
Experts Don’t Cheat: Learning What You Don’t Know By Predicting Pairs

Daniel D. Johnson 1 2 Daniel Tarlow 1 David Duvenaud 2 Chris J. Maddison 2

Abstract

Identifying how much a model p̂θY|X knows about
the stochastic real-world process pY|X it was
trained on is important to ensure it avoids produc-
ing incorrect or “hallucinated” answers or taking
unsafe actions. But this is difficult for generative
models because probabilistic predictions do not
distinguish between per-response noise (aleatoric
uncertainty) and lack of knowledge about the pro-
cess (epistemic uncertainty), and existing epis-
temic uncertainty quantification techniques tend
to be overconfident when the model underfits. We
propose a general strategy for teaching a model
to both approximate pY|X and also estimate the
remaining gaps between p̂θY|X and pY|X : train it
to predict pairs of independent responses drawn
from the true conditional distribution, allow it to
“cheat” by observing one response while predict-
ing the other, then measure how much it cheats.
Remarkably, we prove that being good at cheat-
ing (i.e. cheating whenever it improves your pre-
diction) is equivalent to being second-order cali-
brated, a principled extension of ordinary calibra-
tion that allows us to construct provably-correct
frequentist confidence intervals for pY|X and de-
tect incorrect responses with high probability. We
demonstrate empirically that our approach accu-
rately estimates how much models don’t know
across ambiguous image classification, (synthetic)
language modeling, and partially-observable nav-
igation tasks, outperforming existing techniques.

1. Introduction
When a generative model p̂θY|X (such as a large language
model) is trained to imitate a stochastic real-world process
pY|X , it’s important to identify what the model doesn’t know

1Google DeepMind 2University of Toronto, Department of
Computer Science, Ontario, Canada. Correspondence to: Daniel
D. Johnson <ddjohnson@cs.toronto.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

!

?

That is the number 7.

Sure, that's 4. It's five.

That is the number 7.

That's spelled T W O.It's even.

?

?

? ??

? ?

Fake Expert

Different? Must have
 been uncertain!

Generation

Uncertainty Elicitation (Self-Cheating)

Sure, it is six.

That's an even number.

Paired Response Training

Tell me
about digit

7 of pi.

Tell me
about digit
2166 of pi.

Sure, that's 7. It's seven.

That is the number 7.

That's spelled S E V E N.It's odd.

That's an even number.

Standard Training

Tell me
about digit

7 of pi.

Tell me
about digit
2166 of pi.

Expert

Expert 1

Expert 2

Figure 1. We train a model (green p̂θ) to predict pairs of i.i.d.
ground-truth answers (blue and red), and allow it to “cheat”
by observing one () while predicting the other (). Calibrated
models only need to cheat when there is something they don’t
know, so the amount that the model cheats when its own guesses
are presented as expert answers can be used to construct provably-
correct “cheat-corrected” estimates of how close p̂θY|X is to pY|X .

about the process. Missing information can cause even well-
trained models to “hallucinate” incorrect claims (Ji et al.,
2022; Kalai & Vempala, 2023), make unjustified decisions
(Hébert-Johnson et al., 2018), or exhibit “self-delusions”
that conflate cause and effect (Ortega et al., 2021). Unfortu-
nately, detecting missing information is very difficult when
the true responses Y are not deterministic functions of the
input X , because probabilistic predictions made by p̂θY|X
must account for both the model’s uncertainty about the
process (called “epistemic uncertainty”) and the variability
intrinsic to pY|X (“aleatoric uncertainty”). For example, if
responding to a query X = “Tell me about digit 5641 of
π”, the predicted probability of a response (e.g. “That is 7”)
may be small either because the model does not know how
pY|X would respond (e.g. whether the answer is actually
“That is 4”), or simply because there are many plausible
responses under pY|X (e.g. “Sure, it’s an odd number”).

If we want to determine whether our model knows enough
about pY|X for us to trust its responses, we cannot rely on
the value of p̂θY|X(y|x) alone, since it may just be small be-

1

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

cause pY|X(y|x) was small. Instead, what matters is whether
p̂θY|X(y|x) is close to pY|X(y|x). Unfortunately, although
we can use metrics like cross-entropy or marginal likeli-
hood to measure improvements in p̂θY|X toward pY|X , we
do not generally know the entropy of pY|X itself, so it is
difficult to know how much our model can still improve.
In fact, when training on a dataset of (X,Y) pairs it is in
general impossible to tell how close p̂θY|X is to pY|X without
making assumptions about pY|X (Barber, 2020). And if we
make assumptions that turn out to be false, ensembling or
Bayesian-inference-based approaches can produce highly-
confident low-uncertainty estimates despite converging to a
model that fails to fit important patterns in the data.

In this work, we show that these limitations can be over-
come without making assumptions about pY|X if we instead
make a small modification to the training procedure: collect
and train on pairs of responses (Y1, Y2) for each X . Our
strategy is based on the following intuition: if an unscrupu-
lous student doesn’t know the answer to a question, they
could improve their guess by peeking at someone else’s
answer. By analogy, if a model’s prediction p̂θY|X(·|x) does
not match the true distribution pY|X(·|x), the model should
be able to improve its prediction if it cheats by peeking at a
sample y1 ∼ pY|X(·|x) from the distribution first. And since
models only benefit from cheating when they do not already
know the distribution, the amount that a calibrated model
cheats gives us exactly what we need to robustly estimate
the gaps between p̂θY|X and pY|X . Our contributions are:

• We define second-order calibration, an extension of or-
dinary calibration that requires models to additionally
report how much the true probabilities pY|X(·|x) (co)vary
around p̂θY|X(·|x) when there are inputs the model cannot
distinguish (Figure 2). We also demonstrate that popular
epistemic uncertainty quantification approaches are not
second-order calibrated under misspecification (Figure 3).

• We show that second-order calibration is equivalent to
ordinary calibration over pairs of responses (y1, y2), and
propose a simple modification to standard maximum-
likelihood training (“training models to cheat” as in Fig-
ure 1) which incentivizes models to become second-order
calibrated given sufficient capacity and training data.

• We prove that, given a calibrated model of pairs, you can
construct confidence intervals for the true probabilities
pY|X(y|x) and reliable tests for “statistical hallucinations”
(responses y with pY|X(y|x) = 0). Our tests rely on a
novel and easily-computable cheat-corrected epistemic
confidence metric, and can be combined with most off-
the-shelf decoding strategies to construct new selective
decoders with bounded hallucination rates.

• For binary Y = {0, 1}, we further show that you can con-
struct nontrivial confidence intervals for pY|X even with

a miscalibrated model as long as you have a calibration
set of paired responses, without making any assumptions
about the form of pY|X . This means that impossibility re-
sults for distribution-free probability regression (Barber,
2020) do not apply when we use paired responses.

• We demonstrate that pair-based variance estimates are em-
pirically second-order well-calibrated on the CIFAR-10H
perceptual uncertainty dataset (Peterson et al., 2019), out-
performing a variety of existing uncertainty quantification
baselines while only requiring small modifications to the
data format and output layer.

• We also train Transformer (Vaswani et al., 2017) sequence
models on paired responses in synthetic language mod-
eling and partially-observable gridworld tasks, and show
that our statistical-hallucination tests enable reliable de-
tection of false statements and unsafe actions despite
never observing any such errors during training.

2. Second-Order Calibrated Models Report
Where They Know The True Conditional

Let X be a set of inputs (e.g. prompts or images), and Y
be an arbitrary discrete set of possible responses (such as
token sequences or class labels). Suppose we train a model
p̂θY|X on a dataset collected from a query distribution p(X)
and a ground-truth conditional distribution pY|X(Y |X), with
X ∈ X and Y ∈ Y , and we then use this model to predict
the distribution of Y for new X ∼ p(X) drawn at inference
time. How can we tell if our model p̂θY|X knows enough to
match pY|X for these new queries? Specifically, how can we
obtain a reliable estimate of the gap between p̂θY|X(·|x) and
pY|X(·|x)?

2.1. Calibrated Models Can Be Far From Perfect

A common way to measure the quality of p̂θY|X is to measure
its calibration: if we aggregate over inputs X that have the
same predicted probability p̂θY|X(y|X), we should hope the
true fraction for which Y = y to be about p̂θY|X(y|X).

Definition 2.1. Let ∆Y denote the set of probability dis-
tributions over the discrete space Y . A predictor p̂θY|X :

X → ∆Y is (first-order) calibrated if there exists a group-
ing function Φ : X → ZΦ such that p̂θY|X maps each in-
put x ∈ X to the average ground-truth distribution pY|X
across random inputs X in the same equivalence class
[x]Φ = {x′ : Φ(x) = Φ(x′)} ⊂ X :

p̂θY|X(y|x) = E
[
pY|X(y|X)

∣∣ X ∈ [x]Φ
]

(1)

= p
(
Y = y

∣∣ Φ(X) = Φ(x)
)
.

Calibration is usually defined for the specific grouping func-
tion ΦθY|X :X →RY with ΦθY|X(x)y = p̂θY|X(y|x), so that the
groups are the subsets of X that map to the same predicted

2

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

Figure 2. Each input point x (e.g. an ambiguous image) has its
own ground-truth response distribution pY|X(·|x) (e.g. possible
human annotator labels for x), but first-order calibration only re-
quires the model’s prediction p̂θY|X to be an average of pY|X across
an arbitrary grouping of examples (red and blue), which means
p̂θY|X can still be far from pY|X for each individual x. A second-
order-calibrated model additionally measures the suboptimality of
this approximation by predicting the per-group covariance Σ̂θ of
pY|X , but this is challenging because pY|X itself is never observed.

distribution (Kumar et al., 2019; Vaicenavicius et al., 2019;
Perez-Lebel et al., 2022). We define calibration in terms of
an arbitrary grouping function Φ to emphasize that a model
p̂θY|X can ignore parts of X and still be well-calibrated; in
this case the grouping function Φ(x) identifies the subsets
of X that the model distinguishes between. These two defi-
nitions are equivalent (Gupta et al., 2020), since ΦθY|X is the
coarsest Φ satisfying Equation (1):
Proposition 2.2. If Eqn. (1) holds for some fixed Φ, then
it must also hold for ΦθY|X : X → RY , where ΦθY|X(x)y ,
p̂θY|X(y|x).

(We defer proofs of all theoretical results to Appendix D.)

A well-calibrated predictor can still be a bad estimate of
pY|X if it fails to distinguish inputs with different true
probabilities pY|X(y|X) and thus averages across them.
For example, a calibrated coin-flip predictor might output
p̂θY|X(HEADS|x) = 50% because it knows coin x is fair, or
because it cannot distinguish coins x+ and x− with opposite
biases. In the first case p̂θY|X(HEADS|x)=pY|X(HEADS|x) and
the model is optimal, but in the second the model is subopti-
mal because it has put inputs with pY|X(y|x+) 6= pY|X(y|x−)
into the same group. This additional error is called the
grouping loss (Perez-Lebel et al., 2022; Kull & Flach, 2015),
which can be lower-bounded but is difficult to upper-bound.

2.2. Second-Order Calibration Measures The Gap

It would be useful if we could get a model to tell us how
far p̂θY|X(y|x) might be from pY|X(y|x) for each x, condi-
tioned on what the model “knows”. We make this precise
by proposing the following definition.
Definition 2.3. A predictor p̂θY|X : X → ∆Y and covariance
estimator Σ̂θ : X → RY×Y are second-order calibrated
if there exists a grouping function Φ such that p̂θY|X and Σ̂θ

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.2
0.4

p(X)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.5
1.0

p(Y = 1 | X)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
1

Y
(b

in
ar

y)

Training Dataset (50,000 Samples)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1
NN Ensemble (8 runs)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1
Gaussian Process Logistic Classifier

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1
Evidential DL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1
Cheat-Corrected NN (ours)

True p(Y = 1|x) Prediction p (Y = 1|x) Epistemic uncertainty estimate
(one standard deviation)

Figure 3. Popular epistemic uncertainty quantification methods
are under- or overconfident when pY|X does not match their as-
sumptions. Given a large number of samples X ∈ R, Y ∈ {0, 1},
ensembles and misspecified Gaussian process classifiers report low
uncertainty at convergence despite failing to match pY|X around
x ≈ 0; Evidential DL (Sensoy et al., 2018) reports high uncer-
tainty near x ≈ 2.0 despite fitting well. In contrast, by using two
samples (Y1, Y2) for each X , our method reports uncertainty that
matches the true gap (p̂θY|X − pY|X)2 even when it underfits.

map each input x ∈ X to the average and covariance matrix
of the ground truth probability vector pY|X(·|x) ∈ ∆Y across
inputs X in the same equivalence class under Φ:

p̂θY|X(y|x) = E
[
pY|X(y|X)

∣∣ X ∈ [x]Φ
]
,

Σ̂θ(x) = Cov
[
pY|X(·|X), pY|X(·|X)

∣∣∣X ∈ [x]Φ

]

where pY|X(·|x)y = pY|X(y|x). We call Σ̂θ the epistemic
covariance of the true conditional pY|X(·|x) under Φ.

If we had a second-order-calibrated predictor, we could use
it to identify how tightly concentrated the true probability
vector pY|X is around the model’s best guess p̂θY|X (as shown
in Figure 2), which would tell us whether p̂θY|X is a good
approximation of pY|X . In our coin-flip example, a second-
order-calibrated model would report Σ̂θ(x)y,y = 0 if it
knows the coin is fair, and Σ̂θ(x)y,y > 0 if it can’t tell
which way x is biased (i.e. if Φ(x) = Φ(x+) = Φ(x−)).

Unfortunately, it is not straightforward to construct a
second-order-calibrated predictor, because we only observe
a sample Y ∼ pY|X(·|x) and not the full pY|X . Second-
order calibration requires the predictor to distinguish be-
tween epistemic and aleatoric uncertainty, but the variance
Var(Y |Φ(X)) of Y itself (for a binary Y) still only mea-
sures the total uncertainty and is thus a first-order quantity.

3

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

2.3. Existing Epistemic Uncertainty Estimators Under-
or Over-estimate The Gap For Underfit Models

Existing techniques for estimating epistemic uncertainty
often attempt to estimate how much pY|X could vary given
what the model “knows”. For instance, Gaussian processes
(Bernardo et al., 1998) and Bayesian neural networks (Goan
& Fookes, 2020) impose a prior distribution over the genera-
tive process, then evaluate the variance of the prediction un-
der an approximate posterior (Kendall & Gal, 2017). Other
related strategies include ensembling (Lakshminarayanan
et al., 2016), injecting noise into the model or training pro-
cess (Gal & Ghahramani, 2015; Osband et al., 2021; Mad-
dox et al., 2019), or predicting a “distribution over distribu-
tions” (Sensoy et al., 2018; Malinin & Gales, 2018).

We might hope that these estimates would be second-order
calibrated, but unfortunately this is not generally the case,
especially if the model is misspecified or underfit relative
to pY|X . We demonstrate this in Figure 3 by applying a
variety of methods to a fixed pY|X with both low- and high-
frequency variation (discussed more in Appendix F.1). With
a large training set, an ensemble and a Gaussian Process
classifier both converge to highly confident but incorrect
solutions, because the prior was misspecified and did not
include pY|X . Evidential DL (Sensoy et al., 2018), on the
other hand, is underconfident because its objective biases its
uncertainty estimates (Bengs et al., 2022; 2023). In practice,
even the largest models are likely to underfit in some regions
of X , making this a serious concern if we wish to reliably
estimate how far p̂θY|X actually is from pY|X .

3. Second-Order Calibration From Paired Y s
How can we obtain a second-order calibrated model? We
now show that making second-order-calibrated predictions
about individual response probabilities is equivalent to mak-
ing first-order-calibrated predictions about paired responses.

Suppose we have a model p̂θY1,Y2|X(Y1, Y2|X) predicting a
distribution over Y × Y , and let p̂θY1|X , p̂θY2|X , p̂θY2|Y1,X be the
induced marginal and conditional distributions. If p̂θY1,Y2|X
is calibrated at predicting a pair of independent responses
Y1, Y2

iid∼ pY|X(· |X), it must be the case that

p̂θY1,Y2|X(y1, y2|x) = E
[
pY|X(y1|X)·pY|X(y2|X)

∣∣∣X∈ [x]Φ

]
for some Φ. How much should we expect y2 to depend on y1

according to this model? Although Y1 and Y2 are indepen-
dent given X , they may not be independent conditioned on
Φ(X), i.e. conditioned on what our model “knows” about
X . In this case, we should expect a calibrated model to
“cheat” by using information about y1 to better inform its
prediction of y2. We can quantify this by measuring how
correlated the possible outcomes are under the model:

Definition 3.1. The pair covariance of p̂θY1,Y2|X is

Σ̂θ
Y1,Y2|X

(x)yi,yj , p̂θY1,Y2|X(yi, yj |x)− p̂θY1|X(yi|x) p̂θY2|X(yj |x)

Σ̂θ
Y1,Y2|X

(x)yi,yj is the difference between the predicted joint
and what we would expect if Y1 and Y2 were independent
given Φ(X). It turns out that this is exactly what we need
to construct a second-order-calibrated predictor of pY|X :

Theorem 3.2. If p̂θY1,Y2|X is first-order calibrated at predict-
ing pairs (Y1, Y2), then its marginal p̂θY1|X and pair co-
variance Σ̂θ

Y1,Y2|X
are second-order calibrated at predict-

ing pY|X . Moreover, this is a bijection: for any second-
order-calibrated (p̂θ

′

Y|X , Σ̂
θ′), there is a unique first-order-

calibrated p̂θY1,Y2|X with p̂θ
′

Y|X = p̂θY1|X and Σ̂θ′ = Σ̂θ
Y1,Y2|X

.

This equivalence means that techniques for training first-
order-calibrated models can also be used to construct second-
order calibrated models whenever it is possible to draw
multiple samples from pY|X (e.g. by asking two random
human experts to label X). In particular, we propose to
directly train a model p̂θY1,Y2|X(Y1, Y2|X) to predict paired
responses by minimizing the standard cross-entropy loss

−E X∼p(X),
Y1,Y2∼pY|X

[
log p̂θY1,Y2|X(Y1, Y2|X)

]
over a dataset of (X(i), Y

(i)
1 , Y

(i)
2) triples. Since cross-

entropy is a proper scoring rule (Kull & Flach, 2015), we
can expect that our model will become more calibrated over
Y × Y as it improves. Indeed, calibration is linked to gen-
eralization ability (Carrell et al., 2022) and hallucination
behavior (Kalai & Vempala, 2023) and tends to emerge in
sufficiently-high-capacity models (Błasiok et al., 2023; Ope-
nAI, 2023; Kadavath et al., 2022). We note that if our model
is explicitly factorized as

p̂θY1,Y2|X(y1, y2|x) = p̂θY1|X(y1|x) · p̂θY2|Y1,X(y2|y1, x)

(e.g. an autoregressive model), we expect it to learn to
“cheat” by copying information from Y1 to Y2 whenever
there are regularities between Y1 and Y2 that aren’t ex-
plained away by what the model knows. This is exactly
what we want, because calibration requires p̂θY1,Y2|X to cheat
whenever p̂θY1|X 6= pY|X ; we can then use Theorem 3.2 to
determine how close p̂θY1|X is to pY|X . Informally, an expert
doesn’t need to cheat, so if you let your model cheat and it
does, it must not know the answer to your question.

4. Bounding Approximation Error With Pairs
4.1. Pair Predictors Can Bound Their Own

Individual-Response Errors By Self-Cheating

We now derive a number of properties which are particularly
useful when using p̂θY1|X to imitate pY|X : bounded deviation

4

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

between p̂θY|X and pY|X , and bounded probability of produc-
ing outputs where pY|X(y|x) = 0. These results rely on the
fact that, conditioned on the matrix ΦθY1,Y2|X(x) ∈ RY×Y of
model outputs (with ΦθY1,Y2|X(x)y1,y2 = p̂θY1,Y2|X(y1, y2|x)),
we can treat pY|X(y|X) as a random variable whose mean is
p̂θY1|X(y|X) and variance is V̂ θCHEAT

(y|X), defined below:

Definition 4.1. The cheat-corrected epistemic variance
of pY|X for response y to query x (under p̂θY1,Y2|X) is

V̂ θCHEAT
(y|x) , p̂θY1|X(y|x)

(
p̂θY2|Y1,X(y|y, x)− p̂θY1|X(y|x)

)
.

V̂ θCHEAT
can be computed easily by scoring y twice, once under

the marginal distribution of Y1 and once when the model
“self-cheats” by conditioning on y (as Y1) when predicting
y again (as Y2). Furthermore, it agrees with the diagonal
entries of Σ̂θ

Y1,Y2|X
(x) as long as p̂θY1,Y2|X is symmetric (which

is true if p̂θY1,Y2|X is calibrated). This means we can use it to
bound the distance between p̂θY1|X and pY|X .

Theorem 4.2. Suppose p̂θY1,Y2|X is calibrated. Let A be any
event and Ỹ ∈ Y be any (possibly random) value such that
Ỹ , A ⊥⊥ X | ΦθY1,Y2|X(X). Then

E
[(
p̂θY1|X(Ỹ |X)− pY|X(Ỹ |X)

)2 ∣∣∣A] = E
[
V̂ θCHEAT

(Ỹ |X)
∣∣∣A].

Furthermore, for any β ∈ (0, 1),

P

[∣∣∣p̂θY1|X(Ỹ |X)− pY|X(Ỹ |X)
∣∣∣ ≥√V̂ θCHEAT(Ỹ |X)

β

∣∣∣∣∣A
]
≤ β.

This is a input-dependent (frequentist) confidence interval
for Ỹ ; if our model reports a small value of V̂ θCHEAT

(Ỹ |X),
we can guess that p̂θY1|X(Ỹ |X) is close to pY|X(Ỹ |X) and be
right most of the time. (For instance, if A is the event where
our example coin-flip predictor predicts 50% HEADS with
epistemic variance ≤ ε, at least 95% of the coins with that
property must have a bias within

√
ε/.05 of 50%.)

When Y is large, we may be less interested in directly esti-
mating pY|X for a particular y, and more interested in making
sure we don’t generate any response y for which pY|X(y|x)
was actually zero; we call such a response a statistical hal-
lucination.1 We can do so using the following metric:

Definition 4.3. The cheat-corrected epistemic confi-
dence of p̂θY1,Y2|X about response y to query x is

CθCHEAT
(y|x) ,

p̂θY1|X(y|x)

p̂θY2|Y1,X(y|y, x)
(or 0 if p̂θY1|X(y|x) = 0).

1The term “hallucination” is often used to mean “output with
false factual claims”. These count as statistical hallucinations as
long as pY|X never produces them, but statistical hallucinations
also include behavior such as taking unsafe actions that pY|X would
avoid, making a math error where pY|X would be correct, or failing
to satisfy any other property of all samples generated by pY|X .

CθCHEAT
measures the relative likelihood with and without self-

cheating, with the denominator correcting for the “aleatoric”
aspects of y that remain unpredictable even when the model
cheats. Similar to V̂ θCHEAT

, it can be computed easily by scoring
y twice. CθCHEAT

is also properly normalized:
Proposition 4.4. If p̂θY1,Y2|X is calibrated, then for any x ∈
X , y ∈ Y we have 0 ≤ CθCHEAT

(y|x) ≤ 1, with CθCHEAT
(y|x) =

1 if and only if p̂θY1|X(y|x) = pY|X(y|x).

And we can use it to bound the statistical-hallucination rate
of any well-behaved decoding algorithm:
Theorem 4.5. Suppose p̂θY1,Y2|X is calibrated. Let A be the
event that a decoding algorithm responds to a query X , and
Ỹ ∈ Y be its response. If A, Ỹ ⊥⊥ X | ΦθY1,Y2|X(X), then
the statistical hallucination rate of the generated responses
is bounded above as

P
[
pY|X(Ỹ |X) = 0

∣∣∣ A] ≤ 1− E
[
CθCHEAT

(Ỹ |X)
∣∣∣ A] .

We can use any decoding strategy that only depends on X
through p̂θY1,Y2|X , including temperature sampling, top-k/top-
p sampling, or beam search (see Zarrieß et al. (2021) for an
overview). Moreover, we are free to use CθCHEAT

(Ỹ |X) in the
algorithm to ensure that 1−CθCHEAT

is low. For example, these
decoding strategies will all have a statistical hallucination
rate at most β when p̂θY1,Y2|X is calibrated:

• Cheat-corrected selective generation / filtering:
Generate Ỹ using an arbitrary off-the-shelf sampler,
but reject it (and don’t respond) if 1−CθCHEAT

(Ỹ |X) > β.

• Cheat-corrected rejection sampling: Repeatedly
sample Ỹ ∼ p̂θY1|X until 1− CθCHEAT

(Ỹ |X) < β.

• Cheat-corrected top-1 search: Deterministically out-
put (or approximate) arg maxy∈S p̂

θ
Y1|X

(y|X), where
S = {y : 1− CθCHEAT

(Ỹ |X) < β}, or abstain if S = ∅.

Selectively responding only when we find a Ỹ with 1 −
CθCHEAT

(Ỹ |X) < β ensures that, conditioned on responding
(e.g. on the eventA), our responses will be non-hallucinated
with probability at least 1− β.

4.2. Paired Data Enables Distribution-Free Frequentist
Confidence Intervals for p(Y |X)

Finally, we show that we can adjust imperfectly-calibrated
estimators p̂θY|X : X → ∆Y and V̂ θ : X → RY to obtain
robust statistical guarantees about the unobserved true con-
ditional probabilities pY|X(Y |X) without assumptions about
pY|X , as long as we have access to a held-out calibration set
{(x(i), y

(i)
1 , y

(i)
2)}Ni=1 containing paired response data. This

demonstrates that the impossiblity result of Barber (2020)
does not apply when we have access to two Y s for each X .
For simplicity we assume Y = {0, 1}.

