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Abstract

Machine learning based compression frameworks are rapidly gaining popularity1

as the demand for efficient storage, processing, and transmission of large-scale2

data continues to grow across diverse applications such as video streaming and IoT.3

Recently, such frameworks have also sparked significant interest in wireless com-4

munications and the task of ML based wireless channel compression is currently5

one of the use cases being explored by the international wireless standards body,6

3GPP, for standardization. In wireless communication systems, each user device or7

user equipment (UE) typically estimates the wireless channel between the transmit-8

ting base station (BS) and itself and feeds back information related to the estimated9

channel state information (CSI) to the serving BS, which may then be utilized for10

downstream processing. While the current 5G communication stack employs a11

combination of matrix factorization and quantization approaches to compress the12

CSI, autoencoders (AE) have emerged as a viable option to compress the estimated13

spatial-frequency (SF) channel sample and send it back to the base station for14

reconstruction. Although the AE-based approaches have shown acceptable CSI re-15

construction performance, there is still a large room for further improvement, both16

from an overhead reduction as well as reconstruction performance perspectives.17

This paper proposes a new AE framework that leverages the temporal correlation18

properties of the channel to enhance the compression process. In particular, we19

propose an AE framework that performs temporal-spatial-frequency (TSF) com-20

pression by utilizing priors based on historical CSI samples to efficiently compress21

the current estimated CSI sample. End-to-end simulation results on a realistic22

test bench demonstrate the superiority of the proposed TSF compression approach23

relative to the state-of-the-art methods.24

1 Introduction25

Compression tasks are critical across numerous domains, including but not limited to, telecommuni-26

cations, healthcare, video streaming and IoT, where efficiently storing and transmitting large amounts27

of data is essential for maintaining performance and reducing costs. Compression techniques like28

compressive sensing, matrix and tensor decompositions have long been used to reduce data dimen-29

sionality and extract meaningful features; however, autoencoders (AE) offer a distinct advantage30

by learning non-linear representations directly from raw data. Autoencoders can preserve essential31

features while reducing redundancy, ultimately leading to more efficient, scalable and cost-effective32

solutions in domains such as video processing, wireless communications, e.g., sensor data analytics33

and wireless channels.34

For time-series data compression, AEs can potentially be more efficient by leveraging Recurrent35

Neural Networks and Transformers to exploit the inherent temporal correlations within the data to36
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achieve superior compression. Depending on the application, the availability of data and the set of37

underlying constraints may differ. While some applications may have the flexibility to utilize multiple38

or all temporal data samples before compressing and transmitting the data, others may require39

real-time compression and transmission as soon as a new data sample arrives. The latter is indeed40

more challenging from a compression perspective. For example, video data inherently benefits from41

temporal correlations between consecutive samples (GOPs or group of pictures), where the content42

remains similar over short periods, allowing compression techniques to exploit these redundancies43

for efficient compression. In contrast, wireless data, e.g., sensor data or cellular channels, presents a44

different challenge, as it requires real-time processing and transmission of data arriving sequentially45

over time. In other words, while video has all or at least a few temporally-correlated samples available46

apriori for analysis and compression, wireless systems must compress and transmit any observed or47

estimated data without delay, making real-time compression more complex and time-sensitive.48

In this work, we introduce a novel autoencoder framework that can efficiently handle real-time49

compression of time-series data. While the proposed framework can be widely applicable to several50

time-series data compression use-cases, e.g., wireless sensor networks, IoT, etc., we here adopt the51

wireless channel compression as an example use-case for real-time time-series data compression. The52

wireless channel data compression has recently gained popularity in the machine learning domain and53

it is one of the few ML use-cases that is currently considered as a study item in the 3GPP wireless54

standards. In the context of wireless channel compression, the processing and transmission of each55

sample has to be completed within 1-2 milliseconds (ms) while the time difference between two56

consecutive samples can range from 5 ms to 20 ms. Thus, each sample has to be compressed and57

transmitted before the next sample arrives. The wireless channel compression is a crucial task in58

massive multiple-input-multiple-output (MIMO) systems.59

Massive MIMO is a leading technology that has the potential to meet the data rate requirements in60

