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Abstract:

Balance control is important for human and bipedal robotic systems. While dy-
namic balance during locomotion has received considerable attention, quantitative
understanding of static balance and falling remains limited. This work presents
a hierarchical control pipeline for simulating human balance via a comprehen-
sive whole-body musculoskeletal system. We identified spatiotemporal dynam-
ics of balancing during stable standing, revealed the impact of muscle injury on
balancing behavior, and generated fall contact patterns that aligned with clini-
cal data. Furthermore, our simulated hip exoskeleton assistance demonstrated
improvement in balance maintenance and reduced muscle effort under pertur-
bation. This work offers unique muscle-level insights into human balance dy-
namics that are challenging to capture experimentally. It could provide a foun-
dation for developing targeted interventions for individuals with balance impair-
ments and support the advancement of humanoid robotic systems. Project page:
https://lnsgroup.cc/research/bipedal_balance.
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1 Introduction

Bipedal locomotion and balance have been extensively studied in robotics and control, with research
demonstrating the inherent challenges of stabilizing underactuated, high-degree-of-freedom systems
[1, 2]. Robotic bipedal stability during locomotion has been analyzed through criteria like limit cy-
cles and gait periodicity [3, 4]. While bipedal standing seems naturally achievable, stable standing
remains a challenging problem, particularly when accounting for double-support phases and area
contact [5]. However, the foundational behavior enabling bipedalism, human static standing, re-
mains understudied due to the lack of models capable of capturing its musculoskeletal complexity.
Humans rely on an obligate bipedal stance, requiring precise coordination between neuromuscular
control and biomechanical dynamics. Unlike occasional bipeds seen in other animals, human stand-
ing is characterized by a vertical spine, the absence of auxiliary balancing structures (e.g., prehensile
tails), and an upper body for multitasking while maintaining balance [6]. This skill is acquired over
years of development, relying on advanced neural integration and reflexes [7]. Mastering static bal-
ance could lag behind walking in children [8], highlighting its difficulty. The process integrates
multisensory inputs and fine-grained muscle coordination [9], posing a control challenge distinct
from robot locomotion.

Humans achieve remarkable balance adaptability, but the principles underlying this robustness re-
main poorly understood. The human musculoskeletal system, with its high degrees of freedom
and nonlinearity, requires more sophisticated control mechanisms to perform the dynamical control
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of stable standing. A critical gap persists: no prior work has systematically investigated bipedal
standing control using a full-body musculoskeletal model, which is essential to decode fine-grained,
muscle-level postural dynamics [10].

In contrast to maintaining balance, falling is a leading cause of injury among aging populations
[11], resulting in both psychological trauma and physical harm [12]. Despite its significance, falling
dynamics remain poorly understood due to data scarcity and ethical constraints in real-world exper-
iments [13].

In this work, we introduce a hierarchical control and analysis method for full-body bipedal balance
control. Our framework, deployed on a full-body human musculoskeletal model with 700 muscle-
tendon units [14], enables biomechanically plausible simulations of standing balance and falls that
would be limited in real experiments. Through extensive simulations, we identify specific dynam-
ical balance behavior during stable standing, reveal the adaptive balancing strategies under injury
conditions, and demonstrate how hip exoskeleton assistance can enhance balance while reducing
muscular effort. We provide muscle-level insights during balance that remain inaccessible through
conventional experimental methods. To the best of our knowledge, our approach is the first to lever-
age a high-dimensional, whole-body musculoskeletal model to systematically study human balance
dynamics at muscle-level resolution, providing insights for both biomechanical understanding of
bipedal balance and assistive technology development.