5

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

Algorithm 1 Conservative adjustment of V̂ θ

Input: Calibration set {(x(i), y
(i)
1 , y

(i)
2)}Ni=1, variance

cutoff ε > 0, tolerance α, p̂θY|X , V̂ θ

for i = 1 to N do
p̂(i) := p̂θY|X(1|x(i)), v̂

(i)
ε := max{V̂ θ(1|x(i)), ε}

s
(i)
ε := (y

(i)
1 − p̂(i))(y

(i)
2 − p̂(i))/v̂

(i)
ε

end for
(γ−ε , γ

+
ε) := MEANCONFITVL

(
{s(i)
ε }Ni=1,− 1

ε ,
1
ε , α

)
return γ+

ε

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.25

0.50

0.75

1.00

p (Y = 1|X)
p(Y=1|X)

= 0.01
= 0.02

= 0.05
= 0.1

= 0.2
= 0.5

Figure 4. Applying Algorithm 1 to our model from Figure 3 pro-
duces frequentist confidence intervals for pY|X(y|X) which are
provably correct with high probability over random X . Here
N = 106, ε = 0.022, and α = 0.05; see Appendix B.

Theorem 4.6. Let p̂θY|X , V̂ θ, and pY|X be arbitrary. With
probability at least 1−α (over draws of the calibration set),
Algorithm 1 returns a value γ+

ε such that, for a randomly
sampled input X ∼ p(X), and any β ∈ (0, 1), y ∈ {0, 1},

P

[∣∣∣p̂θY|X(y|X)− pY|X(y|X)
∣∣∣ ≥√γ+

ε max{V̂ θ(y|X),ε}
β

]
≤β.

In Algorithm 1, MEANCONFITVL can be any subroutine
that builds a (1− α) confidence interval for the mean of a
bounded random variable, e.g. Hoeffding’s inequality (Ho-
effding, 1994) or betting-based algorithms (Waudby-Smith
& Ramdas, 2020). Smaller ε allows more precise bounds
but requires a well-calibrated V̂ θ and a large calibration set,
and if p̂θY|X and V̂ θ are in fact second-order calibrated then
γ+
ε will approach 1 as N → ∞ and ε → 0. The failure

probability β should be interpreted as an aggregate over
X ∼ p(X) rather than pointwise; for a fixed process pY|X
and fixed x either pY|X(y|x) lies in the interval or it does not.
We show an example of the resulting confidence intervals in
Figure 4, and discuss them further in Appendices B and D.4.

5. Related Work
Decomposing uncertainty with paired Y s. Focusing
on regression tasks and asymptotic optimality, Lahlou
et al. (2021) estimate aleatoric uncertainty by predicting
(y1 − y2)2 for two real-valued samples from p(Y |X), then
use it to quantify epistemic uncertainty. For classification,

Narimatsu et al. (2023) use annotator agreement to quan-
tify aleatoric uncertainty at the population level. Repeated
annotations have also been used to improve and evaluate
classifiers (Peterson et al., 2019; Schmarje et al., 2022).

Uncertainty via LLM postprocessing. For language mod-
els, proposed techniques include verifying, critiquing, or
classifying samples (Cobbe et al., 2021; Ni et al., 2023;
Li et al., 2022b; Kadavath et al., 2022), or clustering
semantically-equivalent samples (Kuhn et al., 2022; Li et al.,
2022a; Wang et al., 2022; Chen et al., 2023). This generally
requires a task-specific correctness or similarity metric, and
may be less applicable for generation tasks without well-
defined correct answers. Additionally, most multiple-sample
approaches focus on comparing many Y s at inference time,
whereas our strategy only uses paired Y s at training time
and then scores each Y individually.

Other uses of paired Y s. In other contexts, paired inputs
have been used to learn representations (Bromley et al.,
1993; Chen et al., 2020), and pairwise losses have been used
to train energy-based models (Gutmann & Hyvärinen, 2010).
Lin et al. (2018) train a GAN discriminator to distinguish
pairs of real v.s. generated images and show that this reduces
mode collapse.

Uncertainty via dependence on additional information.
Durasov et al. (2022) train a model to predict the same out-
put both with and without feeding in the correct output as
an extra input, and use the change in prediction to measure
uncertainty. A key difference between this and our cheat-
correction procedure is that Durasov et al. treat the output
as deterministic (no aleatoric uncertainty) and rely on induc-
tive biases of the predictor rather than calibration. Collier
et al. (2022) provide additional privileged information about
the label process in order to explain away label noise and
improve robustness.

Uncertainty via extensions of calibration. To better mea-
sure uncertainty for calibrated models, Perez-Lebel et al.
(2022) propose bounding the population grouping error by
partitioning the model’s feature space. Hébert-Johnson et al.
(2018) study multicalibration, which requires calibration to
hold across all computable subsets of a population.

Distribution-free uncertainty quantification. A number
of approaches have been explored for quantifying uncer-
tainty without making assumptions about the functional
form of p(Y |X), generally by using a held-out calibration
set. Many build on conformal prediction, and use exchange-
ability to construct high-probability prediction sets; see
Angelopoulos & Bates (2021) for an introduction. Related
approaches can be used to construct calibrated classifiers
(Kumar et al., 2019; Gupta et al., 2020; Park et al., 2020)
and randomized predictive distributions (Vovk et al., 2017).
We discuss these connections in more detail in Appendix C.

6

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

Table 1. Cheat-corrected uncertainty estimates are better second-order-calibrated than other techniques, while maintaining
similar accuracy. Our primary metrics: ECE-2 is second-order calibration error of the variance estimate (best ECE-2 in bold), E[v̂θ]
is predicted epistemic variance, and E[(p̂θ−p)2] is actual grouping error (ideally close to E[v̂θ]). For comparison, ECE-1 is first-order
calibration error of predicted probabilities, Acc is top-1 accuracy on the original labels from CIFAR-10, and KL measures the divergence
from pY|X (ground-truth annotator labels) to p̂θY|X . All metrics are averaged over eight random training seeds, and metrics other than Acc
and KL are summed across classes.

CIFAR-10H W/ EXTRA CLASSES, SCRAMBLED

METHOD ECE-2 E[v̂θ] E[(p̂θ−p)2] ECE-1 ACC KL ECE-2 E[v̂θ] E[(p̂θ−p)2] ECE-1 KL

NAIVE NN 0.076 0.142 0.065 0.02 93.9 0.18 0.521 0.682 0.161 0.07 0.71
NN ENSEMBLE 0.039 0.014 0.053 0.03 94.9 0.15 0.134 0.014 0.148 0.03 0.65
EVIDENTIAL DL 0.377 0.053 0.430 1.04 88.5 1.09 0.387 0.031 0.418 0.79 2.36
SNGP COV. 0.048 0.005 0.052 0.02 94.9 0.15 0.112 0.033 0.145 0.06 0.63
EPINET 0.056 0.015 0.071 0.02 93.4 0.19 0.089 0.087 0.163 0.07 0.71

CHEAT NN 0.018 0.052 0.068 0.03 93.6 0.18 0.022 0.134 0.154 0.07 0.67
CHEAT SNGP 0.009 0.054 0.052 0.02 94.9 0.15 0.011 0.153 0.150 0.04 0.65

Predicting distributions-over-distributions. Some previ-
ous techniques (e.g. Sensoy et al., 2018; Malinin & Gales,
2018) have explored measuring uncertainty by predicting a
distribution over possible output distributions (sometimes
called second-order distributions). However, Bengs et al.
(2022; 2023) proved that many such approaches do not in-
centivize faithful reports of uncertainty. Sale et al. (2023)
formalize uncertainty measures for second-order distribu-
tion predictors in terms of distances to sets of reference
distributions. Note that our work uses “second-order” in the
sense of the second-moment statistics in Theorem 3.2, not
second-order distributions. Our approach does not predict a
full distribution over distributions.

6. Experiments
6.1. Classifying Ambiguous Images

We demonstrate our technique on CIFAR-10H (Peter-
son et al., 2019), a relabeling of the CIFAR-10 test set
(Krizhevsky, 2009) by > 50 independent annotators per
image. We cast it as a distribution-matching problem rather
than an accuracy-maximization problem: the goal is to esti-
mate the fraction of human annotators assigning each label
y to each image x. In this setting, we expect epistemic un-
certainty quantification techniques to distinguish between
between images that human annotators find ambiguous and
images that the model has not learned to identify. Our
primary evaluation metric is second-order expected cali-
bration error (ECE-2), the difference between each tech-
nique’s variance estimate V̂ θ and the true squared error(
p̂θ(Y |X)−p(Y |X)

)2
, on an in-distribution test set. Since

some uncertainty-quantification methods may affect predic-
tive accuracy, we additionally report the ordinary expected
calibration error of p̂θ(Y |X) relative to the true annotator
labels (ECE-1), the KL divergence between p̂θ(Y |X) and

the empirical annotator distribution, and the top-1 accuracy
with respect to the clean CIFAR-10 labels. We compute
ECE-1 and ECE-2 by averaging over 100 quantile bins and
summing across classes, as described in Appendix F.2.

We train pair-prediction models p̂θY1,Y2|X to jointly predict two
random annotator labels for each minibatch example, with a
symmetric 10× 10 softmax output head and either an ordi-
nary wide ResNet backbone (Cheat NN) from Zagoruyko
& Komodakis (2016) or a SNGP backbone (Cheat SNGP)
as proposed by Liu et al. (2020). We then use the marginal
p̂θY1|X and cheat-corrected variance V̂ θCHEAT

for evaluation. We
observed that our models occasionally overfit on the small
dataset and produced negative V̂ θCHEAT

estimates due to miscal-
ibration; we regularize them by adding a small penalty for
negative eigenvalues, since p̂θY1,Y2|X(·, ·|x) must be positive
semidefinite if p̂θY1,Y2|X is calibrated (proven in Appendix E).

We compare our approach to a variety of existing uncertainty
quantification techniques: SNGP Cov. (Liu et al., 2020),
which uses spectral normalization and a Laplace random-
features approximation to a Gaussian process covariance;
Evidential DL (Sensoy et al., 2018), which uses a regu-
larized Dirichlet output to estimate epistemic uncertainty;
Epinet (Osband et al., 2021), which models uncertainty
by feeding a random “index” input through a fixed “prior”
network and a learned corrector; NN Ensemble (Lakshmi-
narayanan et al., 2016), which uses the mean and variance
across 8 independent ResNet models; and Naive NN, which
uses p̂θ(Y |X)(1− p̂θ(Y |X)) as an estimate of variance (i.e.
assuming Y is a deterministic function ofX). We train these
baselines by trating the two randomly-selected annotator
labels as separate minibatch examples.

Since CIFAR-10H includes only the original CIFAR-10
test set, we pretrain all models on CIFAR-10N (Wei et al.,
2021), a relabeling of CIFAR-10’s training set by three
annotators per image. We then divide CIFAR-10H’s images

7

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

into two disjoint 5,000-image subsets (with > 50 annotator
labels per image), using the first to train/validate and the
second for evaluation metrics. We tune hyperparameters to
maximize likelihood on our validation set, but intentionally
avoid tuning based on second-order calibration since this
may not be computable under a standard training setup.

As shown in Table 1, our model’s cheat-corrected variance
estimates are substantially better second-order calibrated
than other methods, without sacrificing first-order calibra-
tion or predictive accuracy. In particular, most other meth-
ods tend to underestimate in-distribution epistemic uncer-
tainty (with E[(p̂θY|X−pY|X)2] > E[v̂θ]), although Naive NN
overestimates it. We additionally train and evaluate models
on a harder task variant, where we both add extra classes to
make pY|X more stochastic and also scramble the central im-
age pixels to make underfitting more likely, and find that our
method remains second-order calibrated, whereas other tech-
niques become increasingly over- or under-confident. Of our
two models, the SNGP variant performs the best suggesting
that well-known techniques for improving first-order cali-
bration also improve second-order calibration when training
on pairs. We also point out that the NN Ensemble baseline
gives similar variance estimates and similar ECE-1 values
across the two task variants, but has worse ECE-2 and KL
divergence scores on the harder variant. This means that
ECE-1 and ensemble variance are not sufficient to identify
tasks for which the model is a bad fit for pY|X , whereas the
cheat-corrected variance estimate of our method is more
representative of model quality. Further details for these
experiments are provided in Appendix F.2.

6.2. English Descriptions of Digits of π

We next demonstrate that our technique can be directly ap-
plied to tasks with large output spaces such as sequence
modeling. We construct a synthetic language modeling task
that allow us to control the difficulty and amount of stochas-
ticity in the target responses, where the goal is to correctly
respond to requests like x = “Tell me about digit 24 of π”.
Early digits of π are sampled more often than later ones, and
the target responses are randomly-chosen true statements,
such as “Sure, that is the number 6”, “That’s an even num-
ber”, “It is spelled S I X”, or “Sure, it’s spelled with three
letters”, which are sampled with different probabilities and
exhibit variation in both style and semantic content.

We train a 19M-parameter transformer model (Vaswani
et al., 2017) from scratch for 50k iterations, tokenizing and
concatenating the query X and two sampled responses Y1

and Y2 for each example. We next sample 120 statements
from p̂θY1|X for each digit offset from 1 to 3,000, and label
each sample as a statistical hallucination if pY|X(y|x) = 0
(e.g. if it is not a true statement about the requested digit).
We then evaluate how well the bound in Theorem 4.5 holds

0.00 0.25 0.50 0.75 1.00 1.25
Cheat-corrected confidence (binned)

0.0

0.2

0.4

0.6

0.8

1.0

Ha
llu

cin
at

io
n

ra
te

 (p
er

 b
in

)

Theorem 4.5
bound

Hallucinations v.s. confidence (per bin)

0.0 0.2 0.4 0.6 0.8 1.0
Acceptance rate (fraction accepted)

0.0

0.1

0.2

0.3

0.4

0.5

Ha
llu

cin
at

io
n

ra
te

 (i
f a

cc
ep

te
d) Clustered (k=10)

Avg. token LP
Clustered (k=120)

Total LP
Cheat-corr. conf.

(ours)

Oracle
(best possible)

Hallucination rates of filtering strategies

Figure 5. Left: For our digits-of-π model, binning samples by
CθCHEAT shows that hallucination rate is usually ≤ 1 − CθCHEAT as
predicted by Theorem 4.5, although occasionally CθCHEAT > 1 due
to miscalibration. Right: Ranking samples by |1 − CθCHEAT(y|x)|
yields a similar or lower hallucination rate than other common
filtering strategies when applied to this model.

in practice by dividing samples into bins based on their
predicted confidence CθCHEAT

and computing the fraction of
samples in each bin that were hallucinated. Figure 5 (left)
shows that the fraction of hallucinated samples is generally
slightly lower than 1 − CθCHEAT

, as predicted by the bound
in Theorem 4.5. However, somewhat surprisingly, we ob-
serve that CθCHEAT

(y|x) > 1 for some samples, which would
not occur for a well-calibrated model. Samples with CθCHEAT

slightly above 1 are usually correct, but in rare cases we
also observe very large values of CθCHEAT

(e.g. about ≈ 104

or larger), which tend to happen when the sampled Y1 was
malformed and out-of-distribution. We believe this stems
from the inherent difficulty of making calibrated predictions
over the space of all (pairs of) sequences. In practice, we
suggest to use |1− CθCHEAT

| for thresholding as an alternative
to 1− CθCHEAT

, which is equivalent if the model is calibrated.
We explore other thresholding options and show specific
examples where CθCHEAT

(y|x) > 1 in Appendix F.3.

We next compare different strategies for distinguishing
correct and hallucinated samples: ranking by the log-
probability of each sample under the model (Total LP), rank-
ing by length-normalized log-probability (Avg. Token LP)
(Malinin & Gales, 2020), clustering semantically-equivalent
answers in groups of k samples and thresholding by cluster
size (Clustered) (Kuhn et al., 2022; Li et al., 2022a), and
using our cheat-based selective filtering strategy from Sec-
tion 4.1 (modified to threshold by |1 − CθCHEAT

(y|x)| ≤ β).
We implement correctness and semantic equivalence checks
using a lookup table, as described in Appendix F.3. Figure 5
(right) shows that filtering by our confidence measure allows
generation of more responses with a lower hallucination rate
relative to previously-proposed methods.

6.3. Safe Offline RL With Unobserved Confounders

Finally, we show as a proof of concept that our approach
can detect confounders when doing imitation learning in
POMDPs and thus avoid the “self-delusions” described by
Ortega et al. (2021). We focus on the “Frozen Lake” grid-

8

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs
Un

sa
fe

 P
at

ch
Vi

sib
le

 To
 M

od
el

Expert Policy
Cheat-Corrected

Rejection Sampling
Likelihood: 0.4141
Confidence: 1.0055

Cheat-Corrected
Top-1 Search

Un
sa

fe
 P

at
ch

Hi
dd

en
 Fr

om
 M

od
el

?
?
?

?
?
?

?
?
?

?
?
?

?
?
?

?
?
?

Likelihood: 0.0514
Confidence: 0.9760

Figure 6. Our cheat-corrected decoding strategies (with β = 0.05)
avoid unsafe actions in the “Frozen Lake” task. When the unsafe
patch (red square) is visible, model samples imitate the expert
distribution, and the highest-likelihood path crosses the lake. When
it is hidden,CθCHEAT is low for possibly-unsafe sampled paths (dashed
lines), so our decoding strategies reject them in favor of safe paths.

world task (Warrington et al., 2020), where agents can take
shortcuts across a lake to reach the goal, but a random part
of the lake is unsafe to cross in each episode. We train a
model to imitate expert demonstrations, where the experts
always know and avoid the location of the unsafe patch, but
the model can only see it 50% of the time. This partial-
observation setting is an extreme example of misspecifica-
tion, and can be viewed as a restriction on Φ(X): the model
is forbidden from using part of the “true” input. Naive imi-
tation learning in this setting would cause the model to learn
to cross the lake randomly, which would be unsafe.

We train an 85M-parameter Transformer to imitate pairs
of tokenized trajectories (Y1, Y2) drawn randomly from the
expert policy, where the two demonstrations always share
the same location of the unsafe patch. We then apply two of
our cheat-corrected decoding strategies (rejection sampling
and top-1 search) with the constraint |1−CθCHEAT

| ≤ 0.05, and
visualize the resulting trajectories in Figure 6. Our strategies
behave like ordinary sampling and top-1 search when the
unsafe location is visible to the model, but reject paths that
cross the lake when the location is hidden, since any such
path might have pY|X(y|x) = 0. Only the always-safe paths
that avoid the lake are kept, since the model is confident that
pY|X(y|x) ≈ p̂θY1|X(y|x) for those trajectories.

7. Discussion
We have presented a principled new approach for identifying
the gaps between a model p̂θY|X and the ground truth pY|X ,
based on a remarkable equivalence between second-order
calibration and pair prediction, and proven that calibrated
pair predictors can be used to construct provably-correct
bounds on pY|X . We have further demonstrated that our

scheme is practically effective on both classification and
sequence-modeling tasks, even without perfect calibration
over Y×Y . Although paired responses may not be available
for all datasets, collecting paired fine-tuning data may still
be easier than applying architecture-dependent uncertainty
quantification strategies, especially for large models. We
are optimistic that our procedure will scale up to this use
case, and are eager to explore this direction in future work.

Acknowledgements
We would like to thank Dami Choi for helping with an early
prototype of the idea, and Gustaf Ahdritz, Nikhil Vyas,
Zelda Mariet, and Zi Wang for useful discussions. We are
also thankful to Ayoub El Hanchi, David Glukhov, Stephan
Rabanser, and Jasper Snoek for providing valuable feed-
back on the paper draft. Resources used in preparing this
research were provided in part by the Province of Ontario,
the Government of Canada through CIFAR, and compa-
nies sponsoring the Vector Institute. We acknowledge the
support of the Natural Sciences and Engineering Research
Council of Canada (NSERC), RGPIN-2021-03445.

Impact Statement
Our work proposes a general strategy for training a model
p̂θY|X to accurately report how well it is able to fit an arbitrary
process pY|X on a per-input (or, precisely, per-equivalence-
class) level. A large number of machine learning problems
can be posed in this form, and the consequences of applying
our technique would likely depend on the particular appli-
cation. Overall, however, we hope our technique will make
it easier to build safer and more reliable machine learning
systems, by ensuring that they avoid taking unsafe actions or
making unfair decisions when they are unable to accurately
perform their intended tasks.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Angelopoulos, A. N. and Bates, S. A gentle introduction
to conformal prediction and distribution-free uncertainty

9

https://www.tensorflow.org/

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

quantification. arXiv preprint arXiv:2107.07511, 2021.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Barber, R. F. Is distribution-free inference possible for
binary regression? arXiv: Statistics Theory, 2020.

Bengs, V., Hüllermeier, E., and Waegeman, W. Pitfalls
of epistemic uncertainty quantification through loss min-
imisation. Advances in Neural Information Processing
Systems, 35:29205–29216, 2022.

Bengs, V., Hüllermeier, E., and Waegeman, W. On second-
order scoring rules for epistemic uncertainty quantifica-
tion. arXiv preprint arXiv:2301.12736, 2023.

Berman, A. and Shaked-Monderer, N. Completely positive
matrices. World Scientific, 2003.

Bernardo, J., Berger, J., Dawid, A., Smith, A., et al. Re-
gression and classification using Gaussian process priors.
Bayesian statistics, 6:475, 1998.

Bertsch, A., Xie, A., Neubig, G., and Gormley, M. R. It’s
mbr all the way down: Modern generation techniques
through the lens of minimum bayes risk. arXiv preprint
arXiv:2310.01387, 2023.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah,
R. Signature verification using a” siamese” time delay
neural network. Advances in neural information process-
ing systems, 6, 1993.

Błasiok, J., Gopalan, P., Hu, L., and Nakkiran, P. When
does optimizing a proper loss yield calibration? ArXiv,
abs/2305.18764, 2023.

Cantelli, F. P. Sui confini della probabilita. In Atti del
Congresso Internazionale dei Matematici: Bologna del 3
al 10 de settembre di 1928, pp. 47–60, 1929.

Carrell, A., Mallinar, N. R., Lucas, J., and Nakkiran, P. The
calibration generalization gap. ArXiv, abs/2210.01964,
2022.

Chedzoy, O. B. Phi-Coefficient. In Kotz, S., Read,
C. B., Balakrishnan, N., and Vidakovic, B. (eds.),
Encyclopedia of Statistical Sciences. Wiley, 2 edition,
December 2005. ISBN 9780471150442 9780471667193.
doi: 10.1002/0471667196.ess1960.pub2. URL
https://onlinelibrary.wiley.com/doi/
10.1002/0471667196.ess1960.pub2.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597–1607. PMLR, 2020.

Chen, X., Aksitov, R., Alon, U., Ren, J., Xiao, K., Yin, P.,
Prakash, S., Sutton, C., Wang, X., and Zhou, D. Univer-
sal self-consistency for large language model generation.
ArXiv, abs/2311.17311, 2023.

Chollet, F. et al. Keras. https://keras.io, 2015.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. ArXiv, abs/2110.14168, 2021.

Collier, M., Jenatton, R., Kokiopoulou, E., and Berent, J.
Transfer and marginalize: Explaining away label noise
with privileged information. In International Conference
on Machine Learning, pp. 4219–4237. PMLR, 2022.

Dawid, A. P. The well-calibrated Bayesian. Journal of
the American Statistical Association, 77(379):605–610,
1982.

Dawid, A. P. Present position and potential developments:
Some personal views statistical theory the prequential
approach. Journal of the Royal Statistical Society: Series
A (General), 147(2):278–290, 1984.

Dawid, A. P. Calibration-based empirical probability. The
Annals of Statistics, 13(4):1251–1274, 1985.

DeepMind, Babuschkin, I., Baumli, K., Bell, A., Bhupati-
raju, S., Bruce, J., Buchlovsky, P., Budden, D., Cai,
T., Clark, A., Danihelka, I., Dedieu, A., Fantacci, C.,
Godwin, J., Jones, C., Hemsley, R., Hennigan, T., Hes-
sel, M., Hou, S., Kapturowski, S., Keck, T., Kemaev,
I., King, M., Kunesch, M., Martens, L., Merzic, H.,
Mikulik, V., Norman, T., Papamakarios, G., Quan, J.,
Ring, R., Ruiz, F., Sanchez, A., Sartran, L., Schnei-
der, R., Sezener, E., Spencer, S., Srinivasan, S., Stano-
jević, M., Stokowiec, W., Wang, L., Zhou, G., and Vi-
ola, F. The DeepMind JAX Ecosystem, 2020. URL
http://github.com/google-deepmind.

Ding, P. A first course in causal inference. arXiv preprint
arXiv:2305.18793, 2023.

Durasov, N., Dorndorf, N., Le, H., and Fua, P. Zigzag:
Universal sampling-free uncertainty estimation through

10

http://github.com/google/jax
https://onlinelibrary.wiley.com/doi/10.1002/0471667196.ess1960.pub2
https://onlinelibrary.wiley.com/doi/10.1002/0471667196.ess1960.pub2
https://keras.io
http://github.com/google-deepmind

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

two-step inference. arXiv preprint arXiv:2211.11435,
2022.

Foster, D. P. and Vohra, R. V. Asymptotic calibration.
Biometrika, 85(2):379–390, 1998.

Gal, Y. and Ghahramani, Z. Dropout as a Bayesian approxi-
mation: Representing model uncertainty in deep learning.
In International Conference on Machine Learning, 2015.

Garrabrant, S., Benson-Tilsen, T., Critch, A., Soares,
N., and Taylor, J. Logical induction. arXiv preprint
arXiv:1609.03543, 2016.

Goan, E. and Fookes, C. Bayesian neural networks: An
introduction and survey. ArXiv, abs/2006.12024, 2020.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In International
conference on machine learning, pp. 1321–1330. PMLR,
2017.

Gupta, C. and Ramdas, A. Distribution-free calibration
guarantees for histogram binning without sample splitting.
In International Conference on Machine Learning, pp.
3942–3952. PMLR, 2021.

Gupta, C., Podkopaev, A., and Ramdas, A. Distribution-free
binary classification: prediction sets, confidence inter-
vals and calibration. Advances in Neural Information
Processing Systems, 33:3711–3723, 2020.

Gutmann, M. and Hyvärinen, A. Noise-contrastive estima-
tion: A new estimation principle for unnormalized statisti-
cal models. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pp.
297–304. JMLR Workshop and Conference Proceedings,
2010.

Hébert-Johnson, Ú., Kim, M. P., Reingold, O., and Roth-
blum, G. N. Multicalibration: Calibration for the
(computationally-identifiable) masses. In International
Conference on Machine Learning, 2018.

Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer,
J., and Lakshminarayanan, B. Augmix: A simple data
processing method to improve robustness and uncertainty.
arXiv preprint arXiv:1912.02781, 2019.