the next-generation wireless communication systems [4]. The key advantage of employing large61

antenna arrays in massive MIMO systems is the capability of achieving striking performance gains in62

multiuser MIMO systems. However, achieving such gains is contingent on the availability of accurate63

channel state information (CSI) at the transmitter. This requires the receiver, e.g., user equipment, to64

send back the estimated CSI to the transmitter, e.g., base station. The CSI feedback process incurs65

additional system overhead that scales up with the number of transmit antennas, the number of receive66

antennas, and the number of allocated frequency resources, thereby resulting in a considerable uplink67

overhead that can impact the system performance.68

Autoencoder (AE)-based CSI compression and feedback has gained significant popularity in the69

wireless domain [2, 3, 6]. The current 5G compliant communication systems under deployment across70

the world employ a combination of matrix factorization and quantization approaches to compress and71

feedback the CSI [1]. AE-based solutions have the potential to offer a favorable trade-off between72

the CSI feedback overhead and reconstruction performance. Existing AE-based approaches operate73

on solely on the spatial-frequency (SF) channel samples, where the spatial components represent the74

number of transmit side and receive side antennas while the frequency components refer to the number75

of orthogonal frequencies over which the data transmission happens. In such setups, the estimated76

CSI sample at each user is compressed using an encoder network, and then the compressed version is77

sent to the base station for reconstruction using a decoder network. This process is repeated for every78

CSI reporting instance, where each collected sample over time is compressed independently. While79

SF compression was shown to provide acceptable reconstruction quality, there is still large room for80

further improvement in the reconstruction performance or reduction in the signaling overhead.81

One way to further improve the performance of the SF compression approach is to leverage the82

temporal correlation properties of the channel in the compression process. Exploiting the CSI83

temporal correlation on the top of SF compression has the potential to provide further i) improvement84

in the reconstruction performance for a given overhead, ii) reduction in the overhead for a given85

performance and/or ii) improvement in both performance and overhead relative to the SF compression.86

To address the CSI feedback overhead reduction problem, we propose a new AE framework that87

seeks to efficiently compress the current spatial-frequency CSI sample by utilizing the temporal88

correlation of the channel in the compression process – this technique is referred to as Temporal-89

Spatial-Frequency (TSF) compression. Preliminary simulation results on a realistic 5G compliant90

test bench show that exploiting the past collected CSI samples in the compression task can result in91

considerable throughput gains relative to SF compression and state-of-the-art methods.92
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2 Problem Statement93
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Figure 1: A representation of the downlink communication with base station (BS) as the transmitter
and a self driving car as the receiver (user equipment(UE)). The transmitted signal from the BS,
travels through multiple paths (red dotted lines) before being received at the UE. The wireless channel
Hn represents the overall impulse response associated with the signal propagation and is estimated at
the UE. The channel is then compressed and sent back to the BS for further downstream processing.

Consider a downlink data transmission setup where a single BS equipped with Nt transmit antennas94

is serving (or transmitting) to a single UE with Nr receive antennas. The UE receives its data over95

multiple frequency components, e.g., sub-carriers (orthogonal frequencies). The UE needs to estimate96

and transmit the channel tensor, Hn ∈ CNr×Nt×Nc , where Nc denotes the number of frequency97

components. The goal is then to compress the estimated channel Hn assuming that the user and base98

station may have access to upto N historical samples, i.e., Hn−1, · · · ,Hn−N .99

3 TSF Framework and Model Architecture100

In this section, we introduce the framework designed to enable real-time compression and feedback of101

the current channel instance between a transmission and reception node, whilst leveraging historical102

channel information to improve reconstruction performance.103

3.1 System Framework104

Given a maximum look-back size of N historical samples, we consider a set of N+1 encoder-decoder105

pairs, one associated with each possible value of the available past samples {0, ..., N}. Thus for the106

channel sample at time n, i.e. Hn, the k-th model is utilized wherein, k = (n mod N +1). The k-th107

model utilizes k past channel samples for both, encoding and decoding. Thus, for a value of k = 0,108

no past information is utilized for the compression, and the channel H is compressed standalone.109

