From Question to Exploration: Can Classic Test-Time Adaptation Strategies Be Effectively Applied in Semantic Segmentation?

Anonymous Authors

ABSTRACT

Test-time adaptation (TTA) aims to adapt a model, initially trained on training data, to test data with potential distribution shifts. Most existing TTA methods focus on classification problems. The pronounced success of classification might lead numerous newcomers and engineers to assume that classic TTA techniques can be directly applied to the more challenging task of semantic segmentation. However, this belief is still an open question. In this paper, we investigate the applicability of existing classic TTA strategies in semantic segmentation. Our comprehensive results have led to three key observations. First, the classic normalization updating strategy only brings slight performance improvement, and in some cases it might even adversely affect the results. Even with the application of advanced distribution estimation techniques like batch renormalization, the problem remains unresolved. Second, although the teacher-student scheme does enhance the training stability for segmentation TTA in the presence of noisy pseudo-labels and temporal correlation, it cannot directly result in performance improvement compared to the original model without TTA under complex data distribution. Third, segmentation TTA suffers a severe long-tailed class-imbalance problem, which is substantially more complex than that in TTA for classification. This long-tailed challenge negatively affects segmentation TTA performance, even when the accuracy of pseudo-labels is high. Besides those observations, we find that visual prompt tuning (VisPT) is promising in segmentation TTA. Further, we propose a novel benchmark named TTAP based the above findings and VisPT. The outstanding performance of TTAP has also been verified. We hope the community can give more attention to this challenging, yet important, segmentation TTA task in the future. The source code will be publicly available.

CCS CONCEPTS

• Computing methodologies \rightarrow Learning under covariate shift.

KEYWORDS

Test-time adaptation; semantic segmentation; vision transformer

1 INTRODUCTION

Test-time adaptation (TTA) focuses on tailoring a pre-trained model to better align with unlabeled test data at test time [36]. That model

Unpublished working draft. Not for distribution.

51 52 53 54

- 57
- 58

47

48

49

50

needs to simultaneously produce a prediction and adapt itself in the online manner. The TTA paradigm is popular since the test data may unavoidably encounter corruptions or variations, such as Gaussian noise, weather changes, and many other reasons [9, 19]. Furthermore, the training and test data can not co-exist due to privacy concerns. These challenges have propelled TTA to the forefront as an emergent and swiftly evolving paradigm [22, 29, 30, 36, 40]. Broadly, existing techniques can be classified into two main categories: Test-Time Training (TTT) [25, 36] and fully TTA [29, 40]. Compared to TTT, fully TTA (TTA for short) is more practical and it is also the focus of this paper, since TTT needs to change the original model training which may be infeasible due to privacy concerns.

The key idea of TTA methods is to define a proxy objective at test time to adapt the pre-trained model in an unsupervised manner. Typical proxy objectives include entropy minimization [40], pseudo labeling [23] and class prototypes [35]. While the majority of TTA studies have centered on classification problems, real-world scenarios frequently highlight the ubiquity and critical nature of semantic segmentation. A prime instance is autonomous driving, where each system must accurately and instantaneously segment an array of dynamic and unpredictable perceptions [20]. A segmentation task is much more challenging than an image-level classification counterpart. For example, it is extremely difficult to estimate pixel-level data distribution which may result in error accumulation, the longtailed (LT) problem brings serious class imbalance, low-quality pseudo-labels of pixels may cause model collapse, etc. Numerous newcomers and engineers might mistakenly believe that classic TTA techniques can be directly applied in semantic segmentation. Nevertheless, this assumption still remains unverified, posing an open question. Thus, the TTA community needs to answer this open question: Can classic test-time adaptation strategies be effectively applied in semantic segmentation?

In this paper, we attempt to address this question and provide systematic studies to assist both experienced researchers and newcomers in better understanding segmentation TTA. To the best of our knowledge, this paper is among the first to comprehensively investigate classic TTA techniques for semantic segmentation. Our main observations are summarized as follows:

• Normalization statistics are frequently used in classification TTA [29, 30, 40]. However, we find that the classic normalization updating strategy offers marginal performance gains and can sometimes even deteriorate the outcomes of segmentation TTA. Advanced techniques like batch renormalization and large batch sizes fail to address this limitation effectively. This observation motivates us to consider the update of other modules to estimate the data distribution. We find that updating the attention module in Transformer [56] can promote the performance in segmentation TTA.

116

⁵⁵

⁵⁶

118

119

120

121

123

124

125

126

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

• While the teacher-student (TS) scheme bolsters training stability in segmentation TTA amidst noisy pseudo-labels and different orders of images, we find that it does not always elevate the performance beyond models not employing TTA, especially in scenarios involving complex data distribution (i.e., continual TTA) [42]. Instead, we find that the TS scheme can produce high-quality pseudo-labels in segmentation TTA, compared to the single-model.

• Segmentation TTA grapples with an acute LT imbalance issue, which is more intricate than its counterpart in classification TTA. We find that this LT dilemma profoundly impedes segmentation TTA efficacy, even with high-accuracy pseudo-labels. Instead, we discover that the introduction of region-level solution can improve the performance in segmentation TTA.

In light of the above observations and comparisons, we discover that visual prompt tuning (VisPT) is a promising solution in segmentation **TTA**. Moreover, we find that combining RGB and frequency domain can uncover a richer set of image priors, which is valuable for the creation of visual prompts. Based on Vis**PT** and the findings, we propose a novel benchmark named **TTAP** which has been verified to be effective in segmentation TTA. In particular, its computational time is much less than the comparative approaches.

2 RELATED STUDIES

Classic test-time adaptation. Normalization statistics are widely used in TTA to compute the data distribution based on the test data. TENT [40] adapts batch normalization (BN) layers based on entropy minimization, i.e., the confidence of the target model is measured by the entropy of its predictions. EATA [29] actively selects reliable samples to minimize entropy loss during inference. Furthermore, it also introduces a Fisher regularizer to filter out redundant samples to reduce the computational time. SAR [30] is a reliable and sharpness-aware entropy minimization approach that can suppress the effect of noisy test samples with large gradients. ATP [2] is flexible to handle various kinds of distribution shifts in online federated learning, by adaptively learning the adaptation rates for each target model. However, the cross-entropy loss, which is effectively used in classification, is inherently inapplicable to a regression problem such as pose estimation [21].

Besides entropy-based approaches, many other strategies are also introduced to address TTA. TEA [49] transforms the source model into an energy-based classifier to align the distributions of the model and test data. AdaContrast [3] combines contrastive learning and pseudo labeling to handle TTA. AdaNPC [52] is a parameterfree TTA approach based on a K-Nearest Neighbor (KNN) classifier, where the voting mechanism is used to attach labels based on k nearest samples from the memory. Different from traditional approaches, CTTA-VDP [6] introduces a homeostasis-based prompt adaptation strategy that freezes the source model parameters during the continual TTA process. Based on a large-scale open-sourced benchmark approaches and thorough analysis, TTAB [55] unveils three pitfalls in prior TTA approaches under classification tasks.

