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ABSTRACT

Average Precision (AP) is a widely used metric for evaluating object detection sys-
tems because it effectively integrates both classification accuracy and localization
precision. In this paper, we conduct a detailed analysis of the characteristics of
the AP metric, focusing on its non-differentiability and non-convexity. Building
on this analysis, we propose a novel loss function called Differentiable Average
Precision Loss (DAP-loss), which provides a differentiable approximation of AP,
thereby enabling direct optimization of AP across a set of images. We validate
the effectiveness of DAP-loss both theoretically and empirically, extending its ap-
plication to the cost functions used in the Hungarian matching algorithm, which
makes it suitable for end-to-end detection models. DAP-loss supports the simul-
taneous optimization of classification and localization tasks within an end-to-end
framework, eliminating the need for hyperparameters to balance these tasks—a
common challenge in previous methods. In the later stages of training, we applied
DAP-loss to replace the original loss functions in several state-of-the-art end-to-
end models, including DETR (Carion et al., 2020) and Deformable DETR (Zhu
et al., 2020). Experimental results demonstrate that our method achieves signifi-
cant improvements over baselines on the COCO dataset.

1 INTRODUCTION

Object detection is a crucial task in computer vision, focused on identifying and localizing objects
within images. It requires optimizing both classification accuracy and the precise localization of
object boundaries. Most existing deep learning-based object detectors (e.g. Carion et al. (2020);
Ren et al. (2015); Redmon et al. (2016)) rely on multi-task learning frameworks, using separate
loss functions to address classification and localization issues independently. Although this method
enables straightforward model training via gradient descent, it introduces multiple hyperparameters
to balance the weights of different losses, resulting in significant costs associated with hyperparam-
eter tuning. In contrast, our proposed DAP-loss involves only a single hyperparameter that requires
tuning, making it much easier to fine-tune for optimal performance.

Average Precision (AP) is a pivotal evaluation metric in object detection, integrating both classifi-
cation accuracy and localization precision. Despite its widespread use, the non-differentiable and
non-convex nature of AP poses significant challenges for direct optimization using gradient descent
techniques. Various methods, such as Henderson & Ferrari (2017a); Chen et al. (2019); Mohapa-
tra et al. (2018), have been proposed to try to directly optimize AP in the field of object detection.
However, most of these approaches primarily focus on score ranking or classification tasks, often
neglecting the localization aspect. As a result, these methods require additional loss functions and
hyperparameters to achieve comprehensive optimization. Thus, the optimization of AP-loss remains
an open problem.

In this paper, we provide a comprehensive analysis of the AP metric, examining both its inherent
characteristics and the difficulties associated with its gradient, which may be non-existent or zero.
Building on this analysis, we introduce a novel differentiable approximation of AP, termed Differ-
entiable Average Precision Loss (DAP-loss), aimed at addressing these limitations. Specifically,
we decompose AP into the product of a localization function and a classification function. For
localization, we use interpolation techniques to create a smooth and differentiable representation
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of localization errors. Concurrently, for classification, we model the scores of output instances as
continuous distributions rather than deterministic values.

Furthermore, we propose three design guidelines for scoring distributions that enable DAP-loss to
obtain appropriate gradients for gradient descent, thereby enhancing overall performance. We pro-
vide a theoretical proof demonstrating that DAP-loss generates suitable gradients for model training.
Extensive experiments on the COCO dataset show that replacing the original loss functions with
DAP-loss in the later stages of model training significantly improves performance.

The main contributions of this paper are summarized as follows:

1. We conduct a comprehensive analysis of AP metric, clarifying why it is not suitable for
direct gradient descent optimization in object detection models;

2. Building on this analysis, we propose Differentiable Average Precision Loss (DAP-loss),
an approximation method for the AP metric. Additionally, we have designed specifically a
cost function for the Hungarian matching algorithm to integrate seamlessly with DAP-loss.

3. We provide a theoretical proof demonstrating that DAP-loss ensures mathematical conver-
gence and effectiveness in model training. Furthermore, extensive empirical experiments
confirm that DAP-loss enhances the performance of end-to-end object detection models.