A typical compression pipeline consisting of an encoder and a quantizer is used by the UE to obtain110

a compressed representation of the channel, zn with dimensionality Dk. The UE feeds back the111

compressed representation, zn, to the base station which decompresses it using its decoder. The112

UE is further equipped with the same decoder model being utilized by the BS, this allows both UE113

and BS to have the same reference for the past samples. Post decoding, both BS and UE store the114

reconstructed channel in a buffer. The reconstructed channels stored in the UE-side buffer are utilized115

as priors for compressing the channel samples at the next time instance. Since the UE and BS utilize116

the same priors or past samples, the encoder and decoder remain synchronized (in the absence of117

packet loss and noise) allowing for better compression and reconstruction of the channel data. A118

diagrammatic representation of the compression framework can be seen in Fig. 2.119

As mentioned earlier, the selection of the encoder-decoder pair for a specific n is governed by120

k = (n mod N + 1). This setup ensures any noise, error, or packet loss that may have been121

introduced during transmission (or feedback) is not accumulated for more than N samples. Further,122

having N + 1 models, each dedicated to a specific look-back period, enables us to identify and123

analyze the maximum performance or improvement such a setup could achieve. However, this is124
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achieved at the expense of having multiple models with potential redundancies across their learned125

layers/weights.126
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Figure 2: Proposed TSF Autoencoder framework. The UE utilizes an encoder model along with past
reconstructed channel samples to compress the current channel sample. The NW and UE both utilize
the same decoder network to reconstruct the channel sample with the synchronized information about
the past channel data.

3.2 TSF Model Architecture127

The full architecture of the encoder and decoder blocks are detailed in Fig. 3. The previously decoded128

samples (Ĥn−1, Ĥn−2, ..., Ĥn−k) are combined with the current channel sample Hn at the input129

of the encoder. The input tensor has shape Hin ∈ RNc×Nrt×2(k+1), where (k + 1) represents the130

current and the past k channel samples, 2 represents the real and imaginary parts of the complex131

channels and Nrt = Nr ∗Nt. We compute 2D convolutions with a 1x1 kernel, so that each element132

in the output is derived from a combination of elements at the same position in the input, across133

all the current and past samples. This representation is reshaped appropriately for input to the134

transformer block shown in Fig. 3c. The multi-head self-attention block extracts pairwise similarities135

between frequency sub-bands, Nc resulting in an (Nc ×Nc) attention matrix that is used to weight136

the full input tensor. Channel samples typically exhibit high correlation across sub-bands therefore137

the attention mechanism can be viewed as removing redundancy by focusing on the most relevant138

sub-bands. This representation is passed to a position-wise feed-forward layer that transforms the139

features of each sub-band independently. The output of the transformer block is reshaped and passed140

through a final dense layer and discretized using 2-bit scalar quantization, giving zn.141

At the decoder (Fig. 3b) the prior samples are introduced into the model post the transformer. The142

objective being, that the earlier layers in the encoder learn to filter out the redundant or correlated143

information across samples and the transformer part of the encoder and decoder models only focus144

on compressing and reconstructing the non-redundant information. The redundant information from145

past samples can then be reintroduced into the data at the final stages of the decoding utilizing the146

past samples and 2D convolution layers.147

3.3 Training148

As mentioned earlier, we train a total of N + 1 encoder-decoder pairs {(E0, D0), ..., (EN,, DN,)}149

models. These models are trained serially. Given a set of sequential channel samples, S =150

{H1,H2, ...,Hi, ...H|S|}, where |S| represents the cardinality of the set S. The first model is trained151

such that E1 and D1 minimize the reconstruction loss ∥Hi−D1(E1(Hi))∥2F ∀i ∈ S. For the second152

encoder-decoder pair, we seek to minimise the reconstruction loss: ||Hi−D2(E2(Hi, Ĥi−1))||2F ∀i ∈153
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Figure 3: TSF Model Architecture.