Semantic segmentation. Pixel-level annotation is one of the key characteristics of semantic segmentation. HAMLET [4] can handle

175

unforeseen continuous domain changes, since it combines a specialized domain-shift detector and a hardware-aware backpropagation orchestrator to actively control the model's real-time adaptation for semantic segmentation. CoTTA [42] can reduce error accumulation based on weight-averaged and augmentation-averaged predictions. Segmentation tasks are also pervasive in medical images, since the scanner model and the protocol differ across different hospitals. This issue can be handled by introducing an adaptable per-image normalization module and denoising autoencoders to incentivize plausible segmentation predictions [16].

SITA [17] can be applied in segmentation and the source model is adapted independently based on each individual test sample which will be augmented several times. DIGA [43] is a backward-free segmentation approach that is based on a semantic and a distribution adaptation module, which can adapt the model at both semantic and distribution levels. However, the weights of different modules are fixed. Segmentation TTA has also been extended to multi-modal 3D tasks based on intra-modal pseudo-label generation and inter-modal pseudo-label refinement [34], although the experiments are carried out on simple scenarios. OASIS [39] is a training-validation-deploy benchmark that focuses on the evaluation protocol, adaptation benchmark and impact of catastrophic forgetting.

Similar to TTAB [55], the segmentation TTA community also lacks insightful guidelines. For instance, are classic TTA strategies, such as normalization and teacher-student (TS) scheme still effective in segmentation TTA? What is the challenge to address LT problems? Are classic TTA techniques robust to batch dependency of the test data? What kind of deep architecture is preferred, Transformer or CNN [56]? Moreover, what are the possible solutions to improve segmentation TTA when classic strategies fail to work?

3 PRELIMINARIES

3.1 Problem Statement

Let $\mathcal{D}^{train} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N \in \mathcal{P}^{train}$ be the training data, where \mathbf{x}, \mathbf{y} and N represent the features, labels and data amount, respectively. Let $f_{\Theta}(\mathbf{x})$ denote a pre-trained segmentation model with parameters Θ . The goal of segmentation TTA is to adapt $f_{\Theta}(\mathbf{x})$ to the unlabeled test data $\mathcal{D}^{test} = \{\mathbf{x}_i\}_{i=1}^M \in \mathcal{P}^{test}$ with different data distribution, i.e., $\mathcal{P}^{train}(\mathbf{x}) \neq \mathcal{P}^{test}(\mathbf{x})$. Under the TTA paradigm [40], the model $f_{\Theta}(\mathbf{x})$ receives a batch of unlabeled test data at each time step, and it will be updated in an online manner.

3.2 Classic TTA Strategies

In this paper, our primary objective is to uncover the unique challenges posed by segmentation TTA under classic strategies and provide some inspirational solutions. To achieve that purpose, we delve into several well-established strategies, including normalization updating [54], teacher-student (TS) scheme [42], test-time augmentation (Aug) [26], and pseudo labeling (PL) [52], all of which have demonstrated their effectiveness in classification TTA.

3.3 Experimental Setups

To ensure consistent evaluations of various TTA approaches, we conduct empirical studies based on several widely used semantic

Table 1: Results of batch norm updating strategies (i.e., TENT [40] and its variants) on datasets ACDC, Cityscapes-fog and Cityscapes-rain (mIoU, %). SO indicates using the source model without adaptation, while BS represents the batch size of test data at each iteration. Except that the TENT (larger BS) variant uses a batch size of 4, the other methods are based on BS = 1 as mentioned in Section 3.

Method	A-fog	A-night	A-rain	A-snow	CS-fog	CS-rain	Avg.
SO	68.2	39.5	59.7	57.6	74.2	66.6	61.0
TENT	63.3 (-4.9)	39.5 (-0.3)	57.6 (-2.1)	54.9 (-2.7)	73.9 (-0.3)	66.8 (+0.2)	58.8 (-2.2)
TENT (larger BS)	64.4 (-3.8)	39.8 (+0.3)	57.3 (-2.4)	54.0 (-3.6)	71.6 (-2.6)	66.7 (+0.1)	59.0 (-2.0)
TENT (BN-fixed)	68.1 (-0 1)	39.4 (-0.1)	60.1 (+0.4)	57.1 (-0.5)	74.1 (-0.1)	66.5 (-0.1)	59.9 (-0.1)
BN adapt	62.0 (-6.2)	37.3 (-2.2)	55.1 (-4.6)	52.7 (-4.9)	73.3 (-0.9)	65.9 (-0.7)	57.7 (-3.3)
AugBN	67.6 (-0.6)	38.2 (-1.3)	59.0 (-0.7)	56.3 (-1.3)	73.3 (-0.9)	65.9 (-0.7)	60.0 (-1.0)

segmentation datasets, including ACDC [32], Cityscapes-foggy (CSfog) [31] and Cityscapes-rainy (CS-rain) [13]. In addition, we strictly follow the implementation details outlined in previous studies [4, 42], and use Segformer-B5 [46] as the pre-trained model. Two stateof-the-art and recent segmentation approaches, i.e., Oneformer [14] and SAM [18], are also used in comparative experiments. We focus on transformer-based architectures instead of CNN-based architectures, since the former exhibits more promising results than the latter (cf. Appendix 1). Unless otherwise specified, all experiments are conducted with a batch size (BS) of 1, mirroring real-world scenarios where the test samples often arrive one by one in an online manner. Some of the experimental results, i.e., Tables and Figures, are displayed in the Appendix. The choice of hyper-parameters can be seen in the code of this paper which will be publicly available.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

273

274

275

276

277

290

4 DOES NORMALIZATION UPDATING WORK FOR SEGMENTATION TTA?

4.1 Norm Updating Fails in Segmentation

We start with batch normalization (BN) updating strategies [28, 33]. Most existing BN-based TTA methods [29, 40], contrary to typical deep learning pipelines, compute the distribution statistics directly from the test data, rather than starting with or inheriting those from the training data. These methods only update the BN layers during TTA, restricting changes exclusively to the model parameters. This ensures that the core learned features remain intact, while only the normalization gets adjusted based on the test data. These approaches have demonstrated their effectiveness in bridging domain gaps for image classification at test time, however, their efficacy in semantic segmentation is yet to be thoroughly explored and validated.