2 RELATED WORK

2.1 DETR FOR OBJECT DETECTION.

The pioneering work DETR(Carion et al., 2020) employed transformers and set-based prediction to
achieve end-to-end object detection. Its simplicity and outstanding performance have led to numer-
ous proposed extensions. Deformable DETR(Zhu et al., 2020) introduced a multi-scale deformable
self/cross-attention mechanism that selectively focuses on a small number of key sampling points
in the reference bounding boxes. Compared to DETR, Deformable DETR significantly accelerates
convergence and achieves improved performance. DAB-DETR(Liu et al., 2022) and DN-DETR(Li
et al., 2022) demonstrated that the query formulation in the decoder can significantly impact DETR’s
performance. DINO-DETR(Zhang et al., 2023) achieved shorter training times and better perfor-
mance, by addressing the instability issues of the one-to-one matching problem. RT-DETR(Zhao
et al., 2024), on the other hand, has extended DETR into the realm of real-time object detection, en-
abling broader practical applications. Building on these, this paper integrates DAP-loss with DETR
and its variants, further enhancing their detection capabilities.

2.2 AP AS A LOSS FOR OBJECT DETECTION

Average Precision (AP), which takes into account both classification and localization tasks, is the
most commonly used evaluation metric in object detection. However, due to its non-differentiability
and non-convexity, AP cannot be directly used as an optimization objective in object detection. Sev-
eral methods have been proposed to tackle the challenge of optimizing AP loss in object detection.
AP-loss(Chen et al., 2019) and its extensions(Pu et al., 2024; Xu et al., 2022) utilize error-driven
updates, employing Rankloss as a classification loss to indirectly optimize AP. Methods such as
Song et al. (2016); Henderson & Ferrari (2017b) use differentiable approximations of AP as training
losses. Alternatively, Mohapatra et al. (2018) leverages reinforcement learning to improve the origi-
nal classification loss starting from AP. Although these methods have achieved some valuable results
in optimizing AP loss, they still have limitations. A key issue is that they primarily replace the clas-
sification loss with one based on the AP metric, without adequately addressing the localization task.
Consequently, these approaches do not directly optimize AP; instead, they rely on regression loss
functions and their associated balancing parameters for model training. In contrast, the DAP-loss we
propose is a differentiable approximation of AP that can simultaneously optimize both localization
and classification tasks without the need for additional balancing hyperparameters.
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3 METHOD

We aim to directly optimize the AP (Average Precision) metric in end-to-end detectors such as
DETR(Carion et al., 2020).

3.1 PRELIMINARY

DETR: Detection Transformers (DETR) passes the input image I through a backbone network
and a transformer encoder to obtain a series of enhanced feature embeddings X . These feature
embeddings are then combined with a set of N object query embeddings Q and passed through a
transformer decoder to produce N output predictions. Finally, DETR performs a one-to-one bipartite
matching between the predictions and the ground truth annotations G for bounding boxes and labels,
associating each ground truth annotation with the prediction that has the minimum matching cost.
Predictions matched to ground truth annotations are classified as positive samples, while unmatched
ones are considered negative. Similarly, our proposed method also classifies samples as positive or
negative based on these matching results.

3.2 AP METRIC

Figure 1: Rectangle Integration for AP Approximation. This figure demonstrates the approxi-
mation of the area under the Precision-Recall (PR) curve using N rectangles. The precision of the
approximation improves as N increases.

The AP in object detection serves as a critical benchmark for evaluating the performance of a detec-
tor, derived from the area under the Precision-Recall (PR) curve (averaged over uniformly sampled
IoU thresholds ranging from 0.50-0.95 with a step size of 0.05).

As shown in Figure 1, we approximate the definite integral of the PR curve with rectangular method.

APα =

∫ 1

0

Pα dRα ≈
N−1∑
i=0

P i
α∆Ri

α =
1

G

N−1∑
i=0

P i
α∆T i

α (1)

where α represents the IoU threshold, and i
N denotes the score threshold; The value G indicates

the total count of ground truth, while T i and P i respectively denote the count of true positives and
the precision at the score threshold corresponding to i

N . ∆Ri is defined as (Ri+1 - Ri) and ∆T i as
(T i+1 - T i).