Hensman, J., Matthews, A., and Ghahramani, Z. Scalable
variational Gaussian process classification. In Artificial
Intelligence and Statistics, pp. 351–360. PMLR, 2015.

Hoeffding, W. Probability inequalities for sums of bounded
random variables. The collected works of Wassily Hoeffd-
ing, pp. 409–426, 1994.

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii,
E., Bang, Y., Dai, W., Madotto, A., and Fung, P. Survey
of hallucination in natural language generation. ACM
Computing Surveys, 55:1 – 38, 2022.

Kadavath, S., Conerly, T., Askell, A., Henighan, T. J., Drain,
D., Perez, E., Schiefer, N., Dodds, Z., DasSarma, N.,
Tran-Johnson, E., Johnston, S., El-Showk, S., Jones,
A., Elhage, N., Hume, T., Chen, A., Bai, Y., Bowman,
S., Fort, S., Ganguli, D., Hernandez, D., Jacobson, J.,
Kernion, J., Kravec, S., Lovitt, L., Ndousse, K., Ols-
son, C., Ringer, S., Amodei, D., Brown, T. B., Clark,
J., Joseph, N., Mann, B., McCandlish, S., Olah, C., and
Kaplan, J. Language models (mostly) know what they
know. ArXiv, abs/2207.05221, 2022.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. Plan-
ning and acting in partially observable stochastic domains.
Artificial intelligence, 101(1-2):99–134, 1998.

Kalai, A. T. and Vempala, S. S. Calibrated language models
must hallucinate. ArXiv, abs/2311.14648, 2023.

Kendall, A. and Gal, Y. What uncertainties do we need
in Bayesian deep learning for computer vision? ArXiv,
abs/1703.04977, 2017.

Krizhevsky, A. Learning multiple layers of features from
tiny images. In Tech report, 2009.

Kuhn, L., Gal, Y., and Farquhar, S. Semantic uncertainty:
Linguistic invariances for uncertainty estimation in nat-
ural language generation. In The Eleventh International
Conference on Learning Representations, 2022.

Kull, M. and Flach, P. Novel decompositions of proper scor-
ing rules for classification: Score adjustment as precursor
to calibration. In Machine Learning and Knowledge
Discovery in Databases: European Conference, ECML
PKDD 2015, Porto, Portugal, September 7-11, 2015, Pro-
ceedings, Part I 15, pp. 68–85. Springer, 2015.

Kumar, A., Liang, P. S., and Ma, T. Verified uncertainty
calibration. Advances in Neural Information Processing
Systems, 32, 2019.

Lahlou, S., Jain, M., Nekoei, H., Butoi, V. I., Bertin, P.,
Rector-Brooks, J., Korablyov, M., and Bengio, Y. DEUP:
Direct epistemic uncertainty prediction. arXiv preprint
arXiv:2102.08501, 2021.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. In Neural Information Processing Systems,
2016.

Li, Y., Choi, D. H., Chung, J., Kushman, N., Schrittwieser,
J., Leblond, R., Tom, Eccles, Keeling, J., Gimeno, F.,

11

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

Lago, A. D., Hubert, T., Choy, P., de, C., d’Autume, M.,
Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J., Gowal,
S., Alexey, Cherepanov, Molloy, J., Mankowitz, D. J.,
Robson, E. S., Kohli, P., de, N., Freitas, Kavukcuoglu, K.,
and Vinyals, O. Competition-level code generation with
AlphaCode. Science, 378:1092 – 1097, 2022a.

Li, Y., Lin, Z., Zhang, S., Fu, Q., Chen, B., Lou, J.-G., and
Chen, W. Making language models better reasoners with
step-aware verifier. In Annual Meeting of the Association
for Computational Linguistics, 2022b.

Lin, Z., Khetan, A., Fanti, G., and Oh, S. Pacgan: The
power of two samples in generative adversarial networks.
Advances in neural information processing systems, 31,
2018.

Liu, J. Z., Lin, Z., Padhy, S., Tran, D., Bedrax-Weiss, T., and
Lakshminarayanan, B. Simple and principled uncertainty
estimation with deterministic deep learning via distance
awareness. ArXiv, abs/2006.10108, 2020.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Maddox, W. J., Garipov, T., Izmailov, P., Vetrov, D. P., and
Wilson, A. G. A simple baseline for Bayesian uncer-
tainty in deep learning. In Neural Information Processing
Systems, 2019.

Malinin, A. and Gales, M. Predictive uncertainty estima-
tion via prior networks. Advances in neural information
processing systems, 31, 2018.

Malinin, A. and Gales, M. Uncertainty estimation in autore-
gressive structured prediction. In International Confer-
ence on Learning Representations, 2020.

Muralidharan, O. and Najmi, A. Second order calibration: A
simple way to get approximate posteriors. arXiv preprint
arXiv:1510.08437, 2015.

Nado, Z., Band, N., Collier, M., Djolonga, J., Dusenberry,
M. W., Farquhar, S., Feng, Q., Filos, A., Havasi, M.,
Jenatton, R., et al. Uncertainty baselines: Benchmarks
for uncertainty & robustness in deep learning. arXiv
preprint arXiv:2106.04015, 2021.

Narimatsu, H., Ozawa, M., and Kumano, S. Collision prob-
ability matching loss for disentangling epistemic uncer-
tainty from aleatoric uncertainty. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 11355–
11370. PMLR, 2023.

Ni, A., Iyer, S., Radev, D. R., Stoyanov, V., tau Yih, W.,
Wang, S. I., and Lin, X. V. LEVER: learning to ver-
ify language-to-code generation with execution. ArXiv,
abs/2302.08468, 2023.

Oakes, D. Self-calibrating priors do not exist. Journal of
the American Statistical Association, 80:339–339, 1985.

OpenAI. GPT-4 technical report, 2023.

Ortega, P. A., Kunesch, M., Delétang, G., Genewein, T.,
Grau-Moya, J., Veness, J., Buchli, J., Degrave, J., Piot,
B., Perolat, J., et al. Shaking the foundations: delusions
in sequence models for interaction and control. arXiv
preprint arXiv:2110.10819, 2021.

Osband, I., Wen, Z., Asghari, M., Ibrahimi, M., Lu, X.,
and Roy, B. V. Epistemic neural networks. ArXiv,
abs/2107.08924, 2021.

Park, S., Li, S., Bastani, O., and Lee, I. PAC confidence
predictions for deep neural network classifiers. ArXiv,
abs/2011.00716, 2020.

Perez-Lebel, A., Morvan, M. L., and Varoquaux, G. Be-
yond calibration: estimating the grouping loss of modern
neural networks. arXiv preprint arXiv:2210.16315, 2022.

Peterson, J. C., Battleday, R. M., Griffiths, T. L., and Rus-
sakovsky, O. Human uncertainty makes classification
more robust. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 9617–9626,
2019.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rasmussen, C. E. and Williams, C. K. I. Classification.
In Gaussian Processes for Machine Learning. The MIT
Press, 11 2005. ISBN 9780262256834. doi: 10.7551/
mitpress/3206.003.0006. URL https://doi.org/
10.7551/mitpress/3206.003.0006.

Sale, Y., Bengs, V., Caprio, M., and Hüllermeier, E. Second-
order uncertainty quantification: A distance-based ap-
proach. arXiv preprint arXiv:2312.00995, 2023.

Sandroni, A., Smorodinsky, R., and Vohra, R. V. Calibration
with many checking rules. Math. Oper. Res., 28:141–153,
2003.

Schmarje, L., Grossmann, V., Zelenka, C., Dippel, S., Kiko,
R., Oszust, M., Pastell, M., Stracke, J., Valros, A., Volk-
mann, N., et al. Is one annotation enough?-a data-centric
image classification benchmark for noisy and ambigu-
ous label estimation. Advances in Neural Information
Processing Systems, 35:33215–33232, 2022.

Schulman, J., Chen, X., and Abbeel, P. Equivalence be-
tween policy gradients and soft Q-learning. arXiv preprint
arXiv:1704.06440, 2017.

12

https://doi.org/10.7551/mitpress/3206.003.0006
https://doi.org/10.7551/mitpress/3206.003.0006

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

Sensoy, M., Kandemir, M., and Kaplan, L. M. Evidential
deep learning to quantify classification uncertainty. ArXiv,
abs/1806.01768, 2018.

Shafer, G. and Vovk, V. Game-theoretic foundations for
probability and finance, volume 455. John Wiley & Sons,
2019.

Vaicenavicius, J., Widmann, D., Andersson, C., Lindsten,
F., Roll, J., and Schön, T. Evaluating model calibration
in classification. In The 22nd International Conference
on Artificial Intelligence and Statistics, pp. 3459–3467.
PMLR, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vovk, V., Shen, J., Manokhin, V., and Xie, M.-g. Non-
parametric predictive distributions based on conformal
prediction. In Conformal and probabilistic prediction
and applications, pp. 82–102. PMLR, 2017.

Wang, X., Wei, J., Schuurmans, D., Le, Q., hsin Chi, E. H.,
and Zhou, D. Self-consistency improves chain of thought
reasoning in language models. ArXiv, abs/2203.11171,
2022.

Warrington, A., Lavington, J. W., Scibior, A., Schmidt,
M. W., and Wood, F. D. Robust asymmetric learning
in POMDPs. In International Conference on Machine
Learning, 2020.

Waudby-Smith, I. and Ramdas, A. Estimating means of
bounded random variables by betting. arXiv preprint
arXiv:2010.09686, 2020.

Wei, J., Zhu, Z., Cheng, H., Liu, T., Niu, G., and Liu, Y.
Learning with noisy labels revisited: A study using real-
world human annotations. ArXiv, abs/2110.12088, 2021.

Wen, Z., Osband, I., Qin, C., Lu, X., Ibrahimi, M.,
Dwaracherla, V., Asghari, M., and Van Roy, B. From pre-
dictions to decisions: The importance of joint predictive
distributions. arXiv preprint arXiv:2107.09224, 2021.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing,
C., Zhang, H., Lan, Y., Wang, L., and Liu, T. On layer
normalization in the transformer architecture. In Inter-
national Conference on Machine Learning, pp. 10524–
10533. PMLR, 2020.

Zadrozny, B. and Elkan, C. Transforming classifier scores
into accurate multiclass probability estimates. In Proceed-
ings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 694–699,
2002.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

Zarrieß, S., Voigt, H., and Schüz, S. Decoding methods in
neural language generation: a survey. Information, 12(9):
355, 2021.

13

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

A. Sample Visualizations
In this section we present samples from our models for the Digits of Pi and Frozen Lake tasks (Sections 6.2 and 6.3).

Prompt:

Sampled Y_1 ~ p_theta(Y_1|X) Sampled Y_2 ~ p_theta(Y_2|Y_1, X)

Log prob.: -4.783 Log prob.: -4.662

Log prob.: -3.811 Log prob.: -3.615

Log prob.: -2.858 Log prob.: -3.850

Log prob.: -2.858 Log prob.: -4.035

Log prob.: -4.026 Log prob.: -4.126

Log prob.: -3.811 Log prob.: -4.743

Log prob.: -3.954 Log prob.: -4.465

Log prob.: -4.846 Log prob.: -4.767

Log prob.: -3.400 Log prob.: -4.314

Log prob.: -3.139 Log prob.: -2.921

Log prob.: -8.958 Log prob.: -4.055

<BOS> Tell me about digit 0 2 3 6 of pi. <SEP>

Sure, it's spelled with 5 letters _ _ _ _ Sure, it's 8 _ _ _ _ _ _ _

Sure, that's spelled E I G H T _ _ Sure, that's the number eight _ _ _ _ _

That's eight _ _ _ _ _ _ _ _ It is eight _ _ _ _ _ _ _

That's eight _ _ _ _ _ _ _ _ Sure, it's an even number _ _ _ _ _

It's spelled E I G H T _ _ _ Sure, that is an even number _ _ _ _

Sure, that's spelled E I G H T _ _ Sure, that is spelled with 5 letters _ _ _

That is 8 _ _ _ _ _ _ _ Sure, that's the number 8 _ _ _ _ _

Sure, that is spelled with 5 letters _ _ _ Sure, it's spelled with 5 letters _ _ _ _

It's eight _ _ _ _ _ _ _ _ That is the number 8 _ _ _ _ _

Sure, that's eight _ _ _ _ _ _ _ That's eight _ _ _ _ _ _ _ _

Sure, that is spelled with 8 letters _ _ _ That is spelled with 5 letters _ _ _ _

Figure 7. Results of sampling pairs (Y1, Y2) from the model p̂θY1,Y2|X when asked about the 236th digit of π, which it “knows” is eight.
(Our method does not actually require sampling Y2; we show samples for illustrative purposes only.) Color denotes likelihood, with red
denoting less-likely tokens. The left column is Y1 and the right column is Y2 (drawn conditional on Y1); each row is an independent
pair of samples for the prompt at the top. Note that the last row’s Y1 is a low-probability mistake which was sampled due to the high
temperature. (The model “knows” eight is spelled with 5 letters, so Y2 is inconsistent with Y1).

Prompt:

Sampled Y_1 ~ p_theta(Y_1|X) Sampled Y_2 ~ p_theta(Y_2|Y_1, X)

Log prob.: -6.109 Log prob.: -2.749

Log prob.: -4.798 Log prob.: -4.391

Log prob.: -5.281 Log prob.: -4.304

Log prob.: -5.761 Log prob.: -4.293

Log prob.: -6.976 Log prob.: -4.110

Log prob.: -6.320 Log prob.: -4.164

Log prob.: -4.649 Log prob.: -3.943

Log prob.: -3.671 Log prob.: -5.055

Log prob.: -5.671 Log prob.: -3.322

Log prob.: -4.649 Log prob.: -3.153

Log prob.: -11.261 Log prob.: -2.863

<BOS> Tell me about digit 2 5 0 6 of pi. <SEP>

That's spelled S E V E N _ _ _ That's seven _ _ _ _ _ _ _ _

Sure, that's six _ _ _ _ _ _ _ It's the number 6 _ _ _ _ _ _

That is spelled with 5 letters _ _ _ _ It is an odd number _ _ _ _ _

It's one _ _ _ _ _ _ _ _ That is spelled with 3 letters _ _ _ _

It is spelled T H R E E _ _ It's 3 _ _ _ _ _ _ _ _

Sure, that's 5 _ _ _ _ _ _ _ Sure, that's spelled with 4 letters _ _ _ _

That's the number six _ _ _ _ _ _ That is spelled with 3 letters _ _ _ _

That's an even number _ _ _ _ _ _ That's the number zero _ _ _ _ _ _

That is 6 _ _ _ _ _ _ _ Sure, that's an even number _ _ _ _ _

That's the number six _ _ _ _ _ _ That's an even number _ _ _ _ _ _

That's spelled E two _ _ _ _ _ _ That's two _ _ _ _ _ _ _ _

Figure 8. Results of sampling pairs (Y1, Y2) from the model p̂θY1,Y2|X , when asked about the 2506th digit of π (which it has not learned).
The sampled Y2 is usually consistent with the Y1 sample, indicating that the model is “cheating” well. The last sample of Y1 is malformed
due to sampling a low-probability token.

14

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

Prompt:

Initial guess: log p_theta(Y_1=y|x): -6.109
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -3.747
Amount of cheating: => Confidence: 0.094

Initial guess: log p_theta(Y_1=y|x): -4.798
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -3.429
Amount of cheating: => Confidence: 0.25

Initial guess: log p_theta(Y_1=y|x): -5.281
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -4.020
Amount of cheating: => Confidence: 0.28

Initial guess: log p_theta(Y_1=y|x): -5.761
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -3.358
Amount of cheating: => Confidence: 0.09

Initial guess: log p_theta(Y_1=y|x): -6.976
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -4.354
Amount of cheating: => Confidence: 0.073

Initial guess: log p_theta(Y_1=y|x): -6.320
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -3.944
Amount of cheating: => Confidence: 0.093

Initial guess: log p_theta(Y_1=y|x): -4.649
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -3.403
Amount of cheating: => Confidence: 0.29

Initial guess: log p_theta(Y_1=y|x): -3.671
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -3.042
Amount of cheating: => Confidence: 0.53

Initial guess: log p_theta(Y_1=y|x): -5.671
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -4.257
Amount of cheating: => Confidence: 0.24

Initial guess: log p_theta(Y_1=y|x): -4.649
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -3.403
Amount of cheating: => Confidence: 0.29

Initial guess: log p_theta(Y_1=y|x): -11.261
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -19.752
Amount of cheating: => Confidence: 4.9e+03

<BOS> Tell me about digit 2 5 0 6 of pi. <SEP>

That's spelled S E V E N _ _ _
That's spelled S E V E N _ _ _
That's spelled S E V E N _ _ _

Sure, that's six _ _ _ _ _ _ _
Sure, that's six _ _ _ _ _ _ _
Sure, that's six _ _ _ _ _ _ _

That is spelled with 5 letters _ _ _ _
That is spelled with 5 letters _ _ _ _
That is spelled with 5 letters _ _ _ _

It's one _ _ _ _ _ _ _ _
It's one _ _ _ _ _ _ _ _
It's one _ _ _ _ _ _ _ _

It is spelled T H R E E _ _
It is spelled T H R E E _ _
It is spelled T H R E E _ _

Sure, that's 5 _ _ _ _ _ _ _
Sure, that's 5 _ _ _ _ _ _ _
Sure, that's 5 _ _ _ _ _ _ _

That's the number six _ _ _ _ _ _
That's the number six _ _ _ _ _ _
That's the number six _ _ _ _ _ _

That's an even number _ _ _ _ _ _
That's an even number _ _ _ _ _ _
That's an even number _ _ _ _ _ _

That is 6 _ _ _ _ _ _ _
That is 6 _ _ _ _ _ _ _
That is 6 _ _ _ _ _ _ _

That's the number six _ _ _ _ _ _
That's the number six _ _ _ _ _ _
That's the number six _ _ _ _ _ _

That's spelled E two _ _ _ _ _ _
That's spelled E two _ _ _ _ _ _
That's spelled E two _ _ _ _ _ _

Figure 9. Scoring samples using our cheat-corrected epistemic confidence, for the 2506th digit of π (which it has not learned). Conditioning
on Y1 = y reveals information about this digit, so the log probability increases when outputting Y2 = y, and we can use the magnitude of
the increase as a measurement of confidence. We can also attribute this increase to individual tokens (with red in the “Amount of cheating:”
rows indicating a token whose likelihood increased after cheating). The last sample is malformed, so has very low probability as either Y1

or Y2, which leads to an outlier confidence greater than 1. We recommend discarding samples with confidences significantly larger than
one, e.g. by keeping only those with |1− CθCHEAT| ≤ β.

15

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

Prompt:

Initial guess: log p_theta(Y_1=y|x): -4.783
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -4.739
Amount of cheating: => Confidence: 0.96

Initial guess: log p_theta(Y_1=y|x): -3.811
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -3.957
Amount of cheating: => Confidence: 1.2

Initial guess: log p_theta(Y_1=y|x): -2.858
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -2.905
Amount of cheating: => Confidence: 1.0

Initial guess: log p_theta(Y_1=y|x): -2.858
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -2.905
Amount of cheating: => Confidence: 1.0

Initial guess: log p_theta(Y_1=y|x): -4.026
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -4.061
Amount of cheating: => Confidence: 1.0

Initial guess: log p_theta(Y_1=y|x): -3.811
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -3.957
Amount of cheating: => Confidence: 1.2

Initial guess: log p_theta(Y_1=y|x): -3.954
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -3.940
Amount of cheating: => Confidence: 0.99

Initial guess: log p_theta(Y_1=y|x): -4.846
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -4.776
Amount of cheating: => Confidence: 0.93

Initial guess: log p_theta(Y_1=y|x): -3.400
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -3.388
Amount of cheating: => Confidence: 0.99

Initial guess: log p_theta(Y_1=y|x): -3.139
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -3.177
Amount of cheating: => Confidence: 1.0

Initial guess: log p_theta(Y_1=y|x): -8.958
After self-cheating: log p_theta(Y_2=y|Y_1=y, x): -18.563
Amount of cheating: => Confidence: 1.5e+04

<BOS> Tell me about digit 0 2 3 6 of pi. <SEP>

Sure, it's spelled with 5 letters _ _ _ _
Sure, it's spelled with 5 letters _ _ _ _
Sure, it's spelled with 5 letters _ _ _ _

Sure, that's spelled E I G H T _ _
Sure, that's spelled E I G H T _ _
Sure, that's spelled E I G H T _ _

That's eight _ _ _ _ _ _ _ _
That's eight _ _ _ _ _ _ _ _
That's eight _ _ _ _ _ _ _ _

That's eight _ _ _ _ _ _ _ _
That's eight _ _ _ _ _ _ _ _
That's eight _ _ _ _ _ _ _ _

It's spelled E I G H T _ _ _
It's spelled E I G H T _ _ _
It's spelled E I G H T _ _ _

Sure, that's spelled E I G H T _ _
Sure, that's spelled E I G H T _ _
Sure, that's spelled E I G H T _ _

That is 8 _ _ _ _ _ _ _
That is 8 _ _ _ _ _ _ _
That is 8 _ _ _ _ _ _ _

Sure, that is spelled with 5 letters _ _ _
Sure, that is spelled with 5 letters _ _ _
Sure, that is spelled with 5 letters _ _ _

It's eight _ _ _ _ _ _ _ _
It's eight _ _ _ _ _ _ _ _
It's eight _ _ _ _ _ _ _ _

Sure, that's eight _ _ _ _ _ _ _
Sure, that's eight _ _ _ _ _ _ _
Sure, that's eight _ _ _ _ _ _ _

Sure, that is spelled with 8 letters _ _ _
Sure, that is spelled with 8 letters _ _ _
Sure, that is spelled with 8 letters _ _ _

Figure 10. Scoring samples using our cheat-corrected epistemic confidence, for the 236th digit of π (which it “knows”). We repeat
each response twice, comparing the probabilities p̂θY1|X(y|x) and p̂θY2|Y1,X(y|y, x). Color indicates log probability for “Initial guess” and
“After self-cheating”, and differences between log probabilities for “Amount of cheating”. For this prompt, conditioning on Y1 does not
significantly change the prediction of the model, because it already knows the value of the 236th digit. However, in the last sample, the
probability decreases because the originally-sampled guess was a mistake (see Figure 7), leading to an outlier confidence value greater
than one.

16

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

P: 0.4141, C: 1.0055 P: 0.0057, C: 0.9267 P: 0.4141, C: 1.0055 P: 0.4141, C: 1.0055 P: 0.4141, C: 1.0055 P: 0.0709, C: 0.9621 P: 0.0137, C: 0.9759 P: 0.4141, C: 1.0055 P: 0.0000, C: 0.8656 P: 0.4141, C: 1.0055

P: 0.4141, C: 1.0055 P: 0.4141, C: 1.0055 P: 0.0709, C: 0.9621 P: 0.4141, C: 1.0055 P: 0.0007, C: 1.1201 P: 0.0046, C: 0.9957 P: 0.0709, C: 0.9621 P: 0.0296, C: 0.8683 P: 0.0389, C: 0.9125 P: 0.0057, C: 0.9267

P: 0.0194, C: 0.9388 P: 0.0568, C: 1.0119 P: 0.0023, C: 0.9690 P: 0.4141, C: 1.0055 P: 0.0568, C: 1.0119 P: 0.0296, C: 0.8683 P: 0.0709, C: 0.9621 P: 0.0389, C: 0.9125 P: 0.4141, C: 1.0055 P: 0.4141, C: 1.0055

P: 0.0389, C: 0.9125 P: 0.0709, C: 0.9621 P: 0.0015, C: 1.0072 P: 0.4141, C: 1.0055 P: 0.0122, C: 0.9492 P: 0.0244, C: 1.0094 P: 0.0568, C: 1.0119 P: 0.0203, C: 0.9684 P: 0.4141, C: 1.0055 P: 0.0015, C: 0.9784

0.5

0.6

0.7

0.8

0.9

1.0
Cheat-corrected Epistem

ic Confidence

Figure 11. Model samples and confidences for the fully-observable version of the “Frozen Lake” task, with the unsafe patch in the bottom
left. Dashed trajectories indicate samples that we would reject using a |1−CθCHEAT| ≤ 0.05 threshold. We add a small diagonal offset when
plotting so that it is easier to follow paths that backtrack; the model itself only predicts discrete actions (left, right, up, down) and moves
between grid cells. There is a fair amount of diversity among samples, although our strict decoding strategy does occasionally reject safe
paths.

P: 0.0072, C: 1.0174 P: 0.1324, C: 0.9913 P: 0.0026, C: 0.9851 P: 0.1324, C: 0.9913 P: 0.1337, C: 1.0088 P: 0.0636, C: 0.9499 P: 0.0551, C: 0.9639 P: 0.0637, C: 0.9954 P: 0.1337, C: 1.0088 P: 0.0007, C: 0.9327

P: 0.0008, C: 0.9571 P: 0.0249, C: 0.9988 P: 0.0551, C: 0.9639 P: 0.0002, C: 0.8779 P: 0.0636, C: 0.9499 P: 0.0078, C: 1.0075 P: 0.1324, C: 0.9913 P: 0.0202, C: 0.9751 P: 0.0637, C: 0.9954 P: 0.1324, C: 0.9913

P: 0.0242, C: 0.9446 P: 0.0551, C: 0.9639 P: 0.0249, C: 0.9988 P: 0.1324, C: 0.9913 P: 0.1337, C: 1.0088 P: 0.0637, C: 0.9954 P: 0.1337, C: 1.0088 P: 0.0000, C: 1.1090 P: 0.0002, C: 1.2005 P: 0.0552, C: 0.9523

P: 0.1324, C: 0.9913 P: 0.1324, C: 0.9913 P: 0.1324, C: 0.9913 P: 0.0637, C: 0.9954 P: 0.0197, C: 0.9826 P: 0.0552, C: 0.9523 P: 0.0078, C: 1.0075 P: 0.1324, C: 0.9913 P: 0.0551, C: 0.9639 P: 0.1337, C: 1.0088

0.5

0.6

0.7

0.8

0.9

1.0

Cheat-corrected Epistem
ic Confidence

Figure 12. Model samples and confidences for the fully-observable version of “Frozen Lake” with the unsafe patch in the middle right.