278 To delve deeper into this, we conduct a thorough evaluation of 279 BN-based TTA methods in segmentation based on a classic method TENT [40]. Specifically, TENT adapts a model by using the BN 280 281 statistics from mini-batch test data (with BS = 1) instead of those inherited from the training data, and updating the affine parameters 282 of BS through entropy minimization. Moreover, we explore two 283 variants of TENT: 1) TENT (larger BS) seeks to enhance TENT's 284 performance by utilizing a larger batch size of 4, aiming for a more 285 precise estimation of distribution statistics; 2) TENT (BN-fixed) 286 retains the BN statistics from the training data without adaptation 287 288 and solely updates the affine parameters of BS through entropy minimization. Finally, we also conduct comparisons with BN adapt [33] 289

and AugBN [17], both of which have demonstrated their effectiveness in segmentation TTA using CNN-based architectures [17].

As shown in Table 1, we have three main observations. First, all TENT variants perform worse than the *Source Only* (SO), highlighting the difficulties that classic batch norm updating methods encounter in segmentation TTA. Second, even though using a larger batch size marginally elevates TENT's performance, it remains overshadowed by SO. Last, the TENT (BN-fixed) variant achieves performance only similar to SO, although the affine parameters of BN are updated. This shows that retaining the BN statistics from the training data plays a key role, while updating the affine parameters of BN does not bring the expected improvement. In summary, batch norm updating strategies, despite performing well in classification TTA, do not meet anticipated outcomes in segmentation TTA. Please refer to Section 4.3 for more discussions on distribution estimation tricks like larger batch size and batch renormalization.

4.2 Aligning Batch Norm Statistics Loses Its Magic in Segmentation

We next aim to probe the underlying reasons for the poor performance of BN-based TTA methods in semantic segmentation. Before diving into the detailed analysis, we first provide a foundational overview of BN updating to ensure clarity and comprehension. Let $f \in \mathbb{R}^{B \times C \times H' \times W'}$ represent a mini-batch of features, where *C* indicates channel numbers, *H'* is the height of features, and *W'* is the width. BN normalizes *f* using the distribution statistics of mean μ and variance σ (both μ and σ belong to \mathbb{R}^{C}). The normalization is mathematically expressed as:

$$f^* = \gamma \cdot f' + \beta$$
, where $f' = \frac{f - \mu}{\sigma}$, (1)

where $\gamma, \beta \in \mathbb{R}^C$ are learnable affine parameters of BN that represent scale and shift, respectively. During inference, μ and σ are set to μ^{ema} and σ^{ema} , respectively, which are the exponential-moving-average (EMA) estimation of distribution statistics. Previous BN-based TTA methods for classification have shown that in situations where there is a distribution shift between the training and test data, i.e., $\mathcal{P}^{train}(\mathbf{x}) \neq \mathcal{P}^{test}(\mathbf{x})$, replacing the EMA estimation of μ^{ema} and σ^{ema} with the test mini-batch statistics can boost model performance [40] when test mini-batch statistics are accurate.

However, Table 1 has demonstrated that such a strategy does not make sense in semantic segmentation. The challenges arise from the model's difficulty in accurately assessing the test data statistics during adaptation for segmentation. To shed light on this, we visualize the estimated distribution statistics of BN in Figure 1 (a)-(b).

345

346

347

348

350

351

352

353

354

355

356

357

358

359

360

361

362

363

398

399

400

401

402

403

404

405

406

407

Figure 1: Quantitative metrics analysis. (a) and (b) capture the BN distribution statistics through online adaptation. (c) shows the differential impacts of different batch norm updating techniques across different batch sizes (BS). (d) delves into the effects of varying updating strategies based on TENT, contrasting different proportions of pseudo-labels with the rest being ground-truth (GT) labels.

364 To be specific, we train the model from scratch on both Cityscapes 365 training data and ACDC-fog test data, followed by recording BN distribution statistics, represented by "training" (the blue line) and 366 367 "test" (the red line) in Figure 1 (a)-(b). Subsequently, we employ the aforementioned TENT to adapt the trained model to test data, and 368 record the change of BN distribution statistics. Specifically, TENT 369 370 adjusts BS statistics based solely on mini-batch test data independently at each iteration. In contrast, TENT (BN-initialized) starts 371 with the BN distribution statistics from the training data model and 372 progressively adapts BN statistics using EMA, instead of computing 373 374 statistics independently for each test batch.

Figure 1 (a)-(b) leads to four main findings. First, the distribu-375 tional discrepancy between the "training" and "test" data is pro-376 nounced. Second, while TENT (BN-initialized) - represented by 377 the black dots in Figure 1 (a)-(b) - does endeavor to adjust to the 378 test data, it fails to estimate the test data very well, still remaining 379 380 misalignment relative to the true test data distribution. Third, the BN statistics' evolution in TENT (depicted by the green points) 381 mirrors that of TENT (BN-initialized) closely. This resemblance 382 arises because, even though TENT's BN statistics are not inher-383 ited and are recalibrated based on individual mini-batches of test 384 data at every iteration, the rest of the model parameters are indeed 385 derived from the training data model. Consequently, the initial fea-386 387 ture distribution still aligns more closely with the training data's distributional characteristics, preventing direct approximation of 388 the test data distribution. As the adaptation progresses, while there 389 is a trend towards aligning with the test distribution, it, much like 390 TENT (BN-initialized), ultimately fails to capture that distribution 391 accurately. Last, we notice a pronounced increase in the variance 392 393 of TENT (BN-initialized), indicating a widening divergence in the 394 distribution estimation. In summary, the imprecise estimation of the test data distribution renders BN updating ineffective for seg-395 mentation TTA, with the fluctuating and escalating variance even 396 potentially imparting detrimental effects on model performance. 397

4.3 Distribution Estimation Tricks Cannot Resolve the Problem

In light of the above discussions, we next ask whether further using distribution estimation tricks can rectify the issues associated with the distribution estimation of normalization updating in segmentation TTA. In response, we investigate three policies: harnessing a larger batch size, adopting batch renormalization, and leveraging GT labels (mainly for empirical analysis).

Larger batch size. Previous studies [30, 40] have shown that using a larger batch size can enhance the BN updating for classification TTA. Driven by this rationale, we investigate the impact of different batch sizes (ranging from 1 to 10) on segmentation TTA, where we also provide the results based on layer normalization (LN) [1] and group normalization (GN) [45], which replace the BN to LN and GN, respectively. As shown in Figure 1 (c), an increase in batch size does indeed enhance BN updating. However, this enhancement does not translate to an improvement over SO, i.e., using the pre-trained source model without adaptation. This indicates that merely increasing the batch size cannot adequately solve the issue of normalization-based segmentation TTA methods. Furthermore, we also observe that the outcomes of GN are similar to LN, suggesting that the significance of normalization layers might not be so important as we previously expected.

