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ABSTRACT

The calibration of model predictions has recently gained increasing attention in
the domain of graph neural networks (GNNs), with a particular emphasis on the
underconfidence exhibited by these networks. Among the critical factors identified
to be associated with GNN calibration, the concept of neighborhood prediction
similarity has been recognized as a pivotal component. Building upon this in-
sight, modern GNN calibration techniques adapt node-wise temperature scaling
by smoothing the confidence of individual nodes with those of adjacent nodes.
However, these approaches often engage in superficial learning across varying
affinity levels, thereby failing to effectively accommodate diverse local topologies.
Through an in-depth analysis, we unveil that calibrated logits from preceding
research significantly contradict their foundational assumption of nearby affinity,
necessitating a re-evaluation of the existing GNN-founded calibration strategies.
To address this, we introduce SIMI-MAILBOX, which categorizes nodes based on
both neighborhood representational similarity and their own confidence, irrespec-
tive of proximity or connectivity. Our method effectively mitigates miscalibration
for nodes exhibiting analogous similarity levels by adjusting their predictions
with group-specific temperatures. This encourages a more sophisticated calibra-
tion, where each group-wise temperature is tailored to address affiliated nodes
with similar topology. Extensive experiments demonstrate the effectiveness of
SIMI-MAILBOX across diverse datasets on different GNN architectures.

1 INTRODUCTION

Graph-structured data have been extensively employed to represent various types of data, includ-
ing molecular arrangements (Gilmer et al., 2017), social networks (Hamilton et al., 2017), and
e-commerce transaction histories (Wu et al., 2019). Emerging as a powerful tool in this arena, Graph
Neural Networks (GNNs) have achieved impressive performance on modeling graph data and ad-
dressing diverse graph-based tasks, such as node classification (Kipf & Welling, 2016; Hamilton et al.,
2017; Xu et al., 2018; Wang et al., 2020; Park et al., 2021), link prediction (Zhang & Chen, 2018; Li
et al., 2018; Yun et al., 2021; Ahn & Kim, 2021; Zhu et al., 2021), and graph classification (Hamilton
et al., 2017; Xu et al., 2018; Lee et al., 2018; Sui et al., 2022; Hou et al., 2022).

Beyond achieving correct prediction, the precise quantification of prediction uncertainty is nontrivial
for the reliable utilization of neural networks in downstream decision-making process. Acknowledg-
ing the importance of reliable prediction, numerous calibration studies have been actively proposed on
image and language domains (Guo et al., 2017; Mukhoti et al., 2020; Zhang et al., 2020; Xing et al.,
2019; Jiang et al., 2021; Minderer et al., 2021; Gruber & Buettner, 2022). Recently, network calibra-
tion has also drawn attention in the field of GNNs (Wang et al., 2021b; Hsu et al., 2022b;a; Shi et al.,
2022; Wang et al., 2022; Liu et al., 2022), revealing a tendency of GNNs to exhibit underconfident
predictions. Building upon this insight, contemporary studies in GNN calibration, CaGCN (Wang
et al., 2021b) and GATS (Hsu et al., 2022b), have devised node-wise temperature scaling techniques
to encourage confidence adjustment between adjacent nodes. Among the crucial factors identified to
be associated with miscalibration in GNNs, the concept of neighborhood prediction similarity has
emerged as a fundamental component in these studies. Specifically, CaGCN asserts that nodes with
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disparate neighbors should ideally possess lower confidence levels compared to the opposite case,
owing to the difficulties inherent in accurately classifying such instances within the local message
propagation in GNNs. Moreover, GATS elucidates the correlation between neighborhood prediction
similarity and calibration errors, indicating the highest errors for nodes with disagreeing neighbors.

However, in our comprehensive analysis, we identify a notable inconsistency between their founda-
tional assumptions of neighborhood affinity and empirical calibration results across diverse benchmark
datasets. Our investigation reveals that both methods often fail to comprehensively refine predic-
tions across varying levels of neighborhood similarity, inducing a superficial learning. For instance,
CaGCN fails to refine the confidence of nodes with low similarity, from which they should elevate to
reach the desired accuracy, breaking down their ground principles. Furthermore, GATS demonstrates
sub-optimal calibration in regions comprising nodes with low similarity, where they have revealed
that large miscalibration occurs. This invokes a re-evaluation of the adequacy of existing GNN-based
calibration strategies in reflecting local similarity characteristics.

To address these inconsistencies, we introduce a novel calibration method specifically devised to
rectify the identified limitations in a post-hoc fashion. Named as SIMI-MAILBOX, our method
categorizes nodes based on neighborhood representational similarity and confidence, irrespective of
proximity or connectivity. This process is rooted in our empirical validation that nodes displaying
analogous neighborhood affinity and confidence levels exhibit a similar degree of miscalibration.
Following this, our SIMI-MAILBOX allocates group-specific temperatures to adjust predictions of
analogous nodes within each group. Through this confidence refinement with per-group specialized
temperatures, our method effectively mitigates miscalibration across varying local topologies.

Our contributions are summarized in three-fold:

• We elucidate the limitations inherent in current calibration methods, especially concerning
neighborhood prediction affinity - a recognized key component for GNN calibration.

• Given the limitations observed in preceding research, we introduce SIMI-MAILBOX, which
classifies nodes according to similar local topology and confidence, rectifying the miscali-
bration via per-group specific temperatures.

• We validate the proposed method through comprehensive experiments, incorporating both
quantitative and qualitative evaluations of calibration performance.

Overall, our contributions provide valuable insights into the calibration of GNNs and propose an
effective calibration method, capable of enhancing the reliability of GNN predictions.

2 RELATED WORKS

Post-hoc Calibration Methods. Network calibration has been a popular research topic in image and
language domains, with various methods aiming at enhancing the calibration of neural networks (Guo
et al., 2017; Kull et al., 2017; 2019; Wang et al., 2021a; Mukhoti et al., 2020; Rahimi et al., 2020;
Han et al., 2021; Kumar et al., 2018; Gupta et al., 2020; Xing et al., 2019; Jiang et al., 2021; Yu et al.,
2022; Widmann et al., 2019; Wald et al., 2021). Among these diverse approaches, post-hoc calibration
methods have found widespread adoption, owing to their straightforward application and strong
performance. Considerable techniques have focused on capturing data-specific characteristics through
adjustable parameters, such as Platt scaling (Platt et al., 1999), Temperature scaling (TS) (Guo et al.,
2017), and Ensemble temperature scaling (ETS) (Zhang et al., 2020). Above all, TS has emerged as a
prevalent choice due to its simplicity, by offering an extension of Platt scaling to facilitate multi-class
calibration. This method aligns model predictions with accuracy by leveraging a single temperature
parameter that modulates the uncalibrated logits. Apart from standard Expected Calibration Error
(ECE) metric (Naeini et al., 2015), some commonly used metrics for evaluating the calibration
performance of neural networks are class-wise ECE (Kull et al., 2019; Nixon et al., 2019) Brier
score (Brier et al., 1950), negative log-likelihood, and Kernel Density Estimation-based ECE (KDE-
ECE) (Zhang et al., 2020).

Grouping-based Calibration Works. Addressing miscalibrations in a group-wise manner has
been studied in (Hébert-Johnson et al., 2018; Yang et al., 2023; Perez-Lebel et al., 2022). Hébert-
Johnson et al. (2018) introduced multicalibration strategy, aiming to achieve calibration within diverse,
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overlapping subgroups to enhance both fairness and accuracy in machine learning models. Yang et al.
(2023) proposed a new semantic partitioning approach for neural network calibration and utilized
learnable grouping function to refine calibration beyond traditional methods. Meanwhile, Perez-Lebel
et al. (2022) presented the concept of ’grouping loss’ as a novel metric to assess the variance in
true probabilities sharing the same confidence score, challenging traditional calibration approaches.
Nevertheless, our approach exhibits a clear fundamental difference from these works, which will be
discussed in Appendix B.

Calibration methods for Graph Neural Networks. Recent literature has highlighted an increased
focus on the calibration of Graph Neural Networks (GNNs) with post-processing calibration strate-
gies (Wang et al., 2021b; Hsu et al., 2022b;a; Wang et al., 2022; Shi et al., 2022; Liu et al., 2022).
A pioneering study, Wang et al. (2021b) discovered that GNNs exhibit an underconfident behavior,
which contradicts the prevailing notion that Deep Neural Networks (DNNs) possess overconfidence.
They proposed CaGCN that leverages GCN as a calibration function to produce unique temperature
values for each node based on the predictions of its adjacent nodes. (Hsu et al., 2022b) extended the
knowledge of GNN calibration dynamics by identifying several factors that foster GNN calibration
errors. Based on these factors, they designed a Graph Attention Network (GAT)-based calibration
function, GATS, that generates distinct temperature values for individual nodes considering these
factors. In (Hsu et al., 2022a), they also proposed an edge-wise expected calibration error metric that
accounts for the non-iid nature of graph structures, which is overlooked in traditional node-wise ECE.
Furthermore, they subdivided the metric into homophilous and heterophilous cases, respectively re-
ferred to as agree-ECE and disagree-ECE. Diverging from these approaches, GCL (Wang et al., 2022)
addressed the underconfidence observed in GNNs through the incorporation of a minimal-entropy
regularization component into the cross-entropy loss function, promoting an up-weighting of the loss
attributed to nodes exhibiting high confidence levels.

