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FromQuestion to Exploration: Can Classic Test-Time Adaptation
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ABSTRACT
Test-time adaptation (TTA) aims to adapt a model, initially trained
on training data, to test data with potential distribution shifts. Most
existing TTA methods focus on classification problems. The pro-
nounced success of classification might lead numerous newcomers
and engineers to assume that classic TTA techniques can be directly
applied to the more challenging task of semantic segmentation.
However, this belief is still an open question. In this paper, we
investigate the applicability of existing classic TTA strategies in se-
mantic segmentation. Our comprehensive results have led to three
key observations. First, the classic normalization updating strategy
only brings slight performance improvement, and in some cases it
might even adversely affect the results. Even with the application
of advanced distribution estimation techniques like batch renor-
malization, the problem remains unresolved. Second, although the
teacher-student scheme does enhance the training stability for seg-
mentation TTA in the presence of noisy pseudo-labels and temporal
correlation, it cannot directly result in performance improvement
compared to the original model without TTA under complex data
distribution. Third, segmentation TTA suffers a severe long-tailed
class-imbalance problem, which is substantially more complex than
that in TTA for classification. This long-tailed challenge negatively
affects segmentation TTA performance, even when the accuracy
of pseudo-labels is high. Besides those observations, we find that
visual prompt tuning (VisPT) is promising in segmentation TTA.
Further, we propose a novel benchmark named TTAP based the
above findings and VisPT. The outstanding performance of TTAP
has also been verified. We hope the community can give more at-
tention to this challenging, yet important, segmentation TTA task
in the future. The source code will be publicly available.

CCS CONCEPTS
• Computing methodologies → Learning under covariate
shift.

KEYWORDS
Test-time adaptation; semantic segmentation; vision transformer

1 INTRODUCTION
Test-time adaptation (TTA) focuses on tailoring a pre-trained model
to better align with unlabeled test data at test time [36]. That model
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needs to simultaneously produce a prediction and adapt itself in
the online manner. The TTA paradigm is popular since the test
data may unavoidably encounter corruptions or variations, such as
Gaussian noise, weather changes, and many other reasons [9, 19].
Furthermore, the training and test data can not co-exist due to
privacy concerns. These challenges have propelled TTA to the
forefront as an emergent and swiftly evolving paradigm [22, 29, 30,
36, 40]. Broadly, existing techniques can be classified into two main
categories: Test-Time Training (TTT) [25, 36] and fully TTA [29, 40].
Compared to TTT, fully TTA (TTA for short) is more practical and
it is also the focus of this paper, since TTT needs to change the
original model training which may be infeasible due to privacy
concerns.

The key idea of TTA methods is to define a proxy objective at
test time to adapt the pre-trained model in an unsupervised manner.
Typical proxy objectives include entropy minimization [40], pseudo
labeling [23] and class prototypes [35]. While the majority of TTA
studies have centered on classification problems, real-world scenar-
ios frequently highlight the ubiquity and critical nature of semantic
segmentation. A prime instance is autonomous driving, where each
system must accurately and instantaneously segment an array of
dynamic and unpredictable perceptions [20]. A segmentation task
is much more challenging than an image-level classification coun-
terpart. For example, it is extremely difficult to estimate pixel-level
data distribution which may result in error accumulation, the long-
tailed (LT) problem brings serious class imbalance, low-quality
pseudo-labels of pixels may cause model collapse, etc. Numerous
newcomers and engineers might mistakenly believe that classic
TTA techniques can be directly applied in semantic segmentation.
Nevertheless, this assumption still remains unverified, posing an
open question. Thus, the TTA community needs to answer this open
question: Can classic test-time adaptation strategies be effectively
applied in semantic segmentation?

In this paper, we attempt to address this question and provide
systematic studies to assist both experienced researchers and new-
comers in better understanding segmentation TTA. To the best of
our knowledge, this paper is among the first to comprehensively
investigate classic TTA techniques for semantic segmentation. Our
main observations are summarized as follows:

• Normalization statistics are frequently used in classification
TTA [29, 30, 40]. However, we find that the classic normal-
ization updating strategy offers marginal performance gains
and can sometimes even deteriorate the outcomes of segmen-
tation TTA. Advanced techniques like batch renormalization
and large batch sizes fail to address this limitation effectively.
This observation motivates us to consider the update of other
modules to estimate the data distribution. We find that updat-
ing the attention module in Transformer [56] can promote
the performance in segmentation TTA.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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• While the teacher-student (TS) scheme bolsters training sta-
bility in segmentation TTA amidst noisy pseudo-labels and
different orders of images, we find that it does not always ele-
vate the performance beyond models not employing TTA, es-
pecially in scenarios involving complex data distribution (i.e.,
continual TTA) [42]. Instead, we find that the TS scheme can
produce high-quality pseudo-labels in segmentation TTA,
compared to the single-model.

• Segmentation TTA grapples with an acute LT imbalance
issue, which is more intricate than its counterpart in classi-
fication TTA. We find that this LT dilemma profoundly im-
pedes segmentation TTA efficacy, even with high-accuracy
pseudo-labels. Instead, we discover that the introduction of
region-level solution can improve the performance in seg-
mentation TTA.

In light of the above observations and comparisons, we discover
that visual prompt tuning (VisPT) is a promising solution in segmen-
tation TTA. Moreover, we find that combining RGB and frequency
domain can uncover a richer set of image priors, which is valu-
able for the creation of visual prompts. Based on VisPT and the
findings, we propose a novel benchmark named TTAP which has
been verified to be effective in segmentation TTA. In particular, its
computational time is much less than the comparative approaches.