Batch renormalization. Utilizing local test mini-batch statistics for model adaptation proves unreliable, especially when confronting persistent distribution shifts [48]. Such unreliability originates from error gradients and imprecise estimations of test data statistics. In response, we delve into two test-time batch renormalization techniques [48, 54], namely *Test Local Adapt* and *Test Global Adapt*, aiming to refine the distribution estimation. *Test Local Adapt* leverages the source statistics to recalibrate the mini-batch test data distribution estimation, whereas *Test Global Adapt* uses test-time moving averages to recalibrate the overall test distribution estimation. As shown in Figure 1 (c), while batch renormalization strategies do enhance the performance of TENT, their performance is just comparable to that of SO and cannot lead to performance improvement in semantic segmentation.

Ground-truth labels. To analyze the impact of pseudo-label noise on distribution estimation, we leverage true labels for empirical studies. Moreover, to analyze the effects of updating different network components, we further explore three distinct updating strategies. (1) TNET (update BN): the affine parameters in BN are updated; (2) TNET (update except BN): the parameters except for BN are updated; (3) TNET (update all): all the model parameters are updated. As shown in Figure 1(d), when solely relying on pseudo-labels,

462

463

Table 2: Results of the teacher-student scheme on ACDC (mIoU, %). "SO"/"Single"/"TS" are short for source only/the single-model/the teacherstudent scheme, and "PL"/"Aug" are short for pseudo-labeling/test-time augmentation, respectively.

Method PL	Aug	A-fog	A-night	A-rain	A-snow	Avg.
SO		68.2	39.5	59.7	57.6	56.3
$\begin{array}{c c} \text{Single} & \checkmark \\ \text{TS} & \checkmark \end{array}$		54.6 (-13.6) 67.4 (-0.8)	29.0 (-10.5) 38.7 (-0.8)	45.5 (-14.2) 59.8 (+0.1)	41.2 (-16.4) 57.2 (-0.4)	42.7 (-13.7) 55.9 (-0.4)
$\begin{array}{c c} \text{Single} & \checkmark \\ \text{TS} & \checkmark \end{array}$	\checkmark	41.9 (-26.3) 70.0 (+1.8)	18.1 (-21.4) 40.2 (+0.7)	20.7 (-39.0) 63.8 (+4.1)	16.4 (-41.2) 59.2 (+1.6)	24.4 (-31.9) 58.4 (+2.1)

Table 3: Comparisons between TENT [40] and its attention-based version (Attn) (mIoU, %). The results indicate that incorporating the attention mechanism can enhance the performance in TTA.

Method	A-fog	A-night	A-rain	A-snow	CS-fog	CS-rain	Avg.
TENT	63.3	36.5	56.2	54.0	73.8	66.8	58.4
TENT (Attn)	69.2	39.1	61.2	58.3	74.1	67.2	61.5

TENT (update BN) outperforms its counterparts due to its minimal parameter updating, making it less susceptible to the noise of pseudo-labels. In contrast, the other baselines exhibit markedly inferior performance under these conditions. However, as the quality of pseudo-labels improves—with the incorporation of more GT labels, there's a significant performance boost in TENT (update except BN) and TENT (update all). Yet, TENT (update BN) remains stagnant, not showing the same enhancement. This further demonstrates the limitations of existing BN updating TTA strategies in semantic segmentation. Thus, what is the promising solution when distribution estimation tricks fail to work?

4.4 Updating the Attention Module is Promising

Based on the above analysis, we believe that: 1) it is hard to estimate the normalization statistics in segmentation TTA at the pixel-level¹; 2) within the Transformer-based architectures, the impact of normalization layers is relatively muted compared to that in CNN-based architectures [30]. Thus, which module is important to estimate the data distribution in segmentation TTA?

We hypothesize that the self-attention mechanism may play a pivotal role in Transformer-based architectures [12]. This hypothesis is exemplified by analyzing Segformer-B5 [46], which utilizes a gradient-based sorting technique to arrange all layers, placing some attention modules and multi-layer perceptions (MLPs) ahead of the normalization layers. As displayed in Table 3, it indicates that updating the attention mechanism is a promising and novel direction for transformer-based models. In the future, focusing on the attention mechanism and the fusion of MLP modules may enhance the effectiveness of Transformer-based architectures in segmentation TTA.

5 DOES THE TEACHER-STUDENT SCHEME WORK FOR SEGMENTATION TTA?

5.1 The Teacher-student Scheme Helps Stabilize Segmentation TTA

The teacher-student exponential moving average (TS-EMA) scheme [10] has been shown to enhance model training and accuracy [37].

Table 4: Comparisons under different temporal orders of images on Cityscapes-fog and Cityscapes-rain (mIoU, %). Different random seeds (i.e., 0/9/99/999/999) represent different time orders.

Domain	Single (GT)	TS	0	9	99	999	9999
CS-fog	\checkmark		78.2	78.1	78.2	78.2	78.3
CS-fog		\checkmark	76.7	81.1	82.0	82.1	81.9
CS-rain	\checkmark		72.0	78.2	71.9	71.9	71.9
CS-rain		\checkmark	83.9	79.3	79.4	80.3	79.5

Many recent methods [38, 42, 48] introduce it into TTA by using a weighted-average teacher model to improve predictions. The underlying belief is that the mean teacher's predictions are better than those from standard and single models. However, the precise influence of TS-EMA on segmentation TTA has not been thoroughly investigated. In this Section, we seek to delve into its empirical impact. For the implementation of the TS-EMA scheme, we follow CoTTA [42] to update the student model by $\mathcal{L}_{PL}(\mathbf{x}_{\mathcal{T}}) = -\frac{1}{C} \sum_{c} \tilde{\mathbf{y}}_{c} \log \hat{\mathbf{y}}_{c}$, where \tilde{y}_{c} is the probability of class *c* in the teacher model's soft pseudo-labels prediction, \hat{y}_{c} is the output of the student model, and *C* indicates the total number of categories.

To figure out whether the TS-EMA scheme indeed stabilizes TTA for semantic segmentation, we compare the TS-EMA scheme and the single-model (Single) scheme with pseudo-labeling (PL) and test-time augmentation (Aug) [26]. As shown in Table 2, the Single scheme consistently underperforms compared to the SO baseline, a trend that persists even with the integration of PL and Aug. In stark contrast, the TS-EMA scheme maintains relatively stable performance. Using PL, it experiences only minor drops in categories like "A-fog" and "A-night", and even shows an improvement in "Arain". Moreover, when employing both PL and Aug, TS outperforms the SO baseline. In light of these observations, we conclude that TS-EMA stands out as a robust method to improve the training stability of segmentation TTA.