3 PRELIMINARIES

Problem Setup. We focus on calibrating GNNs for semi-supervised node classification in a post-hoc
context. Let an undirected graph be denoted as G(V, E), where V and E indicate the sets of vertices and
edges respectively. The vertex set V is represented by a feature matrix X = [xT

1 , ...,x
T
|V|] ∈ R|V|×D

and the edge set E is denoted by an adjacency matrix A ∈ R|V|×|V|. Given the node-wise predictions
ŷ = [ŷ1, ..., ŷ|V|]

T and output confidence p̂ = [p̂1, ..., p̂|V|]
T ∈ R|V| from a trained GNN, the GNN fθ

is well-calibrated if p̂i for each node i accurately serves the ground-truth probability ptrue, formulated
as below:

P(ŷi = yi|p̂i = ptrue) = ptrue, ∀ptrue ∈ [0, 1]. (1)
The expected calibration error (ECE) (Naeini et al., 2015) has been recognized as the de facto metric
to evaluate the calibration quality of network predictions. ECE groups nodes according to their
confidences into M equally partitioned confidence intervals {B1, ..., BM} and assesses the expected
discrepancy between accuracy and average confidence within individual bins:

ECE =

M∑
m=1

|Bm|
|V|

∣∣∣acc(Bm)− conf(Bm)
∣∣∣, (2)

where |Bm| refers to the number of nodes within the m-th interval. Here, per-bin accuracy and average
confidence for the m-th bin are defined as acc(Bm) = 1

|Bm|
∑

i∈Bm
1[yi = ŷi] and conf(Bm) =

1
|Bm|

∑
i∈Bm

p̂i, respectively.

Exploration of Neighborhood Similarity in Prior Studies. The concept of neighborhood similar-
ity has been recognized as a primary element in the field of GNN calibration (Wang et al., 2021b;
Hsu et al., 2022b;a; Liu et al., 2022). Among them, CaGCN (Wang et al., 2021b) advocates that
given the challenges GNNs encounter in accurately classifying nodes with conflicting neighbors, the
confidence levels in such cases should ideally remain still or decrease. Conversely, confidence for
nodes linked to agreeing nodes should elevate, addressing the prevalent underconfidence in GNNs.
Stemmed from this insight, they employ GCN (Kipf & Welling, 2016) as a calibration function to
propagate the predictions to neighboring counterparts, assuming that confidence of adjacent nodes
given by well-calibrated models should be analogous to each other.
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Figure 1: Investigation results of calibrated logits via CaGCN and GATS. Orange line represents per-
confidence bin accuracy, while yellow and blue bars denote the average confidence of uncalibrated
and calibrated logits in each neighborhood similarity sub-interval, respectively. Note that the gray
area indicates the intersection between two bars. As illustrated, the confidence of sub-intervals with
low similarity where CaGCN have advocated to remain still or decrease, should increase to meet the
desired accuracy. On the other hand, GATS exhibits sub-optimal calibration on these sub-intervals,
from which they discovered to reveal the highest calibration error.

In parallel, GATS (Hsu et al., 2022b) underscores the correlation between neighborhood prediction
similarity and calibration error, demonstrating an increment in error with a decrement in similarity.
This intimate relationship is incorporated into the normalized attention coefficients within their
GAT (Veličković et al., 2017)-founded temperature function.

Denoting the calibrated confidence from the original logit zi and softmax operation as p̃i and σsm,
their node-wise temperature scaling procedure is formulated as follows:

p̃i = max
k

σsm

(
zi
Ti

)
k

. (3)

4 IN-DEPTH ANALYSIS: SURFACE LEARNING ON DISTINCT SIMILARITY
LEVELS

In this section, we provide a thorough investigation of calibrated predictions from earlier research
across various neighborhood similarity levels. Leveraging GCN as a backbone architecture, we
initially conduct equal-width binning on the confidence of all uncalibrated predictions for CoraFull
dataset. Within each confidence interval, nodes are categorized based on the neighborhood prediction
similarity, s(i), which is defined as the portion of neighbors assigned to the same predicted labels:

s(i) =

∑
j∈Ni

1[ŷi = ŷj ]

|Ni|
, (4)

where Ni serves as a set of neighbors associated with node i. Subsequently, we draw the actual
accuracy for each confidence bin (represented as orange horizontal lines) and the average of both the
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Table 1: Variance of calibration errors (×100) involving neighborhood similarity sub-intervals (Neig.
Sim.), confidence intervals (Conf), and total nodes (Node-wise).

GNNs Cora Citeseer Pubmed Computers Photo CS Physics CoraFull

GCN
Node-wise 6.139 1.957 1.370 40.370 7.200 31.470 3.312 34.560

Conf. 0.065 0.060 0.068 0.060 0.052 0.058 0.041 0.064
Neig. Sim. 0.057 0.046 0.061 0.062 0.047 0.052 0.040 0.057

GAT
Node-wise 8.656 2.570 1.614 44.980 14.550 42.660 3.346 58.67

Conf. 0.068 0.062 0.068 0.048 0.053 0.050 0.035 0.062
Neig. Sim. 0.056 0.044 0.055 0.045 0.047 0.044 0.035 0.055

nodes’ original confidence (shown as yellow bars) and their calibrated confidence (shown as blue bars)
within each neighborhood affinity sub-interval, as depicted in Figure 1. The gray region represents
the intersection between the average confidence of calibrated and uncalibrated bars. Ideally, the
confidence for each neighborhood affinity subgroup should perfectly align with the actual accuracy,
touching the orange horizontal line.

Notably, our findings illustrate that both CaGCN and GATS exhibit significantly different behaviors
from their motivations. To be specific, CaGCN fails to adjust the confidence of sub-intervals with
low similarity, where their confidence in fact should elevate to achieve the desired accuracy. This
is especially observed in the p̂i ∈ (0.9, 1.0] confidence interval, where the maximum discrepancy
between accuracy and calibrated confidence in s(i) ∈ (0.1, 0.2] reveals approximately 16.34%.
This highlights a counter-intuitive divergence from their foundational assumption that confidence
surrounded by disagreeing counterparts should either maintain or decrease. Moreover, GATS demon-
strates sub-optimal calibration in areas of low prediction similarity, from which they have contended
the emergence of high calibration errors. Such a pattern is prevalent across all confidence intervals,
particularly pronounced in the p̂i ∈ (0.2, 0.4] and p̂i ∈ (0.6, 0.8] ranges, where the average discrep-
ancies are 7.45% and 7.17% in s(i) ∈ (0, 0.4], respectively. Hence, our observations raise a concern
that existing calibration strategies are potentially inadequate in reflecting neighborhood topological
similarity, a central element for calibrating GNNs. Similar investigation results on other benchmark
datasets with GCN and GAT are provided in Appendix C.

5 PROPOSED METHOD

Given the limitation of earlier studies in Section 4, we introduce SIMI-MAILBOX, a novel post-hoc
calibration technique designed to refine miscalibration in GNNs across varying levels of neighborhood
similarity. Leveraging our novel observation on the importance of analogous topology categorization,
SIMI-MAILBOX classifies nodes based on neighborhood representational similarity and their own
confidence. Following this, our method scales the predictions of nodes within the same group via
group-specific temperatures, encouraging a more sophisticated rectification.

5.1 INTUITION: TOPOLOGY GROUPING MATTERS

We present a novel observation accentuating that nodes with analogous neighborhood affinity and
confidence exhibit similar calibration errors. For a thorough comparison, we evaluate the variance
of calibration errors under three distinct circumstances: (1) Node-wise variance involving all nodes
(specified as Node-wise), (2) variance within each confidence interval (specified as Conf.), and
(3) variance within each neighborhood similarity sub-bin located within each confidence interval
(specified as Neig. Sim.).

To examine the third scenario, we assess the variability in calibration error across neighborhood
similarity sub-intervals , Bsim, within each distinct confidence interval, Bconf. Initially, the variance
of calibration error in each Bsim, denoted as V (Bsim), is calculated as follows:

V (Bsim) =
1

|Bsim| − 1

∑
i∈Bsim

(Di − D̄sim)2,

Di = |Acc(Bconf)− p̂i|, i ∈ Bconf.

(5)
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✉

✉

Figure 2: Overall framework of our SIMI-MAILBOX. Motivated by our novel discovery discussed in
Section 5.1, we classify nodes based on analogous neighborhood prediction similarity and their own
confidence, which is achieved via KMeans clustering. Subsequently, analogous nodes within each
cluster is rectified via group-specific temperatures, leading to sophisticated refinement.

Here, Di is the absolute discrepancy between the accuracy associated with Bconf and confidence of
individual nodes i in Bconf. Meanwhile, D̄sim indicates the mean discrepancy over nodes in Bsim.
Following this, we average the whole calculated variances over the collection S, which incorporates
all Bsim spanning the entire Bconf:

V̄ sim =
1

|S|
∑

Bsim∈S

V (Bsim). (6)

Correspondingly, we compute the variability in calibration error related to the confidence interval (the
second scenario) as the average variance across all Bconf, considering individual variance V (Bconf):

V (Bconf) =
1

|Bconf| − 1

∑
i∈Bconf

(Di − D̄conf)2, (7)

where D̄conf refers to the average discrepance over nodes in Bconf. Following the approach of GATS,
node-wise calibration error is conceptualized as the calibration error of the confidence interval that
each node is associated with. Consequently, the variance in calibration error related to individual
nodes (the first scenario) is defined as the variance of all node-wise calibration errors.

