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Abstract
We consider the problem of length generalization
in sequence prediction. We define a new metric
of performance in this setting – the Asymmetric-
Regret– which measures regret against a bench-
mark predictor with longer context length than
available to the learner. We continue by studying
this concept through the lens of the spectral filter-
ing algorithm. We present a gradient-based learn-
ing algorithm that provably achieves length gen-
eralization for linear dynamical systems. We con-
clude with proof-of-concept experiments which
are consistent with our theory.

1. Introduction
Sequence prediction is a fundamental problem in machine
learning, with applications that span natural language pro-
cessing (NLP), forecasting, and control systems. A com-
mon challenge in these tasks is to determine how much past
information, known as context length, should be used to
make accurate predictions. Although longer contexts often
improve performance, they come with increased computa-
tional and memory costs, making it impractical to store and
process entire sequences, especially during training.

This challenge raises a key question: Can we design learn-
ing algorithms that effectively operate with limited context
during training while still generalizing to longer sequences
at test time? This property, which we call length generaliza-
tion, is particularly relevant in large-scale models, such as
large language models (LLMs), which struggle to extrapo-
late beyond the context lengths seen during training. Despite
extensive empirical research on this issue, formal theoretical
guarantees on length generalization remain elusive.

To address this, we introduce a novel performance metric,
Asymmetric-Regret, which quantifies the regret of a predic-
tor with a limited context length compared to an ideal pre-
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dictor with a longer context. Unlike standard regret, which
assumes both the learner and benchmark operate under the
same conditions, Asymmetric-Regret explicitly accounts
for the context length discrepancy, offering a more realistic
evaluation of length generalization in resource-constrained
settings.

We study length generalization through the lens of spectral
filtering algorithms, a class of methods known for their ef-
fectiveness in learning linear dynamical systems (LDS) with
long memory (Hazan et al., 2017a). Spectral filtering meth-
ods have recently been used to develop state space models
that achieve state-of-the-art (SOTA) performance in LLMs,
improving both efficiency and scalability (Gu et al., 2021b;
Poli et al., 2023; Gu & Dao, 2023). In this work, we prove
that spectral filtering algorithms can generalize across con-
text lengths while maintaining strong theoretical guarantees
on regret. This is the first result, to the authors’ knowledge,
providing such provable guarantees in the setting of learning
linear dynamical systems.

1.1. Our Contributions

Consider online sequence prediction in which the predictor
iteratively receives input ut ∈ Rdin and then makes a pre-
diction ŷt ∈ Rdout of the output, after which the true output
yt is revealed. The goal of the predictor is to minimize error
according to a given convex and Lipschitz loss function
ℓt(yt, ŷt). In this work we consider the class of spectral
filtering predictors, introduced by Hazan et al. (2017b). A
spectral filtering predictor is characterized by parameters
(T,Mi

k
i=1, k) and outputs predictions ŷt of the form

ŷt = yt−1 +

k∑
i=1

Miu(t−1):0ϕi,

where u(t−1):0 ∈ Rdin×T is a matrix whose columns are the
previous inputs ut−1, ut−2, . . . , u0 (possibly zero-padded
as necessary), {ϕj}kj=1 are the T -dimensional spectral fil-
ters, {Mi}ki=1 ⊂ Rdout×din are matrices which are learned
online, and k is the number of filters used. Hazan et al.
(2017b) provide an algorithm to learn {Mi}ki=1 and show
this achieves nearly optimal regret bounds when measured
against the best Linear Dynamical System (LDS) predictor.
We explore whether the full history u(t−1):0 is needed to
learn {Mi}ki=1. More broadly, we explore whether predic-
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tor classes and corresponding online learning algorithms
exist that can achieve context length generalization—that
is, they use only a short recent history during learning but
perform nearly as well as if they had used the full, much
longer history length. Of course, predictors which perform
poorly on systems that require long memory can trivially
achieve context length generalization if their performance
is poor regardless of the context length used. Notably, spec-
tral filtering predictors excel in systems with long memory
(Hazan et al., 2017b).