2 RELATED STUDIES
Classic test-time adaptation. Normalization statistics are widely

used in TTA to compute the data distribution based on the test
data. TENT [40] adapts batch normalization (BN) layers based on
entropy minimization, i.e., the confidence of the target model is
measured by the entropy of its predictions. EATA [29] actively
selects reliable samples to minimize entropy loss during inference.
Furthermore, it also introduces a Fisher regularizer to filter out
redundant samples to reduce the computational time. SAR [30] is a
reliable and sharpness-aware entropy minimization approach that
can suppress the effect of noisy test samples with large gradients.
ATP [2] is flexible to handle various kinds of distribution shifts in
online federated learning, by adaptively learning the adaptation
rates for each target model. However, the cross-entropy loss, which
is effectively used in classification, is inherently inapplicable to a
regression problem such as pose estimation [21].

Besides entropy-based approaches, many other strategies are
also introduced to address TTA. TEA [49] transforms the source
model into an energy-based classifier to align the distributions of the
model and test data. AdaContrast [3] combines contrastive learning
and pseudo labeling to handle TTA. AdaNPC [52] is a parameter-
free TTA approach based on a K-Nearest Neighbor (KNN) classifier,
where the voting mechanism is used to attach labels based on
𝑘 nearest samples from the memory. Different from traditional
approaches, CTTA-VDP [6] introduces a homeostasis-based prompt
adaptation strategy that freezes the sourcemodel parameters during
the continual TTA process. Based on a large-scale open-sourced
benchmark approaches and thorough analysis, TTAB [55] unveils
three pitfalls in prior TTA approaches under classification tasks.

Semantic segmentation. Pixel-level annotation is one of the key
characteristics of semantic segmentation. HAMLET [4] can handle

unforeseen continuous domain changes, since it combines a special-
ized domain-shift detector and a hardware-aware backpropagation
orchestrator to actively control the model’s real-time adaptation for
semantic segmentation. CoTTA [42] can reduce error accumulation
based on weight-averaged and augmentation-averaged predictions.
Segmentation tasks are also pervasive in medical images, since the
scanner model and the protocol differ across different hospitals.
This issue can be handled by introducing an adaptable per-image
normalization module and denoising autoencoders to incentivize
plausible segmentation predictions [16].

SITA [17] can be applied in segmentation and the source model is
adapted independently based on each individual test sample which
will be augmented several times. DIGA [43] is a backward-free seg-
mentation approach that is based on a semantic and a distribution
adaptation module, which can adapt the model at both semantic and
distribution levels. However, the weights of different modules are
fixed. Segmentation TTA has also been extended to multi-modal 3D
tasks based on intra-modal pseudo-label generation and inter-modal
pseudo-label refinement [34], although the experiments are carried
out on simple scenarios. OASIS [39] is a training-validation-deploy
benchmark that focuses on the evaluation protocol, adaptation
benchmark and impact of catastrophic forgetting.

Similar to TTAB [55], the segmentation TTA community also
lacks insightful guidelines. For instance, are classic TTA strategies,
such as normalization and teacher-student (TS) scheme still effec-
tive in segmentation TTA? What is the challenge to address LT
problems? Are classic TTA techniques robust to batch dependency
of the test data? What kind of deep architecture is preferred, Trans-
former or CNN [56]? Moreover, what are the possible solutions to
improve segmentation TTA when classic strategies fail to work?

3 PRELIMINARIES
3.1 Problem Statement
Let D𝑡𝑟𝑎𝑖𝑛 = {

(
x𝑖 , y𝑖

)
}𝑁
𝑖=1 ∈ P𝑡𝑟𝑎𝑖𝑛 be the training data, where

x, y and 𝑁 represent the features, labels and data amount, respec-
tively. Let 𝑓Θ (x) denote a pre-trained segmentation model with
parameters Θ. The goal of segmentation TTA is to adapt 𝑓Θ (x)
to the unlabeled test data D𝑡𝑒𝑠𝑡 = {x𝑖 }𝑀𝑖=1 ∈ P𝑡𝑒𝑠𝑡 with different
data distribution, i.e., P𝑡𝑟𝑎𝑖𝑛 (x) ≠ P𝑡𝑒𝑠𝑡 (x). Under the TTA para-
digm [40], the model 𝑓Θ (x) receives a batch of unlabeled test data
at each time step, and it will be updated in an online manner.

3.2 Classic TTA Strategies
In this paper, our primary objective is to uncover the unique chal-
lenges posed by segmentation TTA under classic strategies and
provide some inspirational solutions. To achieve that purpose, we
delve into several well-established strategies, including normal-
ization updating [54], teacher-student (TS) scheme [42], test-time
augmentation (Aug) [26], and pseudo labeling (PL) [52], all of which
have demonstrated their effectiveness in classification TTA.

3.3 Experimental Setups
To ensure consistent evaluations of various TTA approaches, we
conduct empirical studies based on several widely used semantic
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Table 1: Results of batch norm updating strategies (i.e., TENT [40] and its variants) on datasets ACDC, Cityscapes-fog and Cityscapes-rain (mIoU,
%). SO indicates using the source model without adaptation, while BS represents the batch size of test data at each iteration. Except that the
TENT (larger BS) variant uses a batch size of 4, the other methods are based on BS = 1 as mentioned in Section 3.