As outlined in Table 1, the variance of nodes within neighborhood similarity sub-intervals (Neig.
Sim.) reveals the lowest variance, particularly when compared against the variance involving all
nodes (Node-wise). This substantiates the notion that nodes exhibiting similar neighborhood topology
and confidence levels incur analogous miscalibrations.

5.2 SIMI-MAILBOX: A TOPOLOGY-GROUPING STRATEGY FOR REFINING GNNS

Building on the observation discussed in Section 5.1, our SIMI-MAILBOX categorizes nodes by
considering both neighborhood representational similarity and confidence levels. Our method begins
by computing the neighborhood affinity, termed as MAILBOX Msimi(i), for each node i through
averaging representational similarity with its neighboring counterparts, defined as:

Msimi(i) =
1

|Ni|
∑
j∈Ni

σ(zTi zj), (8)

where zi corresponds to the output logits for node i from the trained GNN, and σ indicates a
sigmoid function. Subsequently, nodes exhibiting analogous MAILBOX values and confidence levels
are classified into N distinct groups. More precisely, SIMI-MAILBOX constructs a feature vector
F simi
i = [p̂i, M̄simi(i)]T for each node i, with the first dimension representing confidence p̂i and the

second dimension representing a normalized MAILBOX values via min-max scaling. Following this,
KMeans clustering is applied on F simi to construct N similarity-based clusters C = {C1, ..., CN},
ensuring the categorization adheres to both the neighborhood similarity and confidence conditions.

Once the categorization is completed, the original predictions for nodes within each designated group
Cn are scaled by a group-specific temperature Tn, tailored to address nearby affinity status of the

6



Under review as a conference paper at ICLR 2024

Table 2: ECE results (reported in percentage) for our proposed calibration method and baselines.
A lower ECE indicates better calibration performance. The best and second best performances are
represented by bold and underline texts, respectively.

Methods UnCal. TS VS ETS CaGCN GATS Ours

Cora
GCN 12.43 ± 4.24 3.87 ± 1.22 4.30 ± 1.28 3.78 ± 1.25 5.22 ± 1.45 3.55 ± 1.28 1.97 ± 0.44

GAT 14.88 ± 4.30 3.42 ± 1.00 3.45 ± 1.13 3.32 ± 0.92 3.81 ± 1.00 3.05 ± 0.78 2.08 ± 0.45

Citeseer
GCN 12.54 ± 8.58 5.27 ± 1.70 5.15 ± 1.46 5.10 ± 1.76 6.60 ± 1.76 4.49 ± 1.53 2.66 ± 0.53

GAT 16.65 ± 7.98 5.08 ± 1.48 4.62 ± 1.58 5.01 ± 1.46 4.86 ± 1.68 4.01 ± 1.42 2.86 ± 0.56

Pubmed
GCN 7.30 ± 1.56 1.27 ± 0.30 1.46 ± 0.29 1.26 ± 0.31 1.05 ± 0.33 0.95 ± 0.32 0.75 ± 0.15

GAT 10.38 ± 1.89 1.15 ± 0.46 1.05 ± 0.36 1.13 ± 0.47 0.99 ± 0.34 0.98 ± 0.36 0.69 ± 0.16

Computers
GCN 2.96 ± 0.76 2.62 ± 0.55 2.70 ± 0.61 2.59 ± 0.72 1.70 ± 0.53 2.15 ± 0.52 1.02 ± 0.26

GAT 1.58 ± 0.56 1.44 ± 0.35 1.44 ± 0.40 1.42 ± 0.43 1.82 ± 0.63 1.36 ± 0.34 0.95 ± 0.37

Photo
GCN 2.11 ± 0.97 1.68 ± 0.68 1.75 ± 0.67 1.63 ± 0.84 1.98 ± 0.53 1.46 ± 0.51 1.01 ± 0.36

GAT 2.18 ± 1.54 1.56 ± 0.63 1.65 ± 0.70 1.57 ± 0.78 2.04 ± 0.74 1.49 ± 0.65 0.97 ± 0.53

CS
GCN 1.72 ± 1.28 1.01 ± 0.24 0.94 ± 0.28 0.97 ± 0.22 2.32 ± 1.12 0.90 ± 0.29 0.58 ± 0.19

GAT 1.48 ± 0.79 1.07 ± 0.34 1.01 ± 0.40 1.03 ± 0.31 2.27 ± 1.13 0.85 ± 0.23 0.72 ± 0.43

Physics
GCN 0.56 ± 0.33 0.51 ± 0.19 0.46 ± 0.15 0.51 ± 0.19 0.88 ± 0.47 0.45 ± 0.15 0.28 ± 0.11

GAT 0.55 ± 0.24 0.56 ± 0.20 0.56 ± 0.21 0.55 ± 0.20 1.06 ± 0.40 0.43 ± 0.16 0.48 ± 0.22

CoraFull
GCN 6.49 ± 1.28 5.55 ± 0.45 5.79 ± 0.43 5.49 ± 0.46 5.92 ± 2.84 3.74 ± 0.63 3.46 ± 1.31

GAT 5.25 ± 1.32 4.41 ± 0.50 4.42 ± 0.49 4.36 ± 0.50 6.80 ± 3.81 3.46 ± 0.46 2.64 ± 1.02

Table 3: ECE results (in percentage) for our
method and baselines on large-scale datasets,
with lower ECE indicates better performance.

Methods UnCal. CaGCN GATS Ours

Arxiv
GCN 4.92 ± 0.36 1.97 ± 0.16 0.75 ± 0.06 0.71 ± 0.13

SAGE 3.00 ± 0.89 1.84 ± 0.19 2.05 ± 0.28 0.98 ± 0.23

Reddit
GCN 8.55 ± 1.28 1.86 ± 0.19 2.56 ± 0.59 0.35 ± 0.05

SAGE 11.30 ± 1.99 2.14 ± 0.35 4.66 ± 0.57 0.73 ± 0.15

Table 4: Calibration duration (in seconds) for our
method and baselines on large-scale datasets, with
lower values denoting improved efficiency.

Methods CaGCN GATS Ours

Arxiv
GCN 20.84 ± 2.69 48.89 ± 11.39 7.10 ± 0.94 (-41.79 sec)
SAGE 23.02 ± 4.44 61.67 ± 16.89 4.85 ± 0.65 (-56.82 sec)

Reddit
GCN 55.98 ± 13.76 72.90 ± 19.98 11.04 ± 0.30 (-61.86 sec)
SAGE 78.13 ± 27.35 192.01 ± 177.57 9.91 ± 0.95 (-182.1 sec)

n-th cluster:

p̃i = max
k

σsm

(
zi
Tn

)
k

∈ R, i ∈ Cn. (9)

The array of group-wise temperatures T ∈ RN is then optimized through the standard cross-entropy
loss LCE and an auxiliary regularization loss Lsimi. Given the availability of a validation set during
the post-hoc calibration phase, Lsimi is integrated to minimize the discrepancy between the average
scaled confidence p̃i for all nodes and the accuracy of validation nodes, represented as a(m)

val , within
distinct groups:

L = LCE + λLsimi,

Lsimi =

N∑
n=1

||a(n)val −
1

|Cn|
∑
i∈Cn

p̃i||2,
(10)

where λ serves as a scaling factor for Lsimi. Throughout this procedure, our method effectively
rectifies miscalibrations across varying neighborhood topologies by organizing nodes with analogous
local similarity levels and applying per-cluster temperatures, specialized to refine the miscalibration
within each designated group. The overall pipeline of SIMI-MAILBOX is illustrated in Figure 2.

6 EXPERIMENTS

In our studies, we validate the efficacy of the proposed method under extensive experiments, lever-
aging two representative GNN architectures: GCN and GAT. We evaluate the performance of our
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Figure 3: Qualitative analysis of our calibration results on CoraFull dataset, compared with CaGCN
and GATS. The accuracy in per-confidence interval is represented as black horizontal lines. The blue,
yellow and pink bars illustrate the discrepancy between per-bin accuracy and average confidence of
nodes within each affinity sub-interval, calibrated through our SIMI-MAILBOX, CaGCN, and GATS,
respectively. Throughout the confidence intervals, our method facilitates a better reduction in the gap
between accuracy and confidence across diverse affinity levels, compared to baseline methods.

SIMI-MAILBOX across eight benchmark datasets including citation datasets: Cora (Sen et al., 2008),
Citeseer (Sen et al., 2008), Pubmed (Sen et al., 2008), CoraFull (Bojchevski & Günnemann, 2017),
Coauthor CS (Shchur et al., 2018), and Coauthor Physics (Shchur et al., 2018), alongside Amazon
co-purchase datasets: Computers (Shchur et al., 2018) and Photo (Shchur et al., 2018). To further
demonstrate the versatility, we extended our validation to large-scale datasets, Arxiv (Hu et al., 2020)
and Reddit (Zeng et al., 2019). Detailed dataset statistics can be found in Appendix A.

6.1 PERFORMANCE EVALUATION

Experimental Setup. We undertake our experiments following the experimental protocols of
GATS (Hsu et al., 2022b) in the scope of semi-supervised node classification. Comprehensive details
of the experiment configurations are provided in Appendix A. In the post-hoc calibration phase,
the validation set is employed to train calibration models. Thus, the optimal calibration models are
selected based on the lowest validation ECE on the training set. To assess the calibration performance,
we use ECE as a metric (Naeini et al., 2015), following the common practice (Wang et al., 2021b;
Hsu et al., 2022b). Additional calibration metrics, including class-wise ECE (Kull et al., 2019;
Nixon et al., 2019), Kernel Density Estimation-based ECE (KDE-ECE) (Zhang et al., 2020), Brier
Score (Brier et al., 1950), and Negative Log-likelihood (NLL), are provided in Appendix B.