With this, AP can be calculated as follows:
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AP =
1

10
(AP50 +AP55 + . . .+AP90 +AP95) (2)

≈ 1

10G

N−1∑
i=0

(P i
50∆T i

50 + P i
55∆T i

55 + . . .+ P i
90∆T i

90 + P i
95∆T i

95) (3)

=
1

10G

N−1∑
i=0

∑
b∈Pos

L(biou, i)×H(
i

N
, bscore) (4)

where Pos is the set of positive outputs, i.e., those matched with ground truth annotations; and
L(·) represents the localization score function of the predicted bounding boxes. The classification
function H( i

N , bscore) is defined as H( i
N , bscore) = 1 if i

N ≤ bscore<
i+1
N and H( i

N , bscore) = 0
otherwise.

As shown in Equation 4, the AP is determined by the localization score function L(·) and the classi-
fication function H(·). In following sections, we will discuss these functions L(·) and H(·) from the
perspectives of localization and classification. Additionally, we will introduce the method proposed
in this paper for optimizing these functions using backpropagation.

3.2.1 LOCALIZATION

(a) (b)

Figure 2: Schematic of the Localization Score Function. (a) Shows L(·) from Equation 4, where
the gradient with respect to IoU is either zero or undefined. (b) Illustrates our proposed L̂(·), where
the gradient with respect to IoU is positive.

From Equation 4, it is evident that the localization task pertains to function L(·) and is independent
of H(·). Therefore, in this subsection, we focus solely on the function L(·).
Consider a predicted bounding box matched with a ground truth (GT), which serves as a positive
sample during training. Under a score threshold of i

N , the visualization of function L(·) is shown
in Figure 2(a).

L(·) is determined by 10 points: (0.5, P i
50), (0.55, P

i
50 + P i

55), . . . , (0.95, P
i
50 + P i

55 + . . .+ P i
95).

It is clear that within the range of IoU ∈ [0, 1], the gradient of function L(·) with respect to IoU
is zero. Consequently, the task of optimizing localization cannot be effectively addressed using the
backpropagation algorithm.

As shown in Figure 2(b), we propose using an interpolation technique to address the aforementioned
gradient deficiency issue. Specifically, we introduce an additional point at the origin (0, 0) and ex-
tend the line segment from 0.9 to 0.95 up to 1.0, thereby ensuring that the function yields reasonable
values for IoU within the ranges [0,0.5) and [0.95,1]. We denote this interpolated function as L̂(·).
As illustrated in the figure, L̂(·) provides a reasonable gradient across the entire IoU range [0, 1].
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3.2.2 CLASSIFICATION

For classification task, it is intuitive that the precision in L(·) and the step function H(·) cannot
produce trainable gradients. This limitation arises because the classification scores are discrete,
whereas gradient descent algorithms require smooth functions.

To derive an appropriate gradient, we employ a continuous probabilistic distribution to model the
scores of the predicted bounding boxes. Given a score threshold x, the probability that a predicted
bounding box b is classified as positive is represented by the complementary cumulative distribu-
tion function (tail distribution), defined as follows:

Pr(b, x) =

∫ 1

x

f b(y)dy (5)

where f b(·) is the probabilistic distribution of b. When f b(·) is represented as an impulse function,
the equation above becomes equivalent to the original model. Therefore, the significance of H(·)
in Equation 4 can be interpreted as the cumulative distribution function of the impulse function δ(·)
over the interval from i

N to i+1
N .