Method A-fog A-night A-rain A-snow CS-fog CS-rain Avg.

SO 68.2 39.5 59.7 57.6 74.2 66.6 61.0
TENT 63.3 (-4.9) 39.5 (-0.3) 57.6 (-2.1) 54.9 (-2.7) 73.9 (-0.3) 66.8 (+0.2) 58.8 (-2.2)

TENT (larger BS) 64.4 (-3.8) 39.8 (+0.3) 57.3 (-2.4) 54.0 (-3.6) 71.6 (-2.6) 66.7 (+0.1) 59.0 (-2.0)

TENT (BN-fixed) 68.1 (-0 1) 39.4 (-0.1) 60.1 (+0.4) 57.1 (-0.5) 74.1 (-0.1) 66.5 (-0.1) 59.9 (-0.1)

BN adapt 62.0 (-6.2) 37.3 (-2.2) 55.1 (-4.6) 52.7 (-4.9) 73.3 (-0.9) 65.9 (-0.7) 57.7 (-3.3)

AugBN 67.6 (-0.6) 38.2 (-1.3) 59.0 (-0.7) 56.3 (-1.3) 73.3 (-0.9) 65.9 (-0.7) 60.0 (-1.0)

segmentation datasets, including ACDC [32], Cityscapes-foggy (CS-
fog) [31] and Cityscapes-rainy (CS-rain) [13]. In addition, we strictly
follow the implementation details outlined in previous studies [4,
42], and use Segformer-B5 [46] as the pre-trained model. Two state-
of-the-art and recent segmentation approaches, i.e., Oneformer
[14] and SAM [18], are also used in comparative experiments. We
focus on transformer-based architectures instead of CNN-based
architectures, since the former exhibits more promising results
than the latter (cf. Appendix 1). Unless otherwise specified, all
experiments are conducted with a batch size (BS) of 1, mirroring
real-world scenarios where the test samples often arrive one by
one in an online manner. Some of the experimental results, i.e.,
Tables and Figures, are displayed in the Appendix. The choice of
hyper-parameters can be seen in the code of this paper which will
be publicly available.

4 DOES NORMALIZATION UPDATINGWORK
FOR SEGMENTATION TTA?

4.1 Norm Updating Fails in Segmentation
We start with batch normalization (BN) updating strategies [28,
33]. Most existing BN-based TTA methods [29, 40], contrary to
typical deep learning pipelines, compute the distribution statistics
directly from the test data, rather than starting with or inheriting
those from the training data. These methods only update the BN
layers during TTA, restricting changes exclusively to the model
parameters. This ensures that the core learned features remain
intact, while only the normalization gets adjusted based on the test
data. These approaches have demonstrated their effectiveness in
bridging domain gaps for image classification at test time, however,
their efficacy in semantic segmentation is yet to be thoroughly
explored and validated.

To delve deeper into this, we conduct a thorough evaluation of
BN-based TTA methods in segmentation based on a classic method
TENT [40]. Specifically, TENT adapts a model by using the BN
statistics from mini-batch test data (with BS = 1) instead of those
inherited from the training data, and updating the affine parameters
of BS through entropy minimization. Moreover, we explore two
variants of TENT: 1) TENT (larger BS) seeks to enhance TENT’s
performance by utilizing a larger batch size of 4, aiming for a more
precise estimation of distribution statistics; 2) TENT (BN-fixed)
retains the BN statistics from the training data without adaptation
and solely updates the affine parameters of BS through entropy min-
imization. Finally, we also conduct comparisons with BN adapt [33]

and AugBN [17], both of which have demonstrated their effective-
ness in segmentation TTA using CNN-based architectures [17].

As shown in Table 1, we have three main observations. First, all
TENT variants perform worse than the Source Only (SO), highlight-
ing the difficulties that classic batch norm updating methods en-
counter in segmentation TTA. Second, even though using a larger
batch size marginally elevates TENT’s performance, it remains
overshadowed by SO. Last, the TENT (BN-fixed) variant achieves
performance only similar to SO, although the affine parameters of
BN are updated. This shows that retaining the BN statistics from
the training data plays a key role, while updating the affine param-
eters of BN does not bring the expected improvement. In summary,
batch norm updating strategies, despite performing well in classi-
fication TTA, do not meet anticipated outcomes in segmentation
TTA. Please refer to Section 4.3 for more discussions on distribution
estimation tricks like larger batch size and batch renormalization.

4.2 Aligning Batch Norm Statistics Loses Its
Magic in Segmentation

We next aim to probe the underlying reasons for the poor perfor-
mance of BN-based TTAmethods in semantic segmentation. Before
diving into the detailed analysis, we first provide a foundational
overview of BN updating to ensure clarity and comprehension. Let
𝑓 ∈ R𝐵×𝐶×𝐻 ′×𝑊 ′

represent a mini-batch of features, where𝐶 indi-
cates channel numbers, 𝐻 ′ is the height of features, and𝑊 ′ is the
width. BN normalizes 𝑓 using the distribution statistics of mean 𝜇

and variance 𝜎 (both 𝜇 and 𝜎 belong to R𝐶 ). The normalization is
mathematically expressed as:

𝑓 ∗ = 𝛾 · 𝑓
′
+ 𝛽, 𝑤ℎ𝑒𝑟𝑒 𝑓

′
=

𝑓 − 𝜇

𝜎
, (1)

where 𝛾, 𝛽 ∈ R𝐶 are learnable affine parameters of BN that repre-
sent scale and shift, respectively. During inference, 𝜇 and 𝜎 are set
to 𝜇𝑒𝑚𝑎 and 𝜎𝑒𝑚𝑎 , respectively, which are the exponential-moving-
average (EMA) estimation of distribution statistics. Previous BN-
based TTA methods for classification have shown that in situations
where there is a distribution shift between the training and test
data, i.e., P𝑡𝑟𝑎𝑖𝑛 (x) ≠ P𝑡𝑒𝑠𝑡 (x), replacing the EMA estimation of
𝜇𝑒𝑚𝑎 and 𝜎𝑒𝑚𝑎 with the test mini-batch statistics can boost model
performance [40] when test mini-batch statistics are accurate.