?
?
?

?
?
?

?
?
?

P: 0.0640, C: 0.6043

?
?
?

?
?
?

?
?
?

P: 0.0639, C: 0.5952

?
?
?

?
?
?

?
?
?

P: 0.0027, C: 0.9454

?
?
?

?
?
?

?
?
?

P: 0.0011, C: 0.5863

?
?
?

?
?
?

?
?
?

P: 0.2720, C: 0.6651

?
?
?

?
?
?

?
?
?

P: 0.0640, C: 0.6043

?
?
?

?
?
?

?
?
?

P: 0.0640, C: 0.6043

?
?
?

?
?
?

?
?
?

P: 0.0014, C: 0.9445

?
?
?

?
?
?

?
?
?

P: 0.0640, C: 0.6043

?
?
?

?
?
?

?
?
?

P: 0.0512, C: 0.9667

?
?
?

?
?
?

?
?
?

P: 0.0034, C: 0.7624

?
?
?

?
?
?

?
?
?

P: 0.2720, C: 0.6651

?
?
?

?
?
?

?
?
?

P: 0.0512, C: 0.9667

?
?
?

?
?
?

?
?
?

P: 0.0024, C: 0.9858

?
?
?

?
?
?

?
?
?

P: 0.0514, C: 0.9760

?
?
?

?
?
?

?
?
?

P: 0.0028, C: 0.9064

?
?
?

?
?
?

?
?
?

P: 0.0514, C: 0.9760

?
?
?

?
?
?

?
?
?

P: 0.0056, C: 0.8492

?
?
?

?
?
?

?
?
?

P: 0.2720, C: 0.6651

?
?
?

?
?
?

?
?
?

P: 0.0146, C: 0.9256

?
?
?

?
?
?

?
?
?

P: 0.0512, C: 0.9667

?
?
?

?
?
?

?
?
?

P: 0.2720, C: 0.6651

?
?
?

?
?
?

?
?
?

P: 0.2720, C: 0.6651

?
?
?

?
?
?

?
?
?

P: 0.0160, C: 0.8823

?
?
?

?
?
?

?
?
?

P: 0.2720, C: 0.6651

?
?
?

?
?
?

?
?
?

P: 0.0027, C: 1.0278

?
?
?

?
?
?

?
?
?

P: 0.0640, C: 0.6043

?
?
?

?
?
?

?
?
?

P: 0.0055, C: 0.8072

?
?
?

?
?
?

?
?
?

P: 0.2720, C: 0.6651

?
?
?

?
?
?

?
?
?

P: 0.0640, C: 0.6043

?
?
?

?
?
?

?
?
?

P: 0.2720, C: 0.6651

?
?
?

?
?
?

?
?
?

P: 0.0212, C: 0.5290

?
?
?

?
?
?

?
?
?

P: 0.0003, C: 0.5806

?
?
?

?
?
?

?
?
?

P: 0.0033, C: 0.6180

?
?
?

?
?
?

?
?
?

P: 0.0144, C: 0.8807

?
?
?

?
?
?

?
?
?

P: 0.0639, C: 0.5952

?
?
?

?
?
?

?
?
?

P: 0.0138, C: 0.6883

?
?
?

?
?
?

?
?
?

P: 0.0640, C: 0.6043

?
?
?

?
?
?

?
?
?

P: 0.0045, C: 0.7773

?
?
?

?
?
?

?
?
?

P: 0.0512, C: 0.9667

0.5

0.6

0.7

0.8

0.9

1.0

Cheat-corrected Epistem
ic Confidence

Figure 13. Model samples and confidences for “Frozen Lake” when the unsafe patch is hidden. Note that samples that cross the lake have
much lower confidence when the unsafe patch is hidden, relative to similar trajectories in Figures 11 and 12.

17

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

B. Our Distribution-Free Confidence Intervals
In this section, we show the results of applying Theorem 4.6 to the 1D binary regression problem in Figure 3.

101

102

103

Avg. of D (using oracle knowledge of p(Y|X)) Avg. of S (estimated from X, Y1, Y2)

Hoeffding's @ = 0.01
Hoeffding's @ = 0.05
Hoeffding's @ = 0.1
Hoeffding's @ = 0.25

confseq @ = 0.01
confseq @ = 0.05
confseq @ = 0.1
confseq @ = 0.25

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Best-case = [D] (at convergence)
Using = 0.0001, = 1.815826

p (Y = 1|X)
p(Y=1|X)

= 0.01
= 0.02

= 0.05
= 0.1

= 0.2
= 0.5

102 103 104 105 106 107 108 109

Number of samples in calibration set (N)

1

0

1

2

3

4

5

Es
tim

at
ed

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Estimating with confseq: N = 106, = 0.05
Using = 0.0001, = 6.608104

p (Y = 1|X)
p(Y=1|X)

= 0.01
= 0.02

= 0.05
= 0.1

= 0.2
= 0.5

Distribution-free bounds with threshold = 0.0001 = 0.012

101

102

Avg. of D (using oracle knowledge of p(Y|X)) Avg. of S (estimated from X, Y1, Y2)

Hoeffding's @ = 0.01
Hoeffding's @ = 0.05
Hoeffding's @ = 0.1
Hoeffding's @ = 0.25

confseq @ = 0.01
confseq @ = 0.05
confseq @ = 0.1
confseq @ = 0.25

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Best-case = [D] (at convergence)
Using = 0.0004, = 1.100404

p (Y = 1|X)
p(Y=1|X)

= 0.01
= 0.02

= 0.05
= 0.1

= 0.2
= 0.5

102 103 104 105 106 107 108 109

Number of samples in calibration set (N)

1

0

1

2

3

4

5

Es
tim

at
ed

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Estimating with confseq: N = 106, = 0.05
Using = 0.0004, = 2.2

p (Y = 1|X)
p(Y=1|X)

= 0.01
= 0.02

= 0.05
= 0.1

= 0.2
= 0.5

Distribution-free bounds with threshold = 0.0004 = 0.022

101

102

Avg. of D (using oracle knowledge of p(Y|X)) Avg. of S (estimated from X, Y1, Y2)

Hoeffding's @ = 0.01
Hoeffding's @ = 0.05
Hoeffding's @ = 0.1
Hoeffding's @ = 0.25

confseq @ = 0.01
confseq @ = 0.05
confseq @ = 0.1
confseq @ = 0.25

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Best-case = [D] (at convergence)
Using = 0.0025, = 0.764635

p (Y = 1|X)
p(Y=1|X)

= 0.01
= 0.02

= 0.05
= 0.1

= 0.2
= 0.5

102 103 104 105 106 107 108 109

Number of samples in calibration set (N)

1

0

1

2

3

4

5

Es
tim

at
ed

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Estimating with confseq: N = 106, = 0.05
Using = 0.0025, = 1.0

p (Y = 1|X)
p(Y=1|X)

= 0.01
= 0.02

= 0.05
= 0.1

= 0.2
= 0.5

Distribution-free bounds with threshold = 0.0025 = 0.052

Figure 14. Visualization of our distribution-free bound for the toy 1-D binary regression problem in Figure 3, with ε set to 0.012, 0.022,
or 0.052. Left: Convergence of γε based on Hoeffding’s inequality and confseq, with running averages of Dε and Sε for reference.
Right: Resulting confidence intervals for p(Y |X), using either the best-case γε = E[Dε] or a value of γε returned by Algorithm 1.

18

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

102

103

104

105

Avg. of D (using oracle knowledge of p(Y|X)) Avg. of S (estimated from X, Y1, Y2)

Hoeffding's @ = 0.01
Hoeffding's @ = 0.05
Hoeffding's @ = 0.1
Hoeffding's @ = 0.25

confseq @ = 0.01
confseq @ = 0.05
confseq @ = 0.1
confseq @ = 0.25

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Best-case = [D] (at convergence)
Using = 1e 06, = 13.53075

p (Y = 1|X)
p(Y=1|X)

= 0.01
= 0.02

= 0.05
= 0.1

= 0.2
= 0.5

102 103 104 105 106 107 108 109

Number of samples in calibration set (N)

20

0

20

40

60

80

100

Es
tim

at
ed

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Estimating with confseq: N = 106, = 0.05
Using = 1e 06, = 141.988152

p (Y = 1|X)
p(Y=1|X)

= 0.01
= 0.02

= 0.05
= 0.1

= 0.2
= 0.5

Distribution-free bounds with threshold = 1e 06 = 0.0012

2 × 100

3 × 100

4 × 100

Avg. of D (using oracle knowledge of p(Y|X)) Avg. of S (estimated from X, Y1, Y2)

Hoeffding's @ = 0.01
Hoeffding's @ = 0.05
Hoeffding's @ = 0.1
Hoeffding's @ = 0.25

confseq @ = 0.01
confseq @ = 0.05
confseq @ = 0.1
confseq @ = 0.25

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Best-case = [D] (at convergence)
Using = 0.25, = 0.110329

p (Y = 1|X)
p(Y=1|X)

= 0.01
= 0.02

= 0.05
= 0.1

= 0.2
= 0.5

102 103 104 105 106 107 108 109

Number of samples in calibration set (N)

1

0

1

2

3

4

5

Es
tim

at
ed

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Estimating with confseq: N = 106, = 0.05
Using = 0.25, = 0.162378

p (Y = 1|X)
p(Y=1|X)

= 0.01
= 0.02

= 0.05
= 0.1

= 0.2
= 0.5

Distribution-free bounds with threshold = 0.25 = 0.52

Figure 15. Visualization of our distribution-free bound with ε set to 0.0012 (leading to a blowup of γε and a very pessimistic bound) or
0.52 (for which the bound ignores vCHEAT

θ entirely and has a constant width for all X , because V̂ θCHEAT(y|x) ≤ 0.52 everywhere).

We hold (p̂θY1|X , Σ̂
θ
Y1,Y2|X

) fixed (to the “Cheat-corrected NN” described in Appendix F.1), and study the behavior of the
bound for different confidence interval algorithms, variance thresholds ε, failure tolerances α, and calibration set sizes N .
We compare two confidence interval algorithms, Hoeffding’s inequality (Hoeffding, 1994), discussed in Appendix D.4, and
confseq (Waudby-Smith & Ramdas, 2020), desribed below.

In Figures 14 and 15, we enumerate ε ∈ {0.001, 0.01, 0.02, 0.05, 0.5} and plot values of γε as the number of calibration
set examples N ranges from 100 to 109. For comparison, we also plot running average estimates of E[Dε] (which require
knowledge of p(Y |X)) and of E[Sε] (as computed in Algorithm 1). We also plot the resulting confidence intervals for
p(Y |X) at various confidence levels β, using either an estimate based on 106 calibration set examples or the best-possible
value E[Dε] at convergence (computed using oracle knowledge of p(Y |X)).

Overall, we observe that confseq’s bounds are considerably tighter than those based on Hoeffding’s inequality. Because
our model p̂θY1,Y2|X is not perfectly calibrated on pairs, setting ε too small leads to a blowup of E[Dε] and an ineffective
bound. Smaller ε also reduces the rate at which γ converges, so setting it to a larger value may be necessary if there is a
limit on the size of the calibration set. On the other hand, setting ε too large produces confidence intervals that are the same
width everywhere, ignoring V̂ θCHEAT

and instead using the marginal variance of pY|X(1|X) across all X .

Note that, regardless of ε, the resulting bounds are provably correct with high probability (in the sense described by
Theorem 4.6). However, when ε is set too small, it is more likely that the bound is overly conservative, and when ε is too

19

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

large, the coverage guarantees are more likely “trade off” errors between values of X , assigning conservative bounds to
some regions and under-covered bounds to others so that the overall coverage target β is met. This can be seen in the plot
for ε = 0.25. (In a sense every such bound must trade off errors between values of X , because after fixing pY|X , for each x
the value of pY|X(y|x) is either in the interval or not. But if ε is small and the model is well calibrated, this trading-off only
occurs between examples in the same equivalence class, i.e. with the same value of Φ(x).)

confseq implementation details: For our confseq bounds, we use the betting cs function from the confseq
Python package,2 which implements the algorithm described by Waudby-Smith & Ramdas (2020). We rescale our Sε values
so that they are bounded between 0 and 1, as assumed by the algorithm. betting cs maintains a finite set of hypotheses
about E[Sε] and uses hypothesis testing to reject them; these hypotheses are evenly spaced over the unit interval by default,
but we modify it slightly to choose a set of hypotheses that are more-closely concentrated around 0.5, which gives higher
precision for γε ≈ 0 after inverting our rescaling. (The finite hypothesis set is the reason for the discrete jumps in the
estimates produced by confseq in Figures 14 and 15.) We configure betting cs with a prior mean of 1 and a prior
variance of 0.54

ε2 for Sε, which correspond to a prior mean of 1
2 + 1

2ε and prior variance of 0.56 after rescaling Sε to the
unit interval. Since betting-based confidence intervals are more computationally expensive than confidence intervals from
Hoeffding’s inequality, we only run confseq for calibration set sizes smaller than 107.

2https://github.com/gostevehoward/confseq

20

https://github.com/gostevehoward/confseq

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

C. Additional discussion and related work
Pair prediction (two Y for the same X) v.s. “joint prediction” (different Xs and Y s) for epistemic uncertainty: As
motivation for the Epinet uncertainty-quantification technique, Osband et al. (2021) have argued that uncertainty-aware
agents should be judged not based on their uncertainty about Y for individual inputs X , but instead based on their joint
distribution over a sequence of Y (i) drawn for a sequence of inputs X(i); they refer to this as “joint prediction”. While
somewhat similar to our proposed pair-prediction formalism in terms of motivation, the focus and applicability of the
approaches is quite different.

Probabistic structure: The joint prediction criterion assumes the model has some hierarchical structure, such that it is
possible to express a joint distribution over the outcomes Y (i) for different inputs X(i). Bayesian neural networks and
Epinets satisfy this criterion, but not all neural networks express a joint in this way. In particular, a cheat-corrected
pair-prediction neural network (as we propose) does not assume any joint distribution over outcomes for different X; its
outputs can be converted into well-calibrated pointwise estimates of variance, but each prediction is made pointwise (e.g.
for this particular x or the xes in a particular equivalence class).

Evaluation criterion: Osband et al. (2021) propose to use joint prediction primarily as an evaluation metric, based on
theoretical results showing that joint predictions perform well for decision making (Wen et al., 2021). This can be interpreted
as measuring how quickly a model can “learn” from new data to improve its predictions on future data points. In contrast,
our work focuses on pair prediction as a way to train a model to be second-order calibrated, which then lets us estimate
how accurately a model predicts its distance from p(Y |X). Our evaluation metric is then the pointwise calibration of the
second-order estimates.

Training objective: Our proposed training objective in directly trains a model to predict pairs, and our distribution-free
adjustment procedure also directly uses paired data. This ensures that our approach can be statistically valid even if the
model is misspecified or computationally limited, but requires the data collection process to be modified. On the other hand,
Osband et al. (2021) do not train their models based on a joint prediction objective, but instead show that a per-sample
log-likelihood objective leads to good joint predictions under the assumption that the data was generated by a distribution
with a specific known form. This implies that the Epinet training objective is not necessarily second-order calibrated or
robust to misspecification, and we find empirical evidence of this in Section 6.1.

Pair prediction v.s. minimum Bayes risk / repeated sampling techniques: Many postprocessing-based techniques
improving model outputs using multiple samples, including clustering-based approaches, can be interpreted as instances of
minimum Bayes risk (MBR) decoding (Bertsch et al., 2023). In MBR decoding, after obtaining a model p̂θ approximating
some generative process, actions are selected not based on their likelihood under the model, but instead based on some error
function L(y, y′) that compares possible outputs; an output y′ is “good” if it achieves a low error in expectation across
alternative outputs y sampled from the model p̂θ(Y |X = x). For instance, L might return 1 if two outputs are semantically
equivalent.

Although our approach and MBR decoding both draw repeated samples from a conditional distribution of Y given X , they
differ on which distribution is sampled. In MBR decoding, the training data usually consists of only one Y drawn from
p(Y |X) for each X , but multiple samples are drawn from p̂θ(Y |X) and compared at inference time. In contrast, in our
pair-prediction technique, the training data must consist of two samples Y1, Y2 drawn from p(Y |X) for each X , but at
inference time we can sample and score single outputs from p̂θ(Y |X).

MBR also requires specification of a task-relevant error function L(y, y′), and does not distinguish between aleatoric and
epistemic uncertainty in p̂θ(Y |X), but instead distinguishes between “risky”/“unusual” and “safe”/“common” samples using
L(y, y′). In contrast, our technique is task-agnostic and explicitly distinguishes aleatoric and epistemic uncertainty. Note
that, because it is task-agnostic, our approach may report uncertainty about hard-to-predict parts of Y even if they are not
relevant to the downsteram task, whereas MBR decoding can explicitly ignore the irrelevant parts when computing L.

Comparison to other distribution-free statistical guarantees: Our adjustment procedure in Section 4.2 has some
similarities to previous algorithms for distribution-free prediction.

Conformal prediction is a particularly common and powerful form of distribution-free inference; see Angelopoulos & Bates
(2021) for an introduction. In general, conformal prediction lifts a predictor of points (i.e. samples yi ∈ Y) into a predictor
of prediction sets (subsets of Y) such that, for a new input drawn from the same distribution, the result lies in the predicted

21

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

set with high probability. The basic idea is to associate a “conformal score” to each outcome in Y that measures how
badly the predictor was wrong (e.g. the prediction error), estimate an upper quantile of the conformal scores for the actual
outcomes in the dataset, then construct a prediction set by removing any observation whose conformal score would be higher
than this quantile). This idea is closely linked to that of hypothesis testing.

Directly applying conformal prediction to a binary classification problem produces prediction sets that are subsets of
Y = {0, 1}, but this is not ideal if there is uncertainty about Y , because then the best prediction set will often be {0, 1}
itself, which is trivial and uninformative; similar issues may also arise for larger Y in high-uncertainty settings. Related to
our work, Barber (2020) investigated the feasibility of constructing confidence intervals for the probability p(Y = 1|X)
instead of the samples Y themselves. Working under the assumption that the data consists of (X,Y) pairs and that each X
is seen at most once, Barber proved that any confidence intervals for p(Y = 1|X) must necessarily also be a prediction set
for Y itself. In other words, the confidence interval cannot be a tight bound on the true p(Y = 1|X), since it must include at
least one of the endpoints 0 or 1 with high probability, and may need to cover the whole unit interval for highly-stochastic Y .
(Our approach avoids this limitation by assuming each input X is seen twice.)

Gupta et al. (2020) study the relationship between calibration, grouping functions, confidence intervals, and predictive sets
for binary classification problems. They introduce the notion of confidence intervals and predictive sets with respect to a
function f , where f plays the same role as our grouping function Φ, and study methods for bounding the true expectation
E[Y |f(X)]. They prove that, in general, parametric recalibration methods cannot be distribution-free calibrated, but if
outputs of f are discretized to a finite set of bins first, then it is possible to construct distribution-free confidence intervals
for the conditional probability E[Y |f(X)]. A similar guarantee about calibration error was given by Kumar et al. (2019),
who also proposed an efficient combined scaling-binning scheme, and a refined analysis that allows re-using samples was
also given by Gupta & Ramdas (2021).

We note that confidence intervals for the expectation E[Y |f(X)] with respect to f(X) are not the same as confidence
intervals for the true conditional probability p(Y = 1|X) = E[Y |X]. Constructing a confidence interval for E[Y |f(X)]
allows you to guarantee that your model is nearly first-order calibrated; it gives an interval of values that is likely to
contain the answer to the question “across all of the inputs for which my model’s output is φ, how many will have Y = 1?”
However, it does not tell you whether your model is doing a good job at separating examples with different true conditional
probabilities. In contrast, our procedure directly produces a confidence interval for p(Y = 1|X); it gives an interval of
values in answer to the question “what is the chance that Y = 1 for this specific x?” such that the answer is likely3 to be
correct for most4 randomly-chosen x.

For an estimator with finitely-many bins, and an infinite number of recalibration examples, the confidence intervals for
E[Y |f(X)] will eventually converge on the exact value of E[Y |f(X)]. However, our confidence intervals for p(Y = 1|X)
may never converge to the exact value of p(Y = 1|X) if the model is unable to distinguish Xs with different label probabili-
ties. This is unavoidable, since our model may not have capacity to express p(Y = 1|X) without additional assumptions
(whereas a lookup table always has enough capacity to estimate E[Y |f(X)] over finitely many bins). Nevertheless, if we
happen to be lucky, and our model is actually able to predict the exact value for p(Y = 1|X) (and is both calibrated and
confident about this prediction, i.e. V̂ θCHEAT

(y|x) = 0), then our confidence intervals will converge to that value. Our procedure
is thus adaptive to the complexity of the specific dataset being used while remaining correct without additional assumptions,
a desirable property for a distribution-free algorithm.

Previous uses of “second-order calibration” terminology: The term “second-order calibration” has been previously
used by Muralidharan & Najmi (2015) to refer to a particular method for adjusting an arbitrary system to give approximate
posteriors over a latent real-valued parameter, under strong distributional assumptions. Here “calibration” is used in the
sense of “a calibration procedure” rather than as “the property of being calibrated”, and the goal is to distinguish error in
estimating the parameter from the intrinsic noise in the response-generating process, using an estimate of variance. The
calibration procedure relies on binning examples x based on the output t of a learned model, assuming that the real-valued
true parameter θ of interest follows a simple parameteric family, and then fitting the parameters of the family for each bin
separately using maximum (marginal) likelihood; this is an extension of (re)calibration procedures that try to post-process a
non-calibrated model to make it more (first-order) calibrated (e.g. Kumar et al. (2019)). Since true data for the parameter is
not available, the focus of the work is primarily on ensuring that the simple parametric model fits the data well rather than

3With probability at least 1− α.
4At least 1− β of them.

22

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

on measuring the accuracy of the variance estimates.

We are not aware of any previous work that uses “second-order calibration” to refer to a formally-defined property of a
predictive model rather than to a technique for postprocessing an existing model, nor any that considers it in the sense of
predicting the squared error between a predicted discrete distribution and an unknown ground-truth discrete distribution (e.g.
for a classifier or generative model) without distributional assumptions.

Joint, marginal, and class-wise calibration: Our definition of first-order calibration requires that all elements of the
output joint distribution match their true expectation conditional on a single grouping function (or, equivalently, conditional
on the full vector of model outputs). This is sometimes referred to as being “jointly calibrated”. There are also weaker
definitions of calibration. Following the terminology of Perez-Lebel et al. (2022), “classwise calibrated” models make
individually-calibrated binary predictions about each possible class y (Zadrozny & Elkan, 2002), and “top-label calibrated”
models first identify a most likely label and then make a calibrated binary predictions about the correctness of that guess
(Guo et al., 2017).

Our technique fundamentally requires making predictions about a pair of outcomes (y1, y2). In particular, it is not enough
to make separately-calibrated predictions p̂θY1|X(y1|x) and p̂θY2|Y1,X(y2|y1, x), since the procedure works by comparing how
much more likely any given outcome y would be to occur a second time. In principle, however, we could still transform
a multi-class classification problem into a set of binary classification problems, then apply our technique to the binary
problems. In this setting, instead of predicting a full joint p̂θY1,Y2|X(Y1, Y2|x), we could introduce binary outcome variables
Oyi such that Oyi = 1 whenever Yi = y, then make a set of individually-calibrated pair predictions p(Oy1 , O

y
2 |x), one for

each y. This could then be used to construct second-order marginally-calibrated versions of classwise calibration or top-label
calibration. Note that this approach would still allow you to estimate the epistemic variance for any particular class, but
would not tell you a full covariance matrix.

How much does the choice of X matter? Our work has assumed the existence of a joint distribution of variables X,Y
given by a conditional pY|X(Y |X) and a distribution of queries P (X). However, a first-order calibrated model is free to
condition on an arbitrary function of X instead of X itself. This means that, in a standard machine learning setup, there may
be some metaphysical ambiguity about what X “really” refers to.

A concrete example of this is our “Frozen Lake” experiments, where we randomly sample an environment X , then
occasionally hide information about the unsafe patch to obtain XPARTIAL, and finally train a model to map XPARTIAL to
a distribution over expert trajectories Y . If all we care about is first-order calibration, we could think of the procedure
that transforms X into XPARTIAL as either being part of the model’s grouping function Φ or as being part of the ambient
probability space. Similarly, we could either think of this as learning to approximate p(Y |X) with a misspecified model,
or as learning to approximate p(Y |XPARTIAL) directly. These two are in a sense equivalent, since they produce the same
samples of XPARTIAL and would use the same cross entropy loss over Y , and a perhaps more standard choice would be to
think of the hidden information as being some other variable Z, and think of the “true conditional” the model is learning as
being p(Y |XPARTIAL). You could make a similar argument for ordinary classifiers also, e.g. are feature normalization or
augmentation strategies part of the data distribution or are they part of the model?

Once we involve second-order calibration, however, this distinction becomes practical rather than metaphysical: the query
X is whatever information makes the two responses Y1, Y2 independent and identically distributed. In other words, if we
construct a process that samples two responses Y1, Y2 that are i.i.d. given Z, the true conditional we are estimating will then
be the conditional p(Y |Z) regardless of what transformation we apply to Z before giving it to our model.

We believe this is a powerful strength of our approach, because it allows you to specify the “boundaries” of your desired
conditional distribution by example rather than by assumption. If you wish to imitate a set of experts, you can collect a
dataset by asking those experts, and any “common knowledge” that those experts have will become “part of X”, regardless
of whether or not you can encode it as part of the input to the model itself; a pair-predictor model will thus be incentivised
to estimate whether or not it also knows that common knowledge. Similarly, anything that is independent between those
experts will be treated as part of the aleatoric uncertainty in Y , since it cannot be used to help predict the answer of a
different expert.

How tight is Theorem 4.5 (hallucination rate)? Our results in Theorem 4.5 provide an upper bound on the rate of
statistical hallucinations when using a sufficiently well-behaved decoding algorithm. A natural question is whether this

23

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

bound is tight, and in what circumstances.