Temporal correlations. Additionally, we also investigate the performance regarding the temporal order of samples. This consideration is practical since a TTA task should process each test instance online and independently. Comparing the TS scheme and the singlemodel (GT labels are introduced for further examination, since the pseudo-labels are found to contain serious noise in the singlemodel), the results are displayed in Table 4. Even with varying random seeds (i.e., time orders), the TS scheme consistently yields similar results, indicating that it is not susceptible to fluctuations in temporal correlations. In contrast, the results of the single-model exhibit more noticeable variations. For instance, when the seed is

¹We will discuss the region-level solution in Section 6.2

set to 9, the result for CS-rain is 78.2%, whereas the results for other seeds hover around 72%.

5.2 Discussions of Potential Limitations

While previous analysis attests to the efficacy of the TS-EMA scheme, a closer examination of Table 2 (cf. Appendix) underscores a notable observation: when the SO baseline is fortified with test-time augmentation, its performance surpasses that of TS combined with both PL and Aug. This suggests that the primary advantage of TS-EMA may lie in mitigating the noise introduced by PL, thereby allowing Aug to function more effectively.

This finding provokes a subsequent question: if the accuracy of pseudo-labels is enhanced, would the TS model also exhibit improved performance as shown in previous studies [37]? To answer this question, we adjust the experimental setting, concentrating on situations where pseudo-labels become increasingly accurate, marked by a growing proportion of GT labels. In this context, we assume that the GT labels are accessible so that we can empirically assess the model performance across varying ratios of GT labels.

We continue to compare the single-model and the TS scheme. As depicted in Figure 1 (cf. Appendix), we have plotted the IoU (Intersection over Union) metrics for each class against varying levels of GT. This visualization helps us critically assess how the performance trajectory of these two schemes adjusts as the accuracy of the pseudo-labels promotes. For the sake of fair comparison, the policy of Aug is not adopted in that Figure, where comparative results indicate that the performance improvement will be minimal without data augmentation. This experiment aims to investigate the importance of each module of the TS scheme and emphasize the necessity of Aug in this scheme. Moreover, we also report the result of TS scheme leveraging data augmentation in Figure 2 (cf. Appendix).

Upon a detailed observation, it becomes evident that both the single-model and TS scheme exhibit similar performance trends. When the precision of the pseudo-labels hits an approximate threshold of $1\%^2$, the single-model scheme achieves a performance that is almost neck-and-neck with that of the TS scheme. However, as we progress beyond this pseudo-labels precision threshold, an interesting divergence arises: while the single-model continues to better its performance, the TS model appears to stagnate and its mIoU (mean IoU) metric remains static at 0.69. In stark contrast, the single-model exhibits a commendable improvement, witnessing its mIoU metric jump from an initial 0.59 to a robust 0.74.

Given this observation, one could infer a potential limitation intrinsic to the TS scheme. Despite having increasingly accurate pseudo-labels at its disposal, it does not exhibit the expected adaptability and responsiveness, unlike its single-model counterpart.

Continual TTA. Real-world perception systems operate in nonstationary and constantly evolving environments, where the test data distribution can change from time to time [42]. As shown in Figure 2, we sequentially adapt the pre-trained model of the dataset Cityscapes to the dataset ACDC. Surprisingly, the performance of the TS scheme gradually deteriorates and is comparable to that of TENT. In the end, the TS scheme even exhibits inferior performance

Figure 2: The results of online continual segmentation TTA on the Cityscapes-to-ACDC task (%). We evaluate the four test conditions continually four times to evaluate the performance of long-term adaptation. "f"/"n"/"r"/"s" are short for domain fog/night/rain/snow, respectively.

compared to TENT. In addition, we also use Single (GT) for examination. The results obtained with Single (GT) demonstrate that high-quality pseudo-labels can prevent the deterioration caused by the changing test data distributions.

Based on the above analysis, it is clear that the TS scheme is capable of achieving stable training, even in the presence of noisy labels or temporal correlation in TTA. However, we identify some challenges associated with the TS scheme: 1) it is difficult to effectively utilize high-quality pseudo-labels; 2) it tends to deteriorate under continual TTA. These findings highlight the need of further research and improvements to fully harness the potential of the TS scheme.

6 DOES CLASS IMBALANCE INFLUENCE SEGMENTATION TTA?

6.1 Segmentation TTA Suffers the Long-tailed Problem

Semantic segmentation inherently grapples with the challenge posed by data imbalance [11, 51]. Certain semantic classes, such as sky and buildings, are predisposed to occupy vast areas populated with significantly more pixels, often leading them to dominate the visual space, prevalent in numerous realistic pixel-level classification endeavors.

When placed in the context of TTA, the long-tailed (LT) problem becomes more pronounced, manifesting as an obvious bias in testtime optimization towards dominant classes [50, 54]. Both NOTE [8] and SAR [30] can handle class imbalance in classification TTA, however, they perform poorly when addressing the LT problem in segmentation TTA. As shown in Figure 5 (cf. Appendix), the numerical disparity between the majority and minority classes surpasses a staggering 1000-fold difference. This stark contrast is evident when compared to common datasets used in classification tasks, such as CIFAR10-LT, where the most majority class is only in the thousand-level range and has 100× more samples than the most minority class [44]. Adding to the challenge is the nature of semantic segmentation itself, which involves copious pixel-level labels, further complicating the LT complexity. In this Section, we

Anonymous Authors

ACM MM, 2024, Melbourne, Australia

Figure 3: Reliability diagrams [5] of visualized expected calibration error (ECE) for segmentation TTA (ACDC-fog). A smaller gap represents less ECE and better calibration. After adaptation, ECE actually becomes larger, indicating that the model is more over-confident.

aim to shed light on the challenges of the LT problem as it manifests in segmentation TTA.

We then show the intricate complexity and challenge inherent in semantic segmentation, making it markedly more difficult than classification tasks. To delve deeper into this issue, we assume that the model can generate high-confidence pseudo-labels for the test data during adaptation and subsequently analyze the resultant state of the model. Our analysis will be conducted from three perspectives: examining the confusion matrix, conducting recall-precision analysis, and evaluating model calibration.

Confusion matrix. The confusion matrix of ACDC-fog is displayed in Figure 9 (cf. Appendix), unveiling extreme variations in the outcomes for each class, reflecting the substantial discrepancy in the metric across different classes. For example, when a pixel is predicted to be *fence*, the possibilities of its true labels—rider, motorcycle, and bicycle—are all less than 10^{-6} , contrasting sharply with other classes that are in the tens of thousands. We suggest this stark difference elucidates the extreme variation and irregularity in the model's predictive accuracy for different classes.