To properly understand context length generalization, we
introduce the notion of Asymmetric-Regret. The idea is
to consider the regret of learning a predictor from a class
which is only allowed to use context length L′ against the
best predictor which is allowed to use (potentially much
longer and therefore asymmetric) context length L. Let ΠL

denote the class of predictors in Π which use context length
L. Given an algorithm A(L′) which learns over predictors
from some class ΠL′ , the Asymmetric-Regret over horizon
T is

RegretAsym,T (A(L′),ΠL)
def
=

T∑
t=1

ℓt(yt, ŷ
A(L′)
t )

− min
π∈ΠL

ℓt(yt, ŷ
π
t ).

Our first result shows that spectral filtering generalizes from
a history of T q, where q ∈ [0, 1], to T for certain linear
dynamical systems. It is formally given in the following
theorem.

Theorem 1. Let T ∈ Z ≥ 0 and q ∈ [0, 1]. Con-
sider a sequence (y1, . . . , yT ) generated by an unknown
and noiseless linear dynamical system defined by matri-
ces (A,B,C,D) as per Eq. 1. Assume the input se-
quence u0:(t−1) is sufficiently well-conditioned, satisfy-

ing
∑T−1

t=0 (T − t)utu
⊤
t ⪰

(
2|C||B|√

T

)
I . Suppose the

eigenvalues of A lie within the range
[
0, 1− log(T )

8T q

]
∪[

1− 1
2T 5/4 , 1

]
.

Let A(L) denote Algorithm 1 operating with context length
L, and let ΠSF

L denote the class of spectral filtering pre-
dictors using context length L. For the squared loss
ℓt(y, y

′) = |y − y′|2 and sufficiently large T , it holds that:

RegretAsym,T

(
A(T q),ΠSF

T

)
≤ Õ(

√
T ).

This theorem indicates that for any q ∈ [0, 1], the
Asymmetric-Regret is bounded by Õ(

√
T ). However, as q

decreases, the class of linear dynamical systems for which
this bound holds becomes more restricted due to the eigen-
value conditions on A. The spectrum of A determines the
memory of the system; when the eigenvalues of A are 1,
the system is only marginally-stable and standard predictors

which aim to use low memory typically fail. Critically, Theo-
rem 1 holds even for these marginally-stable systems. When
interpreting this result, it’s important to note that the class of
spectral filtering predictors ΠSF

T which use the full context
length are provably able to predict well on marginally-stable
Linear Dynamical Systems (Hazan et al., 2017b)1. There-
fore, this result implies that spectral filtering predictors are
able to context length generalize in a nontrivial way.

Inspired by the way in which Theorem 1 is sensitive to the
spectrum of A, we develop a novel variation on the Spec-
tral Filtering algorithm, presented in Algorithm 2, which
achieves robust length generalization without added assump-
tions on the spectrum of A (whenever the context-length
is at least T 1/4). Algorithm 2 achieves this by using two
autoregressive components yt−1 and yt−2 to construct its
prediction ŷt of yt. We provide our main theorem of this
work.

Theorem 2. Let T ∈ Z ≥ 0 and q ∈
[
1
4 + log(log(T )/8)

log(T ) , 1
]
.

Consider a sequence (y1, . . . , yT ) generated by an un-
known and noiseless linear dynamical system defined by
matrices (A,B,C,D) as per Eq. 1. Assume the input se-
quence u0:(t−1) is sufficiently well-conditioned, satisfying∑T−1

t=0 (T − t)utu
⊤
t ⪰

(
2|C||B|√

T

)
I . Let A(L) denote Algo-

rithm 2 operating with context length L, and let ΠSF
L denote

the class of spectral filtering predictors using context length
L. For the squared loss ℓt(y, y′) = |y−y′|2 and sufficiently
large T , it holds that:

RegretAsym,T

(
A(T q),ΠSF

T

)
≤ Õ(

√
T ).