(" Whole-Body
Musculoskeletal Model

Hierarchical Balance Control

~N

Exoskeleton Torque

State  High-level . » Low-level Analysis
Planner Controller — PR
4 Target Joint Coordinates Muscle Dynamics
[ttt a —
Control ] : \ I —
L Y == ————— =%
v 1\
Rollout Exoskeleton
\(With Exoskeleton) j

GE—

Balance Region

Figure 1: Control and analysis of human musculoskeletal standing and falling. HBC enables
training-free balance control and efficient collection of dynamical behavior for balance analysis.
Our method supports concurrent control planning for exoskeleton-assisted scenarios, facilitating in-
tegrated evaluation and optimization of human-exoskeleton interaction.

2 Related Work

2.1 Bipedal Balance from Robotics to Human Musculoskeletal Models

The balance control of bipedal robots has been extensively studied, with numerous approaches
demonstrating the inherent challenges of stabilizing underactuated systems. Traditional research
has employed simplified models such as single inverted pendulum [15] and double inverted pen-
dulum models [16, 17] to represent bipedal balance dynamics by focusing on the Center of Mass
(CoM) motion and the Zero Moment Point (ZMP).

However, human balance control is far more complex than robot models can capture, involving in-
tricate sensorimotor integration executed through high-dimensional muscular systems [18] rather
than simplified bipedal standing frameworks like ZMP strategies [19, 20]. A gap between theoreti-
cal models and biological reality remains, necessitating the use of musculoskeletal models [21, 22].
Recent work introduced a full-body human musculoskeletal system that simulates whole-body dy-
namics [14]. Control methods using deep reinforcement learning (DRL) have been explored for
these high-dimensional systems [23, 24, 25, 26, 27]. While progress has been made in improving
locomotion capabilities, the control of full-body standing balance remains unexplored.



2.2 Investigation of Human Balance and Fall

While robotic fall-prediction systems have advanced through multi-sensor fusion [28] and machine
learning [29], human fall dynamics lack physiologically accurate understanding. Existing datasets
[30, 13] primarily consist of voluntary falls, which differ substantially from real-world falls in terms
of impact dynamics and protective responses [31].

Exoskeletons have been used to assist balance for various populations [32, 33], but experimen-
tal studies still have significant limitations. Most exoskeleton research has focused on locomotion
tasks [34, 35], with limited investigation into balance scenarios. Studies that target at assisting bal-
ance with exoskeletons typically involve small participant numbers and controlled lab conditions
[33, 36]. These limitations in experimental scope and participant diversity hinder a comprehensive
understanding of how exoskeletons might benefit the balance control. Musculoskeletal simulations
have aided exoskeleton design [37] by estimating joint torques [38] or serving as control testbeds
[39]. To the best of our knowledge, there are no existing works that use musculoskeletal simulation
to test and validate the performance of balance-targeted exoskeletons.

3 Problem Setting

3.1 Musculoskeletal Model Dynamics

We use the full-body MS-Human-700 model [14], which comprises of 90 rigid body segments, 206
joints and 700 muscle-tendon units. It is implemented in the MuJoCo physics engine [40]. The
actuators of the model are 700 Hill-type [41] muscles. The force generated by each actuator, and the
temporal relation between muscle activation act and the input control signal « can be described by
the following equations:

dact  u—act

fn(act) = fonaz - |Ft(lm) - Fo(vm) -act + Fy(lw)]. =g = o=,

(1)
where I} and F), are active force-length and force-velocity functions, F), is the passive force-length
function, and l,,,, v, are normalized muscle length and velocity. f,,4, is the maximum isometric
muscle force. Muscle activation act is calculated with control u in Eq. (19) [42].

3.2 Standing Task Design and Balance-Related Scenarios

We treat the human standing control problem as a finite horizon Markov decision process with state
s € 8, control u € U, dynamics s;1 = f(s¢, ut), and time step ¢. For a given initial state sy and a
desired standing horizon T', we aim to find a control sequence U} = (ug, ..., wp—1) that successfully
maintains the standing posture by minimizing a pre-defined cost function C":

T-1

Ur = argming;, Z C(st,ut) (2)
t=0

The control goal for standing is: (1) Near-zero CoM horizontal velocity and (2) CoM within the
support region, ensuring no flipping tendency. The model may step for balance, but its initial position
remains constant across experiments.