Baselines. In alignment with precedent studies, we compare our method against classical calibration
methods: Temperature scaling (TS) (Guo et al., 2017), Vector scaling (VS) (Guo et al., 2017), and
Ensemble temperature sclaing (ETS) (Zhang et al., 2020) and GNN-specialized calibration baselines:
GCN as a calibration function (CaGCN) (Wang et al., 2021b) and Graph attention temperature scaling
(GATS) (Hsu et al., 2022b).
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Results. Table 2 presents the calibration results of our SIMI-MAILBOX in contrast with baseline
methods measured using the ECE metric. Overall, our method achieves state-of-the-art performance
across 15 out of 16 scenarios, displaying a substantial performance divergence compared to the
baselines. More precisely, our method pioneers in achieving an error rate below 3% on Cora and
Citeseer datasets, demonstrating marked predominance on Cora with GCN by first breaking into
the 1% error range. This superiority is also witnessed in both Pubmed and CS, decreasing ECE
within the [0.5, 0.8] range for the first time. Moreover, SIMI-MAILBOX surpasses existing methods
on Amazon datasets (Computers and Photo), reducing calibration errors to below 1% with GAT.
Significant performance advancements are evident in Physics and CoraFull as well, first achieving
error rates in the 0.2% and 2.64% range, respectively. This demonstrates the effectiveness of our
method in rectifying the miscalibration of conventional GNNs across diverse benchmark datasets and
architectures.

6.2 SIMI-MAILBOX ON LARGE-SCALE GRAPHS

Beyond the assessment in regular-scale datasets, we extend our experiments to large-scale graphs
to emphasize the versatility of our method in handling graphs of varying sizes. In this experiment,
we adopt GCN and GraphSAGE (SAGE) (Hamilton et al., 2017), since they are representative
architectures for our large-scale benchmark datasets. We adhere to the same evaluation protocol in
Hu et al. (2020) to compare the performance of SIMI-MAILBOX with other GNN-based calibration
methods, CaGCN and GATS. As evident in Table 3, SIMI-MAILBOX outperforms all baselines
to a considerable extent, accomplishing an error rate below 1% in all examined settings. This
superiority is particularly observed in Reddit with SAGE, where our method refines miscalibration by
10.57 compared to the uncalibrated outcome. Besides evaluating calibration performance, we also
quantified the total execution duration in seconds for each run, presented in Table 4. According to the
table, our method significantly enhances time efficiency across all experiments, with a substantial
reduction observed in the Reddit dataset, decreasing by 61.86 and 182.10 seconds for GCN and
SAGE, correspondingly.

6.3 EFFECTIVENESS ON DIVERSE NEIGHBORHOOD TOPOLOGY

To further substantiate the effectiveness of our SIMI-MAILBOX on refining miscalibrations across
diverse neighborhood similarity levels, we provide a qualitative comparison in Figure 3, utilizing a
consistent dataset (CoraFull) and GNN architecture (GCN) in Section 4. Analogous to the previous
section, we represent per-confidence bin accuracy as black horizontal lines in each figure. In this
analysis, the blue bars illustrate the difference between the accuracy and average confidence of
calibrated nodes within each neighborhood affinity sub-interval, refined by our method. Conversely,
the deviations concerning CaGCN and GATS are represented by yellow and pink bars, respectively.
As illustrated, our method facilitates a more pronounced reduction in the gap between accuracy
and average confidence across varying affinity, compared to baseline methods. This superiority
is clearly pronounced for patterns mentioned in Section 4, mitigating a significant discrepancy
in s(i) ∈ (0.1, 0.2] within p̂i ∈ (0.9, 1.0] interval on CaGCN and a prevailing underconfidence
concerning s(i) ∈ (0., 0.4] in the p̂i ∈ (0.2, 0.4] and p̂i ∈ (0.6, 0.8] confidence areas.

7 CONCLUSION

In this study, we unveiled a novel analysis highlighting the inconsistency between neighborhood
affinity and foundational design philosophies of existing calibration research. In response to the
identified limitations, we proposed SIMI-MAILBOX, a novel calibration method that categorizes and
group-speficically refines nodes, considering both neighborhood similarity and inherent confidence,
leveraging our crucial insight that nodes with analogous local topology and confidence share similar
calibration errors. While extensive validations have substantiated SIMI-MAILBOX’s efficacy, the
scope of our approach primarily concentrates on homophilous graphs. As a direction for future work,
it would be desirable to explore the calibration status of GNNs specialized in heterophilous graphs.
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SUPPLEMENTARY MATERIALS

A DETAILED EXPERIMENTAL SETUP

A.1 DATASET STATISTICS

Table 5 provides comprehensive statistics of the datasets used in our experiments, including the
number of nodes, edges, classes, and features.

Table 5: Statistics of benchmark datasets.

Dataset #Nodes #Edges #Classes #Features
Cora 2,708 10,556 7 1,433
Citeseer 3,327 9,104 6 3,703
Pubmed 19,717 88,648 3 500
CoraFull 19,793 126,842 70 8,710
Computers 13,752 491,722 10 767
Photo 7,650 238,162 8 745
CS 18,333 163,788 15 6,805
Physics 34,493 495,924 5 8,415
Arxiv 169,343 1,166,243 40 128
Reddit 232,965 23,213,838 41 602

A.2 IMPLEMENTATION DETAILS

We implement GNN models and the proposed method using PyTorch (Paszke et al., 2019) and
PyTorch Geometric (Fey & Lenssen, 2019). The experiments are conducted on RTX 2080ti (11GB)
and RTX 3090ti GPU (24G). The experimental settings and evaluation protocols are largely consistent
with those used in the GATS framework (Hsu et al., 2022b). We split the labeled and unlabeled data by
15% and 85%, respectively, and perform three-fold cross-validation on the former, 10% for training
and the remaining 5% for validation. We conduct 75 runs in total for each experiment, considering 5
random splits, 5 random initializations, and three-fold cross-validation. For optimization, we select
the Adam optimizer with an initial learning rate of 0.01. The weight decay values are set to 5e-4 for
Cora, Citeseeer, and Pubmed and 0 for the remaining datasets. The GNN architectures are configured
as follows: for GCN (Kipf & Welling, 2016), we employ two GNN layers with 64 hidden units; for
GAT (Veličković et al., 2017), the number of attention heads is set to 8, with 8 hidden units per head.
We train GNNs in a maximum of 2000 epochs with early stopping based on a patience of 100 epochs.
A dropout rate of 0.5 is applied uniformly across all backbones. To ensure fair comparisons, we refer
to the implementation and setup details provided in the released code of GATS (Hsu et al., 2022b)
for the baseline methods. For experiments on large-scale datasets with GCN and SAGE (Hamilton
et al., 2017), we adhere to the same split ratio and evaluation protocol in (Hu et al., 2020), and
report ECE results, averaged over ten random seeds. We employ three-layer and two-layer GNN on
Arxiv and Reddit, respectivly, while fixing the hidden dimension as 256 across both GCN and SAGE.
Analogous to the regular-scale experiment, we select the Adam optimizer with an initial learning rate
of 0.01 and weight decay as 0 uniformly across all large-scale settings. Meanwhile, we construct
hyperparameter search spaces for proposed SIMI-MAILBOX as follows. The number of clusters
N in our method is selected from the range [5, 30]. The regularization coefficient λ is explored in
the range of [1, 50] During the evaluation, we set the number of bins for ECE and class-wise ECE
measurements as 15, following prior works. The source code for our experiments is available at
https://anonymous.4open.science/r/Simi_Mailbox-0816/
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Figure 4: Hyperparameter sensitivity of scaling factor λ and the number of bins N across all
benchmark datasets and GNN architectures.

Table 6: ECE results (reported in percentage) for our original calibration method with min-max
scaling (specified as Ours) and standard scaling (specified as Ours w/ standard scaling), compared to
GATS. A lower ECE indicates better calibration performance. The best and second best performances
are represented by bold and underline texts, respectively.

Datasets Cora Citeseer Pubmed Computers Photo CS Physics CoraFull

GCN
GATS 3.55 ± 1.28 4.49 ± 1.53 0.95 ± 0.32 2.15 ± 0.52 1.46 ± 0.51 0.90 ± 0.29 0.45 ± 0.15 3.74 ± 0.63

Ours 1.97 ± 0.44 2.66 ± 0.53 0.75 ± 0.15 1.02 ± 0.26 1.01 ± 0.36 0.58 ± 0.19 0.28 ± 0.11 3.46 ± 1.31

Ours w/ standard scaling 2.02 ± 0.54 2.67 ± 0.52 0.75 ± 0.14 1.06 ± 0.24 1.01 ± 0.34 0.63 ± 0.18 0.30 ± 0.10 3.53 ± 1.30

GAT
GATS 3.05 ± 0.78 4.01 ± 1.42 0.98 ± 0.36 1.36 ± 0.34 1.49 ± 0.65 0.85 ± 0.23 0.43 ± 0.16 3.46 ± 0.46

Ours 2.08 ± 0.45 2.86 ± 0.56 0.69 ± 0.16 0.95 ± 0.37 0.97 ± 0.53 0.72 ± 0.43 0.48 ± 0.22 2.64 ± 1.02

Ours w/ standard scaling 2.23 ± 0.41 2.93 ± 0.58 0.69 ± 0.19 0.94 ± 0.37 0.98 ± 0.52 0.73 ± 0.43 0.49 ± 0.21 2.82 ± 1.06

B ADDITIONAL DISCUSSIONS AND EXPERIMENTAL RESULTS

B.1 ALGORITHMIC POINT OF VIEW ON PREVIOUS GNN CALIBRATION STUDIES

This subsection provides the limitation of previous GNN calibration approaches for addressing
varying similarity levels in the algorithmic perspective. To begin with, the node-wise temperature
T CaGCN for l layers in CaGCN (Wang et al., 2021b) is defined as below:

T CaGCN = σ+(AσReLU(...AσReLU(AZW (1))W (2)...)W (l)) ∈ R|V|, (11)

where σ+ and σReLU denote softplus and ReLU operation, while Z and W represent logits from
trained GNNs and trainable weights, respectively.