Finally, we experimentally confirm the results of Theorem
1 and Theorem 2 on synthetic data generated by an LDS.
Interestingly, we find that Theorem 1 accurately predicts
when length generalization is possible; indeed, when the
data is generated by an LDS which has eigenvalues in the
“bad” range [1− log(T )/(8T q), 1−1/(2T 5/4)] we find that
the limited context length spectral filtering predictors are
unable to length generalize. However, when the data is
generated by an LDS which has eigenvalues “hugging” this
bad range (i.e. either just smaller than 1− log(T )/(8T q) or
just larger than 1− 1/(2T 5/4)), the limited context length
spectral filtering predictors successfully length generalize,
demonstrating the sharpness of our analysis. Next, we see
that adding the second autoregressive term allows for robust
length generalization on marginally-stable systems with no

1The only LDS’s for which there can be any useful results are
those with A’s eigenvalues in [−1, 1], i.e. marginally-stable sys-
tems. We recall that the spectral filtering principle can be readily
applied to handle negative eigenvalues in [−1, 0] (see Appendix D
of (Agarwal et al., 2023), for example). For ease of presentation,
we focus on capturing the length generalization effects of eigen-
values in [0, 1] in the sequel, and so we suppose without loss of
generality that A ⪰ 0.
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spectral assumption. Lastly, we conduct experiments using
the STU neural architecture to test the hypothesis that this
architecture should simply length generalize without any
task-specific engineering. We consider the induction heads
synthetic task and find that the out-of-the-box STU neural
architecture does indeed enjoy some level of length general-
ization. This suggests that incorporating spectral filtering
into neural architectures, like the STU, may provide im-
proved length generalization in deep learning applications.
We leave further empirical study on this for future work.

1.2. Related Work

The literature for sequence prediction is too broad to survey
in detail, so we give a few highlights of the recent rapid ad-
vancements. The most notable progress includes the Trans-
former model (Vaswani et al., 2017) that incorporates an
attention mechanism for accurate sequence prediction in
many domains (Brown et al., 2020; Dosovitskiy et al., 2020;
Jumper et al., 2021). Transformer models and their attention
layers have memory/computation requirements that scale
quadratically with context length. Many approximations
have been proposed (see (Tay et al., 2022) for a recent sur-
vey).

Motivated by the high memory and compute requirements
of transformers, state space models were revisited starting
from (Gu et al., 2020; 2021b) who propose and develop the
HiPPO theory. Gu et al. (2021a) develop the S4 parame-
terization to address the bottlenecks of training efficiency,
performance and numerical stability. Further works in the
area show SOTA performance and include (Gupta et al.,
2022; Smith et al., 2023; Orvieto et al., 2023; Gu & Dao,
2023). State space models are very efficient for training and
inference, but can suffer in long-context applications. This
motivated the use of spectral filtering technique for learning
marginally-stable linear dynamical systems (Hazan et al.,
2017b; 2018). This technique was incorporated to a neu-
ral architecture in (Agarwal et al., 2023), that was recently
shown to perform well across several modalities (Liu et al.,
2024).

From an applied perspective, generalization in sequence
prediction has been studied in (Hou et al., 2024) through
the theoretical lens of Turing programs. They propose
a methodology that empirically improves length gener-
alization across a diverse set of tasks. There are also
many architecture-specific approaches to improving length
generalization, usually in the context of language mod-
els, such as ALiBi positional embeddings for transformers
(Press et al., 2022), recursive application of deep networks
(Schwarzschild et al., 2021; Bansal et al., 2022), a self-
attentive recurrent sequence model called the “Universal
Transformer” (Dehghani et al., 2018), and the Neural GPU
(Kaiser & Sutskever, 2015). However, such methods lack

provable guarantees and can have varying empirical perfor-
mance (Kazemnejad et al., 2024). There have also been
extensive investigations into the ability of neural networks
to length generalize and the role that various features play
in this, for example see (Anil et al., 2022; Murray & Chiang,
2018; Yehudai et al., 2021; Zhang et al., 2022; Newman
et al., 2020).