Recall-precision analysis. To further detailed analysis of LT, we also show the quantitative metrics of each class on ACDC-fog³, as shown in Figure 4 (cf. Appendix). We conduct a comparison of the results between two experiments: Source Only (SO) and Adapt (where we fine-tune the source model using 100% GT labels). Firstly, as evident in all the plots of this figure, the majority classes consistently achieve exceptionally high scores across all metrics, whereas the minority classes do not consistently perform the worst. Secondly, following the adaptation process (involving the addition of supervised information to model training), the recall of most classes shows improvement, while the precision of certain minority classes experiences a decrease. This indicates that the model is less likely to miss pixels of this class (predicting it as other classes) while becoming more prone to predicting pixels of other classes as this class. This phenomenon diverges from the patterns observed in classification tasks [44] and does not align with conventional wisdom, adding complexity to the uncovering of underlying patterns.

Model calibration. We conduct experiments to delve into model interpretability, aiming to unearth the primary challenges associated with the uncertainty of segmentation TTA. According to

Figure 4: Test-time augmentation and region-level training strategies can relieve LT biases. mIoU (%) and std are displayed. "PL"/"aug"/"rl" are short for pseudo-labeling/test-time augmentation/region-level, respectively.

the results displayed in Figure 3 (a)-(d), we find that SO records the lowest ECE at 9.8%. However, TENT, TS, and SO (Aug) fail to generate improved confidence estimation after adaptation. On the other hand, TENT seems to bolster the model's performance in low confidence zones, particularly in the bins spanning from 0.1 to 0.5 as shown in Figure 3 (b). In contrast, the TS scheme exhibits subpar prediction accuracy in these low confidence bins and consistently avoids low probability predictions, as distinctly seen in Figure 3 (c). Although SO (Aug) gains the highest result (Table 2), it does not succeed in enhancing calibration. In summary, while these methods showcase their strengths in segmentation TTA, calibration remains a nuanced challenge and it is imperative to consider the interplay of various factors.

6.2 How to Relieve LT Biases?

Having already identified the LT problem as a key challenge in segmentation TTA, our exploration will focus on effective strategies in mitigating these biases. While re-weighting and re-sampling are prevalent methods in managing imbalanced data [51], applying these strategies at pixel-level in segmentation TTA does not yield positive results. In fact, it may lead to worse performance. As discussed in Section 4, since statistics based on pixel-level are highly unstable, we employ a re-sampling approach that focuses on

 ⁷⁵² ³The results on the other domains of dataset ACDC are presented in Figure 6-Figure 8
 (cf. Appendix).

region-level. Furthermore, we also consider the test-time augmen-813 tation, which has shown to be effective in Section 5. The mIoU and 814 815 the standard deviation (std) of class diversity on dataset ACDC are shown in Figure 4, displaying that both of these two strategies can 816 relieve the LT problem. Although test-time augmentation brings 817 improvement, its std is similar to the baseline (PL). In this way, 818 re-sampling based on region-level demonstrates the most obvious 819 potential. 820

821 Furthermore, we consider the individual role of augmentation 822 and the results are displayed in Table 2 (cf. Appendix), pondering the potential of test-time augmentation to alleviate the issue of 823 tail-class information scarcity [53]. Following this, we conduct an 824 ablation study for test-time augmentation [26, 42] in terms of the 825 F1 Score and mIoU. As shown in Table 3 (cf. Appendix), it is clear 826 that employing data augmentation results in a 2.4% increase in 827 mIoU. However, it simultaneously leads to a 0.9% decrease in the F1 828 Score. This suggests that the model, post-augmentation, intensifies 829 its prediction of minority classes, leading to a simultaneous rise 830 831 in both True Positive and False Positive, thereby boosting mIoU. Nonetheless, the nuanced balance of Recall and Precision in the F1 832 Score leads to a less pronounced change. Regarding the tail classes, 833 we observe a notable 4.4% increase in mIoU, contrasted by a 1.1% de-834 835 cline in F1 Score. This showcases that while augmentation enhances the model's detection of tail classes, it does not uniformly improve 836 its precision for these classes. In light of the above observations, we 837 conclude that Aug partially relieves LT biases in segmentation TTA. 838 In the future, we will explore integrating region-level segmentation 839 and Aug to address the LT problem in segmentation TTA. 840

7 OUR PROPOSED BENCHMARK: TTAP

841

842

843

861

862

863

864

865

866

867

868

869

870

844 Prompt tuning is an inspirational technique that can produce addi-845 tional textual instructions to fine tune large-scale Natural Language Processing (NLP) models for specific downstream tasks [24]. In-846 847 spired by this fact, we attempt to investigate the applicability of 848 visual prompt tuning (VisPT) in segmentation TTA. Recently, VisPT has also been introduced into TTA methods for parameter-efficient 849 transfer, i.e., $\mathbf{x} = \mathbf{x} + \mathcal{P}$, where \mathcal{P} is the visual prompt. DePT [7] is 850 derived from VPT [15], which introduces a small amount of task-851 specific learnable parameters into the input space while freezing the 852 entire pre-trained transformer block during adaptation. DVPT [6] 853 introduces both domain-specific and domain-agnostic prompts to 854 855 prevent catastrophic forgetting and error accumulation. Compared to DVPT, SVDP [47] proposes sparse visual domain prompts to 856 857 reserve more spatial information of the input image. UniVPT [27] 858 suggests a lightweight prompt adapter to progressively encode in-859 formative knowledge into prompts, thereby improving their spatial 860 robustness.

Based on the above analysis, we suggest that generating visual prompts can leverage image priors to provide a straightforward and effective strategy, i.e., frequency domain [41]. By combining RGB and frequency domain, we can uncover a richer set of image priors, proving invaluable for the creation of visual prompts. The comparative results displayed in Table 5 (cf. Appendix) indicate that VisPT a promising technique in segmentation TTA.

To further explore the potential of Vis**P**T in segmentation **TTA**, we propose a benchmark named **TTAP**. TTAP is based on VisPT

Table 5: Comparisons between TTAP and other methods (mIoU, %). The computational time (minute) on dataset ACDC is also displayed. The computational time of CoTTA is more than ten times of TTAP, while our accuracy is just slightly lower than CoTTA.