The foundational assumption of CaGCN for leveraging GCN as a temperature function is that
confidence for nodes linked to agreeing nodes should elevate, while that for nodes with disagreeing
neighbors should decrease. They assert that GCN can make the confidence of adjacent nodes similar
by propagating the predictions to neighboring counterparts. However, our findings in Section 4
indicate that this does not hold true, especially for nodes with dissimilar neighbors. Moreover,
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Table 7: ECE results (reported in percentage) on heterophilous datasets for our proposed calibration
method and baselines, averaged over 50 runs. A lower ECE indicates better calibration performance.

Datasets Chameleon Squirrel Actor Texas Wisconsin Cornell

GCN

UnCal. 9.39 ± 1.90 7.23 ± 1.46 2.69 ± 0.88 18.15 ± 4.13 17.76 ± 6.97 19.17 ± 4.94

TS 9.42 ± 1.94 7.18 ± 1.37 2.82 ± 0.95 18.12 ± 4.95 15.41 ± 5.08 19.93 ± 5.31

GATS 8.25 ± 2.15 6.85 ± 1.09 2.82 ± 1.01 18.73 ± 4.34 15.76 ± 5.33 21.60 ± 5.28

Ours 7.50 ± 1.40 5.40 ± 1.04 2.73 ± 0.89 15.50 ± 4.44 15.19 ± 3.58 18.66 ± 5.24

GAT

UnCal. 7.27 ± 1.43 6.42 ± 1.30 3.49 ± 1.11 18.51 ± 4.47 16.12 ± 4.36 14.89 ± 6.35

TS 7.23 ± 1.44 6.43 ± 1.31 3.29 ± 1.15 18.62 ± 3.99 15.64 ± 3.25 16.00 ± 6.72

GATS 7.79 ± 1.95 6.66 ± 1.63 3.41 ± 1.14 18.91 ± 4.49 15.16 ± 2.86 18.08 ± 6.74

Ours 6.75 ± 1.73 5.45 ± 1.30 2.64 ± 0.99 15.53 ± 3.48 14.90 ± 3.29 18.54 ± 6.35

according to the above formulation, the temperature function **does not necessarily yield** higher
temperatures for nodes with dissimilar neighbors or lower ones for those with similar neighbors,
leading to suboptimal calibration results across diverse neighborhood affinity level.

Meanwhile, from the perspective of individual nodes i, the temperature function of GATS (Hsu et al.,
2022b) T GATS

i is formulated as:

T GATS
i =

1

H

H∑
h=1

σ+(ω δĉi +
∑
j∈Ni

αijγjτ
h
j ) + T0 ∈ R. (12)

Here, H and T0 signify the number of attention heads and the initial bias term, respectively, with
ω acting as a learnable coefficient to scale the relative confidence δĉi against neighborhood. The
scaling factor γ is introduced to leverage the distance-to-training-nodes property, and τj refers to
the original logits zj transformed by a linear layer, followed by class-wise sorting within individual
nodes’ logits.

Recall that GATS demonstrated an increment in calibration error with a decrement in representational
similarity, thereby introducing attention coefficient αij to reflect this. While αij attempts to capture
the affinity between nodes, the model’s capacity to discern and appropriately adjust for low similarity
levels is limited, since the **complex integration of various factors** may lead to suboptimal
temperature adjustments. For instance, the impact of the initial bias term T0 and ωδĉi may obscure
the neighborhood similarity associated with nodes, which may not adequately capture the distinct
calibration needs of nodes in diverse similarity contexts. Consequently, nodes in low or high similarity
contexts might receive suboptimal temperature adjustments.

B.2 HYPERPARAMETER SENSITIVITY

We present the comprehensive sensitivity analysis on robustness of SIMI-MAILBOX with respect
to its hyperparameters and the choice of scaling functions. We compare the ECE results of the
strongest baseline GATS (specified as dark brown) and ours across varying values of a scaling factor
λ (specified as green) and the number of bins N (specified as pink) within the range of [5, 10, 15, 20,
25, 30]. The results on both GCN and GAT across whole benchmark datasets is depicted in Figure 4.

As demonstrated in the figure, SIMI-MAILBOX consistently outperforms the baseline across all
hyperparameter configurations throughout diverse settings, with the number of bins N demonstrating
particularly stable performance trends. This robustness is attributed to our method’s design, which
accounts for the correlation between neighborhood similarity and the degree of miscalibration.

Meanwhile, the choice of min-max scaling is rooted in the intuition of potential disparity in distribu-
tions of neighborhood similarity and confidence. For instance, while neighborhood similarity can
be evenly distributed between 0 and 1, confidence in a high-accuracy dataset might be concentrated
at higher values. In this situation, min-max scaling is an effective technique for normalizing data,
especially when the values are concentrated in a specific range.
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Table 8: KDE-ECE results (reported in percentage) for our proposed calibration method and baselines,
averaged over 75 repetitions (± STD). A lower value indicates better calibration performance.

Methods UnCal. TS VS ETS CaGCN GATS Ours

Cora
GCN 12.76 ± 4.09 3.13 ± 1.11 3.52 ± 1.17 3.16 ± 1.11 4.01 ± 1.40 2.95 ± 1.23 1.88 ± 0.26

GAT 15.02 ± 4.23 2.85 ± 0.80 2.84 ± 0.85 2.86 ± 0.76 3.38 ± 1.29 2.64 ± 0.77 1.98 ± 0.42

Citeseer
GCN 12.59 ± 8.53 4.90 ± 1.67 4.79 ± 1.47 4.74 ± 1.72 6.07 ± 1.76 4.25 ± 1.49 2.40 ± 0.43

GAT 16.64 ± 7.96 4.74 ± 1.42 4.29 ± 1.15 4.67 ± 1.40 4.57 ± 1.79 3.84 ± 1.45 2.66 ± 0.50

Pubmed
GCN 7.44 ± 1.53 1.33 ± 0.28 1.58 ± 0.38 1.38 ± 0.29 1.25 ± 0.35 1.06 ± 0.26 0.93 ± 0.12

GAT 10.38 ± 1.88 1.18 ± 0.35 1.13 ± 0.31 1.18 ± 0.35 1.08 ± 0.29 1.11 ± 0.34 0.79 ± 0.12

Computers
GCN 3.01 ± 0.91 2.60 ± 0.65 2.72 ± 0.74 2.73 ± 0.76 1.58 ± 0.45 2.12 ± 0.60 1.27 ± 0.15

GAT 1.70 ± 0.63 1.56 ± 0.42 1.59 ± 0.46 1.63 ± 0.47 1.64 ± 0.46 1.52 ± 0.40 1.10 ± 0.20

Photo
GCN 2.45 ± 1.23 1.81 ± 0.92 1.95 ± 0.95 1.88 ± 0.98 1.64 ± 0.42 1.65 ± 0.68 1.13 ± 0.18

GAT 2.42 ± 1.60 1.70 ± 0.73 1.79 ± 0.78 1.77 ± 0.80 1.73 ± 0.62 1.72 ± 0.70 1.19 ± 0.29

CS
GCN 2.19 ± 1.33 1.12 ± 0.10 1.12 ± 0.18 1.12 ± 0.10 1.94 ± 0.90 1.08 ± 0.12 0.94 ± 0.11

GAT 1.77 ± 0.91 1.12 ± 0.23 1.12 ± 0.25 1.13 ± 0.23 1.90 ± 0.97 1.13 ± 0.20 0.95 ± 0.22

Physics
GCN 0.97 ± 0.31 0.83 ± 0.09 0.82 ± 0.07 0.83 ± 0.09 0.93 ± 0.19 0.85 ± 0.09 0.70 ± 0.61

GAT 0.86 ± 0.15 0.84 ± 0.10 0.86 ± 0.09 0.84 ± 0.10 1.03 ± 0.21 0.82 ± 0.08 0.80 ± 0.11

CoraFull
GCN 6.44 ± 1.33 5.46 ± 0.44 5.68 ± 0.41 5.42 ± 0.46 5.74 ± 0.46 3.70 ± 0.65 3.43 ± 1.27

GAT 5.26 ± 1.38 4.34 ± 0.48 4.36 ± 0.46 4.30 ± 0.48 6.59 ± 3.62 3.46 ± 0.45 2.64 ± 0.98

However, our method can accomplish prominent performance when equipped with different scaling
functions. To verify this, we conducted additional experiment on our method with standard scaling
(standard normalization) for constructing a feature vector, illustrated in Table 6. According to the
table, SIMI-MAILBOX equipped with standard scaling consistently outperforms the strongest baseline
in 15 of the 16 settings. Moreover, the performance gap between our method with standard scaling
and the original SIMI-MAILBOX is marginal, suggesting that SIMI-MAILBOX is resilient to different
choices of scaling method as well.