In contrast, our investigation starts from the theory of regret
minimization in games and online learning. Regret mini-
mization has the advantage that it implies generalization in
the statistical learning setting, see e.g. (Cesa-Bianchi et al.,
2004) and is usually accompanied by efficient algorithms
such as online gradient descent, see e.g. (Hazan et al., 2016).
Our new notion of Asymmetric-Regret incorporates asym-
metric information access between the online learner and
the benchmark class.

2. Background and Setting
In the online sequence prediction setting the predictor
iteratively receives input ut and makes prediction ŷt of the
output, after which the true output yt is revealed. The goal
is to minimize error according to a given (convex Lipschitz)
loss function ℓt(yt, ŷt).

In online learning, we usually do not make statistical as-
sumptions about the generation of the input sequence. As
such, performance is measured relative to a certain bench-
mark class of predictors. A prediction algorithm A is mea-
sured by regret, or difference in total loss, vs. a class of
reference predictors Πref (such as linear predictors), i.e.

RegretT (A,Π) =

T∑
t=1

ℓt(yt, ŷ
A
t )−min

π∈Π

T∑
t=1

ℓt(yt, ŷ
π
t ).

This formulation is valid for online sequence prediction of
any signal. We are particularly interested in signals that are
generated by dynamical systems. A time-invariant linear
dynamical system is given by the dynamics equations

xt+1 = Axt +But +wt , yt+1 = Cxt +Dut + ζt, (1)

where xt is the (hidden) state, ut is the input or control
to the system, and yt is the observation. The terms wt, ζt
are noise terms, and the matrices A,B,C,D are called the
system matrices.

Many methods exist for linear dynamical systems and their
performance guarantees rely heavily on the spectrum of A.
The system is unstable whenever |λmax(A)| > 1 because the
norm of the observations tends towards infinity, stable when
|λmax(A)| < 1 and marginally-stable if |λmax(A)| = 1. In
the stable setting, if |λmax(A)| = 1−δ < 1, typical methods
(i.e., Kalman filtering) must use a history of at least≫ 1

δ
previous states to accurately capture the dynamics. As δ gets
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smaller (i.e. long memory), it therefore becomes difficult for
methods to directly learn these relationships. Methods that
learn system matrices require knowledge of the dimension
of the hidden state (which may be very large) and can also
be unstable for systems with long memory. Through a
particular parameterization and convex relaxation, however,
the spectral filtering algorithm is able to efficiently predict
observations from marginally-stable systems with sublinear
regret. We provide more background on spectral filtering
in Section 2.2, and more details on the rich theory of linear
dynamical systems may be found in (Hazan et al., 2020).

2.1. Context Length Generalization and the
Asymmetric-Regret metric

We say that an online predictor has context length L if it
bases its prediction ŷt only on information from the previous
L timesteps, i.e. ut:t−L and yt:t−L. The key question in our
work is whether there are algorithms which learn and predict
using a short context length, but perform as well as had they
been allowed to use long context length. To formalize this
notion, we introduce Asymmetric-Regret whose definition
we restate here:

Definition 3 (Asymmetric-Regret). Let Πlearn
L′ be a class

of predictors which use context length L′ and let Πref
L be

a reference class of predictors which use context length L.
The Asymmetric-Regret with respect to (convex Lipschitz)
loss ℓt over horizon T of an algorithm A(L′) which tries to
learn a predictor from Πlearn

L′ is

RegretAsym,T

(
A(L′),Πref

L

) def
=

T∑
t=1

ℓt(yt, ŷ
A(L′)
t )

− min
π∈ΠL

T∑
t=1

ℓt(yt, ŷ
π
t ).

To gain a better understanding of Asymmetric-Regret, note
that the typical notion of regret in sequence prediction sets
L′ = T for the given class of predictors and sets L = T for
the given reference class of predictors Πref by default. In
this case Asymmetric-Regret recovers typical regret,

Regret
(
A,Πref) = RegretAsym,T

(
A(T ),Πref

T

)
.