The bound in Theorem 4.5 will be tight if there are exactly two values for pY|X conditioned on what the model “knows”:
zero, and some nonzero constant value. In this case, all of the variance in pY|X conditioned on Φ(X) is caused by these two
point masses, and the ratio of probabilities in CθCHEAT

will tell you the fraction of inputs X for which pY|X takes the nonzero
value. This might be the case if the model is very confident about the probability of the particular response y assuming it is
correct, but does not know whether or not y is correct. Our experiments in the digits-of-pi task (discussed in Appendix F.3)
approximately satisfy this property, since the only thing that changes between digits is the set of statements that are correct;
the probability of any given statement is consistent across all queries for which it is correct.

In more realistic scenarios, there may be other aspects that influence the probability of a given response other than its
correctness, e.g. the model may not know something about the typical style of answers to a particular type of question. This
will lead to increased variance in pY|X and a lower confidence. The epistemic confidence may still be useful in those settings
as a normalized measurement of uncertainty in general, but it will likely produce a conservative overestimate of the chance
of hallucination in particular.

We also note that the bound in Theorem 4.5 is particularly simple because it attempts to bound the rate of generating
statements whose ground truth probability was exactly zero. However, this bound is a special case of Cantelli’s inequality
(Cantelli, 1929), a more general upper bound on a random variable given its mean and variance. We demonstrate how to use
this to construct other one-sided bounds in Appendix D.3.

Partial observability and misspecification for decision making: The general problem of decision making under uncer-
tainty is a well-studied problem, with much analysis under the formalism of partially-observable Markov decision processes
(POMDPs) (Kaelbling et al., 1998). Agents acting in POMDPs must perform inference about their unknown state, based on
a limited view of the environment.

Of particular relevance to our work is asymmetric imitation learning: the problem of learning to correctly imitate expert
demonstrations when the experts may have access to additional information not known to the imitation agent. Naive
imitation can cause an agent to take unsafe or undesirable actions, while “deluding itself” into expecting that every action it
takes will be safe; Ortega et al. (2021) demonstrate this problem and identify it as an instance of confounding in a causal
graph. This problem can be avoided if all training data is collected under the imitation-learning policy, where the expert
actions are queried but only the imitation-learner’s action are used. Relatedly, Warrington et al. (2020) describe a procedure
for modifying the expert policy so that it can be safely imitated. Unfortunately, these procedures require the ability to
dynamically query or adjust the expert policy, which is not always possible.

In the “Frozen Lake” experiment, we used the same hidden location when drawing the two expert decisions, so that making
calibrated predictions about pairs of expert trajectories would requires us to quantify the influence of that extra information.
As discussed above, this is essentially folding the partial observability of the “Frozen Lake” experiments into the grouping
function Φ(X).

We think this is an interesting perspective which may be useful for thinking about the behavior of misspecified agents more
broadly: training a calibrated predictor is roughly the same as having an optimal predictor that only sees some restricted
view of its input, so perhaps techniques that work under partial observability could also be extended to work for arbitrary
calibrated models.

Conditional independence requirements in Pair prediction v.s. randomized causal effect estimation: Our technique
fundamentally assumes that Y1 and Y2 are independent and identically distributed according to p(Y |X) for each X . A
straightforward way to ensure this holds is to sample Y1 and Y2 from an explicit process for generating Y from X , e.g. by
querying a random human annotator for each. Unfortunately, if direct access to an explicit response process is not available,
our technique may not be directly applicable unless conditional independence is satisfied in some other way.

This use of an explicit label process in some ways resembles the use of treatment assignment in randomized controlled trials,
where treatments are explicitly chosen by a randomized algorithm to ensure that treatments are conditionally independent of
the outcomes (Ding, 2023). In the case of causal inference, this randomness allows estimating average treatment effects
without making assumptions about the causal mechanism that induces those effects. In the case of our pair-prediction
technique, the randomness of the label process allows us to distinguish aleatoric uncertainty from underfitting without
making assumptions about the form of the distribution p(Y |X).

24

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

We note also that a variety of techniques have been proposed for estimating causal effects without control of the treatment-
assignment process, usually by making assumptions about the causal structure of the naturally-occuring data; studies that
estimate causal effects in this way are referred to as “observational” studies (Ding, 2023). Such techniques can be effective
if correctly designed, but can produce incorrect estimates if the causal model is misspecified (due to not accounting for all
confounders). Similarly, methods such as Bayesian inference can produce good uncertainty estimates without using paired
Y data if they are well specified, but can fail if misspecified.

Handling uncertainty using privileged information: Collier et al. (2022) propose a technique (TRAM) for improving
robustness to label noise by training on privileged information. At training time, they allow the later layers of a network to
condition on information such as annotator IDs, which can help explain away label noise. At inference time, this privileged
information can then be marginalized out.

Similar to our method, TRAM involves collecting additional data from the response process p(Y |X) at training time, but
does not require this additional information when scoring new inputs. However, the additional information in TRAM can be
seen as “explaining away” the aleatoric uncertainty in the process, allowing the model to focus on learning the link between
X and Y ; this aleatoric variation is then added back in through marginalization. In contrast, our technique conditions on a
separate sample y1 when predicting y2, which can roughly be seen as “explaining away” the epistemic uncertainty. The
remaining noise in p̂θ(y2|y1, x) is likely aleatoric, so we can correct for it by dividing it out.

Calibration, forecasting, and game-theoretic probability: In machine learning, calibration is usually formulated and
evaluated with respect to an i.i.d. distribution of inputs X and outcomes Y . However, much of the initial work on calibration
focused instead on sequential forecasting (Dawid, 1984), where the inputs X arrive sequentially and may not be identically
distributed, and the goal is to produce a sequence of forecasts that are calibrated in the long run (e.g. asymtotically) and
also achieve good performance according to a scoring rule. Although our contributions are focused on the i.i.d. setting,
and paired responses seem difficult to extend to the sequential-forecasting setting, we briefly review some of the results on
calibration for sequential forecasts for the interested reader.

Dawid (1982) proved that a coherent Bayesian reasoner must assign probability 1 to being eventually well-calibrated on any
sequence of outcomes. This is roughly because a coherent Bayesian must be certain about their own prior (over the set of
possible sequences); observed miscalibration can sometimes provide evidence about the sequence but can never convince the
Bayesian to change their inference algorithm. Dawid (1985) expanded the notion of calibration to range over all computable
subsequences (akin to the definition of multicalibration in the i.i.d. setting (Hébert-Johnson et al., 2018)), and showed that
any computable forecasting strategies that achieve this stronger notion of calibration must eventually agree with each other.

Unfortunately, Oakes (1985) showed that no deterministic algorithm can be calibrated on every sequence: given any
deterministic forecasting strategy, there exists an adversarial distribution of sequences for which it is miscalibrated.
Interestingly, Foster & Vohra (1998) proved that a (non-Bayesian) forecaster can achieve asymptotic calibration on every
sequence if they are allowed to add noise to their forecasts independently of the adversarially-selected outcomes in the
sequence, but this comes at the cost of higher prediction error on each sequence due to the added noise. Sandroni et al. (2003)
strengthened this result, showing that there exist (randomized) computable forecasting strategies that are asymptotically
calibrated over all computable subsets of any sequence.

The above works show that calibration can be formalized in both probabilistic and game-theoretic terms. Game theory can
also be used as a foundation for probability theory and hypothesis testing (Shafer & Vovk, 2019; Waudby-Smith & Ramdas,
2020), and approaches based on betting can even be used to define coherent “probabilities” over logical implications
(Garrabrant et al., 2016). A promising property of this kind of formalization is that it can naturally account for computational
constraints, by restricting the computational capabilities of the reasoner or adversary; this is much more difficult to do from
a purely Bayesian perspective.

We note that, although it is difficult to define a coherent probability system over logical statements that converges to the truth,
it is fairly easy to produce nearly-calibrated predictions about the truth values of a fixed distribution of logical statements, as
long as you are OK with taking a non-Bayesian perspective and having a large grouping loss: you can simply output the
fraction of all statements that are true, optionally after partitioning the space of statements into groups. Our experiments
with predicting digits of π are closer to this simple procedure than they are to the algorithm of Garrabrant et al. (2016), and
we conjecture that observed logical reasoning errors in language models can be thought of as more complex versions of this
simple procedure as well.

25

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

D. Details about and proofs of theoretical results
In this section, we prove our theoretical results and discuss their implications.

D.1. First-Order Calibration

We first prove that our definition of calibration is equivalent to the more specific definition used in previous work (Kumar
et al., 2019; Vaicenavicius et al., 2019; Perez-Lebel et al., 2022). This result was previously shown by Gupta et al. (2020).
Proposition 2.2. If Eqn. (1) holds for some fixed Φ, then it must also hold for ΦθY|X : X → RY , where ΦθY|X(x)y , p̂θY|X(y|x).

Proof. Fix Φ and suppose p̂θY|X(Y=y|X=x) = E
[
p(Y=y|X)

∣∣ Φ(X) = Φ(x)
]
. Then

ΦθY|X(x) =
[
p̂θY|X(Y=y1|X=x), . . . , p̂θY|X(Y=y|Y||X=x),

]
=
[
E
[
p(Y=y1|X)

∣∣ Φ(X) = Φ(x)
]
, . . . , E

[
p(Y=y|Y||X)

∣∣ Φ(X) = Φ(x)
]]

Let h(φ) be the vector

h(φ) =
[
E
[
p(Y=y|X)

∣∣ Φ(X) = φ
]]

y∈Y

=
[
E
[
p(Y=y1|X)

∣∣ Φ(X) = φ
]
, . . . , E

[
p(Y=y|Y||X)

∣∣ Φ(X) = φ
]]

and observe then that ΦθY|X(x) = h(Φ(x)). It follows that, for any x ∈ X and yi ∈ Y ,

E
[
p(Y=yi|X)

∣∣ ΦθY|X(X) = ΦθY|X(x)
]

= E
[
p(Y=yi|X)

∣∣ h(Φ(X)) = h(Φ(x))
]

= E
[
E
[
p(Y=yi|X)

∣∣ Φ(X)
] ∣∣∣ h(Φ(X)) = h(Φ(x))

]
= E

[
h(Φ(X))i

∣∣∣ h(Φ(X)) = h(Φ(x))
]

= h(Φ(x))i

= E
[
p(Y=yi|X)

∣∣ Φ(X) = Φ(x)
]

= p̂θY|X(Y=yi|X=x).

In words, conditioning on the output of a calibrated model p̂θY|X instead of on a more refined grouping Φ(X) only combines
equivalence classes φ that have the same conditional expected value of p(Y |X), so the overall expected value doesn’t
change in the larger equivalence classes.

D.2. Equivalence of Pair Calibration and Second-Order Calibration

We now prove our main result Theorem 3.2, which we restate below:
Theorem 3.2. If p̂θY1,Y2|X is first-order calibrated at predicting pairs (Y1, Y2), then its marginal p̂θY1|X and pair covariance
Σ̂θ
Y1,Y2|X

are second-order calibrated at predicting pY|X . Moreover, this is a bijection: for any second-order-calibrated
(p̂θ

′

Y|X , Σ̂
θ′), there is a unique first-order-calibrated p̂θY1,Y2|X with p̂θ

′

Y|X = p̂θY1|X and Σ̂θ′ = Σ̂θ
Y1,Y2|X

.

Proof. Consider the mapping f defined by f(p̂θY1,Y2|X) = (p̂θY1|X , Σ̂
θ
Y1,Y2|X

). We will show that f is a bijection between the set
of first-order-calibrated p̂θY1,Y2|X and the set of second-order-calibrated (p̂θ

′

Y|X , Σ̂
θ′).

Recall that we can decompose the (conditional) covariance into a difference of expectations:

Cov
[
pY|X(y|X), pY|X(y′|X)

]
= E

[(
pY|X(y|X)− E[pY|X(y|X)]

)(
pY|X(y′|X)− E[pY|X(y′|X)]

)]
= E

[
pY|X(y|X)pY|X(y′|X)

]
− E

[
pY|X(y|X)

]
E
[
pY|X(y′|X)

]
= E

[
P (Y1 = y|X)P (Y2 = y′|X)

]
− E

[
P (Y1 = y|X)

]
E
[
P (Y2 = y′|X)

]
= E

[
P (Y1 = y, Y2 = y′|X)

]
− E

[
P (Y1 = y|X)

]
E
[
P (Y2 = y′|X)

]
.

26

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

This also holds when conditioned on a specific equivalence class X ∈ [x]Φ.

First suppose p̂θY1,Y2|X(y1, y2|x) is a first-order-calibrated predictor of pairs with grouping function Φ, i.e.

p̂θY1,Y2|X(y1, y2|x) = E
[
P (Y1 = y1, Y2 = y2|X)

∣∣ X ∈ [x]Φ
]
.

Marginalizing out y2 gives

p̂θY1|X(y1|x) =
∑
y2

E
[
P (Y1 = y1, Y2 = y2|X)

∣∣ X ∈ [x]Φ
]

= E
[∑
y2

P (Y1 = y1, Y2 = y2|X)
∣∣ X ∈ [x]Φ

]
= E

[
P (Y1 = y1|X)

∣∣ X ∈ [x]Φ
]

= E
[
pY|X(y1|X)

∣∣ X ∈ [x]Φ
]

so p̂θY1|X is first-order calibrated at predicting Y . The same is true for p̂θY2|X . We then also have

Σ̂θ
Y1,Y2|X

(x)y,y′ = p̂θY1,Y2|X(y, y′|x)− p̂θY1|X(y|x) p̂θY2|X(y′|x)

= E
[
P (Y1 = y, Y2 = y′|X)

∣∣∣ X ∈ [x]Φ

]
− E

[
P (Y1 = y|X)

∣∣∣ X ∈ [x]Φ

]
E
[
P (Y2 = y′|X)

∣∣∣ X ∈ [x]Φ

]
= Cov

[
pY|X(y|X), pY|X(y′|X)

∣∣∣ X ∈ [x]Φ

]
.

Thus (p̂θY1|X , Σ̂
θ
Y1,Y2|X

) is second-order calibrated. We conclude that f(p̂θY1,Y2|X) is second-order calibrated whenever p̂θY1,Y2|X is
first-order calibrated (with the same grouping function Φ).

Now consider the mapping g that maps each second-order calibrated (p̂θ
′

Y|X , Σ̂
θ′) to the p̂θY1,Y2|X given by

p̂θY1,Y2|X(y1, y2|x) = Σ̂θ′(x)y1,y2 + p̂θ
′

Y|X(y1|x) p̂θ
′

Y|X(y2|x).

If (p̂θ
′

Y|X , Σ̂
θ′) are second-order calibrated with respect to grouping function Φ, then we can expand this as

p̂θY1,Y2|X(y1, y2|x) = Cov
[
pY|X(y1|X), pY|X(y2|X)

∣∣∣ X ∈ [x]Φ

]
+ E

[
pY|X(y1|X)

∣∣ X ∈ [x]Φ
]
E
[
pY|X(y2|X)

∣∣ X ∈ [x]Φ
]

= E
[
P (Y1 = y1, Y2 = y2|X)

∣∣∣ X ∈ [x]Φ

]
.

This implies that p̂θY1,Y2|X is a first-order-calibrated predictor of pairs, and thus that g(p̂θ
′

Y|X , Σ̂
θ′) is first-order calibrated

whenever (p̂θ
′

Y|X , Σ̂
θ′) are second-order calibrated (with the same grouping function Φ).

Finally, to show that g is the inverse of f , let p̂θY1,Y2|X be an arbitrary first-order calibrated predictor with grouping function Φ,
and observe that[

g(f(p̂θY1,Y2|X))
]
(y, y′|x) = Σ̂θ

Y1,Y2|X
(x)y,y′ + p̂θY1|X(y|x)p̂θY1|X(y′|x)

= Cov
[
pY|X(y|X), pY|X(y′|X)

∣∣∣ X ∈ [x]Φ

]
+ E

[
pY|X(y|X)

∣∣ X ∈ [x]Φ
]
E
[
pY|X(y′|X)

∣∣ X ∈ [x]Φ
]

= E
[
P (Y1 = y, Y2 = y′|X)

∣∣∣ X ∈ [x]Φ

]
= p̂θY1,Y2|X(y, y′|x).

Thus g(f(p̂θY1,Y2|X)) = p̂θY1,Y2|X , so f is a bijection with inverse f−1 = g.

Since predictors can always reduce their expected loss (under a proper scoring rule) by becoming better calibrated on their
training task, Theorem 3.2 implies that our pair-prediction procedure incentivizes second-order calibration.

27

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

D.3. Proofs of Error Bounds for Calibrated Pair Predictors

Theorem 4.2. Suppose p̂θY1,Y2|X is calibrated. Let A be any event and Ỹ ∈ Y be any (possibly random) value such that
Ỹ , A ⊥⊥ X | ΦθY1,Y2|X(X). Then

E
[(
p̂θY1|X(Ỹ |X)− pY|X(Ỹ |X)

)2 ∣∣∣A] = E
[
V̂ θCHEAT

(Ỹ |X)
∣∣∣A].

Furthermore, for any β ∈ (0, 1),

P

[∣∣∣p̂θY1|X(Ỹ |X)− pY|X(Ỹ |X)
∣∣∣ ≥√V̂ θCHEAT(Ỹ |X)

β

∣∣∣∣∣A
]
≤ β.

Proof. We will show that these properties hold individually for every value of ΦθY1,Y2|X(X) and Ỹ conditioned on A, and so
they must also hold overall.

Let φ and y be arbitrary, and x be such that Φ(x) = φ. Since p̂θY1,Y2|X is calibrated, it must be symmetric, so V̂ θCHEAT
(y|X) =

Σ̂θ
Y1,Y2|X

(X)y,y. Furthermore (p̂θY1|X , Σ̂
θ
Y1,Y2|X

) must be second-order calibrated, and A, Ỹ are independent of X given
Φ(X) = φ, so

p̂θY1|X(y|x) = E
[
pY|X(y|X)

∣∣∣ ΦθY1,Y2|X(X) = φ
]

= E
[
pY|X(y|X)

∣∣∣ ΦθY1,Y2|X(X) = φ, Ỹ = y,A
]

V̂ θCHEAT
(y|x) = Var

[
pY|X(y|X)

∣∣∣ ΦθY1,Y2|X(X) = φ
]

= Var
[
pY|X(y|X)

∣∣∣ ΦθY1,Y2|X(X) = φ, Ỹ = y,A
]

Let B be the event where (ΦθY1,Y2|X(X) = φ, Ỹ = y,A) all occur.

For the first part, we have

E
[(
p̂θY1|X(y|X)− pY|X(y|X)

)2 ∣∣∣B]
= E

[(
E
[
pY|X(y|X)

∣∣∣ ΦθY1,Y2|X(X) = φ, Ỹ = y,A
]
− pY|X(y|X)

)2
∣∣∣∣B]

= Var
[
pY|X(y|X)

∣∣∣ ΦθY1,Y2|X(X) = φ, Ỹ = y,A
]

= V̂ θCHEAT
(y|x) = E

[
V̂ θCHEAT

(y|X)
∣∣B]

where the last step follows because x is an arbitrary input with ΦθY1,Y2|X(x) = φ and every such x has the same value for
V̂ θCHEAT

(y|x). Taking expectations over all values of X and Ỹ given A yields the desired result.

For the second part, Chebyshev’s inequality ensures that

P

[
|E[Z]− Z| ≥

√
Var(Z)

β

]
≤ β

for any random variable Z and any β. Applying this with Z = pY|X(y|X) conditioned on B gives

P

∣∣∣E[pY|X(Ỹ |X)|B]− pY|X(Ỹ |X)
∣∣∣ ≥
√√√√Var

[
pY|X(y|X)

∣∣∣ B]
β

∣∣∣∣∣∣∣∣B
 ≤ β.

so

P

∣∣∣p̂θY1|X(y|x)− pY|X(Ỹ |X)
∣∣∣ ≥
√
V̂ θCHEAT

(y|x)

β

∣∣∣∣∣∣B
 ≤ β.

We can now marginalize over ΦθY1,Y2|X(X) and Ỹ conditioned on A to obtain the desired result.

28

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

Proposition 4.4. If p̂θY1,Y2|X is calibrated, then for any x ∈ X , y ∈ Y we have 0 ≤ CθCHEAT
(y|x) ≤ 1, with CθCHEAT

(y|x) = 1 if
and only if p̂θY1|X(y|x) = pY|X(y|x).

Proof. CθCHEAT
(y|x) ≥ 0 because both its numerator and denominator are nonnegative. Furthermore, if CθCHEAT

(y|x) = 1, the
numerator and denominator must be equal.

To show that CθCHEAT
(y|x) ≤ 1, algebraic manipulation allows us to write it in the form

CθCHEAT
(y|x) =

p̂θY1|X(y|x)

p̂θY2|Y1,X(y|y, x)
=

p̂θY1|X(y|x)2

p̂θY1,Y2|X(y, y|x)
=

(
p̂θY1,Y2|X(y, y|x)

p̂θY1|X(y|x)2

)−1

=

(
1 +

p̂θY1,Y2|X(y, y|x)− p̂θY1|X(y|x)2

p̂θY1|X(y|x)2

)−1

=

(
1 +

V̂ θCHEAT
(y|x)

p̂θY1|X(y|x)2

)−1

.

If p̂θY1,Y2|X is calibrated, it must be symmetric, so V̂ θCHEAT
(y|X) = Σ̂θ

Y1,Y2|X
(X)y,y, which is a conditional variance and thus

cannot be negative. It follows that V̂ θCHEAT(y|x)

p̂θ
Y1|X

(y|x)2
≥ 0, so CθCHEAT

(y|x) ≤ 1.

Note of caution: When p̂θY1,Y2|X is not calibrated, it is no longer true that V̂ θCHEAT
(y|X) is necessarily equal to Σ̂θ

Y1,Y2|X
(X)y,y ,

because p̂θY1,Y2|X is not necessarily symmetric. It is also not necessarily true that Σ̂θ
Y1,Y2|X

(X)y,y is an epistemic variance,
since Theorem 3.2 does not hold. This can mean that, for miscalibrated p̂θY1,Y2|X , it is possible to observe V̂ θCHEAT

(y|x) < 0 and
CθCHEAT

> 1, and we do observe this in some of our experiments. We discuss this further in Appendix F.

Theorem 4.5. Suppose p̂θY1,Y2|X is calibrated. Let A be the event that a decoding algorithm responds to a query X , and
Ỹ ∈ Y be its response. If A, Ỹ ⊥⊥ X | ΦθY1,Y2|X(X), then the statistical hallucination rate of the generated responses is
bounded above as

P
[
pY|X(Ỹ |X) = 0

∣∣∣ A] ≤ 1− E
[
CθCHEAT

(Ỹ |X)
∣∣∣ A] .

Proof. Similar to our proof of Theorem 4.2, we can prove that this holds individually for every value of ΦθY1,Y2|X(X) and
Ỹ conditioned on A and then take an expectation. As before, let φ and y be arbitrary, and x be such that Φ(x) = φ. By
Cantelli’s inequality (Cantelli, 1929) (also known as the one-sided Chebyshev’s inequality),

P [Z ≤ E[Z]− λ] ≤ Var(Z)

Var(Z) + λ2

for any random variable Z and any β. Substituting λ = E[Z],

P [Z ≤ 0] ≤ Var(Z)

Var(Z) + E[Z]2
=

E[Z2]− E[Z]2

E[Z2]
= 1− E[Z]2

E[Z2]

Now letting Z = pY|X(y|X) and conditioning on B = (ΦθY1,Y2|X(X) = φ, Ỹ = y,A) as before, and using the fact that
p̂θY1,Y2|X is calibrated,

P
[
pY|X(y|X) ≤ 0

∣∣ B] ≤ 1− E[pY|X(y|X)|B]2

E[pY|X(y|X)2|B]
= 1− E[pY|X(y|X)|Φ(X) = φ]2

E[pY|X(y|X)2|Φ(X) = φ]
= 1−

p̂θY1|X(y|x)2

p̂θY1,Y2|X(y, y|x)

= 1−
p̂θY1|X(y|x)

p̂θY2|Y1,X(y|y, x)
= 1− CθCHEAT

(y|x) = 1− E[CθCHEAT
(y|X)|B]

where here x is an arbitrary input with ΦθY1,Y2|X(x) = φ, since every such x has the same value for CθCHEAT
(y|x). Taking

expectations of both sides over all values for φ and y completes the proof.

29

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

As an aside, we note that it’s possible to prove a one-sided bound on pY|X(y|X) by combining the proof ideas from
Theorem 4.2 and Theorem 4.5:

Proposition D.1. Suppose p̂θY1,Y2|X is calibrated. Let A be any event and Ỹ ∈ Y be any (possibly random) output such that
Ỹ , A ⊥⊥ X | ΦθY1,Y2|X(X). Then for any β ∈ (0, 1),

P

[
pY|X(y|X) ≤ p̂θY1|X(y|X)−

√
V̂ θCHEAT

(y|x)

(
1

β
− 1

) ∣∣∣∣∣ A
]
≤ β.

Proof. As above, but let λ =

√
V̂ θCHEAT

(y|x)
(

1
β − 1

)
in Cantelli’s inequality. Then substituting V̂ θCHEAT

as before we obtain

P
[
pY|X(y|X) ≤ p̂θY1|X(y|X)− λ

∣∣ B] ≤ V̂ θCHEAT
(y|x)

V̂ θCHEAT
(y|x) + V̂ θCHEAT

(y|x)
(

1
β − 1

) = β,

and taking expectations completes the proof.

This is a better bound than the one in Theorem 4.2 in the case where we want a conservative estimate of how small pY|X(y|X)
could be with confidence 1− β, instead of wanting to bound the distance to p̂θY1|X(y|X).

D.4. Distribution-Free Bounds on p(Y |X)

Suppose Y = {0, 1}. Our distribution-free high-probability bound on p(Y |X) is based on the random variable

Dε =

(
pY|X(1|X)− p̂θY|X(1|X)

)2
max{V̂ θ(1|X), ε}

.

Dε is always nonnegative, and if p̂θY|X and V̂ θ are second-order well-calibrated (or, more precisely, if V̂ θ is the diagonal of
the epistemic covariance matrix) the expected value E[Dε] should be at most 1.

The following lemma shows that we can use E[Dε] to bound p(Y |X), even if p̂θY|X is not well calibrated:

Lemma D.2. Suppose E[Dε] ≤ γε. Then for a randomly sampled input X ∼ p(X) and any β ∈ [0, 1), the true conditional
p(Y = 1|X) lies within

p̂θY|X(1|X)±
√

max{V̂ θ(Y = 1|X), ε} γε/β (2)

with probability at least 1− β.