B.3 RESULTS ON HETEROPHILOUS GRAPHS

We conducted additional evaluations to to further demonstrate the efficacy of our SIMI-MAILBOX on
heterophilous graphs, in comparison with uncalibrated GNNs (UnCal), temperature scaling (TS) (Guo
et al., 2017), and GATS. Our benchmark datasets for this experiment included Chameleon, Squirrel,
Actor, Texas, Wisconsin, and Cornell (Rozemberczki et al., 2021; Pei et al., 2020). We adopted
10 different train/validation/test splits provided in the official PyTorch Geometric Library (Fey &
Lenssen, 2019). For each split, we conducted 5 random initialization, resulting in 50 runs in total.
We maintained the same seeds to our method and the baseline.

As indicated in Table 7, our method surpasses the baselines in 14 out of 16 settings. Notably, on
the Texas dataset , SIMI-MAILBOX achieves ECE reduction of 2.65% and 2.98% for GCN and
GAT, respectively, compared to uncalibrated results. Conversely, TS and GATS showed limited
effectiveness in reducing calibration error in the Texas; GATS in fact increases ECE beyond the
uncalibrated results. While the improvements with heterophilous graphs are less pronounced than
those observed with homophilous graphs, SIMI-MAILBOX still effectively mitigates miscalibration
against previous calibration methods. This is attributed to our methodâĂŹs careful categorization on
the basis of neighborhood similarity and confidence levels.

B.4 RESULTS FROM DIFFERENT EVALUATION METRICS

We here provide supplementary results evaluated with different calibration metrics, including class-
wise ECE (Kull et al., 2019), kernel density estimation-based ECE (KDE-ECE) (Zhang et al., 2020),
negative log-likelihood (NLL), and Brier Score (Brier et al., 1950).
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Table 9: Class-wise ECE results (reported in percentage) for our proposed calibration method
and baselines, averaged over 75 repetitions (± STD). A lower value indicates better calibration
performance.

Methods UnCal. TS VS ETS CaGCN GATS Ours

Cora
GCN 4.14 ± 1.10 2.03 ± 0.23 2.09 ± 0.27 2.03 ± 0.23 2.21 ± 0.28 1.99 ± 0.24 1.82 ± 0.19

GAT 4.78 ± 1.18 1.95 ± 0.23 1.94 ± 0.25 1.94 ± 0.23 2.10 ± 0.29 1.92 ± 0.24 1.80 ± 0.22

Citeseer
GCN 5.11 ± 2.77 2.97 ± 0.65 2.80 ± 0.43 2.94 ± 0.69 3.24 ± 0.78 2.88 ± 0.78 2.53 ± 0.55

GAT 6.39 ± 2.52 3.03 ± 0.47 2.85 ± 0.48 3.02 ± 0.48 3.07 ± 0.69 2.96 ± 0.54 2.71 ± 0.44

Pubmed
GCN 5.04 ± 1.04 1.39 ± 0.28 1.54 ± 0.31 1.40 ± 0.27 1.33 ± 0.32 1.26 ± 0.28 1.17 ± 0.23

GAT 7.19 ± 1.22 1.77 ± 0.40 1.75 ± 0.30 1.77 ± 0.40 1.67 ± 0.39 1.79 ± 0.36 1.63 ± 0.32

Computers
GCN 0.96 ± 0.16 0.92 ± 0.11 0.91 ± 0.13 0.94 ± 0.13 0.83 ± 0.10 0.88 ± 0.08 0.81 ± 0.08

GAT 0.80 ± 0.13 0.78 ± 0.10 0.76 ± 0.09 0.80 ± 0.11 0.80 ± 0.10 0.78 ± 0.10 0.74 ± 0.09

Photo
GCN 0.86 ± 0.21 0.78 ± 0.14 0.81 ± 0.15 0.78 ± 0.16 0.79 ± 0.08 0.76 ± 0.11 0.67 ± 0.05

GAT 0.96 ± 0.36 0.84 ± 0.17 0.82 ± 0.16 0.84 ± 0.19 0.86 ± 0.13 0.83 ± 0.18 0.74 ± 0.10

CS
GCN 0.40 ± 0.15 0.30 ± 0.03 0.32 ± 0.03 0.29 ± 0.03 0.42 ±0.10 0.29 ± 0.03 0.29 ± 0.03

GAT 0.39 ± 0.10 0.34 ± 0.03 0.34 ± 0.03 0.34 ± 0.03 0.44 ± 0.10 0.34 ± 0.04 0.33 ± 0.03

Physics
GCN 0.41 ± 0.33 0.36 ± 0.06 0.34 ± 0.04 0.36 ± 0.06 0.46 ± 0.14 0.36 ± 0.05 0.33 ± 0.04

GAT 0.40 ± 0.08 0.39 ± 0.07 0.37 ± 0.05 0.39 ± 0.07 0.52 ± 0.13 0.38 ± 0.07 0.38 ± 0.06

CoraFull
GCN 0.35 ± 0.04 0.33 ± 0.02 0.34 ± 0.01 0.33 ± 0.02 0.34 ± 0.05 0.33 ± 0.02 0.32 ± 0.01

GAT 0.34 ± 0.03 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.35 ± 0.07 0.31 ± 0.01 0.31 ± 0.01

• KDE-ECE utilizes a smoothing kernel function denoted as Kh with a fixed bandwidth
h to estimate the accuracies π̂ and marginal probabilities f̂ . The calibration error is then
quantified through the integration of the absolute difference between the estimated accuracy
and predicted confidence p̂, formulated as follows:

KDE-ECE =

∫
|π̂(p̂)− p̂|f̂(p̂)dp̂,

π̂(p̂) =

∑N
i∈V 1[yi = ŷi]

∏C
k=1 Kh(p̂− pi,k)∑N

i∈V
∏C

k=1 Kh(p̂− pi,k)
,

f̂(p̂) =
h−1

N

N∑
i∈V

C∏
k=1

Kh(p̂− pi,k)

(13)

Following the precedent (Hsu et al., 2022b), we implement the Triweight Kernel function
Kh(v) = (1/h) 3532 (1 − (v/h)2)3 (de Haan, 1999), where the bandwidth is calculated as
h = 1.06σN−1/5 (Scott, 2015), with σ representing the standard deviation of the confidence
here.

• Class-wise ECE extends the general concept of ECE to class-wise perspective. It measures
the discrepancy between the ground-truth frequency and the average predicted probability
within each confidence bin for each class k, defined as:

ECE(k) =
M∑

m=1

|Bm|
N

|freq(Bm,k)− conf(Bm,k)|,

freq(Bm,k) =
1

|Bm,k|
∑

i∈Bm,k

1[yi = k]

(14)

The overall class-wise ECE is obtained by averaging ECE(k) across all classes, i.e.
Class-wise ECE = 1

C

∑C
k=1 ECE(k).

• NLL is frequently used for evaluating calibration to assess the overall miscalibration,
computed by the average of logarithms of the predicted probability for each correct class,
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Table 10: NLL results (reported in percentage) for our proposed calibration method and baselines,
averaged over 75 repetitions (± STD). A lower value indicates better calibration performance.

Methods UnCal. TS VS ETS CaGCN GATS Ours

Cora
GCN 0.6199 ± 0.0444 0.5613 ± 0.0302 0.5747 ± 0.0380 0.5591 ± 0.0291 0.6622 ± 0.0742 0.5566 ± 0.0310 0.5429 ± 0.0249

GAT 0.6087 ± 0.0507 0.5162 ± 0.0238 0.5228 ± 0.0332 0.5151 ± 0.0232 0.5420 ± 0.0360 0.5124 ± 0.0209 0.5040 ± 0.0201

Citeseer
GCN 0.9265 ± 0.1038 0.8800 ± 0.0428 0.8734 ± 0.0234 0.8770 ± 0.0386 0.9204 ± 0.0578 0.8702 ± 0.0404 0.8599 ± 0.0419

GAT 0.9602 ± 0.1025 0.8762 ± 0.0330 0.8729 ± 0.0254 0.8752 ± 0.0324 0.8752 ± 0.0291 0.8715 ± 0.0290 0.8611 ± 0.0283

Pubmed
GCN 0.3939 ±0.0160 0.3676 ± 0.0072 0.3679 ± 0.0073 0.3659 ± 0.0073 0.3582 ± 0.0073 0.3638 ± 0.0069 0.3627 ± 0.0067

GAT 0.4382 ± 0.0120 0.3871 ± 0.0078 0.3864 ± 0.0070 0.3870 ± 0.0078 0.3845 ± 0.0072 0.3866 ± 0.0077 0.3844 ± 0.0075

Computers
GCN 0.4297 ± 0.0119 0.4295 ± 0.0116 0.4291 ± 0.0113 0.4130 ± 0.0146 0.4333 ± 0.0356 0.4243 ± 0.0134 0.4080 ± 0.0104

GAT 0.3739 ± 0.0145 0.3734 ± 0.0142 0.3725 ± 0.0132 0.3687 ± 0.0148 0.3961 ± 0.0284 0.3730 ± 0.0145 0.3670 ± 0.0137

Photo
GCN 0.2877 ± 0.0108 0.2892 ± 0.0110 0.2913 ± 0.0122 0.2725 ± 0.0133 0.3717 ± 0.0737 0.2867 ± 0.0113 0.2750 ± 0.0117