4 The Control Algorithm and Analysis for Static Balancing

In this section, we present our control and analysis method for whole-body static balance in humans.
We begin by introducing a hierarchical control framework that enables training-free control of high-
dimensional balance dynamics. We then detail our analysis for evaluating balance performance
under varying physiological conditions and with assistance.
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Algorithm 1: Hierarchical Balance Control (HBC)

Input: Model dynamics f, total time steps 7', execution length ., rollout horizon h, particle
number n, MPPI iteration number 7, initial distribution parameter i, &
Output: Action sequence U*
So ~ So, U* 0
fort=0,---,T—1do
if ¢ mod t. = 0 then
fori=1,--- ,rdo
R1y -y RN ™ N(,U, U)
c1, -+ ,Cpn < Rollout(zy, -+, zp)
Update p, o using e.q. (4)
end
Z* o~ N(.ua o)
end
up < (8¢, 2%)
U*=U*Uuy
Se1 < f(50,u4)

end

4.1 Hierarchical Balance Control Algorithm

We propose Hierarchical Balance Control (HBC), a hierarchical algorithm for the balance control
of human body. As shown in Figure 1, a high-level planner first proposes a set of major joint coordi-
nates z* € Z as the target of the low-level controller, 7(u|s, z), which coordinates muscle controls
to achieve the target joint coordinates. HBGC uses model predictive control (MPC) to optimize the
target joint coordinates according to the cumulative cost function over a short horizon:

tp+H—1
z* = argmin, Z C(se,up), ur = (s8¢, 2), 3)

t=t,

where t, = {t | ¢ mod ¢, = 0} is the planning timestep and H < T is the planning horizon.
Compared to vanilla MPC methods, HBC reduces the parameter space from the scale of muscle
number to joint number, which is a feasible dimension for effective planning and control.

For the high-level controller, we integrate Model Predictive Path Integral (MPPI, [43]) as a sampling-
based planner. At the beginning of each rollout process, N sets of target joint angles z1, 22, ..., 2N
are sampled from the current target distribution N'(u, o) to generate N trajectories. The cumula-
tive cost ¢, = ?: Z)H_l C(s¢,7(8¢,25)) is calculated from the parallel rollout trajectory of target
zn. The new mean and covariance are calculated based on the weighted average of top k targets
(21,23, ..., 2;) whose corresponding trajectories return the minimal costs. The update is imple-

mented as follows:

k % k #
= T —k o= k ) (4)
Zj:l wj Zj:l wj
where w; = e*%cj is the aggregate weight for z;, and A is the softmax temperature. The full

method of getting control sequences is shown in Algorithm 1.

For the low-level controller, we use a normalized PD control-like formulation over muscle lengths
to derive desired muscle forces [25]:

Fon = min(0, ky - (15, = L) /lrange + ka - (0= Im)), (5)
where f,, stands for muscle forces, k, and k4 are PD control gains, I,, stands for actual muscle
lengths, [,,, stands for muscle velocities and [, is target muscle lengths. The difference between

the maximum muscle length and the minimum muscle length of each muscle, l,qpgc, is used to
normalize muscle lengths and stabilize control effect. Given desired muscle forces, the desired



muscle control can be derived according to the muscle actuator dynamics in e.q. (19) to facilitate
full-body control.

Compared to DRL-based methods, HBC is a training-free method which generates effective controls
in minutes. This advantage enables the collection of large dynamical dataset during static balance
control under different conditions for statistical analysis.