However, Table 1 has demonstrated that such a strategy does not
make sense in semantic segmentation. The challenges arise from
the model’s difficulty in accurately assessing the test data statistics
during adaptation for segmentation. To shed light on this, we visu-
alize the estimated distribution statistics of BN in Figure 1 (a)-(b).
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Figure 1: Quantitative metrics analysis. (a) and (b) capture the BN distribution statistics through online adaptation. (c) shows the differential
impacts of different batch norm updating techniques across different batch sizes (BS). (d) delves into the effects of varying updating strategies
based on TENT, contrasting different proportions of pseudo-labels with the rest being ground-truth (GT) labels.

To be specific, we train the model from scratch on both Cityscapes
training data and ACDC-fog test data, followed by recording BN
distribution statistics, represented by “training” (the blue line) and
“test” (the red line) in Figure 1 (a)-(b). Subsequently, we employ the
aforementioned TENT to adapt the trained model to test data, and
record the change of BN distribution statistics. Specifically, TENT
adjusts BS statistics based solely on mini-batch test data indepen-
dently at each iteration. In contrast, TENT (BN-initialized) starts
with the BN distribution statistics from the training data model and
progressively adapts BN statistics using EMA, instead of computing
statistics independently for each test batch.

Figure 1 (a)-(b) leads to four main findings. First, the distribu-
tional discrepancy between the “training” and “test” data is pro-
nounced. Second, while TENT (BN-initialized) — represented by
the black dots in Figure 1 (a)-(b) — does endeavor to adjust to the
test data, it fails to estimate the test data very well, still remaining
misalignment relative to the true test data distribution. Third, the
BN statistics’ evolution in TENT (depicted by the green points)
mirrors that of TENT (BN-initialized) closely. This resemblance
arises because, even though TENT’s BN statistics are not inher-
ited and are recalibrated based on individual mini-batches of test
data at every iteration, the rest of the model parameters are indeed
derived from the training data model. Consequently, the initial fea-
ture distribution still aligns more closely with the training data’s
distributional characteristics, preventing direct approximation of
the test data distribution. As the adaptation progresses, while there
is a trend towards aligning with the test distribution, it, much like
TENT (BN-initialized), ultimately fails to capture that distribution
accurately. Last, we notice a pronounced increase in the variance
of TENT (BN-initialized), indicating a widening divergence in the
distribution estimation. In summary, the imprecise estimation of
the test data distribution renders BN updating ineffective for seg-
mentation TTA, with the fluctuating and escalating variance even
potentially imparting detrimental effects on model performance.

4.3 Distribution Estimation Tricks Cannot
Resolve the Problem

In light of the above discussions, we next ask whether further using
distribution estimation tricks can rectify the issues associated with
the distribution estimation of normalization updating in segmenta-
tion TTA. In response, we investigate three policies: harnessing a

larger batch size, adopting batch renormalization, and leveraging
GT labels (mainly for empirical analysis).

Larger batch size. Previous studies [30, 40] have shown that using
a larger batch size can enhance the BN updating for classification
TTA. Driven by this rationale, we investigate the impact of different
batch sizes (ranging from 1 to 10) on segmentation TTA, where
we also provide the results based on layer normalization (LN) [1]
and group normalization (GN) [45], which replace the BN to LN
and GN, respectively. As shown in Figure 1 (c), an increase in batch
size does indeed enhance BN updating. However, this enhance-
ment does not translate to an improvement over SO, i.e., using the
pre-trained source model without adaptation. This indicates that
merely increasing the batch size cannot adequately solve the issue
of normalization-based segmentation TTA methods. Furthermore,
we also observe that the outcomes of GN are similar to LN, suggest-
ing that the significance of normalization layers might not be so
important as we previously expected.

Batch renormalization. Utilizing local test mini-batch statistics
formodel adaptation proves unreliable, especiallywhen confronting
persistent distribution shifts [48]. Such unreliability originates from
error gradients and imprecise estimations of test data statistics. In
response, we delve into two test-time batch renormalization tech-
niques [48, 54], namely Test Local Adapt and Test Global Adapt,
aiming to refine the distribution estimation. Test Local Adapt lever-
ages the source statistics to recalibrate the mini-batch test data
distribution estimation, whereas Test Global Adapt uses test-time
moving averages to recalibrate the overall test distribution esti-
mation. As shown in Figure 1 (c), while batch renormalization
strategies do enhance the performance of TENT, their performance
is just comparable to that of SO and cannot lead to performance
improvement in semantic segmentation.