Proof. By Markov’s inequality, for any β ∈ [0, 1), p
(
Dε ≥ E[Dε]/β

)
≤ β. In other words, with probability at least 1− β,

Dε < E[Dε]/β. Since E[Dε] ≤ γε, this means that(
pY|X(1|X)− p̂θY|X(1|X)

)2
max{V̂ θ(1|X), ε}

< γε/β

with probability at least 1− β, in which case∣∣pY|X(1|X)− p̂θY|X(1|X)
∣∣ <√max{V̂ θ(1|X), ε}γε/β.

We can use this to prove Theorem 4.6, which we restate below:

Theorem 4.6. Let p̂θY|X , V̂ θ, and pY|X be arbitrary. With probability at least 1 − α (over draws of the calibration set),
Algorithm 1 returns a value γ+

ε such that, for a randomly sampled input X ∼ p(X), and any β ∈ (0, 1), y ∈ {0, 1},

P

[∣∣∣p̂θY|X(y|X)− pY|X(y|X)
∣∣∣ ≥√γ+

ε max{V̂ θ(y|X),ε}
β

]
≤β.

30

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

Proof. It remains to show that the γε produced by Algorithm 1 is an upper bound on E[Dε], at which point we can apply
Lemma D.2.

Define the random variable

Sε =

(
Y1 − p̂θY|X(1|X)

)(
Y2 − p̂θY|X(1|X)

)
max{V̂ θ(1|X), ε}

and observe that

E[Sε] = E

[(
Y1 − p̂θY|X(1|X)

)(
Y2 − p̂θY|X(1|X)

)
max{V̂ θ(1|X), ε}

]

= E

[
E
[(
Y1 − p̂θY|X(1|X)

)(
Y2 − p̂θY|X(1|X)

) ∣∣ X]
max{V̂ θ(1|X), ε}

]

= E

[(
E[Y1|X]− p̂θY|X(1|X)

)(
E[Y2|X]− p̂θY|X(1|X)

)
max{V̂ θ(1|X), ε}

]

= E

[(
p(Y = 1|X)− p̂θY|X(1|X)

)2
max{V̂ θ(1|X), ε}

]
= E[Dε].

This means that any confidence interval for E[Sε] is also a confidence interval for E[Dε]. Furthermore, we know that
− 1
ε ≤ Sε ≤

1
ε , and we can construct samples of Sε by using p̂θY|X and samples (X,Y1, Y2), as described in Algorithm 1.

By assumption, the subroutine MEANCONFITVL constructs a confidence interval for the mean of a bounded random
variable. In other words, it satisfies the property that, for any bounded i.i.d. random variables V (i) ∈ (a, b), if we let
(L,U) = MEANCONFITVL

(
{V (1), . . . , V (N)}, a, b, α

)
, then L ≤ E[V] ≤ U with probability at least α.

Algorithm 1 then applies MEANCONFITVL to the samples of S(i)
ε , which are each bounded between −1/ε and 1/ε. As

such, we know that the returned value γ+
ε will satisfy E[Sε] ≤ γ+

ε with probability at least (1− α). This confidence interval
must also be a bound on E[Dε], so we can apply Lemma D.2, which completes the proof.

There are multiple possible implementations of the subroutine MEANCONFITVL, based on different confidence intervals
for the mean of a bounded random variable. A particularly simple implementation is based on Hoeffding’s inequality
(Hoeffding, 1994):

Proposition D.3 (Confidence interval via Hoeffding’s inequality). In Algorithm 1, an implementation of subroutine
MEANCONFITVL

(
{s(i)
ε }Ni=1,− 1

ε ,
1
ε , α

)
that returns the values

γ−ε = −1

ε
, γ+

ε =
1

N

N∑
i=1

s(i)
ε +

√
2
− logα

nε2

guarantees that γ−ε ≤ E[Sε] ≤ γ+
ε with probability at least 1− α (and thus that Theorem 4.6 holds).

Proof. For the lower bound, we know that γ−ε = − 1
ε ≤ E[Sε] due to the boundedness of Sε. For the upper bound,

Hoeffding’s inequality gives us

p

(
E[Sε]−

1

N

N∑
i=1

s(i)
ε ≥ t

)
≤ exp

(
−nt

2ε2

2

)
.

Choosing t =
√

2− logα
nε2 , this becomes

p

(
E[Sε]−

1

N

N∑
i=1

s(i)
ε ≥ t

)
≤ α,

31

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

so we must have

E[Sε] ≤
1

N

N∑
i=1

s(i)
ε + t =

1

N

N∑
i=1

s(i)
ε +

√
2
− logα

nε2
= γ+

ε

with probability at least 1− α.

There are also more complex algorithms which may require fewer samples to give an accurate upper bound. For instance,
Waudby-Smith & Ramdas (2020) describe an algorithm for constructing tighter confidence intervals based on “betting
strategies”. This algorithm is available in the confseq Python package5. See Appendix B for additional experiments
studying the convergence of our bound in practice, and comparing the bounds constructed using Hoeffding’s inequality to
bounds using confseq.

D.4.1. IS THEOREM 4.6 THE BEST WE CAN DO WITHOUT DISTRIBUTIONAL ASSUMPTIONS?

Theorem 4.6 does not require that the model is perfectly calibrated. If p̂θY|X and V̂ θ are actually epistemically perfectly
calibrated, and we take ε → 0, we will have E[Sε] = E[Dε] → 1, so in principle we can make Equation (2) arbitrarily
close to Theorem 4.2 by choosing a small enough ε and a large enough calibration set. (This assumes that the confidence
interval for E[Sε] will converge asymptotically to the true value of E[Sε], which is true for both Hoeffding’s inequality and
the betting-based algorithms in confseq).

Even so, the guarantee provided by Theorem 4.6 is somewhat weaker than that of Proposition 4.4, because the 1 − β
chance only holds for random X ∼ p(X) and may not hold after conditioning on additional information (e.g. the event A,
which can be any function of the output of the model). To give some intuition of why this occurs, suppose we perturb a
calibrated model with a tiny amount of per-input noise, e.g. p̂θY|X(y|X) = p(y|Φ(X)) + η(X). Even if η(X) is very small,
conditioning on p̂θY|X(y|X) may then be enough to identify X itself, and if there is a single such X that is outside of the
range given by Proposition 4.4, the stronger statement will no longer hold. One way to circumvent this in principle would be
to explicitly bin the outputs of a model to a finite number of outputs, similar to the method proposed by Kumar et al. (2019);
it would then be possible to construct a separate bound for each bin. Effectively, this would mean that we enumerate all of
the events A that we care about in advance, and then apply Theorem 4.6 separately to each subset of the dataset. (Note that
neither bound holds conditioned on X itself, because once X is observed then either p(Y |X) is in the interval or it is not,
so the conditional probability is either 0 or 1, not 1 − β. This is why the event in Proposition 4.4 must be conditionally
independent of X given the output of the model.)

An interesting point of comparison is Theorem 1 of Barber (2020), which states that any distribution-free (1−α)-confidence
interval for the probability p(Y = 1|X) must also be a (1− α)-confidence interval for any random variable Z ∈ [0, 1] for
which E[Z|X] = p(Y |X), as long as the interval was constructed using only one sample Y ∼ p(Y |X) for each X (and as
long as Z is conditionally independent of the interval-construction procedure given X). In particular, if we choose Z = Y ,
this means that any distribution-free (1− α)-confidence interval must contain 0 or 1 with probability at least (1− α), and
so the interval cannot precisely identify p(Y |X) if p(Y |X) is bounded away from 0 and 1.

We can roughly interpret Barber’s theorem as stating that distribution-free confidence intervals constructed using one Y
for each X can only effectively estimate the first moment of p(Y |X), and must be wide enough to contain the worst-case
variable Z with the correct expected value. Our Theorem 4.6, on the other hand, uses two Y s for each X , and converges to a
bound based on the first two moments (mean and variance). Moreover, Theorem 3.2 suggests that two samples may in fact be
necessary to estimate the second moment in this manner. We conjecture that this is a general constraint for distribution-free
confidence intervals based on samples: if we are allowed to use k samples Y1, . . . , Yk ∼ p(Y |X) for each X , it seems likely
that only the first k moments can be identified in a distribution-free way, and thus that our confidence intervals must be wide
enough to contain any random variable Z with the same first k moments as the true probability p(Y |X) conditioned on the
output of our model or algorithm. If true, this would suggest that we can’t do much better than Theorem 4.6 with only two
samples of Y for each X , unless we are willing to make distributional assumptions about the form of p(Y |X), but we might
be able to do better with more than two samples.

We also note that if you want a one-sided bound instead of a two-sided bound, it is possible to do better than Chebyshev’s
inequality by instead using Cantelli’s inequality (Cantelli, 1929). This inequality was used to prove Theorem 4.5 and Propo-
sition D.1, and it could likely be generalized to apply without assuming calibration using a similar technique to the proof of

5https://github.com/gostevehoward/confseq

32

https://github.com/gostevehoward/confseq

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

Theorem 4.6.

33

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

E. Properties of Calibrated Models of Pairs
In this section we derive some properties that any calibrated model p̂θ(Y1, Y2|X) must satisfy, which can be useful when
designing neural network architectures for pair prediction.
Proposition E.1. Suppose |Y| = K, and order it as Y = {v1, . . . , vK}. If p̂θ(Y1, Y2|X) is a perfectly-calibrated predictor
of outcomes (Y1, Y2) ∈ Y × Y , then

(i) p̂θ(y1, y2|x) is a proper probability distribution, i.e. p̂θ(y1, y2|x) ≥ 0 for all x ∈ X , y1, y2 ∈ Y and∑
y1,y2

p̂θ(y1, y2|x) = 1 for all x ∈ X ,

(ii) p̂θ(y1, y2|x) is symmetric, i.e. p̂θ(Y1 = y1, Y2 = y2|x) = p̂θ(Y1 = y2, Y2 = y1|x),

(iii) The joint probability matrix P̂ [x] ∈ RK×K given by P̂ [x]
ij = p̂θ(Y1 = vi, Y2 = vj |x) is positive semidefinite for each

x ∈ X .

Proof. Since p̂θ is perfectly calibrated, there exists a grouping function Φ such that

p̂θ(Y1 = y1, Y2 = y2|X = x) = E
[
p(Y1 = y1, Y2 = y2|X)

∣∣ Φ(X) = Φ(x)
]

= E
[
p(Y = y1|X)p(Y = y2|X)

∣∣ Φ(X) = Φ(x)
]
,

which implies properties (i) and (ii).

If we let p[x] ∈ RK be the vector such that p[x]
k = p(Y = vk|X = x), we can write this in matrix form as

P̂ [x] = E
[
p[x]
(
p[x]
)T ∣∣∣ Φ(X) = Φ(x)

]
.

For any v ∈ RK , we must then have

vT P̂ [x]v = E
[
vTp[x]

(
p[x]
)T
v
∣∣∣ Φ(X) = Φ(x)

]
= E

[(
vTp[x]

)2 ∣∣∣ Φ(X) = Φ(x)
]
≥ 0,

so P̂ [x] is positive semidefinite.

We note that a nonnegative matrix satisfying (ii) and (iii) is known as a “doubly nonnegative” matrix, and if p(Y |X) takes
only finitely many values the matrix P [x] will also be “completely positive” (i.e. factorizable as P [x] = BTB where B is
entrywise nonnegative) (Berman & Shaked-Monderer, 2003).

If Y is a binary outcome, we can characterize the space of calibrated predictors even more precisely:
Proposition E.2. If p̂θ(Y1, Y2|X) is a perfectly-calibrated predictor of paired binary outcomes (Y1, Y2) ∈ {0, 1} × {0, 1},
then the matrix P̂ [x] can be written in the form

P̂ [x] = ρ(x)

[
1− µ(x) 0

0 µ(x)

]
+ (1− ρ(x))

[
(1− µ(x))2 µ(x)(1− µ(x))

µ(x)(1− µ(x)) µ(x)2

]
(3)

for some µ : X → [0, 1] and ρ : X → [0, 1].

Proof. Fix a particular x. By Proposition E.1 we know we can write

P̂ [x] =

[
a b
b c

]
for some nonnegative a, b, c ∈ R such that a+ 2b+ c = 1. Choose

µ(x) = b+ c, ρ(x) =
ac− b2

(a+ b)(b+ c)
= 1− b

µ(1− µ)
. (4)

Substituting shows that P̂ [x] can then be expressed as Equation (3). 0 ≤ µ(x) ≤ 1 because b and c are nonnegative and
sum to at most 1. ρ(x) ≤ 1 because ac− b2 ≤ ac ≤ (a+ b)(c+ d). Finally, since P̂ [x] must be positive semidefinite, the
determinant |P̂ [x]| = ac− b2 must be nonnegative, so ρ(x) ≥ 0.

34

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

Note that µ is the predicted probability of Y = 1, and ρ is the predicted correlation between Y1 and Y2. (In fact, ρ is exactly
the Pearson correlation coefficient of Y1 and Y2 given Φ(X), also referred to as the “Phi coefficient” (Chedzoy, 2005).)
Given this parameterization, we can efficiently compute

p̂θ(Y = 1|X = x) = µ(x), vCHEAT
θ (Y = 1|X = x) = κ(x)µ(x)(1− µ(x)).

Neural network architectures for Y = {0, 1}: When we know Y is a binary outcome, we suggest parameterizing the
output head of a pair predictor p̂θ(y1, y2|x) using Equation (3). Specifically, we can parameterize our model to produce
two-dimensional vectors hθ : X → R2, then set φ(x) = σ(hθ(x)[0]), ρ(x) = σ(hθ(x)[1]), where σ is the logistic sigmoid
function.

Neural network architectures for enumerable Y = {0, 1, . . . ,K}: For classification tasks, where Y is a finite (and
“reasonably-sized”) set of classes, we suggest using the properties in Proposition E.1 to design the architecture. In particular,
we can enforce property (i) by applying the softmax operation across the set of Y × Y possible outputs, and enforce
property (ii) by constraining the output layer to output a symmetric matrix of logits RY×Y before applying the softmax
operation.

We are not aware of a simple method for strictly enforcing property (iii) as part of the architecture while simultaneously
ensuring that property (i) holds. However, empirically we observe that violations of property (iii) can lead to unreasonable
negative variance estimates. We thus suggest computing the eigenvalues of the post-softmax matrix P̂ [x] and adding a
regularization penalty to negative eigenvalues, e.g.

Lregularized(x, y1, y2) = − log p̂θ(y1, y2|x) + α

K∑
i=1

max{0, λi(x)}2

where λi(x) is the ith eigenvalue of P̂ [x]. (Since this regularization penalty only applies to negative eigenvalues, and a
calibrated model should never produce negative eigenvalues, this regularization penalty should not change the optimal
calibrated solution if one exists.)

Neural network architectures for sequential or exponentially-large Y: When Y is an exponentially large set, such as
the set of all sequences, it may be intractable to enforce either condition (ii) or condition (iii) of Proposition E.1. For our
experiments, we settled on only enforcing property (i) by concatenating the two outputs Y1 and Y2 together. We found
that padding them to a constant length improved performance by ensuring that Y1 and Y2 each have consistent positional
embeddings, because othewise the positional shift in Y2 can make it harder to predict Y2 than Y1 and thus introduce additional
noise into the confidence metric. We believe adjusting the architecture for sequence models to enforce (or encourage) it to
satisfy properties (ii) and (iii) is an exciting area for future work.

35

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

F. Details of Experimental Results
F.1. One-Dimensional Binary Regression (Figure 3)

F.1.1. DATA DISTRIBUTION

We choose p(X) as a standard normal random variable N (0, 1), and define p(Y |X) as a Bernoulli distribution with

p(Y = 1|X = x) =
0.98u(x) + 1

2
,

u(x) = 0.6 cos(v(x)) + 0.4 cos(4.2x),

v(x) = sign(x) · (120|x| − 112w(|x|)− 0.0635).

w(z) = 0.2 log
(

1 + exp
(
(z − 1.0)/.2

))

This function was chosen to have higher-frequency variation near x = 0 with a lower-frequency component throughout.

We construct a dataset of 25,000 samples of X , each of which have two corresponding samples Y1, Y2 ∼i.i.d. p(Y |X), for a
total of 50,000 Y s.

F.1.2. ARCHITECTURES AND TRAINING DETAILS

For the NN Ensemble, Evidential NN, and Cheat-corrected NN models, we use a small MLP/LayerNorm/Residual
architecture inspired by the MLP blocks in a Transformer (Vaswani et al., 2017), with the following form:

Algorithm 2 NN architecture for 1D Binary Regression
Input: value x ∈ R, output dimension d
Input layer:
v(0) := w(0,a) � (x · 1 + b(0,a)) where w(0,a) ∈ R512, b(0,a) ∈ R512

r(0) := W (0,b)relu(v(0)) + b(1,b) whereW (0,b) ∈ R128×512, b(0,b) ∈ R128

for i = 1 to 3 do
Residual block:
u(i) := LayerNorm(i)(v(i−1)) with learnable scale and shift (Ba et al., 2016)
v(i) := W (i,a)u(i) + b(i,a) whereW (i,a) ∈ R512×128, b(i,a) ∈ R512

r(i) := r(i−1) +W (i,b)relu(v(i)) + b(i,b) whereW (i,b) ∈ R128×512, b(i,b) ∈ R128

end for
Output head:
u(4) := LayerNorm(4)(v(3)) with learnable scale and shift
v(4) := W (4,a)u(4) + b(4,a) whereW (4,a) ∈ R512×128, b(4,a) ∈ R512

o(4) := W (4,b)relu(v(4)) + b(4,b) whereW (4,b) ∈ Rd×512, b(4,b) ∈ Rd
Return o(4)

NN Ensemble: We randomly initialize 8 copies of the architecture with output dimension d = 1, then train each for 10,000
training iterations with a batch size of 512, randomly selecting (X,Y1, Y2) triples from the 25,000 training examples. For
each example (x, y1, y2) we use the loss

LNN(x, y1, y2, θi) =
1

2

2∑
i=1

− log p̂θi(Y = yi|X = x)

where p̂θi(Y = 1|X = x) = σ(hθi(x)), σ is the logistic sigmoid function, and hθi is the network defined in Algorithm 2.
We use the AdamW optimizer (Loshchilov & Hutter, 2017) with a 100-step warmup to a 0.002 learning rate, followed by
cosine decay.

Evidential NN: Following (Sensoy et al., 2018), we set the output dimension to d = 2 and interpret α(x) = 1 +
softplus(hθ(x)) as the parameters of a 2-class Dirichlet distribution. (We use softplus rather than relu to stabilize
learning, since otherwise we observed that output units would “die” and produce bad estimates.)

36

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0
Evidential NN, log-likelihood loss, max = 0.001

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0
Evidential NN, log-likelihood loss, max = 0.01

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0
Evidential NN, log-likelihood loss, max = 0.02

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0
Evidential NN, log-likelihood loss, max = 0.05

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0
Evidential NN, log-likelihood loss, max = 0.1

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0
Evidential NN, log-likelihood loss, max = 1.0

Figure 16. Visualization of the dependence of the evidential deep learning technique (Sensoy et al., 2018) on the final regularization
strength λmax. Sensoy et al. (2018) recommend setting λmax = 1, which leads to high-uncertainty predictions even in regions that the
model can fit well. We are unable to find any λmax value that allows the model to identify underfitting.

We then apply the regularized cross-entropy loss described by Sensoy et al. (2018):

LEDL(x, y1, y2, θ) =
1

2

2∑
i=1

[
Eq∼Dirichlet(α(x))[− log q(yi)] + λDKL

(
Dirichlet(α̃(x, yi)) ‖ Dirichlet([1, 1])

)]
=

1

2

2∑
i=1

[
ψ(1Tα(x))− ψ(eTyiα(x)) + λDKL

(
Dirichlet(α̃(x, yi)) ‖ Dirichlet([1, 1])

)]
,

where α(x) is the two-dimensional vector of model outputs, eyi is a one-hot indicator vector (either [1,0] or [0,1] depending
on yi), ψ is the digamma function, and α̃(x, yi) = eyi + (1− eyi)�α(x) is a vector where the Dirichlet parameter for the
correct label has been replaced with 1.

Similar to the NN ensemble, we train the model for 10,000 training iterations with a batch size of 512, randomly selecting
(X,Y1, Y2) triples from the 25,000 training examples, and use the AdamW optimizer (Loshchilov & Hutter, 2017) with a
100-step warmup to a 0.002 learning rate, followed by cosine decay. We interpolate λ from 0 to 1 over 5,000 training steps,
based on the recommended values for λ in (Sensoy et al., 2018).

Sensoy et al. (2018) suggest using the magnitude of α(x) as a measurement of evidence, with the uncertainty corresponding
to the value 2/1Tα(x) (for two classes). However, in order to treat Evidential Deep Learning in the same way as other
uncertainty estimates, we instead use the variance of the predicted probability under Dirichlet(α(x)) as our measurement of
uncertainty.

In Figure 3, we plot the mean probability p̂(x) under the distribution Dirichlet(α(x)), as well as the variance v̂(x) =
p̂(x)(1−p̂(x))
S(x)+1 . We additionally trained variants of EDL with different maximum values for λ, and found that the magnitude

of the variance estimate is highly sensitive to this, as we demonstrate in Figure 16. The model in Figure 3 uses λ = 1.0. (We
also tried applying EDL with the MSE loss, as suggested by Sensoy et al. (2018), but saw roughly identical behavior.)

Cheat-corrected NN: We parameterize our version of the architecture by setting d = 2 and applying the decomposition in
Equation (3) of Appendix E. We then train it to predict pairs using the loss

LCHEAT(x, y1, y2, θ) = − log p̂θ(Y1 = y1, Y2 = y2|X = x).

We again train for 10,000 training iterations with a batch size of 512, randomly selecting (X,Y1, Y2) triples from the
25,000 training examples, and use the AdamW optimizer (Loshchilov & Hutter, 2017) with a 100-step warmup to a 0.002
learning rate, followed by cosine decay. We then compute p̂θ(Y = 1|X = x) and vCHEAT

θ (Y = 1|X = x) as described in
Appendix E.

37

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Gaussian process, length scale 0.01
Marginal likelihood: exp(-30,036.83)

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Gaussian process, length scale 0.05
Marginal likelihood: exp(-29,528.54)

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Gaussian process, length scale 0.15
Marginal likelihood: exp(-31,701.70)

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Gaussian process, length scale 0.3
Marginal likelihood: exp(-32,023.65)

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Gaussian process, length scale 0.5
Marginal likelihood: exp(-32,305.81)

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Gaussian process, length scale 2.0
Marginal likelihood: exp(-33,655.72)

Figure 17. Visualization of the dependence of the Gaussian process inducing-points classifier on the length scale, and the estimated
marginal likelihood of the dataset points under each prior.

Gaussian process classifier: For our Gaussian process experiment, we follow a standard discriminative Gaussian process
classifier setup (Rasmussen & Williams, 2005): we impose a Gaussian process prior over a latent “logit” function f : R→ R,
then feed it through the logistic sigmoid transformation to obtain a conditional likelihood

p(Y = 1|f, x) = σ(f(x)) =
1

1 + exp(−f(x))
.

Given an observed dataset D =
{(
x(i), y(i)

)}N
i=1

of (X,Y) pairs, we can then approximately compute the posterior
distribution

p
(
f
∣∣∣ {(x(i), y(i)

)}N
i=1

)
∝ p(f)

N∏
i=1

p(y(i)|f, x(i))

and use it to compute the posterior mean and variance for a new data point x:

p(Y = 1|x,D) =

∫
f

σ(f(x))p(f |D) df,

Var
[
p(Y = 1|f, x)

∣∣D] =

∫
f

σ(f(x))2p(f |D) df − p(Y = 1|x,D)2.

For this task, we select a rational-quadratic kernel with standard deviation 2.0, mixture parameter 1.0, and length scale 0.15:

Cov
(
f(a), f(b)

)
= 2.02

(
1 +

(b− a)2

2× 0.152

)−1

Our training set includes 50,000 Y samples, so computing an analytic posterior over f is computationally difficult. We
instead use a variational approximation using inducing points, following (Hensman et al., 2015): we choose K inducing
points z(1), . . . , z(K), let u = {f(z(k))}Kk=1 be the latent function values for those points, then impose an approximate
posterior

q(f) =

∫
u

p(f |u)q(u) du,

which can be used to construct an evidence lower bound on the likelihood

log p(D) ≥ Eq(f)

[∑
i

log p(y(i)|f, x(i))

]
+DKL(q(u)‖p(u)).

38

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

We selectK = 512 inducing points evenly spaced between -4 and 4, parameterize q(u) as a Cholesky-factorized multivariate
normal distribution q(u) = N (u;µ,LLT) where µ ∈ R512, L ∈ R512×512, and use the Cholesky factorization to analytically
compute the KL divergence. (For numerical stability purposes, we add 0.001 to the diagonal of the prior covariance matrix.)
We then maximize the evidence lower bound above, approximating the expectation by subsampling 512 (x, y1, y2) triples
per iteration and using Gauss-Hermite quadrature over the distribution q(f(x(i))|u); we treat the two samples y1 and y2 for
each x as independent observations (x, y1), (x, y2). We optimize µ and L for 20,000 training iterations using stochastic
gradient descent, with a maximum learning rate of 0.05, 100 steps of warmup, and a cosine decay schedule, although we
observe that the approximate posterior converges within about half of that time.

We note that the degree of misspecification varies based on the length scale, as shown in Figure 17, because the true function
does not have a consistent length scale and was not chosen from the prior. If we know in advance which length scales to
try, the marginal likelihood estimates (our bound on p(D)) may allow us to identify the best-fitting model (in this case, the
version with length scale 0.05, although it is imperfect). However, the estimates of the variance of f does not provide a
good estimate of pointwise misspecification; we chose to use length scale 0.15 in Figure 3 to emphasize this. (In real world
settings, misspecification would likely be much harder to detect or correct, especially without a thorough hyperparameter
sweep.) We also note that the marginal likelihoods of each approach are roughly of the same order; similar-looking data
could plausibly have been generated by even the misspecified models because the data itself consists of binary outputs.

An expanded version of each of the parts of Figure 3 is shown in Figure 18.