4.2 Standing and Fall under Different Physiological Conditions

We apply HBC over the MS-Human-700 model to collect dynamical balance behavior during stand
control. The model was initialized in a natural standing posture and then stood for 5 seconds. We
consider the following criteria for balance and fall monitoring:

Balance behavior monitoring. During each simulation, the model is considered to have achieved
stable standing if two conditions were met: (1) No body parts other than the feet contacted the
ground. (2) The CoM didn’t leave the real-time support polygon when 5s is reached. We collected
CoM positions, muscle force of the model and body posture data at a 500 Hz frequency for analysis.

Fall detection and recording. When we apply HBC from an up-straight posture for 5 seconds,
the human model has small possibility to fall from standing. We track the CoM position of the
MS-Human-700 model and the support polygon formed by foot contact points (heels and toes). We
define fall duration as the duration between two events: The initialization event and the contact event.
The initialization event occurs when the CoM crosses from inside to outside the support polygon,
marking the start of falling. The contact event is defined as the moment when the body-ground
contact force reaches its peak, indicating impact. During the 5-second trial, these events determine
the model’s balance status: the initialization event signals the start of a fall, while the contact event
marks ground collision. Beyond healthy conditions, we model impaired balance resulting from
muscle injury by simulating reduced muscular function. Specifically, we restrict the force-generating
capacity of the left rectus femoris (RF) muscle to replicate the effects of injury, as reported in [44].

4.3 Exoskeleton-Assisted Standing

As illustrated in Figure 1, the high-level planner in HBC con-
currently optimizes control strategies for balance-assistive de-
vices such as a hip exoskeleton, enabling efficient simulation 60 e
and design of exoskeletal systems. Assisted balance is sim-
ulated by applying torque actuation at hip joints—a widely
accepted approach for modeling exoskeleton effects via exter-
nally applied forces [45]. To enhance assisted balance perfor-
mance, we optimize the exoskeleton design parameters p (e.g.,
control gains). Formulated as a black-box optimization prob-
lem, we apply Bayesian optimization to improve the exoskele-
ton’s posture correction policy.
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. achieved by three algorithms. The
In the experiments, we first evaluate the control performance eyaluations for balancing were ter-

of the HBC algorithm for a high-dimensional whole-body minated at 60 seconds.

standing task, with biomechanical fidelity check of the sim-

ulation results. We then generate balance and fall behaviors and conduct comprehensive analysis on
healthy, injured, and exoskeleton-assisted conditions.

5.1 Performance Evaluation of the HBC Algorithm

We compare HBC against competitive DRL-based control baselines on the full-body balance control
task. Our selected baselines include Dynamic Synergy Representation (DynSyn), the leading DRL-



based control method for the control musculoskeletal systems [27], and Soft Actor Critic (SAC)
[46]. As shown in Figure 2, our approach successfully achieves static balance control on the full-
body musculoskeletal system, significantly outperforming both baseline methods and attaining the
maximum standing duration in most trials. We carried out a fidelity check on our simulated control
results by comparing the muscle activation calculated by HBC with the human experimental results
reported in [47, 48]. Figure 3 shows that the simulation results demonstrate consistency with real-
world experiments.

5.2 Study of Balance Dynamics

In this setion, we study the dynamical
behavior during balance control over a

healthy model. A total of 2,800 falling 16 Muscle activations v.s. Human experiment EMG
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discussed in Section 2, CoM position and
movement are important metrics to inves-  Figure 3: Comparisons between calculated muscle ac-
tigate bipedal balance. We observe hori- tivations and real human EMG. Simulated muscles ac-
zontal CoM position to track the subtle, tivity (blue) of the standing task in normalized root
dynamic movements of human body dur- mean square values. Experimental electromyography

ing balance as demonstrated in Figure 4a. (EMG) signals of a human subject (green). Four exper-
Representational CoM trajectories are vi- imentally measured muscles: TA, tibialis anterior; PL,

peroneus longus; GM, gastrocnemius medialis; GL,

sualized in Figure 4b, where two of them 8 !
gastrocnemius lateralis.

are from successful balancing trajectories
with the end converging near the starting
point, and one from a falling trajectory. The CoM trajectories of balancing are usually irregular at
the beginning, and converge to a smaller area, showing that balancing of a high-dimensional, muscle
-controlled human body is dynamical and influenced by instant control and responses.