To establish design guidelines for f(·), we calculated the partial derivatives of the AP with respect to
the scores of positive and negative samples, yielding the following equations. The detailed derivation
can be found in Appendix A.3:

∂APα

∂st
=

1

G

∫ 1

0

∂f t(x)

∂st
× P (x) +

∂Pr(t,x)
∂st

× fp(x)

(tp(x) + fp(x))2
×

∑
m∈tp

fm(x)dx (6)

∂APα

∂sn
=

1

G

∫ 1

0

−∂Pr(n,x)
∂sn

× tp(x)

(tp(x) + fp(x))2
×

∑
m∈tp

fm(x)dx (7)

where fp(x) and tp(x) respectively represent the false positive and true positive rates at a score
threshold of x and an IoU threshold of α. Additionally, st and sn denote the scores of a positive
sample and a negative sample, respectively.

In the original model (i.e., f(x) is δ(·)), both ∂Pr(t,x)
∂st

and ∂Pr(n,x)
∂sn

are zero except at a finite
number of points. This characteristic significantly affects the gradients ∂APα

∂st
and ∂APα

∂sn
, causing the

derivatives of the classification scores to become zero.

To facilitate training with the gradient descent algorithm, we aim for the function f(·) to satisfy the
following characteristics: i. ∂APα

∂st
> 0, ∂APα

∂sn
< 0; ii. f(·) is an approximation of δ(·).

For the first characteristic, a simple and effective approach is to ensure that each term in Equation 6
is greater than or equal to 0, while each term in Equation 7 is less than or equal to 0. We obtain the
following specific conditions that enable f(·) satisfy this characteristic. The relevant mathematical
proof can be found in Appendix A.2 of this paper.

The conditions for the distribution f(·) are as follows:

1. f(x) ≥ 0 for all x ∈ [0, 1];
Condition 1 ensures that the distribution is non-negative across the entire range.

2.
∫ 1

0
f(x) dx = 1;

Condition 2 ensures that the distribution is properly normalized, such that the total proba-
bility sums to 1.

3.
∫ 1

a
f b1(x) dx >

∫ 1

a
f b2(x) dx for s1 > s2 and for all a ∈ (0, 1).

Condition 3 ensures that a bounding box with a higher score s1 will have a greater proba-
bility of being a true positive compared to a box with a lower score s2, thereby preserving
the ranking of boxes based on their scores.

For the second characteristic, which states that f(·) is an approximation of δ(·), we use a normalized
Gaussian function to approximate δ(·), setting the mean to the classification score s and using a
constant standard deviation σ. Thus, in our proposed method, we use F ( i

N , bscore) to replace H(·)

5
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from Equation 4. The characteristics of F (·) and H(·) are discussed in more detail in Appendix
A.1. The definition of F ( i

N , bscore) is as follows:

F (
i

N
, bscore) =


∫ 1

N

−∞N (x; bscore, σ)dx if i = 0,∫ i+1
N

i
N

N (x; bscore, σ)dx if 0 < i < N − 1,∫ +∞
i
N
N (x; bscore, σ)dx if i = N − 1.

(8)

In summary, the differentiable approximation of Equation 4, referred to as DAP-loss in this paper,
can be expressed as follows:

DAP-loss =− 1×DAP (9)

=
−1
10G

N−1∑
i=0

∑
b∈Pos

L̂(biou, i)× F (
i

N
, bscore) (10)

where L̂(·) represents a differentiable localization score function, as elaborated in Subsection 3.2.1.
F ( i

N , bscore) denotes the cumulative distribution function from i
N to i+1

N , based on the probability
density function of f b(·).

3.3 AP-COST MATCHER

In general, DETR and its variants use the same function to define the Hungarian matching cost
function Lmatcher as that used for the model training loss. Consistent with previous approaches, we
will next introduce a Hungarian matching cost function designed to accommodate the DAP-loss.

In end-to-end object detection models, the positive and negative samples during training are deter-
mined by the output of the matcher. This means that when computing the matching cost Lmatcher,
the information regarding which samples are positive is unavailable, making it impossible to com-
pute P 50

i , P 55
i , . . . , P 95

i in Equation 3.

In this paper, we introduce two approaches to address the issues previously discussed, i. We have
devised a method that calculates the cost based on the outcomes of preceding iterations and per-
forms momentum updates. Specifically, we employ the following formula to update the momentum
parameter Pi

α = mPi
α + (1 − m)P i

α, where α ∈ {0.5, 0.55, . . . , 0.95}; ii.The second approach
simplifies the process by assigning the constant 1

N to all instances of Pα
i .