F.1.3. ADDITIONAL RESULTS

Figure 19 shows a reliability diagram for first-order calibration for the task in Figure 3, demonstrating that all methods
are close to first-order calibrated on this task. Figure 20 shows a similar plot for second-order calibration, which indicates
that our method is indeed better second-order calibrated. Each point in these figures was computed by aggregating over 20
equal-probability-mass bins; perfect calibration would correspond to a diagonal line with slope 1.

To show that these results are not specific to the particular sinusoidal function we chose, we also present results for a
randomly-selected piecewise linear function, shown in Figure 21. Similar to the sinusoidal function in Figure 3, the ensemble
and Gaussian process methods tend to overestimate their confidence for high-probability inputs around x = 0. Our technique
gives a better estimate for common x, although it is overconfident for x < −3. Overall, it is better second-order calibrated
and similarly first-order calibrated, as shown in Figures 22 and 23.

39

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4
p(X)

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
p(Y | X)

p(Y = 1 | x)
p(Y = 0 | x)

4 3 2 1 0 1 2 3 4

0

1

Y
(b

in
ar

y)

Training Dataset (50,000 Samples)

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
NN Ensemble (8 independent runs)

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian Process Logistic Classifier (rational quadratic, length scale 0.15, = 1.0, = 2.0)

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
Evidential (regularized Dirichlet) NN (max = 1.0)

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Cheat-Corrected NN (ours)
p (Y = 1|X) p (Y2 = 1|Y1 = 0, X) p (Y2 = 1|Y1 = 1, X)

Figure 18. Expanded comparison of methods for the 1D binary regression task shown in Figure 3, showing both sides of the normal
distribution p(X). Note that our method is the best at distinguishing underfitting (near 0) from accurate estimation (1 to 3). Our technique
does not directly do out-of-distribution detection, so this model’s uncertainty estimates are overconfident outside the range of the dataset
(x > 3); this could be fixed by combining our method (which detects underfitting) with another method that improves out-of-distribution
calibration (as we did with the Cheat-SNGP model in the CIFAR-10H task).

40

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

0.0 0.2 0.4 0.6 0.8 1.0
Predicted p (Y = 1|X) (sorted into bins Bi)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

[p

(Y
=

1|
X)

|X
B i

]

NN Ensemble
(mean over 8 runs)

0.0 0.2 0.4 0.6 0.8 1.0
Predicted p (Y = 1|X) (sorted into bins Bi)

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue

[p
(Y

=
1|

X)
|X

B i
]

Gaussian Process
Logistic Classifier

0.0 0.2 0.4 0.6 0.8 1.0
Predicted p (Y = 1|X) (sorted into bins Bi)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

[p

(Y
=

1|
X)

|X
B i

]

Evidential DL

0.0 0.2 0.4 0.6 0.8 1.0
Predicted p (Y = 1|X) (sorted into bins Bi)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

[p

(Y
=

1|
X)

|X
B i

]

Cheat-Corrected NN (ours)

First-Order Calibration (on task from Fig. 3)

Figure 19. First-order calibration reliability diagram for the task in Figure 3. All methods are close to first-order calibrated on this task.

0.00 0.02 0.04 0.06
Predicted v (X) (sorted into bins Bi)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tr
ue

[(p

(Y
=

1|
X)

p
(Y

=
1|

X)
)2 |X

B i
]

NN Ensemble
(variance over 8 runs)

0.00 0.02 0.04 0.06
Predicted v (X) (sorted into bins Bi)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tr
ue

[(p

(Y
=

1|
X)

p
(Y

=
1|

X)
)2 |X

B i
]

Gaussian Process
Logistic Classifier

0.00 0.02 0.04 0.06
Predicted v (X) (sorted into bins Bi)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tr
ue

[(p

(Y
=

1|
X)

p
(Y

=
1|

X)
)2 |X

B i
]

Evidential DL

0.00 0.02 0.04 0.06
Predicted v (X) (sorted into bins Bi)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tr
ue

[(p

(Y
=

1|
X)

p
(Y

=
1|

X)
)2 |X

B i
]

Cheat-Corrected NN
(ours)

Second-Order Calibration (on task from Fig. 3)

Figure 20. Second-order calibration reliability diagram for the task in Figure 3. Our method is better second-order-calibrated than the
baseline approaches.

41

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4
p(X)

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
p(Y | X)

p(Y = 1 | x)
p(Y = 0 | x)

4 3 2 1 0 1 2 3 4

0

1

Y
(b

in
ar

y)

Training Dataset (50,000 Samples)

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
NN Ensemble (8 independent runs)

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian Process Logistic Classifier (rational quadratic, length scale 0.15, = 1.0, = 2.0)

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
Evidential (regularized Dirichlet) NN (max = 1.0)

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
Cheat-Corrected NN (ours)

p (Y = 1|X) p (Y2 = 1|Y1 = 0, X) p (Y2 = 1|Y1 = 1, X)

Figure 21. Variant of Figure 3 for a toy task with a random piecewise-linear function.

42

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

0.0 0.2 0.4 0.6 0.8 1.0
Predicted p (Y = 1|X) (sorted into bins Bi)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

[p

(Y
=

1|
X)

|X
B i

]

NN Ensemble
(mean over 8 runs)

0.0 0.2 0.4 0.6 0.8 1.0
Predicted p (Y = 1|X) (sorted into bins Bi)

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue

[p
(Y

=
1|

X)
|X

B i
]

Gaussian Process
Logistic Classifier

0.0 0.2 0.4 0.6 0.8 1.0
Predicted p (Y = 1|X) (sorted into bins Bi)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

[p

(Y
=

1|
X)

|X
B i

]

Evidential DL

0.0 0.2 0.4 0.6 0.8 1.0
Predicted p (Y = 1|X) (sorted into bins Bi)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

[p

(Y
=

1|
X)

|X
B i

]

Cheat-Corrected NN (ours)

First-Order Calibration (on piecewise linear variant)

Figure 22. First-order calibration reliability diagram for the task in Figure 21. All methods are close to first-order calibrated on this task.

0.00 0.02 0.04 0.06
Predicted v (X) (sorted into bins Bi)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tr
ue

[(p

(Y
=

1|
X)

p
(Y

=
1|

X)
)2 |X

B i
]

NN Ensemble
(variance over 8 runs)

0.00 0.02 0.04 0.06
Predicted v (X) (sorted into bins Bi)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tr
ue

[(p

(Y
=

1|
X)

p
(Y

=
1|

X)
)2 |X

B i
]

Gaussian Process
Logistic Classifier

0.00 0.02 0.04 0.06
Predicted v (X) (sorted into bins Bi)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tr
ue

[(p

(Y
=

1|
X)

p
(Y

=
1|

X)
)2 |X

B i
]

Evidential DL

0.00 0.02 0.04 0.06
Predicted v (X) (sorted into bins Bi)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tr
ue

[(p

(Y
=

1|
X)

p
(Y

=
1|

X)
)2 |X

B i
]

Cheat-Corrected NN
(ours)

Second-Order Calibration (on piecewise linear variant)

Figure 23. Second-order calibration reliability diagram for the task in Figure 21. Our method is better second-order-calibrated than the
baseline approaches.

43

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

F.2. CIFAR-10H

F.2.1. TRAINING AND HYPERPARAMETER TUNING STRATEGY

Due to the small size of CIFAR-10H (Peterson et al., 2019), we split the dataset into multiple parts and combine it with
CIFAR-10N (Wei et al., 2021):

• We use the 50,000 images in CIFAR-10N as a pretraining set; this corresponds to the training set of the original
CIFAR-10 dataset. Each image has three labels from random annotators; we select two from these randomly at each
training step. (Note that the distribution of aleatoric noise in CIFAR-10N is not exactly the same as the aleatoric noise
in CIFAR-10H, likely due to being labeled at different times by different annotators, under the direction of different
authors.)

• We use the first 3,000 images in CIFAR-10H as finetuning set 1. Each image has at least 50 annotations; we select two
from these randomly at each training step.

• We use the next 2,000 images in CIFAR-10H as our validation set. We use the 50 labels per image as a proxy for
the true distribution p(Y |X = x), and take the KL divergence between this empirical distribution and the model’s
predictions as our hyperparameter tuning objective. After hyperparameter tuning, we reuse this set of images as
finetuning set 2, combining it with the first 3,000 images in CIFAR-10H to form a 5,000-image set.

• Finally, we use the last 5,000 images in CIFAR-10H as our test set, and use it to evaluate our final metrics.

We apply the AugMix augmentation strategy (Hendrycks et al., 2019) when sampling examples from the pretraining and
finetuning sets, to improve robustness of all methods. We also normalize pixel values based on the mean and standard
deviation of pixels across the full CIFAR-10 dataset, following the implementation in uncertainty baselines.

We train each method using the AdamW optimizer (Loshchilov & Hutter, 2017) with batch size 512. We divide our training
and hyperparameter tuning into the following phases:

• Phase 1: Pretraining hyperparameter sweep. We train each method on the CIFAR-10N pretraining set for 50 epochs.
We perform a random search over learning rate and weight decay strength with 250 trials: we choose learning rate
logarithmically spaced between 10−5 and 5× 10−3, and we either sample weight decay uniformly between 0.05 and
0.5, or logarithmically between 10−6 and 0.05, since different tasks and methods may benefit from either very strong
or very weak weight decay. We use a linear warmup for the learning rate during the first epoch, then use cosine weight
decay.

• Phase 2: Pretraining extended. We take the best-performing hyperparameters from phase 1, as judged by validation
KL divergence, and retrain that configuration from scratch for both 500 and 200 epochs.

• Phase 3: Fine-tuning hyperparameter sweep. We train each method on our CIFAR-10H finetuning set 1. We perform a
random search over learning rate and weight decay, as in phase 1, and also randomly search over the number of epochs
to use, either 30, 50, 100, or 200. We initialize the parameters from either of the checkpoints from Phase 2, using 250
trials in the random sweep for each checkpoint. (Effectively, we do 500 trials, where we are also tuning the number of
epochs of pretraining.)

• Phase 4: Expanded fine-tuning. We take the best-performing configuration from Phase 3, again judged by validation
KL divergence. We then reset to the checkpoint from Phase 2 (depending on the Phase 3 configuration), and train it
on the combination of of finetuning set 1 and finetuning set 2 (the validation set), so that we maximize the amount of
finetuning data.

• Phase 5: Evaluation. We take the resulting model from Phase 4 and evaluate our metrics on our test set (the second
half of CIFAR-10H).

The best-performing hyperparameters for each method are shown in Table 2. Interestingly, we found that very strong weight
decay was the most effective during pretraining for all models, perhaps because of the relatively small dataset and large
number of epochs.

44

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

Table 2. Best-performing hyperparameters for each model architecture, based on our hyperparameter sweeps.
PRETRAIN (CIFAR-10N) FINETUNE (CIFAR-10H)

METHOD LEARNING RATE WEIGHT DECAY EPOCHS LEARNING RATE WEIGHT DECAY EPOCHS

NAIVE NN / NN ENSEMBLE 3.799E-03 3.656E-01 50 9.071E-05 2.363E-01 50
EVIDENTIAL DL 7.465E-04 2.950E-01 200 1.455E-04 2.146E-03 200
SNGP COV. 1.221E-03 4.742E-01 200 6.032E-05 1.457E-01 100
EPINET 1.327E-03 4.513E-01 50 7.345E-05 2.954E-01 50
CHEAT NN 1.113E-03 4.835E-01 50 4.265E-05 1.865E-01 50
CHEAT SNGP 1.687E-03 4.411E-01 200 4.972E-05 7.621E-05 30

F.2.2. MODEL ARCHITECTURES

We implement all of our models and baselines using the uncertainty baselines Python library (Nado et al., 2021),
building on TensorFlow (Abadi et al., 2015) and Keras (Chollet et al., 2015). All methods are based on the wide ResNet
architecture (Zagoruyko & Komodakis, 2016) as implemented in uncertainty baselines, with depth 28 and a width
multiplier of 10.

Naive NN: We configure the wide ResNet with 10 output classes and a softmax output layer, and train it using the ordinary
cross entropy (negative log likelihood) loss.

At test time, we use V̂ θ(y|x) = p̂θY|X(y|x)(1− p̂θY|X(y|x)) as an estimate of variance. This corresponds to the assumption
that all noise is epistemic, and would make sense if we knew Y was a deterministic function of X . (However, for this task
we know this is not the case, so this will overestimate uncertainty.)

NN Ensemble: We use the same configuration as for Naive NN, but train eight copies of the model. (We do not perform a
separate hyperparameter tuning sweep for NN ensemble, since it would be the same as the sweep for Naive NN.)

At test time, we take the empirical mean and variance across the ensemble as our prediction and epistemic uncertainty
estimates:

p̂θ1,...,θ8(y|x) =
1

8

8∑
i=1

p̂θi(y|x)

v̂θ1,...,θ8(y|x) =
1

7

8∑
i=1

(
p̂θY|X(y|x)− p̂θ1,...,θ8(y|x)

)2
We divide by 7 so that our sample variance estimator is an unbiased estimate of the variance under a hypothetical infinite
ensemble.

SNGP Cov.: We use the SNGP variant of a wide ResNet from uncertainty baselines, which applies spectral
normalization to the intermediate layers of the ResNet and replaces the normal linear output layer with a random-feature
Gaussian process approximation (Liu et al., 2020). We configure it using the default configuration for CIFAR-10: 1024
orthogonal random features, a 1.0 ridge penalty, a 20 mean-field factor, and a spectral-norm bound of 6.0.

Following the training script for SNGP in uncertainty baselines, we use the ordinary logits of the model during
training; this roughly corresponds to using the posterior mean of the learned Gaussian process posterior. After training the
model, we perform another pass over the training set to compute a Laplace approximation of the covariance matrix. To
transform the mean and covariance over the logits into a mean and variance over output probabilities, we use a Monte Carlo
approximation by applying softmax to each of 1000 samples, then taking the mean and variance of the resulting probability
vectors.

Epinet: We augment our ResNet base network architecture with a MLP epinet head, using the implementation in the official
enn library6 (Osband et al., 2021), which we wrap using the jax2tf library in JAX (Bradbury et al., 2018). We copy the
hyperparameters from the CIFAR-10 checkpoints in that repository: a 20-dimensional index vector, 50-dimensional hiddens,
an epinet prior scale of 4.0, and no additional convolutional prior network. The epinet head takes the penultimate layer

6https://github.com/google-deepmind/enn

45

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

features from the ResNet and makes an additive contribution to the ResNet’s outputs, indexed by a random input. (Note that,
although the enn library checkpoints are for a non-wide ResNet, we instead use our wide ResNet backbone for consistency
with the other baselines, and train the epinet from scratch.)

We train the base network and epinet head jointly from scratch, taking an average of the ordinary cross-entropy loss across
five randomly-sampled “index” vectors, as recommended by (Osband et al., 2021). We then evaluate the epinet predictions
on our test set by taking the mean and variance of the post-softmax probabilities across 1000 sampled index vectors for each
input.

Evidential NN: We set up the wide ResNet architecture with 10 outputs, and convert them into parameters for a Dirichlet
distribution according to α(x) = 1 + softplus(hθ(x)). We then apply the regularized cross-entropy loss described by
Sensoy et al. (2018):

LEDL(x, y1, y2, θ) =
1

2

2∑
i=1

[
Eq∼Dirichlet(α(x))[− log q(yi)] + λDKL

(
Dirichlet(α̃(x, yi)) ‖ Dirichlet([1, 1])

)]
=

1

2

2∑
i=1

[
ψ(1Tα(x))− ψ(eTyiα(x)) + λDKL

(
Dirichlet(α̃(x, yi)) ‖ Dirichlet([1, 1])

)]
,

where eyi ∈ R10 is a one-hot indicator vector for the correct class, ψ is the digamma function, and α̃(x, yi) = eyi + (1−
eyi)�α(x) is a vector where the Dirichlet parameter for the correct label has been replaced with 1. We interpolate λ from
0 to 1 over 10 epochs as recommended by Sensoy et al. (2018).

At test time, we compute the average probabilities and variances as

p̂θY|X(Y = y|X) =
eTyα(x)

1Tα(x)
,

V̂ θ(Y = y|X) =
p̂θY|X(Y = y|X)

(
1− p̂θY|X(Y = y|X)

)
1Tα(x) + 1

.

This is the mean and variance of the probability q(y) when q ∼ Dirichlet(α(x)), as described by Sensoy et al. (2018).

We were initially surprised to find that the Evidential NN has significantly worse KL divergence and calibration scores in
Table 1 compared to other methods, but only a moderate reduction in classification error. After further investigation, we
determined that this is because, in the presence of label noise between a few classes, the Evidential NN’s regularization
causes it to predict an almost-uniform distribution across all classes, even classes that never appear (as shown in Figure 24),
due to predicting a Dirichlet distribution that is nearly uniform over the simplex. Additionally, because the denominator
1Tα(x) + 1 is always at least num classes + 1, the variance estimate will never be larger than 0.52

11 ≈ 0.022, and if the
predicted probability is close to uniform, the variance estimate will be around 0.1·0.9

11 ≈ 0.0082. This may be smaller than
the actual squared error of the predictor. (This occurs because the uniform distribution over a high-dimensional simplex
actually has very low variance along each dimension.)

Cheat NN: We parameterize the output layer of the wide ResNet with 10× 10 = 100 output classes. We then reshape them
into a 10× 10 matrix and add it to its transpose to enforce that it is symmetric, and then take a softmax over all rows and
columns. To regularize this output and prevent negative variance estimates due to overfitting, we compute the eigenvalues of
this probability matrix at each training step, then regularize any negative eigenvalues by multiplying their squared norm by
10.0. See Appendix E for additional discussion.

In contrast to the previous approaches, which average the loss over the two samples y1, y2 for each example seen, for our
method we directly compute the log-likelihood of the pair of outputs, by indexing into the appropriate row and column of
our joint probability matrix.

At test time, we compute p̂θY1|X(y|x) by marginalizing out one of the axes of our symmetric 10× 10 matrix. We compute
V̂ θCHEAT

(y|x) using
V̂ θCHEAT

(y|x) = p̂θY1,Y2|X(y, y|x)− p̂θY1|X(y|x)2.

Note that, for hyperparameter tuning, we compute the KL divergence according to the predicted marginal distribution of Y1

46

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

0 1 2 3 4 5 6 7 8 9
Classes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9
Classes

0 1 2 3 4 5 6 7 8 9
Classes

True probability
Mean / std dev of Dirichlet()

Figure 24. Optimizing the Evidential Deep Learning objective Sensoy et al. (2018) produces biased probability estimates in the presence
of label noise. We let α = 1 + softplus(v) and directly minimize the EDL objective with respect to v, taking an expectation over a
synthetic ground-truth label distribution (blue bars). We then visualize the mean and standard deviation of the learned distribution (orange).
When the ground-truth distribution has aleatoric uncertainty, EDL both over-estimates the probability for never-observed classes, and
under-estimates the distance from the true label distribution.

only, and compare it to the empirical distribution of all 50 annotator labels; we do not use the conditional p̂θY2|Y1,X (or the
joint p̂θY1,Y2|X) for hyperparameter tuning.

Cheat SNGP: We follow the same procedure as for Cheat NN, but use the SNGP variant of the wide ResNet architecture.
This means we use the spectral normalization layers and random-feature Gaussian process output head. However, we do not
compute any posterior covariance using the Gaussian process output head, and instead merely use the random features as a
convenient parameterization for a deterministic output layer. This allows us to take advantage of the distance-awareness
inductive biases in the SNGP architecture (Liu et al., 2020) without needing to approximate an actual posterior distribution.

F.2.3. DATASET VARIANTS

In addition to the original dataset, we consider three dataset variants: extra classes, scrambled, and extra classes + scrambled.
Each of these variants is implemented by transforming either the images or the annotator labels for the tasks, and we apply
the transformations to all of the dataset splits (pretraining, fine-tuning, validation, and test).

For the original and the extra classes + scrambled variants, we aggregate over eight independent training and evaluation runs.
The average performance is shown in the main paper in Table 1, and the standard deviations are given in Table 3. For the
other two variants, we only conduct a single training run; the results for these variants are given in Table 4.

We do not perform separate hyperparameter sweeps for each variant; instead we re-use the optimal hyperparameters for the
unmodified dataset, and just run training phases 2, 4, and 5 (as described above). Example images from each of these dataset
variants are shown in Figure 25.

Extra Classes: In this variant, we add label noise by artificially increasing the number of classes. For each of the classes in
the original CIFAR-10 dataset, we create three new classes (e.g. dog→ { dog-1, dog-2, dog-3}), and arbitrarily construct a
distribution over them (e.g. p(Y ′|Y = dog) for Y ′ ∈ {dog-1, dog-2, dog-3}) by sampling from Dirichlet([1, 1, 1]). This
produces a classification problem with 30 classes instead of 10, where there is aleatoric variation between the sub-classes
even for unambiguous images. The conditional distribution for each class is held fixed for all models and all dataset splits
(i.e. it is treated as part of the data distribution itself).

When training with this variant, we increase the number of outputs of each method accordingly; methods that had output
dimension 10 instead use output dimension 30, and our cheat-corrected models are configured to produce 30 × 30 joint
matrices. We then sample a sub-class for each class in each training iteration, potentially using different sub-classes for the
same image in different epoch. When evaluating metrics, we multiply the empirical distribution over the original labels and
the closed-form conditional distribution for the sub-labels to construct a partially-empirical distribution over the sub-labels.

We note that this dataset has more aleatoric variation, but it shouldn’t require more capacity, since the noise is added in an

47

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

Original Extra labels Scrambled Extra + Scrambled

0.0 0.1 0.2 0.3 0.4 0.5 0.6

truck

ship

horse

frog

dog

deer

cat

bird

car

plane

0.0 0.1 0.2 0.3 0.4

truck-3truck-2truck-1ship-3ship-2ship-1horse-3horse-2horse-1frog-3frog-2frog-1dog-3dog-2dog-1deer-3deer-2deer-1cat-3cat-2cat-1bird-3bird-2bird-1car-3car-2car-1plane-3plane-2plane-1

0.0 0.1 0.2 0.3 0.4 0.5 0.6

truck

ship

horse

frog

dog

deer

cat

bird

car

plane

0.0 0.1 0.2 0.3 0.4

truck-3truck-2truck-1ship-3ship-2ship-1horse-3horse-2horse-1frog-3frog-2frog-1dog-3dog-2dog-1deer-3deer-2deer-1cat-3cat-2cat-1bird-3bird-2bird-1car-3car-2car-1plane-3plane-2plane-1

0.0 0.2 0.4 0.6 0.8

truck

ship

horse

frog

dog

deer

cat

bird

car

plane

0.0 0.1 0.2 0.3

truck-3truck-2truck-1ship-3ship-2ship-1horse-3horse-2horse-1frog-3frog-2frog-1dog-3dog-2dog-1deer-3deer-2deer-1cat-3cat-2cat-1bird-3bird-2bird-1car-3car-2car-1plane-3plane-2plane-1

0.0 0.2 0.4 0.6 0.8

truck

ship

horse

frog

dog

deer

cat

bird

car

plane

0.0 0.1 0.2 0.3

truck-3truck-2truck-1ship-3ship-2ship-1horse-3horse-2horse-1frog-3frog-2frog-1dog-3dog-2dog-1deer-3deer-2deer-1cat-3cat-2cat-1bird-3bird-2bird-1car-3car-2car-1plane-3plane-2plane-1

Figure 25. Input images X and ground-truth annotator label distributions p(Y |X) for two images in the CIFAR-10H dataset, selected due
to having natural aleatoric uncertainty in the label distribution. The “Extra classes” variant modifies the label distribution, whereas the
“Scrambled” variant scrambles the center patch of the image.

48

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

Table 3. Full results from Table 1 with mean and standard deviation across eight training runs. All metrics summed across classes except
Acc and KL.

CIFAR-10H

METHOD ECE-2 E[v̂θ] E[(p̂θ−p)2] ECE-1 ACC KL

NAIVE NN 0.076 ± 0.003 0.142 ± 0.001 0.065 ± 0.002 0.017 ± 0.003 93.94 ± 0.17 0.179 ± 0.003
NN ENSEMBLE 0.039 ± 0.000 0.014 ± 0.000 0.053 ± 0.000 0.029 ± 0.002 94.90 ± 0.09 0.152 ± 0.001
EVIDENTIAL DL 0.377 ± 0.001 0.053 ± 0.000 0.430 ± 0.002 1.038 ± 0.004 88.45 ± 0.23 1.087 ± 0.003
SNGP COV. 0.048 ± 0.001 0.005 ± 0.000 0.052 ± 0.001 0.020 ± 0.001 94.89 ± 0.15 0.153 ± 0.001
EPINET 0.056 ± 0.002 0.015 ± 0.002 0.071 ± 0.001 0.020 ± 0.002 93.40 ± 0.26 0.189 ± 0.002

CHEAT NN 0.018 ± 0.001 0.052 ± 0.000 0.068 ± 0.001 0.029 ± 0.003 93.60 ± 0.18 0.182 ± 0.002
CHEAT SNGP 0.009 ± 0.002 0.054 ± 0.001 0.052 ± 0.001 0.022 ± 0.002 94.90 ± 0.14 0.149 ± 0.001

W/ EXTRA CLASSES, SCRAMBLED

METHOD ECE-2 E[v̂θ] E[(p̂θ−p)2] ECE-1 KL

NAIVE NN 0.521 ± 0.002 0.682 ± 0.003 0.161 ± 0.002 0.068 ± 0.004 0.706 ± 0.009
NN ENSEMBLE 0.134 ± 0.001 0.014 ± 0.000 0.148 ± 0.001 0.032 ± 0.001 0.647 ± 0.003
EVIDENTIAL DL 0.387 ± 0.000 0.031 ± 0.000 0.418 ± 0.000 0.794 ± 0.009 2.356 ± 0.000
SNGP COV. 0.112 ± 0.003 0.033 ± 0.003 0.145 ± 0.001 0.057 ± 0.003 0.634 ± 0.006
EPINET 0.089 ± 0.009 0.087 ± 0.009 0.163 ± 0.003 0.075 ± 0.003 0.712 ± 0.010

CHEAT NN 0.022 ± 0.001 0.134 ± 0.001 0.154 ± 0.001 0.072 ± 0.005 0.672 ± 0.005
CHEAT SNGP 0.011 ± 0.001 0.153 ± 0.002 0.150 ± 0.001 0.044 ± 0.003 0.650 ± 0.006

image-agnostic way.