Balance region achieved during stable standing. Although CoM series data are very noisy and
diverse due to the dynamic nature of balance, it is possible to draw statistical insights from the
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Figure 4: Human static balancing behavior dynamics. (a) Visualization of a human fall with the
center of CoM projection trajectory. (b) CoM trajectories during balance and falling, with each
trajectory color-coded over time from yellow to purple. (c) Density plot of CoM coordinates during
successful balance trials. The red area highlights the balance region, representing the highest density
of CoM positions associated with stable balancing dynamics.




overall distribution of CoM positions arrived during balance. We visualized the spatial density of
CoM coordinates in 640,000 frames of successful trials during standing in Figure 4c. Similar data
collection in real world will be very difficult to achieve.
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Notably, 37% of fall-related injuries involve

broken or fractured bones [49], highlighting Figure 5: Distribution of 2,895 collision positions
the biomechanical vulnerability of these impact falling. We plot the body parts and their cor-
sites. Our simulation framework facilitates de- responding collision positions when the contact
tailed analysis of such injury-prone collision forces reach maximum value.

patterns, providing a biomechanically accurate

testbed for the development of fall prevention and mitigation strategies.

5.3 Study of Injury Effect on Balance

With the injured model as introduced in Section 4.2, a total of 1280 falling trajectories were col-
lected. We investigated the CoM behavior and muscle force responses under the injury model.
Figure 6b shows that the balance region shrinks with unilateral RF injury. The comparative analysis
of the density distributions reveals two notable phenomena. First, the balance region exhibits a more
concentrated pattern in the injured model, suggesting enhanced predictability and more conserva-
tive balancing strategy under injury. Second, there’s an asymmetric expansion of the low-density
region (white area) in the posterior direction, indicating an increased tendency of forward-leaning
postural adjustments. Figure 6¢ shows a significant increase in right RF muscle force during balance
maintenance, suggesting a weight shift to the right leg for stability.

5.4 Simulation of Assisted Balance

We simulated a assisted balance scenario with a hip exoskeleton as shown in Figure 7a. We em-
ployed optimized exoskeleton parameters and validated the effectiveness of this exoskeleton control
policy in a perturbation test: Models with and without exoskeleton assistance are pushed in random
directions for 3 times with intervals of 1 second. As in Figure 7b, exoskeleton-assisted balance
achieved a higher success rate in maintaining balance under perturbation in the 5-second simulation.

In Figure 7c, we carried out a ablation study over the assisted balance by recording the muscle ac-
tivations of the gluteus maximus, gluteus medius, and gluteus minimus, which play critical roles
in lower-limb movement and postural stability. We observe that muscle activation levels reduce
with exoskeleton assistance, showing assistive devices’ potential to save muscular effort and reduce
metabolic cost. Such muscle-level data are difficult to obtain in traditional experiments due to the
limitations of surface EMG and the inaccessibility of deep muscles. Our simulation pipeline enables
validation of exoskeleton effects on balance maintenance. These findings suggest the utility of mus-
culoskeletal simulations in evaluating and optimizing assistive device performance prior to costly
physical prototyping and human subject testing.
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Figure 6: Balancing behavior under muscle injury conditions. (a) Illustration of the injured muscle
(left rectus femoris). (b) Density plot of CoM coordinates under muscle injury. The red dashed
contour represents the balance region of the healthy model, highlighting the reduction in balance
region due to impaired muscle function. (c) Muscle forces during standing; increased force in the
right rectus femoris indicates compensatory activation in response to left side injury.
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Figure 7: Balancing behavior under exoskeleton assistance. (a) Visualization of the hip exoskeleton
device, using joint torques as actuators. (b) Success rate of maintaining standing posture, where the
exoskeleton assistance helps better static balance. (c) Activation levels of gluteal muscle activations
(GlutMax: gluteus maximus, GlutMed: gluteus medius, GlutMin: gluteus minimus) during the
standing simulation, where muscle activation levels are reduced with exoskeleton assistance.