For a predicted bounding box b and a ground truth g, the cost function for the bipartite matching can
be expressed as,

Lmatcher(b, g) =
N−1∑
i=0

L̂(IoU(b, g), i)× F (
i

N
, bscore) (11)

It is important to note that computing P i
α within L̂ is challenging, so it is replaced byPi

α as discussed
above.

3.4 DETAIL OF TRAINING ALGORITHM

Minibatch Training: The minibatch training strategy is commonly employed in deep learning
frameworks (Krizhevsky et al., 2012; Vaswani, 2017; Chen et al., 2019), offering better stability
and faster convergence compared to using a batch size of 1. Minibatch training is pivotal for our
optimization algorithm due to the batch size’s notable influence on AP calculation. An excessively
small batch can cause a significant discrepancy between the estimated and actual AP values. For
example, consider an extreme case where our model predicts perfect rankings and localization re-
sults for images I1 and I2, but the lowest score in I1 is even higher than the highest score in I2.
In such a case, both I1 and I2 would individually yield very high AP values. Aggregating image
scores within a minibatch helps to avoid this issue. In the next section, we will present experimental
results demonstrating the impact of batch size on our method.
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Algorithm 1 Computation of DAP-loss

Input: A batch of training data I , label y, and model Fθ

Output: DAP-loss of input data
1: N̂ ← {0, 1, 2, . . . , N − 1};
2: Pred← Fθ(I); ▷ Predict outputs using the model
3: Compute F ( i

N , bscore), for all b ∈ Pred, i ∈ N̂ ; ▷ According to Equation 8
4: Pos,Neg ← Matcher(Pred, y); ▷ Cost function as per 11
5: G← Pos.len(); ▷ Number of positive samples
6: Compute P i

α, for all α ∈ {0.5, 0.55, . . . , 0.95}, i ∈ N̂ ; ▷ Precision values
7: Compute L̂(biou, i), for all b ∈ Pos, i ∈ N̂ ; ▷ Function L̂ as per Subsection 3.2.1
8: DAP-loss← −1

10G

∑
i∈N̂

∑
b∈Pos L̂(biou, i)× F ( i

N , bscore) ▷ According to Equation 10
9: Return: DAP-loss

Interpolated AP: Interpolated Average Precision (Interpolated AP) is widely used in object detec-
tion benchmarks, such as PASCAL VOC (Everingham et al., 2015) and MS COCO (Lin et al., 2014).
Compared to standard AP, Interpolated AP is less sensitive to minor fluctuations in predicted scores
and better aligns with practical needs, which is why it is more commonly employed today. For
these reasons, we adopt Interpolated AP instead of the original version. This implies that precision
increases as the score threshold increases, i.e., P (i) ≤ P (j) if i < j.

The algorithmic details and computation process of DAP-loss are summarized in Algorithm 1. Our
method does not require any additional loss functions for training. Therefore, using backpropagation
with DAP-loss to update the model completes a training iteration.

4 EXPERIMENT

Dataset: In this paper, we systematically conduct all experiments by training our models on the
COCO 2017 (Lin et al., 2014) training dataset (118K images), which is a widely recognized bench-
mark in the field. We rigorously evaluate the performance of these models using the COCO 2017
validation set (5K images), to ensure that our results are both reliable and comparable to existing lit-
erature. Unless otherwise specified, we report AP as COCO-style (Lin et al., 2014) bbox AP, which
is the integral metric over multiple thresholds.

Experiments Setting: We evaluate the proposed method against several state-of-the-art (SOTA)
approaches (Carion et al., 2020; Zhao et al., 2024; Zhu et al., 2020) using ResNet-50 and ResNet-
101 (He et al., 2016) backbones. Unless otherwise specified, all experimental parameters follow the
settings outlined below.