However, if L′ < T , any upper bound on
RegretAsym,T

(
A(L′),Πref

T

)
immediately implies an

upper bound on Regret
(
A,Πref

)
since the algorithm A(T )

can choose to only use context length L′ and ignore the
rest. Therefore, Asymmetric-Regret is a stronger notion
than typically used. Another possible notion of regret that
aligns more with the literature of length generalization
for language models is to restrict the algorithm A(L) to
update itself using context length L′ but to allow it to use
full context length when making predictions. Note that any

bound on the Asymmetric-Regret would immediately apply
to this alternative notion of regret since the algorithm is
only given more power. That said, this alternative notion
of regret could provide a different landscape of results.
For instance, there may be signals (like a linear dynamical
system with asymmetric transition matrix) that can still be
learned with short context length but require the full history
to be predicted accurately.

2.2. Spectral Filtering

Spectral filtering is a notable deviation from the standard
theory of linear dynamical systems that allows efficient
learning in the presence of arbitrarily long memory (Hazan
et al., 2017b). The idea is to project the sequence of inputs
to a small subspace that is constructed using the special
structure of discrete linear dynamical systems. The output
of the spectral filtering predictor is represented as

ŷt = yt−1 +

k∑
i=1

Miu(t−1):0ϕi, (2)

where u(t−1):0 ∈ Rdin×T is a matrix whose columns are the
previous inputs ut−1, . . . , u0 (possibly zero-padded as nec-
essary), {ϕj}kj=1 are the T -dimensional spectral filters that
can be computed offline given the target sequence length T ,
and {Mi}ki=1 ⊂ Rdout×din are the matrices parameterizing
the model. These spectral filters are the eigenvectors of the
matrix constructed as the average of outer products of the
discrete impulse-response functions as we now detail.

Let µα,T = (1 − α)[1, α, α2, ..., αT ] be the (weighted)
impulse-response vector corresponding to a one dimensional
linear dynamical system with parameter α unfolded to T
time steps, and consider the symmetric matrix

HT
def
=

∫ 1

0

µα,Tµ
⊤
α,T dα. (3)

Since HT is a real PSD matrix, it admits a real spectral de-
composition, and the (non-negative) eigenvalues can be or-
dered naturally by their value. Let {(σj ∈ R, ϕj ∈ RL)}Lj=1

be the eigenvalue-eigenvector pairs of HT ordered to satisfy
σ1 ≥ σ2 ≥ . . . ≥ σd. The spectral filters ϕ1, ..., ϕk

are exactly those first k eigenvectors corresponding to the
largest eigenvalues. The spectral filtering class is further
parameterized by matrices M1, ...,Mk ∈ Rdout×din . The
output at time t is then given by equation (2).

The following theorem establishes that the spectral filtering
class of predictors approximately contains bounded linear
dynamical systems with positive semi-definite A. The exact
constants are left out for simplicity of presentation, but
appear in the original work.

Theorem 4 (Simplified from (Hazan et al., 2017a)). Given
any linear dynamical system parametrized by A,B,C,D
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such that A is a PSD matrix with ∥A∥ ≤ 1, there exists
matrices M1, ...,Mk, such that for all T and all sequences
u1:T , ∥ut∥ ≤ 1, the following holds. Let yLDS

1:T be the
sequence generated by execution of the LDS via (1) and
ySF1:T be the sequence generated by Spectral Filtering via (2).
Then for all t ∈ [T ],

∥yLDS
t − ySFt ∥ ∼ e−

k
log(L) .

Theorem 4 establishes that Spectral Filtering can predict
long memory sequences since the statements holds even
over marginally stable linear dynamical systems.

3. Learning with a Short Context—Provable
Length Generalization for Linear
Dynamical Systems

In Algorithm 1, we modify the classical online learning
algorithm for spectral filtering to use a shorter context win-
dow. To properly define our notion of length generalization,
we need to distinguish between context lengths. Thus we
introduce the notation for the loss observed with a context
length L: letting ŷ(M,L) denotes the prediction of yt using
M = [M1, . . . ,Mk] and context window size L as in Eq. 4
of Algorithm 1 we have

ℓt(M,L)
def
= ∥ŷ(M,L)− yt∥2.