Scrambled: In this variant, we increase the task difficulty by applying a fixed permutation to the pixels in the center of the
image. This permutation applies across all channels and all pixels except for a 4-pixel border around the sides of the image.
Since the content is usually in the center of the image, and since a ResNet is a convolutional architecture, this permutation is
likely to interfere with the inductive biases of all of the methods, and may cause them to focus on less-informative features
in the image border.

Since our permutation is invertible, it is always possible in principle to reconstruct the original image from the scrambled
form. This means that the true conditional p(Y |X) is not affected by using a scrambled view of X , so all of the additional
uncertainty from this transformation is epistemic in nature.

We apply this permutation after the AugMix augmentations during training.

Extra + Scrambled: We apply both of the transformations above together.

F.2.4. EVALUATION METRICS

ECE-2: Our primary evaluation metric is the expected second-order calibration error between the predicted epistemic
variance and the actual squared difference between the predicted probability and p(Y |X). In other words, we wish to
evaluate how closely the following correspondence holds:

E
[(
p(y|X)− p̂θY|X(y|X)

)2 ∣∣∣ V̂ θ(y|X)
]

?
≈ V̂ θ(y|X).

(We expect this correspondence to hold because it is a special case of Theorem 4.2 where the event A is V̂ θ(y|X) = c for
each possible c ∈ R.) Specifically, we focus on expected calibration error, which has the form

E

[∣∣∣∣E[(p(y|X)− p̂θY|X(y|X)
)2 ∣∣∣ V̂ θ(y|X)

]
− V̂ θ(y|X)

∣∣∣∣
]

We estimate this using expected calibration error over 100 equal-probability bins, based on the quantiles of the predicted
probability V̂ θ(y|X), which we compute as follows:

49

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

Table 4. Results for the additional CIFAR-10H dataset variants we consider, which include only one of the two increased difficulty types
each. Results within 2x of best ECE-2 in bold. All metrics summed across classes except Acc and KL.

EXTRA CLASSES SCRAMBLED

METHOD ECE-2 E[v̂θ] E[(p̂θ−p)2] ECE-1 KL ECE-2 E[v̂θ] E[(p̂θ−p)2] ECE-1 KL

NAIVE NN 0.540 0.574 0.034 0.02 0.18 0.051 0.354 0.314 0.07 0.69
NN ENSEMBLE 0.020 0.007 0.027 0.03 0.15 0.261 0.028 0.289 0.04 0.64
EVIDENTIAL DL 0.386 0.031 0.417 1.14 2.34 0.561 0.068 0.629 0.97 1.59
SNGP COV. 0.017 0.030 0.026 0.03 0.15 0.271 0.014 0.285 0.06 0.63
EPINET 0.054 0.083 0.041 0.04 0.20 0.271 0.044 0.314 0.08 0.69

CHEAT NN 0.010 0.029 0.037 0.04 0.19 0.056 0.252 0.303 0.08 0.66
CHEAT SNGP 0.009 0.032 0.028 0.02 0.15 0.029 0.280 0.286 0.05 0.62

1. For each example x, for each class y, compute the variance estimate V̂ θ(y|x), and an unbiased estimate of the squared
error p(y|X)− p̂θY|X(y|X)

)2
using the K annotations for this image x:

SQERREST(y, p̂θY|X(y|x), [yi]
K
i=1) = p̂θY|X(y|x)2 − 2p̂θY|X(y|x)

|{i : yi = y}|
K

+
|{(i, j) : i 6= j, yi = y, yj = y}|

K(K − 1)

≈ p̂θY|X(y|x)2 − p̂θY|X(y|x)p(y|x) + p(y|x)2 = (p̂θY|X(y|x)2 − p(y|x))2

K is the number of annotator labels for this image, which is always at least 50 but is sometimes greater. When
evaluating for the “extra classes” variant, we compute the modified estimate

SQERREST(y′, p̂θY|X(y′|x), [yi]
K
i=1) = p̂θY|X(y′|x)2 − 2p̂θY|X(y′|x)p(y′|y)

|{i : yi = y}|
K

+ p(y′|y)2 |{(i, j) : i 6= j, yi = y, yj = y}|
K(K − 1)

where y′ is one of the three sub-classes corresponding to the original class y.

2. Sort all of the (x, y) pairs in ascending order of V̂ θ(y|x). Note that each x appears multiple times in this ordering, due
to the different possible labels y.

3. Divide the examples into 100 evenly-sized bins, each of which correspond to an empirical quantile range of 1%.

4. Compute the average vBi of V̂ θ(y|x) for all examples (x, y) in each bin Bi. Also compute the average SQERRESTBi
of the error estimates SQERREST(y, p̂θY|X(y|x), [yi]

K
i=1) for those same examples.

5. Let

T =
1

N

∑
Bi

|Bi| ·
∣∣vBi − SQERRESTBi

∣∣ ,
where N is the total number of test set examples and |Bi| is the size of the ith bin (approximately N/100).

6. Return ECE-V = C · T where C is the number of classes.

We scale up the expected calibration error by the number of classes in the last step so that our final metric represents a sum
over classes instead of an average over classes, since we usually care about the full vector of predictions rather than the
prediction for a single random class. Note that some papers evaluate expected calibration error for the most likely predicted
class only, which avoids this problem (Perez-Lebel et al., 2022). However, it is not obvious that this criterion makes sense
when evaluating epistemic uncertainty, especially in the presence of significant aleatoric uncertainty. In principle, we could
also compute a separate calibration score for each class and then add them together at the end, instead of averaging over
them and then scaling the average, but we choose not to do this because of the small size of our dataset (which would
potentially make per-class calibration error estimates very noisy).

50

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

We also note that, in general, the binning procedure will under-estimate the exact expected calibration error, although this
can be avoided by using the binned outputs instead of the original ones (Kumar et al., 2019).

E[v̂θ], E[(p̂θ−p)2]: To compute these values, we use the same estimates from the ECE-V computation, but instead of
averaging differences over each bin, we simply compute separate sums of V̂ θ(y|x) and SQERREST(y, p̂θY|X(y|x), [yi]

K
i=1).

We divide by the total number of examples, so that these numbers again reflect sums over all classes (30 classes in this case).

ECE-1: We also estimate the expected calibration error for the ordinary predictions, again using 100 quantile bins,
combining classes together, and scaling up by the number of classes. We apply the same procedure as for ECE-2, except that
we use the predicted probability estimates p̂θY|X(y|x) instead of the variance estimates V̂ θ(y|x), and we use the empirical
probability |{i:yi=y}|K instead of the squared error measurement SQERREST(y, p̂θY|X(y|x), [yi]

K
i=1).

KL: Finally, we compute the average KL divergence between the empirical probability distribution of the annotator labels
and the model predictions

DKL

(
pD(y|x)

∥∥∥ p̂θY|X(y|x)
)

=
|{i : yi = y}|

K

(
log p̂θY|X(y|x)− log

|{i : yi = y}|
K

)
,

where pD(y|x) is the distribution of annotator labels for image x, e.g.

pD(y|x) =
|{i : yi = y}|

K

where [yi]
K
i=1 is the collection of annotator labels for image x.

We use this KL divergence metric to tune the hyperparameters of each method.

51

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

F.3. Digits of π

F.3.1. TRAINING DATA

To construct the queries X , we sample digit offsets I according to a mixture of geometric random variables: we sample

Q ∼ Uniform(0.001, 0.1), I ∼ Geometric(Q),

then keep I if it is less than 10,000 and reject it otherwise. We then embed this as a tokenized sequence of the form “Tell me
about digit 0 0 1 4 of pi.”, where I is zero-padded to four digits long.

Given I , we then look up the actual Ith digit after the decimal point in π (so digit 1 is 1, digit 2 is 4, digit 3 is 1, digit 4 is 5,
etc.).

Depending on the value d of this digit, we then sample responses Y from the following hand-written probabilistic context-free
grammar (with mostly randomly-chosen weights):

STATEMENT(d)→ INTRO VALUE(d) with probability 0.99
→ “Reply hazy, try again” with probability 0.01

INTRO→ “It’s” with probability 0.138
→ “It is” with probability 0.086
→ “That’s” with probability 0.218
→ “That is” with probability 0.185
→ “Sure, it’s” with probability 0.096
→ “Sure, it is” with probability 0.02
→ “Sure, that’s” with probability 0.17
→ “Sure, that is” with probability 0.087

VALUE(d)→ SAY-DIGIT(d) with probability 0.56
→ “an” EVEN-ODD(d) “number” with probability 0.19
→ “spelled” SPELL(d) with probability 0.13
→ “spelled with” SPELL-LENGTH(d) “letters” with probability 0.9

SAY-DIGIT(d)→ DIGIT(d) with probability 0.616
→ “the number” DIGIT(d) with probability 0.384

DIGIT(d)→ DIGIT-NAME(d) with probability 0.323
→ DIGIT-VAL(d) with probability 0.677

The nonterminals DIGIT-NAME(d), DIGIT-VAL(d), EVEN-ODD(d), SPELL(d), and SPELL-LENGTH(d) depend on the
digit:

• DIGIT-NAME takes values “zero”, “one”, “two”, . . .

• DIGIT-VAL takes values “0”, “1”, “2”, . . .

• EVEN-ODD takes values “even”, “odd”, “even”, . . .

• SPELL takes values “Z E R O”, “O N E”, “T W O”, . . .

52

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

• SPELL-LENGTH takes values “4” (the number of letters in “zero”), “3” (the number of letters in “one”), “3” (the
number of letters in “two”), . . .

Using this context free grammar, we can both sample sequences and look up the true probability of any given sequence. In
particular, given a statement, we can look up whether it is in the support of the grammar given the true digit value.

We also maintain a lookup table of semantically-equivalent sentences. When doing this, we treat as equivalent any two
sentences that differ only based on how they expanded INTRO, SAYDIGIT, and DIGIT. So, for instance, “Sure, it’s the
number 3” and “That is three” are equivalent, and “It’s spelled T H R E E” and “Sure, it’s spelled T H R E E” are equivalent,
but “Sure, it’s the number three” and “It’s spelled T H R E E” are not judged equivalent (one is about the value and the other
is about the spelling). Similarly “It’s spelled F O U R” and “It’s spelled with 4 letters” are not equivalent.

We train our model by concatenating X and two samples Y1, Y2. Before concatenation, we pad Y1 and Y2 out to a constant
length, producing examples of the form

<BOS> Tell me about digit 0 1 2 6 of pi. <SEP>
That’s the number four _ _ _ _ _ _ That’s spelled with 4 letters _ _ _ _ _

<BOS> Tell me about digit 0 0 4 8 of pi. <SEP>
Sure, that is an odd number _ _ _ _ It’s 5 _ _ _ _ _ _ _ _

<BOS> Tell me about digit 0 0 1 2 of pi. <SEP>
Sure, that’s 9 _ _ _ _ _ _ _ It is the number nine _ _ _ _ _

<BOS> Tell me about digit 0 0 1 5 of pi. <SEP>
Sure, that is 3 _ _ _ _ _ _ That is spelled T H R E E _ _

We use a tabular vocabulary, where each word or letter that could possibly be generated by the above process has its own
token index.

F.3.2. MODEL ARCHITECTURE AND TRAINING DETAILS

Our model architecture is a 6-layer causally-masked pre-LayerNorm Transformer (Vaswani et al., 2017; Xiong et al., 2020),
with 8 attention heads, an embedding dimension of 512, an MLP dimension of 2048, a per-head embedding dimension of
64, and fixed sinusoidal positional embeddings.

We train this model for 50,000 training iterations at batch size 1024 using the AdamW optimizer (Loshchilov & Hutter,
2017) with 1,000 warmup steps, a maximum learning rate of 2× 10−5, and a cosine decay schedule. We use the ordinary
maximum-likelihood objective, and apply masking so that only the tokens after <SEP> are scored (so the model does
not have to learn to predict X). Our implementation is in JAX (Bradbury et al., 2018) and uses Optax for optimization
(DeepMind et al., 2020).

F.3.3. SAMPLING AND FILTERING

After training our model, we iterate through all of the digit offsets from 1 to 3000, and sample 120 statements from the
model’s approximate conditional p̂θY1|X(·|x). We sample at temperature 1 but mask out any tokens with predicted probability
less than 0.005 during sampling. We note that the model has learned to sample pairs (Y1, Y2), but we interrupt generation
after it has generated Y1; thus each of the 120 statements are drawn independently and identically distributed from p̂θY1|X(·|x),
not p̂θY2|Y1,X).

We first check whether each sample was correct, where we judge a sample as correct if it had a nonzero probability under
p(Y |X) (the context-free grammar described in Appendix F.3.1). We then assign scores to each sample:

• For the total probability ranking, we rank by the probability p̂θY1|X(y1|x) of the sample under the model.

53

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

• For average token log probability, we divide log p̂θY1|X(y1|x) by the length |y1| of the sample; this is thus an average of
the log probabilities of each token, and approximates a “rate” of log probability (Malinin & Gales, 2020).

• When clustering into groups of 10, we split the 120 samples for each digit into 12 groups of size 10 each, then assign
a score to each sample based on the number of other samples in the same group that were semantically equivalent
(according to the criterion in Appendix F.3.1). So, if 4 out of the first 10 samples were semantically equivalent, each of
those samples would get a score of 4. (Malformed samples that could not possibly appear under the data distribution
are given a score 1.)

• When clustering into groups of 120, we assign a score to each sample based on the number of other samples among all
120 that were semantically equivalent.

• When ranking based on our epistemic confidence measure CθCHEAT
, we evaluate log p̂θY1|X(y|x) and log p̂θY2|Y1,X(y|y, x)

by concatenating the padded output y with itself when scoring using the model, and separately summing the log-
probabilities for Y1 and Y2. We then exponentiate the difference of these probabilities to evaluate CθCHEAT

, and finally
assign a score of −|1− CθCHEAT

| so that examples closer to 1 have a higher score.

We additionally explored a number of alternative ranking strategies for the case where CθCHEAT
> 1. According to Proposi-

tion 4.4, CθCHEAT
will never be greater than 1 if p̂θY1,Y2|X is calibrated, so our theoretical results do not provide any particular

guidance for how to rank these samples. We plot four options in Figure 26: 1− CθCHEAT
(the simplest, but nonsensical when

CθCHEAT
is very large), |1− CθCHEAT

| (used in the main paper results), 1−min{1, CθCHEAT
}, and 1−min

{
CθCHEAT

, 1
CθCHEAT

}
. Using

1− CθCHEAT
alone leads to high hallucination rates when using very strict thresholds, because the only samples that are kept

are the outliers.

F.3.4. INVESTIGATING MODEL SAMPLES

For each score type, we sort the samples (randomizing in the case of ties), and then compute the running hallucination rate
(fraction of samples seen so far that actually had pY|X(y|x) = 0) and response rate (total fraction of samples seen so far)
over prefixes of the sorted ordering; the results are shown in Figure 5 (right) in the main paper.

To get a better understanding of the relationship between the model’s behavior, its accuracy, and its cheat-corrected epistemic
confidence, we conduct a deeper study of the scores and accuracies assigned to each of the digits.

We start by visualizing some samples drawn from the model directly, colored based on the log-probability of each token. In
Figures 7 and 8 (in Appendix A), we show samples of Y1 and Y2 generated by the model. Note that the samples of Y2 are
not actually used under our uncertainty-quantification scheme. However, visualizing these samples reveals an interesting
behavior: when querying digits that the model does not know, the samples Y1 often show “hallucinations” of plausible
facts, but the corresponding Y2 is almost always consistent with Y1; the two samples do not contradict one another. This
means that the model has learned to “cheat” well; it is able to condition on the information in Y1 to make a more consistent
prediction of Y2. There are, however, a few exceptions where Y1 and Y2 are inconsistent or incoherent; in this case we find
that Y2 tends to be more correct than Y1.

In Figures 9 and 10 (in Appendix A), we next visualize the log-probabilities of each token when reuse the sampled Y1

sequences as Y2, by concatenating each Y1 with itself; this is how we compute our confidence scores CθCHEAT
(y|x). We see

that conditioning on Y1 does not usually significantly alter the probability of tokens with aleatoric variation (e.g. the initial
stylistic tokens), but usually raises the probability of tokens with epistemic prediction error (e.g. tokens that state facts about
the digit). This means the difference between the two log probabilities is usually a good indicator of the unknown parts of
the original samples.

There are a few samples which show the opposite pattern, where the likelihood decreases in the second sample (in the last row
of each figure). This seems to occur when the originally sampled Y1 was incorrect and had a very low probability, whereas
the prediction for Y2 was more accurate. This pattern of an incorrect Y1 but correct Y2 is an indication of miscalibration
with respect to the paired outcomes (Y1, Y2): if the model was truly conditioning on some property Φ(X) of the input query,
its predictions on Y1 should be just as accurate as its prediction of Y2, and it should never predict an inconsistent Y1, Y2 pair
that cannot occur under the data distribution. These samples tend to interfere with our epistemic confidence metric, and
result in predicted confidences greater than 1 (and negative predicted variances).

54

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Response rate (fraction accepted)

0.00

0.02

0.04

0.06

0.08

0.10

Ha
llu

cin
at

io
n

ra
te

 (i
f a

cc
ep

te
d)

1 CCheat

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Response rate (fraction accepted)

0.00

0.02

0.04

0.06

0.08

0.10

Ha
llu

cin
at

io
n

ra
te

 (i
f a

cc
ep

te
d)

1 min(1, CCheat)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Response rate (fraction accepted)

0.00

0.02

0.04

0.06

0.08

0.10

Ha
llu

cin
at

io
n

ra
te

 (i
f a

cc
ep

te
d)

1 min(1/CCheat, CCheat)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Response rate (fraction accepted)

0.00

0.02

0.04

0.06

0.08

0.10

Ha
llu

cin
at

io
n

ra
te

 (i
f a

cc
ep

te
d)

|1 CCheat|

Figure 26. Hallucination rates when ranking by alternative versions of CθCHEAT, each of which agree with CθCHEAT when it is less than 1 but
handle CθCHEAT > 1 differently. For comparison, the original baselines from Figure 5 are shown as dotted lines.

55

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

900 920 940 960 980 1000
Digit offset

0.0

0.5

1.0

1.5

2.0

2.5
Confidence per sample and fraction correct per digit

Confidence (per sample) Fraction correct (per digit) Outlier (confidence > 10)

900 920 940 960 980 1000
Digit offset

0.0

0.5

1.0

1.5

2.0
Average confidence per digit and fraction correct per digit

Confidence (per digit) Fraction correct (per digit)

900 920 940 960 980 1000
Digit offset

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Including moving averages

Confidence (per digit)
Fraction correct (per digit)

Confidence (filtered moving avg.)
Fraction correct (moving avg.)

Chance accuracy

0 500 1000 1500 2000 2500 3000
Digit offset

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Expanded range from offset 0 to 3000

Confidence (per digit)
Fraction correct (per digit)

Confidence (filtered moving avg.)
Fraction correct (moving avg.)

Chance accuracy
Outlier (confidence > 10)

Figure 27. Predicted epistemic confidence closely tracks the model’s actual accuracy after removing outliers. Row 1: We compute the
confidence for each of the 120 samples for each digit, and also compute the fraction of those 120 samples that are correct. Row 2: We take
the average confidence over all of the samples for each digit, ignoring outliers. Row 3: We divide digit offsets into groups of 40 digits,
and compute the average of both confidence and fraction correct. Row 4: Zoomed out version of row 3, showing the full sequence.

F.3.5. RELATIONSHIP BETWEEN CONFIDENCE AND CORRECTNESS

We also investigate the relationship between the epistemic confidence and the correctness of generated samples. This is
somewhat complex, because each individual sample is either correct or not correct, and the model may assign different
confidences to each sample. Determining whether the model’s confidence was appropriate thus requires some sort of
aggregation.

Figure 28 shows an expanded version of the confidence-vs-hallucination-rate plot in Figure 5 (left). Overall, when the
confidence is less than 1, the quantity 1− CθCHEAT

is a good estimate of hallucination rate. Samples with confidence close to 1
tend to be correct, but samples with extremely large confidence values tend to be wrong. We find that most of these outliers
are due to having an incorrect Y1 but fixing the mistake in Y2, as detailed in the previous section.

To show how confidence varies based on digit offset, we additionally aggregate these across nearby digits, since we know
from the data distribution that nearby digits appear with similar frequency and should thus be similarly difficult. We compute
the fraction of samples that are correct for each digit, and compare it to the average confidence of the samples. To get a
meaningful aggregate confidence measurement, we need to throw out samples with extremely large confidences due to
miscalibration. The results are shown in Figure 27.

56

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

10 2 10 1 100 101 102

Cheat-corrected confidence (binned, log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Ha
llu

cin
at

io
n

ra
te

 (p
er

 b
in

)

Hallucinations v.s. confidence (per bin)

Figure 28. Expanded version of Figure 5 (left), which shows the hallucination rate of the samples in different confidence bins, with dot
size proportional to the number of samples with that confidence. We use a logarithmic scale for CθCHEAT to include the outliers which are
much larger than 1; the prediction of Theorem 4.5 is shown as a dashed line. We see that confidences between 1 and 2 usually indicate a
correct answer, but this quickly falls off, and most samples with extremely large CθCHEAT values are usually incorrect.

57

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

Figure 29. Expert policies for the frozen lake task, depending on the location of the unsafe patch. Arrow length is proportional to
probability of taking that action in each state.

F.4. Offline RL - Frozen Lake

F.4.1. ENVIRONMENT AND EXPERT POLICIES

We represent the Frozen Lake environment (Figure 6) as a graph, where each gridworld cell is a node in the graph, and
there are four outgoing connections from each node to the adjacent nodes in each direction. Costs of each transition are
determined by the destination state:

• Moving onto the goal state (green square) gives a reward of 40 and ends the episode.

• Moving onto one of the non-lake squares (white border) gives a reward of -3.

• Moving onto one of the eight non-central lake squares gives a reward of -5.

• Moving onto the center lake square gives a reward -10.

These costs were chosen so that cutting across the center of the lake gives slightly more reward than going around it
(−5− 10− 5 + 40 = 20 vs −3× 7 + 40 = 19), but only slightly.

For each of the nine possible locations of the unsafe patch, we then solve for the optimal entropy-regularized tabular
policy by iterating the soft Q-learning Bellman backup operator (Schulman et al., 2017) with a discount rate of 0.9 and a
temperature of 2.5. We explicitly disallow moving onto the unsafe patch or leaving the bounds of the gridworld by assigning
−∞ reward to each; the resulting expert policy never takes those actions.

The resulting expert policies for each of the 9 possible unsafe patch locations are shown in Figure 29.

F.4.2. IMITATION LEARNING

Our model architecture for this task is a 12-layer causally-masked pre-LayerNorm Transformer (Vaswani et al., 2017; Xiong
et al., 2020) based on GPT-2 (Radford et al., 2019), with 12 attention heads, an embedding dimension of 768, an MLP
dimension of 3072, a per-head embedding dimension of 64, and fixed sinusoidal positional embeddings.

For each example, we first tokenize the model’s view of the environment, using a single token per gridworld cell. In 50% of
the examples, we mark the unsafe region with a token ”C” identifying it, and the safe parts of the lake with ”I”. In the other

58

Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs

50%, we mark all potentially-unsafe regions with a ”?”. We also include tokens for the start state (”S”), goal state (”G”) and
border states (”P”). (Since these tokens are constant across all examples, they are likely not important to include, but we
include them for simplicity.)

Loosely inspired by the setup of Chen et al. (2021), we next represent the expert trajectories as sequences of states and
actions. We do not tokenize the rewards, since our objective is simply to imitate the expert trajectories. We also concatenate
two independent samples together, padding them to a maximum length of 16 steps each.

This produces examples of the following form (with each word mapped to its own token index, and padding denoted by “ ”):

P P P P P
P I I I P
S I I C G
P I I I P
P P P P P
<SEP> c0 r2 down c0 r3 up c0 r2 down c0 r3 up c0 r2 down c0 r3 down c0 r4 right
c1 r4 up c1 r3 right c2 r3 right c3 r3 right c4 r3 up FINISH _ _ _ _ _ _ _ _ _ _
_ _ _
<SEP> c0 r2 right c1 r2 right c2 r2 down c2 r3 up c2 r2 down c2 r3 left c1 r3
down c1 r4 right c2 r4 right c3 r4 right c4 r4 left c3 r4 right c4 r4 up c4 r3
up FINISH _ _ _ _ _ _ _

P P P P P
P ? ? ? P
S ? ? ? G
P ? ? ? P
P P P P P
<SEP> c0 r2 right c1 r2 right c2 r2 right c3 r2 right FINISH _ _ _ _ _ _ _ _ _ _
_ _
<SEP> c0 r2 up c0 r1 right c1 r1 down c1 r2 up c1 r1 down c1 r2 up c1 r1 up c1
r0 down c1 r1 down c1 r2 right c2 r2 right c3 r2 right FINISH _ _ _ _ _ _ _ _ _
_ _ _ _

We train by maximizing log-likelihood under a standard autoregressive training setup. We only train it to imitate the
sequences of states and actions, by masking out all tokens prior to the <SEP> token. We train this model for 50,000 training
iterations at batch size 512 using the AdamW optimizer (Loshchilov & Hutter, 2017) with 1,000 warmup steps, a maximum
learning rate of 2 × 10−5, and a cosine decay schedule. Our implementation is in JAX (Bradbury et al., 2018) and uses
Optax for optimization (DeepMind et al., 2020).

We then sample trajectories from the model at temperature 0.9, conditioning on either a full or partial view of the environment,
and compute the cheat-corrected epistemic confidence for each. For our “cheat-corrected rejection sampling” decoding
strategy, we reject any sample with |1 − CθCHEAT

| > 0.05 and resample it; rejected samples are shown as dashed lines in
Figure 6 in the main paper. For our “cheat-corrected top-1 search” decoding strategy, we sample 6400 samples, then identify
the sample y with the largest predicted probability p̂θY1|X(y|x) subject to the constraint |1− CθCHEAT

| ≤ 0.05.

We show additional trajectories sampled by our model, along with their confidences, in Figures 11 to 13 (in Appendix A).

59