The learning rate for all experiments was set to one-tenth of that used in the baseline method and
further reduced to one-hundredth after 7 epochs. Due to GPU memory constraints, batch sizes
were configured as follows: 40 for DETR and RT-DETR with the ResNet-101 backbone, 56 for the
ResNet-50 backbone, and 24 for the deformable model also using the ResNet-50 backbone.

Aside from the learning rate and batch size, all other parameters are consistent with those of the
original methods. The standard deviation (σ) of the distribution N in the DAP-loss is uniformly set
to 0.05 across all experiments, and the variable G in Equation 4 is consistently assigned a value of
256. All experimental results were obtained from models that underwent 12 epochs of fine-tuning
according to these settings following their initial training.

4.1 EXPERIMENTS BASED ON DIFFERENT MODLES

Table 1 provides a detailed comparison between our proposed method and several widely recognized
models.

Experiments based on DETR: Experimental evaluations show that, using ResNet-50 and ResNet-
101 backbones, our proposed DAP-loss improves the Average Precision (AP) by 1.2% and 1.3%,
respectively, compared to the original method. The AP gains are notably higher at stricter Inter-
section over Union (IoU) thresholds, surpassing the baseline loss by 0.5% and 0.2% in AP50 with

7
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Table 1: Detection results on COCO validation set 2017. The term ’Raw Loss’ refers to the original
loss function used by the method, with all parameters remaining consistent. ’†’ denotes that IoU
reward-based query selection (Zhao et al., 2024) was not used.

Method Backbone DAP Loss Raw Loss AP AP50 AP75

DETR R50 ✓ 42.2 62.5 44.6
DETR R50 ✓ ✓ 42.7 63.0 45.1
DETR R50 ✓ 43.4(+1.2) 63.0 45.8
DETR R101 ✓ 43.6 64.1 46.1
DETR R101 ✓ 44.9(+1.3) 64.3 48.0

deformable DETR R50 ✓ 46.2 64.9 50.2
deformable DETR R50 ✓ 47.3(+1.1) 65.1 51.3

RT-DETR† R50 ✓ 52.2 71.1 56.8
RT-DETR† R50 ✓ 52.8(+0.6) 71.2 57.3
RT-DETR R50 ✓ 53.1 71.4 57.5
RT-DETR R50 ✓ ✓ 53.3(+0.2) 71.7 57.5

ResNet-50 and ResNet-101, respectively, and by 1.2% and 1.9% in AP75. When using DAP-loss in
conjunction with raw-loss in the DETR(Carion et al., 2020) framework with a ResNet-50 backbone,
we achieve an AP of 42.7%, representing a 0.5% increase over raw-loss alone and a 0.7% decrease
compared to DAP-loss used alone. This finding highlights the effective balance DAP-loss strikes
between classification and localization, resulting in improved overall performance.

Experiments based on deformable DETR: Table 1 presents the experimental outcomes for de-
formable DETR(Zhu et al., 2020) employing our proposed DAP-loss with a ResNet-50 backbone.
The results show that DAP-loss outperforms raw-loss by 1.1% in AP, 0.2% in AP50, and 1.1% in
AP75.

Experiments based on RT-DETR: In Table 1, entries marked with a superscript ’†’ denote the
absence of IoU-aware query selection techniques (Zhao et al., 2024). The experimental results
show that without query selection, DAP-loss achieves a 0.6% improvement in AP over the baseline,
demonstrating its efficacy. However, with query selection, DAP-loss provides only a slight advan-
tage, highlighting the effectiveness of the query selection. This design is tightly integrated with the
raw loss and cannot be separated. Consequently, we are unable to conduct experiments involving
query selection without raw loss.

4.2 ABLATION STUDY

22 23 24 25 26 27 28

Parameter G

30

32

34

36

38

40

42

44

AP

COCO AP with Varying Parameter G

(a)

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
42.9

43.0

43.1

43.2

43.3

43.4

AP

COCO AP with  Varying of 

(b)
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Figure 3: Ablation experiments. COCO validation 2017 results based on DETR.

