(i), m(i))}N

i=1 with loss function R4 as in equation 3, adversarial perturbations of magnitude at
most ϵ (i.e. with x′ ∈ Bm

ϵ (x)) and post-hoc computed δ-input robustness of magnitude at most δ∗, then the
output difference norm between any perturbed input and its standard counterpart is upper bounded by:

∥fθ(x) − fθ(x′)∥ ≤ δ⋆∥ϵ∥(1 + 1
2∥ϵ∥).

Proof. We begin by writing the first-order Taylor approximation, with second-order remainder term at the
spurious (masked) region of input x′, i.e. Bm

ϵ (x′). In that case, the function fθ
m,2(x) is exactly equal to:

fθ
m(x) =fθ(x′) + ∇xfθ(x′)⊤(m ⊙ (x − x′))︸ ︷︷ ︸

function change

+ R2(fθ
m(x))︸ ︷︷ ︸

second-order remainder

By rearranging and applying the norm on both sides, we have:

∥fθ
m(x) − fθ(x′)∥ = ∥∇xfθ(x′)⊤(m ⊙ (x − x′)) + R2(fθ

m(x′))∥

We note that, as mentioned in §4.1, by optimizing R4’s objective, we can bound the gradient magnitude for
any point in the ϵ-ball of the masked region: ∀x⋆ ∈ Bm

ϵ (x′), ∥∇xfθ(x⋆)∥ ≤ δ⋆. Using the property given by
our technique, as well as the triangle inequality, we have that:

∥fθ(x) − fθ(x′)∥ ≤ δ⋆∥m ⊙ (x − x′)∥ + ∥R2(fθ
m(x′))∥

Firstly, we remind the reader of Taylor’s Theorem with Lagrange Remainder. We write the n-th order Taylor’s
approximation for a function f at a point x′ ∈ [x, x + h] and assume that f is n + 1 differentiable in this
interval. The theorem tells us that the norm of the remainder term of order n + 1 is upper bounded by:

∥Rn+1(f(x))∥ ≤ M

(n + 1)!∥h∥, where M = supx′∈[x,x+h](∇n+1
x f(x))

In our case, we have by definition that x′ ∈ Bm
ϵ (x), which implies ∥x − x′∥ ≤ ∥m ⊙ ϵ∥ ≤ ∥ϵ∥, since m ∈ [0, 1].

We also note that ∥h∥ = ∥m ⊙ (x − x′)∥ in the above equation. Lastly, as mentioned in §4.1, because the
norm of the gradient in the masked ϵ-ball is bounded by δ∗, then trivially the norm of the Hessian in the
same region is also bounded by δ∗ and corresponds with the notion of M defined above, for a first-order
Taylor-approximation with second-order remainder. Lastly, since the matrix norm is submultiplicative, we
obtain the following strict upper bound:

∥fθ(x) − fθ(x′)∥ ≤ δ⋆∥ϵ∥(1 + 1
2∥ϵ∥).
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H Why is R4 better than IBP-Ex?

The following result demonstrates the merit of R4 over IBP-Ex.
Proposition 2. Given a dataset D = {x(i), y(i)}n

i=1, we wish to fit a linear regressor that predicts the output
well without using the pre-specified k irrelevant features (of the total l features), which we assume are the
last k dimensions of x without loss of generality. We denote by the weights fitted using IBP-Ex and R4 by
wI and wR respectively. The following result holds for the norm of irrelevant features.