Method	CS (GTA)	CS (Syn)	CS-fog	CS-rain	ACDC (time)	Avg.
SO	68.6	51.1	74.2	66.6	56.3 (1.7)	63.4
TENT	67.8	50.4	73.9	66.8	53.1 (2.0)	62.4
CoTTA	65.5	50.4	75.2	68.7	57.6 (68.2)	63.6
DePT	65.1	48.2	60.1	57.1	52.6 (5.0)	56.6
DVPT	66.3	48.6	67.7	63.3	56.5 <mark>(5.5)</mark>	60.5
UniVPT	60.2	43.3	60.1	44.2	36.2 (20.9)	48.9
SVDP	69.1	52.2	67.8	64.3	57.2 (75.5)	62.1
TTAP (ours)	72.1	57.6	76.0	71.0	57.2 <mark>(6.0)</mark>	66.8

and our previous observations. First, we generate the visual prompt for each test sample using image priors (Section 7). Then, we adopt the TS framework to produce high-confidence pseudo-labels to refine the visual prompts. The time-consuming (Section 5) technique of Aug is not adopted, since online adaptation demands a highly time efficiency. Finally, we update the attention module and visual prompts, since it is hard to address distribution shifts solely depending on normalization layers in transformer-based architectures (Section 4). The comparative results are displayed in Table 5, where it is clear that TTAP achieves outstanding performance. Although CoTTA [42] achieves higher results on ACDC dataset, it is time-consuming due to the policy of Aug. In contrast, our proposed approach TTAP only updates limited parameters without augmentation and the computational time is less than 10% of CoTTA. Furthermore, our average performance is higher than all the other approaches.

8 CONCLUSIONS

In TTA community, an open question still remains to be investigated: Can classic test-time adaptation strategies be effectively applied in semantic segmentation? Our purpose is to address this question to assist both experienced researchers and newcomers in better understanding segmentation TTA. In this paper, we provide extensive experiments and comprehensive analysis to investigate the applicability of popular TTA strategies such as normalization and teacher-student scheme. Ground-truth labels are also introduced to examine how pseudo-labels affect the single-model. Experimental results indicate that those classic strategies do not perform well in segmentation TTA. Meanwhile, we also attempt to disclose the fundamental reasons and suggest some possible solutions, such as updating the attention module and integrating region-level segmentation.

Besides the regular observations, we discover that visual prompt tuning (VisPT) is a promising solution to address segmentation TTA. Further, based on VisPT and the those observations, we propose a novel benchmark named **TTAP** which has also been proved to be effective. More information such as Tables, Figures and analysis can be found in the Supplementary Material. We hope that more researchers can join the TTA community and build a common practice for segmentation. 918

919

920

921

922

923

924

925

926

927

928

871

From Question to Exploration: Can Classic Test-Time Adaptation Strategies Be Effectively Applied in Semantic Segmentation?

ACM MM, 2024, Melbourne, Australia

929 **REFERENCES**

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

- Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization. arXiv preprint arXiv:1607.06450 (2016).
- [2] Wenxuan Bao, Tianxin Wei, Haohan Wang, and Jingrui He. 2024. Adaptive Test-Time Personalization for Federated Learning. Advances in Neural Information Processing Systems (2024), 1–14.
- [3] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. 2022. Contrastive test-time adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 295–305.
- [4] Marc Botet Colomer, Pier Luigi Dovesi, Theodoros Panagiotakopoulos, Joao Frederico Carvalho, Linus Härenstam-Nielsen, Hossein Azizpour, Hedvig Kjellström, Daniel Cremers, and Matteo Poggi. 2023. To adapt or not to adapt? real-time adaptation for semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 16548–16559.
 - [5] Morris H DeGroot and Stephen E Fienberg. 1983. The comparison and evaluation of forecasters. Journal of the Royal Statistical Society: Series D (The Statistician) 32, 1-2 (1983), 12–22.
 - [6] Yulu Gan, Yan Bai, Yihang Lou, Xianzheng Ma, Renrui Zhang, Nian Shi, and Lin Luo. 2023. Decorate the newcomers: Visual domain prompt for continual test time adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37. 7595–7603.
 - [7] Yunhe Gao, Xingjian Shi, Yi Zhu, Hao Wang, Zhiqiang Tang, Xiong Zhou, Mu Li, and Dimitris N Metaxas. 2022. Visual prompt tuning for test-time domain adaptation. arXiv preprint arXiv:2210.04831 (2022).
 - [8] Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-Ju Lee. 2022. NOTE: Robust continual test-time adaptation against temporal correlation. Advances in Neural Information Processing Systems 35 (2022), 27253– 27266.
- [9] Dan Hendrycks and Thomas Dietterich. 2019. Benchmarking neural network robustness to common corruptions and perturbations. In *International Conference* On Learning Representations. 1–11.
- [10] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015).
- [11] Lukas Hoyer, Dengxin Dai, and Luc Van Gool. 2022. Daformer: Improving network architectures and training strategies for domain-adaptive semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9924–9935.
- [12] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large Language Models. In International Conference on Learning Representations. 1–16.
- [13] Xiaowei Hu, Chi-Wing Fu, Lei Zhu, and Pheng-Ann Heng. 2019. Depthattentional features for single-image rain removal. In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition. 8022–8031.
- [14] Jitesh Jain, Jiachen Li, Mang Tik Chiu, Ali Hassani, Nikita Orlov, and Humphrey Shi. 2023. Oneformer: One transformer to rule universal image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2989–2998.
- [15] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. 2022. Visual prompt tuning. In European Conference on Computer Vision. Springer, 709–727.
- [16] Neerav Karani, Ertunc Erdil, Krishna Chaitanya, and Ender Konukoglu. 2021. Test-time adaptable neural networks for robust medical image segmentation. *Medical Image Analysis* 68 (2021), 101907.
- [17] Ansh Khurana, Sujoy Paul, Piyush Rai, Soma Biswas, and Gaurav Aggarwal. 2023. SITA: Single Image Test-time Adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 23090–23099.
- [18] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. 2023. Segment anything. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 4015–4026.
- [19] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. 2021. Wilds: A benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning. 5637–5664.
- [20] Xiang Li, Junbo Yin, Botian Shi, Yikang Li, Ruigang Yang, and Jianbing Shen. 2023. Lwsis: Lidar-guided weakly supervised instance segmentation for autonomous driving. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37. 1433–1441.
- [21] Yizhuo Li, Miao Hao, Zonglin Di, Nitesh Bharadwaj Gundavarapu, and Xiaolong Wang. 2021. Test-time personalization with a transformer for human pose estimation. Advances in Neural Information Processing Systems 34 (2021), 2583– 2597.
- [22] Jian Liang, Ran He, and Tieniu Tan. 2023. A comprehensive survey on test-time adaptation under distribution shifts. arXiv preprint arXiv:2303.15361 (2023).
- [23] Jian Liang, Dapeng Hu, and Jiashi Feng. 2020. Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation. In International Conference on Machine Learning. 6028–6039.