6 Conclusion

We present a training-free hierarchical control method for studying full-body human bipedal bal-
ance using musculoskeletal simulation. Our Hierarchical Balance Control (HBC) approach enables
effective planning and control by reducing the parameter space from muscle to joint level, and out-
performs leading DRL-based methods.

This work contributes to the understanding of human balance control by providing access to muscle-
level insights that are difficult to obtain experimentally. Future work could explore more complex
scenarios and develop targeted interventions for populations with balance limitations. While simu-
lation has inherent limitations compared to real-world studies, our approach offers a complementary
tool for investigating questions in human movement science that face practical experimental con-
straints.



7 Limitation

This work demonstrates the challenge of maintaining human-like balance on a high-dimensional
whole-body musculoskeletal model and proposes a hierarchical control method to achieve stable
balance. While we achieves training-free balance control carried out comprehensive analysis under
various conditions, several limitations remain.

First, although HBC outperforms DRL baselines, we used an intuitive cost function design with-
out extensive tuning. In contrast to DRL methods that often rely on carefully engineered reward
functions, our approach might benefit from more sophisticated cost function designs to further im-
prove performance and biological fidelity. Second, our simulations primarily focus on a standard
healthy adult model. We did not extensively simulate vulnerable populations such as elderly indi-
viduals or those with specific neurological conditions that affect balance. These populations exhibit
distinct biomechanical and neuromuscular characteristics that may lead to different balance control
strategies and falling patterns, limiting the generalizability of our conclusions to these important
user groups. Finally, our exoskeleton simulation uses simplified torque actuation rather than mod-
eling the complete mechanical interface between the device and human tissue. This approximation,
while computationally efficient, may not fully capture the complex effects that occur in real human-
exoskeleton systems.
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9 Supplementary material

9.1 Implementation detail

MJPC environment. We used MuJoCo MPC [51] in our experiments to deploy HBC in simulation
time. With the vey high dimensionality of the MS-Human-700 model, the simulation speed was
set to 10%. A 5-second experiment will cost 50 seconds, which is much shorter than the training
time of reinforcement learning methods. HBC experiments used 16-core CPU + RTX 3080 GPU
(600ms/32-step, 16-particle planning).

DRL experiments set up. RL training used DynSyn [27] on 224-core CPU + RTX 4070 GPU (CPU
simulation was the bottleneck; adding more GPUs doesn’t accelerate training). RL polices trained
for >1 day still fails at stable standing, while HBC can generate 2000 trajectories within 1 day,
enabling significant speedup.

9.2 Intuitive cost function design

Standing balance could be described by the dynamics of CoM and ZMP. We set the control goal of
human standing simulated by a musculoskeletal model as follow: (1) the horizontal velocity of the
CoM should be near 0; (2) the ZMP should fall inside the support region, represented by a posture
that has no trend of flipping over. The model may take a step to maintain balance, but the initial
position of the model is kept the same for all experiments.

Considering these basic mechanical requirements of balancing, and hints of a desirable standing
posture, we arrange components of the cost function C' as follows. The weights were tuned to
(U)H7 WR,Wp,, Wy, ’w1> = (300, 300, 300, 10, 1).

C=wg -Cy+wr - Crt+wp,-Cp, +wy,-Cy, +wr-Cyp (6)
(1) Height, C'i: This term penalizes the difference between body height and the initial height,
which represents the status of the upright, not-flipping-over posture. It reaches 0 when the difference
between head and feet of the musculoskeletal model is the same as its initial value. The height cost

represents the status of the upright, not-flipping-over posture. Hp.q is the height of the head, and
Hy.c; is the average height of left and right feet.