{2, ..., |S|}, where Ĥi−1 = D1(E1(Hi−1)). Generalising this to the kth encoder-decoder pair,154

we minimise ∥Hi − Dk(Ek(Hi, Ĥi−1, ..., Ĥi−k))∥2F ∀i ∈ {k + 1, ..., |S|}, where, Ĥi−j =155

Dj(Ej(Hi−j)) ∀j ∈ {1, ..., k}. We train the encoder-decoder pairs serially so that at the end156

of each training cycle, we can run inference using the trained model to generate the priors to train the157

next model.158

We train our models using Adam and use a learning rate scheduler that reduces the learning rate by159

10% every 5 epochs, with a starting rate of 0.01. We use a batch size of 128 and train each model for160

100 epochs.161

4 Results162

In this section, we provide some preliminary results on the performance of the proposed TSF approach163

relative to two baselines; SF compression using an auto-encoder with the same architecture as the164

proposed TSF model but without using any past information and a 3GPP code-book based baseline,165

referred to as Rel-16 Type II codebook, which is part of the existing wireless standards. For the166

simulation setup, we consider the urban macro (UMa) channel scenario [5] at 4 GHz carrier frequency.167

The channels are collected from multiple BSs and multiple users moving at 10 km/hr speed, where168

each BS has 16 transmit antennas while each user has two receive antennas. We consider a bandwidth169

of 26 frequency components, i.e. Nc = 26. This makes each channel sample a complex tensor of170

dimensions 2× 16× 26. For the TSF approach, we assume that the value of N is set to 3, so each171

user is utilizing up to 3 past channel samples in the compression process of the current sample.172
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Figure 4: (a)Throughput results of the proposed TSF approach relative to Rel-16 Type II baseline
and SF compression baseline. (b)NMSE performance comparison between SF and TSF compression
methods with different number of feedback bits.

Fig. 4a shows the overall throughput performance gain of the proposed TSF approach over the SF173

baseline (blue bar) and the Rel-16 Type II 3GPP baseline (orange bar). To evaluate the throughput,174

we plug the 3 different models in a 3GPP-compliant wireless communication simulation pipeline175

and observe the impact of these methods on the overall data throughput or data rate achieved. For176

TSF compression, the first SF model used to compress the first sample has an overhead of 128 bits177

while the TSF model for the second, third and fourth sample has an overhead of 64 bits. This brings178

the average overhead of the TSF approach to 80 bits per reporting instance. The standalone SF179

compression model has an overhead of 80 bits for every reporting instance and likewise Rel-16 Type180

II. It can be seen that in terms of mean throughput, the proposed approach achieves 34% and 16%181

gain over the Rel-16 Type II and the SF approach, respectively. In addition, in terms of 5-th percentile,182

i.e., cell-edge (users with the worst channel conditions), throughput, the proposed approach achieves183

quite promising gains of 50% and 21% over the Rel-16 Type II and the SF approach, respectively.184

We further showcase the performance of the TSF method by comparing the number of bits utilized185

to compress a CSI sample vs the achieved normalized mean squared error (NMSE) associated with186

CSI reconstruction. The rate-distortion-styled curve has been evaluated for the SF baseline (which187

assumes access to the current CSI sample only) and the TSF scheme with access to the current as188

well as up to 3 past CSI samples. Fig. 4b shows the NMSE performance against the average overhead189

associated with the CSI reporting. It can be seen that the proposed TSF approach with access to190

just 2 samples (current and 1 past sample) considerably outperforms SF compression. Further, as191

the number of past samples available for compression is increased, the performance improves more,192

while almost saturating when 3 past samples (a total of 4 CSI samples) are used for compression.193

To achieve a reconstruction error benchmark of 0.4 NMSE, the SF scheme uses 144 bits on average,194

while the 4-sample TSF approach is able to achieve similar performance with just 88 bits. That’s an195

overhead reduction of almost 39%.196

5 Conclusion and Future Work197

In this work, we introduce the interesting data compression paradigm associated with the problem198

of real-time channel state information (CSI) compression in wireless communication systems. To199

address the challenge, we propose to use the knowledge of past samples to better compress and200

reconstruct the channel data. We further propose a transformer-based compression model that201

effectively outperforms the single-sample methods and the existing methods currently utilized as202

part of the 5G standard. As future work, we plan to explore improved model architectures to better203

leverage information contained in past samples and remove the dependency associated with having204

the decoder as part of the encoding process.205
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