Ground-truth labels. To analyze the impact of pseudo-label noise
on distribution estimation, we leverage true labels for empirical
studies. Moreover, to analyze the effects of updating different net-
work components, we further explore three distinct updating strate-
gies. (1) TNET (update BN): the affine parameters in BN are updated;
(2) TNET (update except BN): the parameters except for BN are up-
dated; (3) TNET (update all): all the model parameters are updated.
As shown in Figure 1(d), when solely relying on pseudo-labels,



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

FromQuestion to Exploration: Can Classic Test-Time Adaptation Strategies Be Effectively Applied in Semantic Segmentation? ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 2: Results of the teacher-student scheme on ACDC (mIoU, %). “SO”/“Single”/“TS” are short for source only/the single-model/the teacher-
student scheme, and “PL”/“Aug” are short for pseudo-labeling/test-time augmentation, respectively.

Method PL Aug A-fog A-night A-rain A-snow Avg.

SO 68.2 39.5 59.7 57.6 56.3

Single ✓ 54.6 (-13.6) 29.0 (-10.5) 45.5 (-14.2) 41.2 (-16.4) 42.7 (-13.7)

TS ✓ 67.4 (-0.8) 38.7 (-0.8) 59.8 (+0.1) 57.2 (-0.4) 55.9 (-0.4)

Single ✓ ✓ 41.9 (-26.3) 18.1 (-21.4) 20.7 (-39.0) 16.4 (-41.2) 24.4 (-31.9)

TS ✓ ✓ 70.0 (+1.8) 40.2 (+0.7) 63.8 (+4.1) 59.2 (+1.6) 58.4 (+2.1)

Table 3: Comparisons between TENT [40] and its attention-based
version (Attn) (mIoU, %). The results indicate that incorporating the
attention mechanism can enhance the performance in TTA.

Method A-fog A-night A-rain A-snow CS-fog CS-rain Avg.

TENT 63.3 36.5 56.2 54.0 73.8 66.8 58.4
TENT (Attn) 69.2 39.1 61.2 58.3 74.1 67.2 61.5

TENT (update BN) outperforms its counterparts due to its mini-
mal parameter updating, making it less susceptible to the noise
of pseudo-labels. In contrast, the other baselines exhibit markedly
inferior performance under these conditions. However, as the qual-
ity of pseudo-labels improves—with the incorporation of more GT
labels, there’s a significant performance boost in TENT (update
except BN) and TENT (update all). Yet, TENT (update BN) remains
stagnant, not showing the same enhancement. This further demon-
strates the limitations of existing BN updating TTA strategies in
semantic segmentation. Thus, what is the promising solution when
distribution estimation tricks fail to work?

4.4 Updating the Attention Module is Promising
Based on the above analysis, we believe that: 1) it is hard to es-
timate the normalization statistics in segmentation TTA at the
pixel-level1; 2) within the Transformer-based architectures, the im-
pact of normalization layers is relatively muted compared to that
in CNN-based architectures [30]. Thus, which module is important
to estimate the data distribution in segmentation TTA?

We hypothesize that the self-attention mechanism may play a
pivotal role in Transformer-based architectures [12]. This hypothe-
sis is exemplified by analyzing Segformer-B5 [46], which utilizes
a gradient-based sorting technique to arrange all layers, placing
some attention modules and multi-layer perceptions (MLPs) ahead
of the normalization layers. As displayed in Table 3, it indicates
that updating the attention mechanism is a promising and novel
direction for transformer-based models. In the future, focusing
on the attention mechanism and the fusion of MLP modules may
enhance the effectiveness of Transformer-based architectures in
segmentation TTA.

5 DOES THE TEACHER-STUDENT SCHEME
WORK FOR SEGMENTATION TTA?

5.1 The Teacher-student Scheme Helps Stabilize
Segmentation TTA

The teacher-student exponential moving average (TS-EMA) scheme
[10] has been shown to enhance model training and accuracy [37].
1We will discuss the region-level solution in Section 6.2

Table 4: Comparisons under different temporal orders of images
on Cityscapes-fog and Cityscapes-rain (mIoU, %). Different random
seeds (i.e., 0/9/99/999/999) represent different time orders.

Domain Single (GT) TS 0 9 99 999 9999

CS-fog ✓ 78.2 78.1 78.2 78.2 78.3
CS-fog ✓ 76.7 81.1 82.0 82.1 81.9
CS-rain ✓ 72.0 78.2 71.9 71.9 71.9
CS-rain ✓ 83.9 79.3 79.4 80.3 79.5

Many recent methods [38, 42, 48] introduce it into TTA by using a
weighted-average teacher model to improve predictions. The un-
derlying belief is that the mean teacher’s predictions are better
than those from standard and single models. However, the precise
influence of TS-EMA on segmentation TTA has not been thor-
oughly investigated. In this Section, we seek to delve into its em-
pirical impact. For the implementation of the TS-EMA scheme, we
follow CoTTA [42] to update the student model by L𝑃𝐿 (xT ) =

− 1
𝐶

∑
𝑐 ỹ𝑐 log ŷ𝑐 , where𝑦𝑐 is the probability of class 𝑐 in the teacher

model’s soft pseudo-labels prediction,𝑦𝑐 is the output of the student
model, and 𝐶 indicates the total number of categories.