Note that this is overloaded notation compared with ℓt(y, y
′)

which measures the loss of the true y with the predicted y′

as used in our definition of regret. To provide a precise

Algorithm 1 Spectral Filtering with Limited Context
1: Input: k > 0, T > 0, L > 0, r > 0. Initialize M1

i ∈
Rdout×din for i ∈ [k] and set M1 = [M1

1 , . . . ,M
1
k ].

Let ϕ1:k be the largest eigenvectors of HT defined in
Eq. 3 with corresponding eigenvalues σ1:k, and let πK(·)
denote the projection to convex set K.

2: for t = 1, 2, ..., T do
3: Compute and predict

ŷt = yt−1 +

k∑
i=1

M t
i u(t−1):(t−L)(σ

1/4
i ϕi). (4)

4: Observe yt, denote ℓt(M
t, L) = ∥ŷt − yt∥2 and

update and project onto the low Frobenius norm ball

M̂ t+1 ←M t − ηt∇M ℓt(M
t)

M t+1 = πK

(
M̂ t+1

)
,

whereKr =
{
M ∈ Rk×dout×din : ∥Mi∥ ≤ r, ∀i ∈ [k]

}
.

5: end for

statement on length generalization, we present the following
performance guarantee. Note that we prove the following
for a (A,B,C, I)-LDS rather than (A,B,C,D) which is
without loss of generality since we can consider the input as
Du1, . . . , DuT .
Theorem 5. Let T ∈ Z ≥ 0 and q ∈ [0, 1]. Con-
sider a sequence (y1, . . . , yT ) generated by an unknown
and noiseless linear dynamical system defined by ma-
trices (A,B,C, I) as per Eq. 1. Assume the input se-
quence u0:(t−1) is sufficiently well-conditioned, satisfy-

ing
∑T−1

t=0 (T − t)utu
⊤
t ⪰

(
2|C||B|√

T

)
I . Suppose the

eigenvalues of A lie within the range
[
0, 1− log(T )

8T q

]
∪[

1− 1
2T 5/4 , 1

]
. Let k = Ω(log(T ) · log (TdA)),

r ≥ ∥B∥∥C∥, and assume T ≥ (4k log(T )/∥C∥∥B∥)4.
Algorithm 1 satisfies:

RegretAsym,T

(
A(T q),ΠSF

T

)
≤ O

(
∥B∥2∥C∥2k3/2 log(T )

√
T
)
.

The proof of Theorem 5 is in Appendix B with a high-level
overview at the end of this section. This theorem shows
that the sequence M1, . . . ,MT constructed by Algorithm 1,
even when using a reduced context length of size T q, is
able to achieve regret O(

√
T ) when compared to the best

spectral filter that uses full context length T . To gain
better understanding of the needed assumption on the spec-
trum of A, first suppose that all the eigenvalues of A are
bounded by 1− δ. Then the extent to which the input ut−t0

affects the value of yt is roughly (1 − δ)t0 , since the hid-
den state is multiplied by A t0 many times. This becomes
negligible when t0 is much larger than 1/δ and implies that
ut−t0 may be forgotten. This intuition explains why length
generalization is possible for the first region of eigenvalues
[0, 1− log(T )/(8T q)]. Indeed, letting δ = log(T )/8T q and
t0 = T q (which is much bigger than 8T q/ log(T ) for large
enough T ) we see that when the spectrum of A is smaller
than 1− δ, after t0 many steps we can forget about the pre-
vious inputs ut−t0 . The second part of the range – i.e. that
the spectrum of A can lie between [1− 1/(2T 5/4), 1]– is a
special feature of spectral filtering’s ability to efficiently cap-
ture long memory effects and is rather technical. The “bad
region“ is exactly the range where the eigenvalues aren’t
small enough that ut−t0 can be forgotten for t0 ≥ T q , but
also aren’t large enough that spectral filtering is naturally
able to capture them. Numerically, the range is very small
for large T and reasonable q.