- [24] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. *Comput. Surveys* 55, 9 (2023), 1–35.
- [25] Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi. 2021. TTT++: When does self-supervised test-time training fail or thrive? Advances in Neural Information Processing Systems 34 (2021), 21808–21820.
- [26] Alexander Lyzhov, Yuliya Molchanova, Arsenii Ashukha, Dmitry Molchanov, and Dmitry Vetrov. 2020. Greedy policy search: A simple baseline for learnable test-time augmentation. In *Conference on Uncertainty in Artificial Intelligence*. 1308–1317.
- [27] Xinhong Ma, Yiming Wang, Hao Liu, Tianyu Guo, and Yunhe Wang. 2023. When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Segmentation. Advances in Neural Information Processing Systems 36 (2023).
- [28] Zachary Nado, Shreyas Padhy, D Sculley, Alexander D'Amour, Balaji Lakshminarayanan, and Jasper Snoek. 2020. Evaluating prediction-time batch normalization for robustness under covariate shift. In Workshop of International Conference on Machine Learning. 1–17.
- [29] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui Tan. 2022. Efficient test-time model adaptation without forgetting. In *International conference on machine learning*. 16888–16905.
- [30] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and Mingkui Tan. 2023. Towards stable test-time adaptation in dynamic wild world. In *International conference on machine learning*. 1–12.
- [31] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. 2018. Semantic foggy scene understanding with synthetic data. *International Journal of Computer Vision* 126 (2018), 973–992.
- [32] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. 2021. ACDC: The adverse conditions dataset with correspondences for semantic driving scene understanding. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 10765–10775.
- [33] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias Bethge. 2020. Improving robustness against common corruptions by covariate shift adaptation. Advances in neural information processing systems 33 (2020), 11539–11551.
- [34] Inkyu Shin, Yi-Hsuan Tsai, Bingbing Zhuang, Samuel Schulter, Buyu Liu, Sparsh Garg, In So Kweon, and Kuk-Jin Yoon. 2022. MM-TTA: multi-modal test-time adaptation for 3d semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 16928–16937.
- [35] Yongyi Su, Xun Xu, and Kui Jia. 2022. Revisiting realistic test-time training: Sequential inference and adaptation by anchored clustering. In Advances in Neural Information Processing Systems, Vol. 35. 17543–17555.
- [36] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. 2020. Test-time training with self-supervision for generalization under distribution shifts. In *International conference on machine learning*. 9229–9248.
- [37] Antti Tarvainen and Harri Valpola. 2017. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. Advances in neural information processing systems 30 (2017).
- [38] Devavrat Tomar, Guillaume Vray, Behzad Bozorgtabar, and Jean-Philippe Thiran. 2023. TeSLA: Test-Time Self-Learning With Automatic Adversarial Augmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 20341–20350.
- [39] Riccardo Volpi, Pau De Jorge, Diane Larlus, and Gabriela Csurka. 2022. On the road to online adaptation for semantic image segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 19184–19195.
- [40] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. 2021. Tent: Fully test-time adaptation by entropy minimization. In International Conference On Learning Representations. 1–12.
- [41] Junke Wang, Zuxuan Wu, Jingjing Chen, Xintong Han, Abhinav Shrivastava, Ser-Nam Lim, and Yu-Gang Jiang. 2022. Objectformer for image manipulation detection and localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2364–2373.
- [42] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. 2022. Continual test-time domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7201–7211.
- [43] Wei Wang, Zhun Zhong, Weijie Wang, Xi Chen, Charles Ling, Boyu Wang, and Nicu Sebe. 2023. Dynamically Instance-Guided Adaptation: A Backward-Free Approach for Test-Time Domain Adaptive Semantic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 24090– 24099.
- [44] Chen Wei, Kihyuk Sohn, Clayton Mellina, Alan Yuille, and Fan Yang. 2021. Crest: A class-rebalancing self-training framework for imbalanced semi-supervised learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 10857–10866.
- [45] Yuxin Wu and Kaiming He. 2018. Group normalization. In Proceedings of the European Conference on Computer Vision. 3–19.
- [46] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. 2021. SegFormer: Simple and efficient design for semantic segmentation
- 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

1039

1040

1041

1042

1043

1044

 Anonymous Authors

with transformers. Advances in Neural Information Processing Systems 34 (2021), 12077–12090.

- 1046 12077-12090.
 [47] Senqiao Yang, Jiarui Wu, Jiaming Liu, Xiaoqi Li, Qizhe Zhang, Mingjie Pan, Yulu Gan, Zehui Chen, and Shanghang Zhang. 2024. Exploring Sparse Visual Prompt for Domain Adaptive Dense Prediction. In *Proceedings of the AAAI Conference on Artificial Intelligence*, Vol. 38. 16334-16342.
 [49] Intelligence, Vol. 38. 16334-16342.
 - [48] Longhui Yuan, Binhui Xie, and Shuang Li. 2023. Robust test-time adaptation in dynamic scenarios. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 15922–15932.
- [49] Yige Yuan, Bingbing Xu, Liang Hou, Fei Sun, Huawei Shen, and Xueqi Cheng. 2024. TEA: Test-time Energy Adaptation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 1–11.
 - [50] Yifan Zhang, Bryan Hooi, Lanqing Hong, and Jiashi Feng. 2022. Self-supervised aggregation of diverse experts for test-agnostic long-tailed recognition. In Advances in Neural Information Processing Systems. 34077–34090.
- [51] Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, and Jiashi Feng. 2023.
 Deep long-tailed learning: A survey. *IEEE Transactions on Pattern Analysis and*

Machine Intelligence (2023).

- [52] Yifan Zhang, Xue Wang, Kexin Jin, Kun Yuan, Zhang Zhang, Liang Wang, Rong Jin, and Tieniu Tan. 2023. AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation. In International Conference on Machine Learning. 41647–41676.
 [53] Yifan Zhang, Daquan Zhou, Bryan Hooi, Kai Wang, and Jiashi Feng. 2023. Ex-
- [53] Yifan Zhang, Daquan Zhou, Bryan Hooi, Kai Wang, and Jiashi Feng. 2023. Expanding small-scale datasets with guided imagination. In Advances in Neural Information Processing Systems.
- [54] Bowen Zhao, Chen Chen, and Shu-Tao Xia. 2023. DELTA: DEGRADATION-FREE FULLY TEST-TIME ADAPTATION. In The Eleventh International Conference on Learning Representations.
- [55] Hao Zhao, Yuejiang Liu, Alexandre Alahi, and Tao Lin. 2023. On Pitfalls of Test-Time Adaptation. International Conference on Machine Learning, 1–12.
- [56] Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Animashree Anandkumar, Jiashi Feng, and Jose M Alvarez. 2022. Understanding the robustness in vision transformers. In International Conference on Machine Learning. 27378–27394.