CH = Zhead — Zfeet (N
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(2) Rotation, C'z: This term penalizes large rotational angle of the model’s upper body. ¢ represents
the unit vector pointing from the pelvis to the head, and 2’is the vertical unit vector.

Cr=1-1-% (8)

(3) CoM peosition Cp,: This term penalizes the mismatch between the horizontal CoM and the
center of the support region, which is the convex hull formed by the heels and toes. (xconr, Yoour)
refers to the horizontal position of the center of mass, while (Z feet, Yfeet) is the centroid of the
polygon formed by the left and right heels and toes.

Cp, = |(xcom Ycorm) — (Zfeet, Yfeet)| 9

(4) CoM velocity, C'y, : This term penalizes large horizontal velocity of CoM.

Cv, = |(Zcom, Ycom)| (10)

(5) Imitation, C;: This term penalizes the mismatch between the joint positions and joint angles
of a desirable, natural standing posture. ¢ is the joint angles of the model, and g, is the full-body
joint angles of a natural standing posture.

CV1:|q*%“ef| (11)
9.3 Exoskeleton control policy and optimization

We implemented a weighted postural PD control over the joint torque actuation placed at the left
and right hip flexion joints. The high-level planner (as discussed in Section 4.1) is adapted to plan an
extra target posture indicating the overall leaning direction of the body, represented by the tilt angle
of the pelvis. The control policy of the exoskeleton torque actuation is separated into two parts
mixed by a weight: (1) Hip flexion joint angle PD control. (2) Postural PD control. The control is
formulated as follow:

=1 —w) (kp. - (¢f — @)+ ka, - (0—G;)) +w- (kp, - (¢ — @) +ka, - (0—Gr).  (12)

i = 1, 2 represents the left or right side respectively. 77 is the torque actuation value. k,,_ and k,, are
the joint angle PD control constants, while k,, and k,, are the postural PD control constants over
the tilt angle of the pelvis. ¢ and ¢; are the target values of the hip joint angles and the pelvis tilt
angle. w is the weight between the two PD control policies.

We found that the assistive effect of the exoskeleton was very sensitive to the k,_, kp,, kp, and w
values. Therefore, we carried out Bayesian optimization (BO) to determine a set of parameter to
ensure performance across trials. We define @ = (k,,, k,_, kp,, w), and formulate the parameter
search as a black-box optimization problem:

wey/(#) =

T-1
— Z C(st,ut)] (13)

t=0

where the objective f(x) is the negative cumulative cost function under parameter x, averaged
over 5 independent trials. We assume the observation noise is i.i.d Gaussian: y = f(x) + n,n ~
N(0,0?). Given sampled data D = {(x1,v1), - , (n, yn)} We use Gaussian process to model
the objective function with posterior mean and covariance estimation under kernel function k:
pn () = kn(m)T(Kn + ‘72[)71yn
ko(x, ') = k(z,2') — kp(2)” (K, +0*I)" 'k, (2) (14
o2 (x) = ky(x, x),

where k,,(z) = [k(z1,x),...,k(x,, )] is the covariance between x and sampled points, K, is
the covariance of sampled positions: [k(z,%')]s 2 cx,. Given the GP posterior, we optimize the
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Algorithm 2: Exoskeletal parameter search via Bayeisan optimization

Input: Initial dataset Dy, Gaussian process M
forn=1,2,--- do

Update M, based on D,,_1

x,, < argmax, yEl,(x))

Dn — Dn—l U (wnvyn)
end

Expected Improvement acquisition function to sample the next parameter [52]:
ElL,(z) = E[[f (=) — £}, 0]"] (15)

* /U‘n(x)_ :; :un(m) _f';:

- (:un(x) fn)(p( Ut(w) ) —|—O’n(m)¢‘( an(w) )7 (16)
where f = max;ey, ;. Our sequentual optimization procedure is illustrated in Algorithm 2. We
implemented the overall BO procedure based on BoTorch [53]. Figure 8 shows the optimization
performance over 600 iterations. The effectiveness of this exoskeleton control policy is validated
in a perturbation test: Models with and without the exoskeleton assistance are pushed in random
directions for 3 times with intervals of 1 second. We observe that under the optimize parameter, the
model with the assistance achieves a higher success rate in maintaining balance under perturbation
through the 5-second simulation.
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Figure 8: Exoskeleton parameter optimization results. The curve shows the best objective value
during optimization.