Motivated by the limitations of Theorem 5, in order to pro-
vide a length generalization that is robust to the spectrum
of A, we introduce a variation on the classical Spectral Fil-
tering algorithm, presented as Algorithm 2. This algorithm
uses the two most previous outputs yt−1 and yt−2 when
making a prediction ŷt of yt.
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This algorithm has a slightly different construction of spec-
tral filters. Indeed, they are the eigenvectors of the following
matrix

NT
def
=

∫ 1

0

µ̃α,T µ̃
⊤
α,T dα, (5)

where µ̃α,T
def
= (1 − α)2[1, α, α2, . . . , αT ]. Interestingly,

just by using one extra autoregressive term, our adapted
algorithm is able to enjoy robust length generalization in the
sense that whenever the context window is at least T 1/4+ϵ

then no extra assumptions on the spectrum of A are neces-
sary to achieve our notion of length generalization. We state
this formally in the following theorem.

Algorithm 2 Spectral Filtering with Limited Context and
Two Autogressive Components

1: Input: k > 0, T > 0, L > 0, r > 0. Initialize M1
i ∈

Rdout×din for i ∈ [k] and set M1 = [M1
1 , . . . ,M

1
k ].

Let ϕ̃1:k be the largest eigenvectors of NT−2 defined
in Eq. 5 with corresponding eigenvalues σ̃1:k, and let
πK(·) denote the projection to convex set K.

2: for t = 1, 2, ..., T do
3: Compute and predict

ŷt = 2yt−1 − yt−2 +M t
1ut−1 +M t

2ut−2

+

k∑
i=3

M t
i u(t−3):(t−L)(σ̃

1/4
i ϕ̃i).

4: Observe yt, denote ℓt(M
t, L) = ∥ŷt − yt∥2 and

update and project onto the low Frobenius norm ball

M̂ t+1 ←M t − ηt∇M ℓt(M
t)

M t+1 = πK

(
M̂ t+1

)
,

whereKr = {[M1, . . . ,Mk] s.t. ∥Mi∥ ≤ r, ∀i ∈ [k]}.
5: end for

Theorem 6. Let T ∈ Z ≥ 0 and q ∈
[
1
4 + log(log(T )/8)

log(T ) , 1
]
.

Consider a sequence (y1, . . . , yT ) generated by an un-
known and noiseless linear dynamical system defined by
matrices (A,B,C, I) as per Eq. 1. Assume the input
sequence u0:(t−1) is sufficiently well-conditioned, satis-

fying
∑T−1

t=0 (T − t)utu
⊤
t ⪰

(
2|C||B|√

T

)
I . Let k =

Ω(log(T ) · log (TdA)), r ≥ ∥B∥∥C∥ and assume
T ≥ (4k log2(T )/∥C∥∥B∥)4. Algorithm 2 satisfies:

RegretAsym,T

(
A(T q),ΠSF

T

)
≤ O

(
∥B∥2∥C∥2k3/2 log(T )2

√
T
)
.

The proof of Theorem 6 is in Appendix C and we now give
a high-level overview.

High-Level Proof Overview. The general proof technique
for both Theorem 5 and Theorem 6 is the same. First, us-
ing standard online gradient descent results from (Hazan
et al., 2017b) we prove that the iterates M t achieve O(

√
T )

regret as measured by the context-length restricted loss∑T
t=1 ℓt(M,L). That is,

T∑
t=1

ℓt(M
t, L) ≤ min

M∈Kr

T∑
t=1

ℓt(M,L) +O(
√
T ). (6)

Next we prove that there is a unique M∗
T which minimizes

the loss on the full T -length context and this M∗
T achieves

length generalization in the sense that it achieves small loss
even when only allowed to use context length L. That is

T∑
t=1

ℓt(M
∗
T , L) ≤

T∑
t=1

ℓt(M
∗
T , T ) +O(

√
T ). (7)

We combine Eq. 6 and Eq. 7 to get the final notion of length
generalization that

T∑
t=1

ℓt(M
t, L) ≤ min

M∈Kr

T∑
t=1

ℓt(M,L) +O(
√
T )

≤
T∑

t=1

ℓt(M
∗
T , L) +O(

√
T )

≤
T∑

t=1

ℓt(M
∗
T , T ) +O(

√
T ).