GAT 0.2712 ± 0.0205 0.2703 ± 0.0166 0.2692 ± 0.0161 0.2657 ± 0.0185 0.3228 ± 0.0563 0.2704 ± 0.0172 0.2638 ± 0.0156

CS
GCN 0.2196 ± 0.0119 0.2142 ± 0.0056 0.2162 ± 0.0049 0.2141 ± 0.0055 0.2778 ± 0.0583 0.2132 ± 0.0057 0.2127 ± 0.0054

GAT 0.2451 ± 0.0084 0.2432 ± 0.0057 0.2425 ± 0.0053 0.2428 ± 0.0057 0.2786 ± 0.0350 0.2422 ± 0.0054 0.2416 ± 0.0051

Physics
GCN 0.1199 ± 0.0043 0.1190 ± 0.0035 0.1190 ± 0.0033 0.1190 ± 0.0035 0.1289 ± 0.0114 0.1188 ± 0.0033 0.1185 ± 0.0034

GAT 0.1288 ± 0.0045 0.1287 ± 0.0043 0.1283 ± 0.0041 0.1287 ± 0.0043 0.1334 ± 0.0055 0.1286 ± 0.0042 0.1285 ± 0.0042

CoraFull
GCN 1.4310 ± 0.0221 1.4270 ± 0.0185 1.4300 ± 0.0199 1.4210 ± 0.0182 1.4780 ± 0.1769 1.4010 ± 0.0189 1.4070 ± 0.0120

GAT 1.3670 ± 0.0217 1.3620 ± 0.0176 1.3630 ± 0.0177 1.3610 ± 0.0175 1.4570 ± 0.1953 1.3550 ± 0.0170 1.3490 ± 0.0174

formulated as follows:

NLL =
1

N

N∑
i∈V

−yi log pi,yi
(15)

• Brier Score is widely employed metric to quantify the model calibration. It measures
the accuracy of model prediction by comparing the predicted probabilities pi with the
ground-truth occurrences oi:

Brier Score =
1

N

N∑
i∈V

C∑
k=1

(pi,k − oi,k) (16)

Here, oi represents a one-hot vector encoding the ground-truth class label.

We report the calibration results assessed by KDE-ECE, class-wise ECE, NLL, and Brier Score in
Table 8, 9, 10, and Table 11, respectively. The results demonstrate that our SIMI-MAILBOX generally
outperforms state-of-the-art calibration methods on majority of the metrics, including all metrics,
particularly when assessed via KDE-ECE, accomplishing state-of-the-art calibration performance
across all settings.

B.5 DIFFERENCE BETWEEN EXISTING GROUPING-BASED CALIBRATIONS

In this subsection, we discuss the key difference between our work and previous categorization-aware
calibration approaches (Hébert-Johnson et al., 2018; Perez-Lebel et al., 2022; Yang et al., 2023).
While our work shares a similar aspect with prior works in terms of adhering miscalibrations in a
group-wise perspective, there exists clear difference between SIMI-MAILBOX and aforementioned
works. SIMI-MAILBOX is designed to address the unique calibration challenges posed by the intricate
structure of graphs. The methodology and extensive analysis are deeply rooted in the properties of
graph data, such as neighborhood affinity, which do not find a direct parallel in the grouping discussed
in (Hébert-Johnson et al., 2018; Perez-Lebel et al., 2022; Yang et al., 2023). We will discuss further
distinction in one-by-one.

To begin with, the primary distinctions between our work and Hébert-Johnson et al. (2018) lie in:

• Different Grouping Mechanism: While Hébert-Johnson et al. (2018) conducts partitioning
leveraging the decision tree, our method performs sophisticated categorization based on
neighborhood similarity along with confidence levels. The referred work Hébert-Johnson
et al. (2018) is not designed to capture neighborhood affinity, which is a pivotal component
in GNN calibration domain. Furthermore, it does not offer the principles for effective
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Table 11: Brier score results (reported in percentage) for our proposed calibration method and base-
lines, averaged over 75 repetitions (± STD). A lower value indicates better calibration performance.

Methods UnCal. TS VS ETS CaGCN GATS Ours

Cora
GCN 0.2828 ± 0.0189 0.2555 ± 0.0092 0.2564 ± 0.0096 0.2555 ± 0.0091 0.2607 ± 0.0097 0.2552 ± 0.0100 0.2541 ± 0.0086

GAT 0.2766 ± 0.0222 0.2416 ± 0.0084 0.2419 ± 0.0105 0.2416 ± 0.0083 0.2462 ± 0.0086 0.2412 ± 0.0080 0.2402 ± 0.0080

Citeseer
GCN 0.4377 ± 0.0494 0.4094 ± 0.0097 0.4104 ± 0.0099 0.4092 ± 0.0099 0.4157 ± 0.0129 0.4082 ± 0.0097 0.4044 ± 0.0084

GAT 0.4517 ± 0.0508 0.4099 ± 0.0090 0.4108 ± 0.0102 0.4098 ± 0.0090 0.4107 ± 0.0094 0.4097 ± 0.0087 0.4063 ± 0.0078

Pubmed
GCN 0.2135 ± 0.0078 0.2020 ± 0.0039 0.2024 ± 0.0040 0.2020 ± 0.0038 0.2002 ± 0.0039 0.2017 ± 0.0039 0.2014 ± 0.0038

GAT 0.2377 ± 0.0103 0.2181 ± 0.0042 0.2178 ± 0.0040 0.2181 ± 0.0042 0.2172 ± 0.0042 0.2180 ± 0.0042 0.2168 ± 0.0042

Computers
GCN 0.1856 ± 0.0083 0.1850 ± 0.0073 0.1842 ± 0.0069 0.1850 ± 0.0073 1.1812 ± 0.0074 0.1841 ± 0.0070 0.1814 ± 0.0068

GAT 0.1709 ± 0.0083 0.1707 ± 0.0080 0.1692 ± 0.0065 0.1707 ± 0.0080 0.1712 ± 0.0078 0.1708 ± 0.0079 0.1691 ± 0.0077

Photo
GCN 0.1166 ± 0.0062 0.1156 ± 0.0067 0.1157 ± 0.0060 0.1156 ± 0.0057 0.1161 ± 0.0049 0.1151 ± 0.0054 0.1141 ± 0.0050

GAT 0.1167 ± 0.0100 0.1155 ± 0.0079 0.1143 ± 0.0068 0.1156 ± 0.0080 0.1166 ± 0.0072 0.1156 ± 0.0079 0.1140 ± 0.0072

CS
GCN 0.1032 ± 0.0040 0.1028 ± 0.0023 0.1020 ± 0.0020 0.1018 ± 0.0023 0.1065 ± 0.0043 0.1016 ± 0.0024 0.1014 ± 0.0023

GAT 0.1133 ± 0.0034 0.1126 ± 0.0025 0.1122 ± 0.0023 0.1126 ± 0.0025 0.1152 ± 0.0037 0.1126 ± 0.0024 0.1123 ± 0.0025

Physics
GCN 0.0614 ± 0.0020 0.0614 ± 0.0019 0.0614 ± 0.0018 0.0614 ± 0.0019 0.0625 ± 0.0022 0.0613 ± 0.0019 0.0612 ± 0.0019

GAT 0.0657 ± 0.0018 0.0657 ± 0.0018 0.0656 ± 0.0018 0.0657 ± 0.0018 0.0665 ± 0.0018 0.0656 ± 0.0018 0.0657 ± 0.0018

CoraFull
GCN 0.5231 ± 0.0074 0.5208 ± 0.0052 0.5201 ± 0.0050 0.5207 ± 0.0052 0.5221 ± 0.0138 0.5159 ± 0.0054 0.5176 ± 0.0054

GAT 0.5117 ± 0.0072 0.5099 ± 0.0057 0.5080 ± 0.0057 0.5098 ± 0.0057 0.5178 ± 0.0162 0.5089 ± 0.0057 0.5080 ± 0.0057

Table 12: ECE results (reported in percentage) for our proposed calibration method and GC with the
holdout set. A lower ECE indicates better calibration performance. Note that Simi-Mailbox does
not have an access to the holdout data.

Datasets Cora Citeseer Pubmed Computers Photo CS Physics CoraFull

GCN
GC+TS w/ HO 3.59 ± 1.01 4.16 ± 1.09 1.27 ± 0.31 3.17 ± 0.81 2.09 ± 0.84 0.99 ± 0.20 0.49 ± 0.18 5.57 ± 0.52

GC+ETS w/ HO 3.29 ± 0.94 3.69 ± 1.02 1.15 ± 0.40 1.45 ± 0.45 1.24 ± 0.45 0.90 ± 0.24 0.48 ± 0.20 4.05 ± 0.47

Ours 2.06 ± 0.44 2.76 ± 0.56 0.77 ± 0.15 1.06 ± 0.26 1.04 ± 0.35 0.60 ± 0.19 0.29 ± 0.11 3.47 ± 1.32

GAT
GC+TS w/ HO 3.13 ± 0.97 3.85 ± 1.16 1.02 ± 0.41 1.53 ± 0.48 1.63 ± 0.79 0.91 ± 0.25 0.47 ± 0.17 4.32 ± 0.50

GC+ETS w/ HO 3.15 ± 0.98 3.60 ± 1.05 1.07 ± 0.45 1.26 ± 0.37 1.34 ± 0.52 0.84 ± 0.27 0.51 ± 0.23 3.55 ± 0.48

Ours 2.15 ± 0.44 2.97 ± 0.58 0.73 ± 0.17 0.98 ± 0.38 1.00 ± 0.52 0.75 ± 0.43 0.49 ± 0.21 2.66 ± 1.01

categorization, whereas we present the categorization criteria as well based on the novel
observation of the correlation between neighborhood affinity and miscalibration level.