In this subsection, we conduct a systematic analysis to assess the impact of different components and
experimental settings of our method. Unless otherwise specified, all experimental configurations in
this subsection adhere to those used in the DETR experiments described earlier, with the backbone
network fixed as ResNet-50.
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Ablations on parameter N : In Equations 1 and 4, the parameter N denotes the number of rect-
angles used to segment the area beneath the Precision-Recall (PR) curve. It is evident that as N
increases, the method proposed in this paper provides a closer approximation to AP.

Figure 3(a) illustrates how the COCO AP varies with N . The trend indicates a general increase in
AP as N rises, with stabilization occurring beyond a value of 32. This behavior aligns with our
earlier discussion, indicating that a higher Parameter N leads to a more accurate approximation of
the true AP for a set of images.

Ablations on standard deviation σ of N : We examined the standard deviation σ of N , the sole
hyperparameter in DAP-loss that requires fine-tuning. A very large σ can cause the function to
deviate from the properties of the step function H(·) in Equation 4, while a very small σ can result
in excessively small gradients, potentially hindering training. Figure 3(b) presents COCO AP results
for various σ values, indicating that the best performance is achieved at σ = 0.05, with satisfactory
results within the range of [0.01, 0.1]. The differences between function H(·) and function F (·)
under various values of σ can be found in Appendix A.1.

Ablations on batch size: As depicted in Figure 3(c), optimal performance generally increases with
batch size within the range of [1, 56]. Notably, at a batch size of 8, the performance is only 0.2% AP
lower than the best result. This trend is intuitive, as a very small batch size can lead to a significant
discrepancy between the AP of the batch and that of the entire dataset.

Table 2: Results of different matching func-
tions

Backcone Cost Function Mode AP
R50 raw 42.8
R50 momentum 43.4
R50 constant 43.4

R101 raw 44.6
R101 constant 44.9

Table 3: Results of training models from
scratch.

raw loss DAP-loss AP
✓ 39.5

✓ 29.4(-6.1)
✓ ✓ 35.8(- 3.7)

Ablations on the Hungarian Matcher cost function: In Subsection 3.3, we introduced two match-
ing cost functions designed for DAP-loss. Table 2 reports the results obtained with these different
matching functions. Both the Constant and Momentum modes show similar improvements and
outperform the Raw mode. Considering the greater complexity of the Momentum model, we rec-
ommend using the Constant mode.

Results of training models from scratch: As shown in Table 3, the proposed DAP-loss results in
a decrease in model performance, whether used alone or in combination with the original loss. We
propose two possible reasons for this decline: 1) DAP-loss is computed at the batch-level, which
may increase the likelihood of overfitting compared to the instance-level raw loss; and 2) when
prediction results are poor, the gradients of DAP are too small. Although DAP-loss has the potential
to enhance final performance, it is less effective for training from scratch.

5 CONCLUSION

In this paper, we decompose Average Precision (AP) into the product of a localization function and
a classification function, analyzing their non-differentiability and non-convexity. We then employ
interpolation and Gaussian-like smoothing techniques to develop a differentiable approximation of
AP, termed Differentiable Average Precision (DAP). Furthermore, we extend DAP-loss to the match-
ing cost of the Hungarian algorithm, making it suitable for end-to-end detection models. DAP-loss
optimizes both localization and classification tasks simultaneously, and effectively balancing these
two objectives without the need for hyperparameter tuning. We provide a solid theoretical analysis
of the proposed DAP-loss, and experimental results demonstrate that DAP-loss enhances the final
performance of trained models, although it is not suitable for training from scratch.
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A APPENDIX

A.1 VISUAL COMPARISON OF FUNCTION F AND H
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Figure 4: Under a prediction box score of 0.5, the probability of positive samples (y-axis) corre-
sponding to different score thresholds (x-axis). The dashed line represents the function H(·) from
Equation 4, while the solid line represents the function F (·) from Equation 10.

Figure 4 illustrates the characteristics of the function H(·) and the function F (·) under various sigma
values. As sigma decreases, F (·) becomes more similar to H(·), though this also exacerbates the
issue of gradient vanishing. Experiments indicate that sigma values in the range of [0.01, 0.1] yield
favorable results.