9.4 Musculoskeletal Model Dynamics

Rigid-body dynamics

The musculoskeletal model used in this work is the MS-Human-700 model [14]. It comprises of 90
rigid body segments, 206 joints and 700 muscle-tendon units. By actuating its 700 muscle-tendon
units, the model can be controlled and perform human-like tasks. The dynamics of the model can
be formulated as follow:

M(q)i+ c(q,q) = J5 fm(act) + I fo+ Tear. (17)

On the left side of the equation, ¢ stands for generalized coordinates of joints, M (g) stands for the
mass distribution matrix, and ¢(g, ¢) stands for Coriolis and the gravitational force. On the right
side, J,,, and J, stand for Jacobian matrices that map forces to the generalized coordinates, f, is the
constraint force, f,,,(act) stands for actuator forces generated by muscle-tendon units determined by
muscle activations (act), and 7, stands for all external torque when interacting with environments.
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MS-Human-700 model is implemented in the MuJoCo physics engine [40]. The actuators of the
model in this work are 700 Hill-type [41] muscles. The actuator force generated by each muscle-
tendon unit, and the temporal relation between muscle activation act and the input control signal of
the musculoskeletal model u can be decided by the following equations:

fm(act) = frmaz - [Fi(lm) - Fy(vm) - act + Fp(ln)]. (18)
Oact u — act
ot 7(u,act)’ (19)

In Eq. (18), F; and F), represent force-length and force-velocity functions which are actuator gains,
F,, is the passive force that works as actuator bias, and l,,, , vy, are normalized length and normalized
velocity of the muscle. f,q. is the maximum isometric muscle force as specified in the model. In
the first-order nonlinear system described by Eq. (19), muscle activation act is calculated. The time
parameter 7 is computed following Millard et al. [42]. 7 is the time constant related to the latency
in activation and deactivation.

Muscular Inverse Dynamics

To tackle the challenge of musculoskeletal model postural control posed by its very high dimension-
ality and non-trivial nature, we try to avoid directly manipulating the control of 700 muscles, but
approach a proper target pose defined by joint angles of the model. The length of muscles is one
characteristic of the muscles that can be determined by a given set of joint angles on MS-Human-
700 model. A PD control-like formulation over muscle lengths can be used to derive desired muscle
forces. A normalized PD control is implemented as

fm = mm(O, kp : (lrn - lm)/lrange + kd - (O - l.m))v (20)

where f,, stands for muscle forces, k, and kq are PD control gains, [,, stands for actual muscle
lengths, I, stands for muscle velocities and 7, is target muscle lengths. The difference between
the maximum muscle length and the minimum muscle length of each muscle, /,4yge, is used to
normalize muscle lengths and stablize control effect.

To fully control the muscle-actuated musculoskeletal model after obtaining desired muscle forces,
inverse dynamics of the muscles are applied. We assume that a target muscle activation, determined
by desired muscle forces, should be approached in the next timestep. Eq. (18) and Eq. (19) can
therefore be reformulated as follows:

f*/frna:z; - Fp
== 21
ac PR 1)
—act
act™ = act + ts - u-ac , (22)
T

where act™ is the target muscle activation and ¢s is the simulation timestep. According to MyoSuite
[22], the discrete time constant can be approximated, making it possible to obtain the desired input
control in closed form v = PD(s, z*), where z* denotes the desired target joint angles.
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