To figure out whether the TS-EMA scheme indeed stabilizes TTA
for semantic segmentation, we compare the TS-EMA scheme and
the single-model (Single) scheme with pseudo-labeling (PL) and
test-time augmentation (Aug) [26]. As shown in Table 2, the Single
scheme consistently underperforms compared to the SO baseline,
a trend that persists even with the integration of PL and Aug. In
stark contrast, the TS-EMA scheme maintains relatively stable per-
formance. Using PL, it experiences only minor drops in categories
like “A-fog” and “A-night”, and even shows an improvement in “A-
rain”. Moreover, when employing both PL and Aug, TS outperforms
the SO baseline. In light of these observations, we conclude that
TS-EMA stands out as a robust method to improve the training
stability of segmentation TTA.

Temporal correlations. Additionally, we also investigate the per-
formance regarding the temporal order of samples. This considera-
tion is practical since a TTA task should process each test instance
online and independently. Comparing the TS scheme and the single-
model (GT labels are introduced for further examination, since
the pseudo-labels are found to contain serious noise in the single-
model), the results are displayed in Table 4. Even with varying
random seeds (i.e., time orders), the TS scheme consistently yields
similar results, indicating that it is not susceptible to fluctuations in
temporal correlations. In contrast, the results of the single-model
exhibit more noticeable variations. For instance, when the seed is
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set to 9, the result for CS-rain is 78.2%, whereas the results for other
seeds hover around 72%.

5.2 Discussions of Potential Limitations
While previous analysis attests to the efficacy of the TS-EMA
scheme, a closer examination of Table 2 (cf. Appendix) underscores
a notable observation: when the SO baseline is fortified with test-
time augmentation, its performance surpasses that of TS combined
with both PL and Aug. This suggests that the primary advantage of
TS-EMA may lie in mitigating the noise introduced by PL, thereby
allowing Aug to function more effectively.

This finding provokes a subsequent question: if the accuracy
of pseudo-labels is enhanced, would the TS model also exhibit im-
proved performance as shown in previous studies [37]? To answer
this question, we adjust the experimental setting, concentrating
on situations where pseudo-labels become increasingly accurate,
marked by a growing proportion of GT labels. In this context, we
assume that the GT labels are accessible so that we can empirically
assess the model performance across varying ratios of GT labels.

We continue to compare the single-model and the TS scheme.
As depicted in Figure 1 (cf. Appendix), we have plotted the IoU
(Intersection over Union) metrics for each class against varying
levels of GT. This visualization helps us critically assess how the
performance trajectory of these two schemes adjusts as the accuracy
of the pseudo-labels promotes. For the sake of fair comparison, the
policy of Aug is not adopted in that Figure, where comparative
results indicate that the performance improvement will be minimal
without data augmentation. This experiment aims to investigate
the importance of each module of the TS scheme and emphasize
the necessity of Aug in this scheme. Moreover, we also report the
result of TS scheme leveraging data augmentation in Figure 2 (cf.
Appendix).

Upon a detailed observation, it becomes evident that both the
single-model and TS scheme exhibit similar performance trends.
When the precision of the pseudo-labels hits an approximate thresh-
old of 1%2, the single-model scheme achieves a performance that
is almost neck-and-neck with that of the TS scheme. However, as
we progress beyond this pseudo-labels precision threshold, an in-
teresting divergence arises: while the single-model continues to
better its performance, the TS model appears to stagnate and its
mIoU (mean IoU) metric remains static at 0.69. In stark contrast,
the single-model exhibits a commendable improvement, witnessing
its mIoU metric jump from an initial 0.59 to a robust 0.74.

Given this observation, one could infer a potential limitation
intrinsic to the TS scheme. Despite having increasingly accurate
pseudo-labels at its disposal, it does not exhibit the expected adapt-
ability and responsiveness, unlike its single-model counterpart.

Continual TTA. Real-world perception systems operate in non-
stationary and constantly evolving environments, where the test
data distribution can change from time to time [42]. As shown in
Figure 2, we sequentially adapt the pre-trained model of the dataset
Cityscapes to the dataset ACDC. Surprisingly, the performance of
the TS scheme gradually deteriorates and is comparable to that of
TENT. In the end, the TS scheme even exhibits inferior performance
2To put this into perspective, for an ACDC image, 1% GT translates to a total of
0.01 ∗ 1080 ∗ 1920 = 22572 pixels.
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Figure 2: The results of online continual segmentation TTA on the
Cityscapes-to-ACDC task (%). We evaluate the four test conditions
continually four times to evaluate the performance of long-term
adaptation. “f”/“n”/“r”/“s” are short for domain fog/night/rain/snow,
respectively.

compared to TENT. In addition, we also use Single (GT) for exam-
ination. The results obtained with Single (GT) demonstrate that
high-quality pseudo-labels can prevent the deterioration caused by
the changing test data distributions.

Based on the above analysis, it is clear that the TS scheme is
capable of achieving stable training, even in the presence of noisy
labels or temporal correlation in TTA. However, we identify some
challenges associated with the TS scheme: 1) it is difficult to effec-
tively utilize high-quality pseudo-labels; 2) it tends to deteriorate
under continual TTA. These findings highlight the need of further
research and improvements to fully harness the potential of the TS
scheme.

6 DOES CLASS IMBALANCE INFLUENCE
SEGMENTATION TTA?

6.1 Segmentation TTA Suffers the Long-tailed
Problem

Semantic segmentation inherently grapples with the challenge
posed by data imbalance [11, 51]. Certain semantic classes, such as
sky and buildings, are predisposed to occupy vast areas populated
with significantly more pixels, often leading them to dominate the
visual space, prevalent in numerous realistic pixel-level classifica-
tion endeavors.