∥wI ⊙ m∥ ≤
√

kτ/∥ϵ∥, ∥wR ⊙ m∥ ≤ τ

where m = [
l︷ ︸︸ ︷

0, 0, . . . , 1, 1, . . .︸ ︷︷ ︸
k

] and τ ≜ max
x∈D,x′∈Bϵ(x)

|wT
∗ x′ − wT

∗ x|

We require that the norm of the irrelevant features to be as small as possible. However, the bound on the
norm of irrelevant features given by IBP-Ex is much weaker than that of R4. Because the upper bound given
by IBP-Ex gets weaker with the number of irrelevant features and is further exacerbated by the practically
small value of ϵ. On the other hand, R4 fitted wR bounds the norm of irrelevant features well even when
their dimension is high. Intuitively, the error in suppressing the function deviation of the inner maximization
loop blows up with the number of dimensions in IBP-Ex. On the other hand, since R4 suppresses the norm
directly, the support of irrelevant features is kept in check.

Proof. We will generalize the definition of τ to work for both IBP-Ex or R4 by generalizing the function wT x
to f(x). The more general definition of τ is as follows.

τ ≜ max
x∈D,x′∈Bϵ(x)

|f(x′) − f(x)|

We first prove the result for wI , which bounds the function value deviation in the ϵ-neighborhood.

Since we are fitting a linear regressor, the coefficients of the ith irrelevant feature
wi is {f(x + [0, . . . , 0, ∥ϵ∥︸︷︷︸

ith

, 0, . . . , 0]) − f(x)}/∥ϵ∥ ≤ τ/∥ϵ∥. Therefore, the norm of the k irrelevant features

is bounded by
√

kτ/∥ϵ∥.

The result for wR follows directly from observing that R4 minimizes the gradient norm of irrelevant features,
which is wR ⊙ m, and from the generalized definition of τ .

I Interval Arithmetic for Bounding Input Gradients

We begin by recalling the form of the forward and backwards pass sated in the main text where we have a
neural network model fθ : Rnin → Rnout with K layers and parameters θ =

{
(W (i), b(i))

}K

i=1 as:

ẑ(k) = W (k)z(k−1) + b(k),

z(k) = σ
(

ẑ(k)
)

where z(0) = x, fθ(x) = ẑ(K), and σ is the activation function, which we assume is monotonic. We have the
backwards pass starting with δ(L) = ∇ẑ(L)fθ(x), we have that backwards pass is given by:

δ(k−1) =
(

W (k)
)⊤

δ(k) ⊙ σ′
(

ẑ(k−1)
)

Where we are interested in δ(0) = ∇xfθ(x).

As highlighted in the paper the above forwards and backwards bounds consist solely of matrix multiplication,
addition, and the application of a non-linearity.
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Where we start with an input interval [xL, xU ], we must define interval versions of the above operations
such that they maintain that the output interval of our interval operations provably contains all possible
outputs of their non-interval counterparts. We will represent interval matrices with bold symbols i.e.,
A := [AL, AU ] ⊂ Rn1×n2 . We denote interval vectors as a := [aL, aU ] with analogous operations.
Definition I.1 (Interval Matrix Arithmetic). Let A = [AL, AU ] and B = [BL, BU ] be intervals over matrices.
Let ⊕, ⊗, ⊙ represent interval matrix addition, matrix multiplication and element-wise multiplication, such
that

A + B ∈ [A ⊕ B] ∀A ∈ A, B ∈ B,

A × B ∈ [A ⊗ B] ∀A ∈ A, B ∈ B,

A ◦ B ∈ [A ⊙ B] ∀A ∈ A, B ∈ B.

Both the addition (defined element-wise) and element-wise multiplication of these bounds can be accomplished
by simply taking all 4 combinations of the interval end points and returning the maximum and minimum.
The matrix multiplication is slightly more complex but can be bounded using Rump’s algorithm Rump (1999).
These operations are standard interval arithmetic techniques and are computed in at most 4× the cost of a
standard forward and backward pass.

For the non-linearity, we have assumed the function is monotonic which is defined by: x < y =⇒ σ(x) ≤ σ(y).
Thus the element-wise application of σ to an interval over vectors [vL, vU ] we simply have that the interval
output is [σ(vL), σ(vU )].

Taken together, these suffice to bound the output of a forward and backwards pass. For a more rigorous
treatment we reference readers to (Wicker et al.).
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