• Methodological Divergence: While Hébert-Johnson et al. (2018) introduces a universal
approach to calibration loss applicable across different domains, SIMI-MAILBOX employs a
novel strategy of post-hoc group-specific temperature adjustments that are uniquely suited
to the diverging neighborhood affinity in graph data. The grouping scheme in the paper is
utilized to quantify the grouping loss, rather than developing a new calibration method
using the grouping algorithm.

Moreover, there exist key differentiators that set our work apart from Perez-Lebel et al. (2022) as
well. Notably, these distinctions include:

• Unspecified Grouping Mechanism: While both our method and the approach in Perez-
Lebel et al. (2022) emphasize subgroup calibration, our method employs a different grouping
mechanism. Our method clusters nodes by assessing similarity in neighborhood predictions
and confidence levels within the graph. In contrast, Perez-Lebel et al. (2022) proposes a
more generalized framework for multicalibration, but without the specific focus on how the
ideal subgraphs should be generated.

• Essential Principle of Group-wise Calibration: The core principle of group-wise calibra-
tion is to categorize instances based on similar degrees of miscalibration. However, as
mentioned in the above, Perez-Lebel et al. (2022) lacks the particular emphasis on this char-
acteristic. Since per-group temperature is uniformly assigned to nodes within the designated
group, organizing nodes with diverging levels of miscalibration lead to suboptimal calibra-
tion results. In contrast, our method presented straightforward criteria, i.e., neighborhood
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Table 13: Average node classification accuracy of
various label rate (L/C) for our proposed calibration
method and baselines on GCN.

Datasets L/C UnCal. CaGCN Ours

Cora
20 81.46 ± 0.29 82.94 ± 0.19 82.98 ± 0.37

40 83.70 ± 0.26 84.12 ± 0.27 84.58 ± 0.12

60 84.40 ± 0.24 85.54 ± 0.19 86.06 ± 0.16

Citeseer
20 71.64 ± 0.16 74.90 ± 0.23 74.44 ± 0.19

40 72.02 ± 0.26 75.26 ± 0.36 75.30 ± 0.32

60 73.32 ± 0.18 76.12 ± 0.16 76.16 ± 0.23

Pubmed
20 79.52 ± 0.26 81.20 ± 0.33 81.32 ± 0.48

40 80.42 ± 0.26 82.78 ± 0.35 82.82 ± 0.21

60 83.32 ± 0.15 84.12 ± 0.28 84.28 ± 0.40

Table 14: Average node classification accuracy
of various label rate (L/C) for our proposed cali-
bration method and baselines on GAT.

Datasets L/C UnCal. CaGCN Ours

Cora
20 81.78 ± 0.35 81.98 ± 0.73 84.14 ± 0.39

40 83.48 ± 0.36 84.32 ± 1.08 85.64 ± 0.45

60 84.72 ± 0.32 85.20 ± 0.75 86.48 ± 0.32

Citeseer
20 70.82 ± 0.34 73.86 ± 0.66 74.40 ± 0.44

40 71.64 ± 0.34 75.28 ± 0.34 75.82 ± 0.25

60 73.20 ± 0.21 76.04 ± 0.37 76.42 ± 0.13

Pubmed
20 79.38 ± 0.35 80.14 ± 0.36 80.50 ± 0.24

40 80.84 ± 0.36 82.60 ± 0.81 82.82 ± 0.12

60 83.42 ± 0.28 83.36 ± 0.38 83.78 ± 0.12

similarity along with confidence level, stemmed from our novel observation of the intimate
correlation between nodes sharing similar neighborhood affinity and confidence.

Lastly, our approach possesses different contribution from the proposed method GC in Yang et al.
(2023), according to below distinctions:

• Different Grouping Mechanism: While both Yang et al. (2023) and SIMI-MAILBOX
involve grouping instances for calibration, the underlying principles and mechanisms of
these groupings are notably distinct. Our method conducts sophisticated categorization
based on neighborhood similarity and confidence levels, specifically tailored to the unique
properties of GNNs. Owing to this careful binning principles, leveraging KMeans clustering
can lead to effective categorization. In contrast, Yang et al. (2023) proposes a learning-based
grouping function that does not explicitly account for the inherent characteristics of GNNs.
Although it yields prominent performance in vision domain, the learning-based grouping
function, which is in practice a single linear layer, is not sufficient to capture neighborhood
affinity, which will be verified in the subsequent experiment.

• Methodological Distinction: In fact, Yang et al. (2023) utilized the holdout set, which
is partially sampled from the test set, to train the calibration function. However, our
experiments demonstrate SIMI-MAILBOX’s effectiveness with no need of the holdout set.

To validate the effectiveness of our method and grouping strategy over GC empirically, we conducted
additional experiments to compare our SIMI-MAILBOX and Yang et al. (2023) with the holdout
set (specified as GC w/ HO). We adopted two configurations, GC combined with TS and GC with
ETS (Zhang et al., 2020), following the combination settings in the original paper. During the
evaluation, we randomly sampled 10% of the nodes in the test data and allocated them as the holdout
set for GC, adjusting the original evaluation protocol in Yang et al. (2023). Accordingly, we re-
evaluate our method in the remaining 90% of the test data. Note that unlike GC, our SIMI-MAILBOX
is trained solely on the validation set, without an access to the holdout data.

According to the Table 12, our method consistently outperforms all combinations of GC across 15
out of 16 settings, pioneering the effectiveness of proposed grouping strategy over GC, even without
an access to the holdout set. Further, the results indicate that the learning-based grouping function in
GC does not fully encompass the inherent characteristics of GNNs.

B.6 SIMI-MAILBOX ON SELF-TRAINING

Here, we broaden evaluation of SIMI-MAILBOX on self-training scenarios. We integrated our method
into the original CaGCN codebase to maintain consistency. To ensure fair comparisons, we followed
the same datasets, split ratio, and evaluation protocols, as well as ensuring the five random seeds
uniformly across all experimental setups.

As presented in Table 13 and 14, SIMI-MAILBOX demonstrates superior performance over both
uncalibrated GNNs and CaGCN across 17 out of 18 settings in total. This is especially evident in
GAT on the Citeseer dataset, where our method achieves a performance increase of 4.18% compared
to uncalibrated GAT when L/C=40. These results underscore the efficacy of our method in generating
refined pseudo-labels through its sophisticated calibration process.
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Figure 5: Qualitative analysis of our calibration results on Cora, compared with CaGCN and GATS.
The accuracy in per-confidence interval is represented as black horizontal lines. The blue, yellow and
pink bars illustrate the discrepancy between per-bin accuracy and average confidence of nodes within
each affinity sub-intervals, calibrated through our SIMI-MAILBOX, CaGCN, and GATS, respectively.

B.7 QUALITATIVE ANALYSIS WITH WHOLE BENCHMARK DATASETS

We present additional qualitative comparisons across all benchmark datasets and GNN architecures,
as illustrated in Figure 5, 6, 7, 8, 9, 10, 11, 12. Overall, our method achieves better reduction against
baselines on the discrepancy between per-confidence accuracy and average confidence varying affinity
sub-intervals, notably on Computers and CoraFull.

Figure 6: Qualitative analysis of our calibration results on Citeseer, compared with CaGCN and
GATS.

C FURTHER DISCOVERY OF SURFACE LEARNING IN SECTION 4

To validate the prevalence of our observations on the inconsistency between neighborhood prediction
similarity and the foundational assumption in earlier research, we provide further discovery across all
benchmark datasets and GNN backbones, depicted in Figure 13, 14, 15, 16, 17, 18, 19, 20. Taking
everything into account, it is evident that our discovery is not exclusive to the single case illustrated
in Section 4, which breaks down the ground principles of previous GNN calibration studies.
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Figure 7: Qualitative analysis of our calibration results on Pubmed, compared with CaGCN and
GATS.

Figure 8: Qualitative analysis of our calibration results on Computers, compared with CaGCN and
GATS.

Figure 9: Qualitative analysis of our calibration results on Photo, compared with CaGCN and GATS.
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Figure 10: Qualitative analysis of our calibration results on CS, compared with CaGCN and GATS.

Figure 11: Qualitative analysis of our calibration results on Physics, compared with CaGCN and
GATS.

Figure 12: Qualitative analysis of our calibration results on CoraFull, compared with CaGCN and
GATS.
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Figure 13: Investigation results of calibrated logits on Cora via CaGCN and GATS. Orange line
represents per-confidence bin accuracy, while apricot and blue bars denote the average confidence of
uncalibrated and calibrated logits in each neighborhood similarity sub-interval, respectively. Note
that the gray area indicates the intersection between two bars.

Figure 14: Investigation results of calibrated logits on Citeseer via CaGCN and GATS.

Figure 15: Investigation results of calibrated logits on Pubmed via CaGCN and GATS.
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Figure 16: Investigation results of calibrated logits on Computers via CaGCN and GATS.

Figure 17: Investigation results of calibrated logits on Photo via CaGCN and GATS.

Figure 18: Investigation results of calibrated logits on CS via CaGCN and GATS.
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Figure 19: Investigation results of calibrated logits on Physics via CaGCN and GATS.

Figure 20: Investigation results of calibrated logits on CoraFull via CaGCN and GATS.
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