When placed in the context of TTA, the long-tailed (LT) problem
becomes more pronounced, manifesting as an obvious bias in test-
time optimization towards dominant classes [50, 54]. Both NOTE
[8] and SAR [30] can handle class imbalance in classification TTA,
however, they perform poorly when addressing the LT problem
in segmentation TTA. As shown in Figure 5 (cf. Appendix), the
numerical disparity between the majority and minority classes
surpasses a staggering 1000-fold difference. This stark contrast is
evident when compared to common datasets used in classification
tasks, such as CIFAR10-LT, where the most majority class is only
in the thousand-level range and has 100× more samples than the
most minority class [44]. Adding to the challenge is the nature of
semantic segmentation itself, which involves copious pixel-level
labels, further complicating the LT complexity. In this Section, we
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Figure 3: Reliability diagrams [5] of visualized expected calibration error (ECE) for segmentation TTA (ACDC-fog). A smaller gap represents
less ECE and better calibration. After adaptation, ECE actually becomes larger, indicating that the model is more over-confident.

aim to shed light on the challenges of the LT problem as it manifests
in segmentation TTA.

We then show the intricate complexity and challenge inherent
in semantic segmentation, making it markedly more difficult than
classification tasks. To delve deeper into this issue, we assume that
the model can generate high-confidence pseudo-labels for the test
data during adaptation and subsequently analyze the resultant state
of the model. Our analysis will be conducted from three perspec-
tives: examining the confusion matrix, conducting recall-precision
analysis, and evaluating model calibration.

Confusion matrix. The confusion matrix of ACDC-fog is dis-
played in Figure 9 (cf. Appendix), unveiling extreme variations in
the outcomes for each class, reflecting the substantial discrepancy
in the metric across different classes. For example, when a pixel
is predicted to be fence, the possibilities of its true labels—rider,
motorcycle, and bicycle—are all less than 10−6, contrasting sharply
with other classes that are in the tens of thousands. We suggest this
stark difference elucidates the extreme variation and irregularity
in the model’s predictive accuracy for different classes.

Recall-precision analysis. To further detailed analysis of LT, we
also show the quantitative metrics of each class on ACDC-fog3,
as shown in Figure 4 (cf. Appendix). We conduct a comparison of
the results between two experiments: Source Only (SO) and Adapt
(where we fine-tune the source model using 100% GT labels). Firstly,
as evident in all the plots of this figure, the majority classes consis-
tently achieve exceptionally high scores across all metrics, whereas
the minority classes do not consistently perform the worst. Sec-
ondly, following the adaptation process (involving the addition of
supervised information to model training), the recall of most classes
shows improvement, while the precision of certain minority classes
experiences a decrease. This indicates that the model is less likely
to miss pixels of this class (predicting it as other classes) while
becoming more prone to predicting pixels of other classes as this
class. This phenomenon diverges from the patterns observed in clas-
sification tasks [44] and does not align with conventional wisdom,
adding complexity to the uncovering of underlying patterns.

Model calibration. We conduct experiments to delve into model
interpretability, aiming to unearth the primary challenges asso-
ciated with the uncertainty of segmentation TTA. According to
3The results on the other domains of dataset ACDC are presented in Figure 6-Figure 8
(cf. Appendix).
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Figure 4: Test-time augmentation and region-level training strategies
can relieve LT biases. mIoU (%) and std are displayed. “PL”/“aug”/“rl”
are short for pseudo-labeling/test-time augmentation/region-level,
respectively.

the results displayed in Figure 3 (a)-(d), we find that SO records
the lowest ECE at 9.8%. However, TENT, TS, and SO (Aug) fail to
generate improved confidence estimation after adaptation. On the
other hand, TENT seems to bolster the model’s performance in low
confidence zones, particularly in the bins spanning from 0.1 to 0.5
as shown in Figure 3 (b). In contrast, the TS scheme exhibits subpar
prediction accuracy in these low confidence bins and consistently
avoids low probability predictions, as distinctly seen in Figure 3 (c).
Although SO (Aug) gains the highest result (Table 2), it does not
succeed in enhancing calibration. In summary, while these methods
showcase their strengths in segmentation TTA, calibration remains
a nuanced challenge and it is imperative to consider the interplay
of various factors.

6.2 How to Relieve LT Biases?
Having already identified the LT problem as a key challenge in
segmentation TTA, our exploration will focus on effective strate-
gies in mitigating these biases. While re-weighting and re-sampling
are prevalent methods in managing imbalanced data [51], apply-
ing these strategies at pixel-level in segmentation TTA does not
yield positive results. In fact, it may lead to worse performance.
As discussed in Section 4, since statistics based on pixel-level are
highly unstable, we employ a re-sampling approach that focuses on
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region-level. Furthermore, we also consider the test-time augmen-
tation, which has shown to be effective in Section 5. The mIoU and
the standard deviation (std) of class diversity on dataset ACDC are
shown in Figure 4, displaying that both of these two strategies can
relieve the LT problem. Although test-time augmentation brings
improvement, its std is similar to the baseline (PL). In this way,
re-sampling based on region-level demonstrates the most obvious
potential.