A.2 PARTIAL DERIVATIVE OF DAP WITH RESPECT TO CLASSIFICATION SCORES

We provide a proof for the proposition mentioned in Section 3.2.2 of this paper. It is important to
note that the DAP presented in this section is equivalent to the AP in Equations 6 and 7. Additionally,
the equations in this section consider only cases where tp > 0. As shown in Equation 7:

G× ∂AP

∂sn
=

∫ 1

0

−∂Pr(n,x)
∂sn

× tp(x)

(tp(x) + fp(x))2
×

∑
m∈tp

fm(x)dx (12)
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where, G is the number of gt labels. According to Condition 2, f(x) is greater than 0, and both
tp(x) and fp(x) are greater than or equal to 0. According to Condition 3, ∂Pr(n,x)

∂sn
> 0. Hence,

∂AP

∂sn
< 0 (13)

As shown in Equation 6:

G× ∂AP

∂st
=

∫ 1

0

∂f t(x)

∂st
× P (x) +

∂Pr(t,x)
∂st

× fp(x)

(tp(x) + fp(x))2
×

∑
m∈tp

fm(x)dx (14)

According to Condition 2 and Condition 3 in Section 3.2.2, fm(x) > 0, so
∂Pr(t,x)

∂st
×fp(x)

(tp(x)+fp(x))2 ×∑
m∈tp f

m(x) > 0. Therefore,

G× ∂AP

∂st
>

∫ 1

0

∂f t(x)

∂st
× P (x)dx (15)

applying integration by parts to the above equation yields:

G× ∂AP

∂st
>(P (x)×

∫ x

0

∂f t(y)

∂st
dy)]10 −

∫ 1

0

∂P (x)

∂x

∫ x

0

∂f t(y)

∂st
dydx (16)

=−
∫ 1

0

∂P (x)

∂x

∫ x

0

∂f t(y)

∂st
dydx (17)

=−
∫ 1

0

∂P (x)

∂x

∫ x

0
f t(y)dy

∂st
dx (18)

since we use Interpolated AP, we have ∂P (x)
∂x ≥ 0. According to Condition 3 in Section 3.2.2, we

obtain
∫ x
0

ft(y)dy

∂st
< 0. In summary, we have proved that:

∂AP

∂st
>0 (19)

Based on Equations 13 and 19, it is evident that our proposed DAP is feasible for optimizing classi-
fication tasks.

A.3 PARTIAL DERIVATIVE OF AP

To analyze the properties of AP, we compute the partial derivatives of AP with respect to the clas-
sification scores. Here, st represents the score of a positive sample and sn represents the score of
a negative sample. Based on Equation 1, we compute the gradient of the AP with respect to the
classification scores.

∂AP

∂st
=

∫ 1

0
P (x)∂R(x)

∂x dx

∂st
(20)

=

∫ 1

0
P (x)×

∑
m∈tp f

m(x)dx

G× ∂st
(21)

=
1

G
×
∫ 1

0

∂P (x)

∂st
×

∑
m∈tp

fm(x) + P (x)
∂f t(x)

∂st
dx (22)

=
1

G

∫ 1

0

∂f t(x)

∂st
P (x) +

∂Pr(t,x)
∂st

× fp(x)

(tp(x) + fp(x))2
×

∑
m∈tp

fm(x)dx (23)

(24)
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∂AP

∂sn
=

∫ 1

0
P (x)∂R(x)

∂x dx

∂sn
(25)

=

∫ 1

0
P (x)×

∑
m∈tp f

m(x)dx

G× ∂sn
(26)

=
1

G
×
∫ 1

0

∂P (x)

∂sn
×

∑
m∈tp

fm(x) + P (x)
∂f t(x)

∂sn
dx (27)

=
1

G

∫ 1

0

−∂Pr(n,x)
∂sn

× tp(x)

(tp(x) + fp(x))2
×

∑
m∈tp

fm(x)dx (28)

where Pr(t, x) =
∫ 1

x
f t(y)dy represents the probability that the predicted bounding box t is a

positive sample given a score threshold x.
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