Furthermore, we consider the individual role of augmentation
and the results are displayed in Table 2 (cf. Appendix), pondering
the potential of test-time augmentation to alleviate the issue of
tail-class information scarcity [53]. Following this, we conduct an
ablation study for test-time augmentation [26, 42] in terms of the
F1 Score and mIoU. As shown in Table 3 (cf. Appendix), it is clear
that employing data augmentation results in a 2.4% increase in
mIoU. However, it simultaneously leads to a 0.9% decrease in the F1
Score. This suggests that the model, post-augmentation, intensifies
its prediction of minority classes, leading to a simultaneous rise
in both True Positive and False Positive, thereby boosting mIoU.
Nonetheless, the nuanced balance of Recall and Precision in the F1
Score leads to a less pronounced change. Regarding the tail classes,
we observe a notable 4.4% increase in mIoU, contrasted by a 1.1% de-
cline in F1 Score. This showcases that while augmentation enhances
the model’s detection of tail classes, it does not uniformly improve
its precision for these classes. In light of the above observations, we
conclude that Aug partially relieves LT biases in segmentation TTA.
In the future, we will explore integrating region-level segmentation
and Aug to address the LT problem in segmentation TTA.

7 OUR PROPOSED BENCHMARK: TTAP
Prompt tuning is an inspirational technique that can produce addi-
tional textual instructions to fine tune large-scale Natural Language
Processing (NLP) models for specific downstream tasks [24]. In-
spired by this fact, we attempt to investigate the applicability of
visual prompt tuning (VisPT) in segmentation TTA. Recently, VisPT
has also been introduced into TTA methods for parameter-efficient
transfer, i.e., x = x + P, where P is the visual prompt. DePT [7] is
derived from VPT [15], which introduces a small amount of task-
specific learnable parameters into the input space while freezing the
entire pre-trained transformer block during adaptation. DVPT [6]
introduces both domain-specific and domain-agnostic prompts to
prevent catastrophic forgetting and error accumulation. Compared
to DVPT, SVDP [47] proposes sparse visual domain prompts to
reserve more spatial information of the input image. UniVPT [27]
suggests a lightweight prompt adapter to progressively encode in-
formative knowledge into prompts, thereby improving their spatial
robustness.

Based on the above analysis, we suggest that generating visual
prompts can leverage image priors to provide a straightforward
and effective strategy, i.e., frequency domain [41]. By combining
RGB and frequency domain, we can uncover a richer set of image
priors, proving invaluable for the creation of visual prompts. The
comparative results displayed in Table 5 (cf. Appendix) indicate
that VisPT a promising technique in segmentation TTA.

To further explore the potential of VisPT in segmentation TTA,
we propose a benchmark named TTAP. TTAP is based on VisPT

Table 5: Comparisons between TTAP and other methods (mIoU, %).
The computational time (minute) on dataset ACDC is also displayed.
The computational time of CoTTA is more than ten times of TTAP,
while our accuracy is just slightly lower than CoTTA.

Method CS (GTA) CS (Syn) CS-fog CS-rain ACDC (time) Avg.

SO 68.6 51.1 74.2 66.6 56.3 (1.7) 63.4
TENT 67.8 50.4 73.9 66.8 53.1 (2.0) 62.4
CoTTA 65.5 50.4 75.2 68.7 57.6 (68.2) 63.6
DePT 65.1 48.2 60.1 57.1 52.6 (5.0) 56.6
DVPT 66.3 48.6 67.7 63.3 56.5 (5.5) 60.5
UniVPT 60.2 43.3 60.1 44.2 36.2 (20.9) 48.9
SVDP 69.1 52.2 67.8 64.3 57.2 (75.5) 62.1
TTAP (ours) 72.1 57.6 76.0 71.0 57.2 (6.0) 66.8

and our previous observations. First, we generate the visual prompt
for each test sample using image priors (Section 7). Then, we adopt
the TS framework to produce high-confidence pseudo-labels to
refine the visual prompts. The time-consuming (Section 5) tech-
nique of Aug is not adopted, since online adaptation demands a
highly time efficiency. Finally, we update the attention module
and visual prompts, since it is hard to address distribution shifts
solely depending on normalization layers in transformer-based ar-
chitectures (Section 4). The comparative results are displayed in
Table 5, where it is clear that TTAP achieves outstanding perfor-
mance. Although CoTTA [42] achieves higher results on ACDC
dataset, it is time-consuming due to the policy of Aug. In contrast,
our proposed approach TTAP only updates limited parameters
without augmentation and the computational time is less than 10%
of CoTTA. Furthermore, our average performance is higher than
all the other approaches.

8 CONCLUSIONS
In TTA community, an open question still remains to be inves-
tigated: Can classic test-time adaptation strategies be effectively
applied in semantic segmentation? Our purpose is to address this
question to assist both experienced researchers and newcomers in
better understanding segmentation TTA. In this paper, we provide
extensive experiments and comprehensive analysis to investigate
the applicability of popular TTA strategies such as normalization
and teacher-student scheme. Ground-truth labels are also intro-
duced to examine how pseudo-labels affect the single-model. Exper-
imental results indicate that those classic strategies do not perform
well in segmentation TTA. Meanwhile, we also attempt to disclose
the fundamental reasons and suggest some possible solutions, such
as updating the attention module and integrating region-level seg-
mentation.

Besides the regular observations, we discover that visual prompt
tuning (VisPT) is a promising solution to address segmentation TTA.
Further, based on VisPT and the those observations, we propose
a novel benchmark named TTAP which has also been proved to
be effective. More information such as Tables, Figures and analysis
can be found in the Supplementary Material. We hope that more
researchers can join the TTA community and build a common
practice for segmentation.
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