The difficult result to prove is Eq. 7. The high level idea
is that when y1:t evolves as a noiseless LDS and when
the input u0:(t−1) is sufficiently well-conditioned, then∑T

t=1 ℓt(M,T ) is strongly convex and the minimizer ap-
proximately recovers a collection of “true” matrices which
are generated by the underlying linear dynamical system.
The second key idea is that if an algorithm had access to
these “true” matrices then it would be able to achieve small
loss even when restricted to a small context-length L≪ T .
The extent to which these recovered matrices can achieve
small loss when restricted to the small context-length de-
pends on the way the algorithm chooses to predict yt. In the
case of Algorithm 1 where yt is predicted based only using
only one autoregressive term, even having access to the true
matrices is not enough to accurately predict yt. However, in
the case of Algorithm 2, having access to the true matrices
as well as a second autoregressive term allows accurate pre-
diction of yt even when restricted to small context-length
window.

4. Experiments
4.1. Linear Dynamical System

We can empirically verify Theorem 5 and Theorem 6 in
an online sequence prediction task where the data is gen-
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erated by a noiseless LDS. We refer to a “bad” region of
eigenvalues

(
1− log(T )/(8T 7/8), 1− 1/(2T 5/4)

)
as Re-

gion B, and we define Region A to hug Region B on both
sides as shown in Figure 1.

0 1

Region A

Region B

Figure 1. Region B is the interval of eigenvalues for which
Theorem 5 does not provide length generalization. Re-
gion A hugs both sides of Region B (Region A is[
0.9 ·

(
1− log(T )/(8T 7/8)

)
, 1
]
\ Region B). This ensures

that Region A will contain bad eigenvalues as q decreases from
7/8 and eigenvalues in Region B are bad for q < 7/8.

Theorem 5 predicts that if all the eigenvalues lie outside
Region B, then spectral filtering will length generalize from
T 7/8 to T . To confirm this, we generate a random LDS
(hidden dimension: 512) with half of its eigenvalues sam-
pled from each part of Region A. The online prediction
losses are plotted in Figure 2 for different choices of context
length T q, where T = 214 and k = 24. As expected from
the theory, context lengths approaching T 7/8 closely match
the performance of the optimal spectral filtering predictor
with full context.

Interestingly, we see that context length T 1/2 consistently
fails in a qualitatively worse fashion – indeed, some of
the values in Region A are actually “bad” for q = 1/2.
This seems to suggest that such eigenvalues can actually
cause instabilities with length generalization and are not
limitations of our proof – if true, such a fact could be seen
as a partial converse to Theorem 5. To check this conjecture
empirically, we run another experiment where we generate a
random LDS of hidden dimension 512 with all eigenvalues
in Region B and plot the prediction losses ℓt(M t, T q) for
M t from Algorithm 1 in Figure 3 (averaged over random
seeds and smoothed). These results confirm that (some
subset of) this bad region is indeed what impedes the length
generalization capability of spectral filtering.

Next we apply our novel Algorithm 2, which uses two au-
toregressive components. Theorem 6 predicts that this algo-
rithm should be robust to this bad region of eigenvalues and
instead achieve length generalazation for any (symmetric,
marginally-stable) LDS. We verify this experimentally in
Figure 4 – to be as adversarial as we can, this experiment
is run with all eigenvalues sampled from Region B. As pre-
dicted by Theorem 6, the second autoregressive component
allows for robust length generalization even with context
lengths as small as

√
T .

Figure 2. Loss for Algorithm 1 with eigenval-
ues in Region A.

Figure 3. Loss for Algorithm 1 with eigenval-
ues in Region B.

Figure 4. Loss for Algorithm 2 with eigenval-
ues in Region B.

4.2. Induction Heads

So far, we have demonstrated length generalization of spec-
tral filtering on linear systems: when trained with a shorter
context length of T q it is able to compete with methods that
have access to the full context T (even on marginally-stable
systems that can have arbitrarily large effective memory
lengths). This length generalization property is most crucial
in deep learning applications, in which multi-layer models
are stacked (with added nonlinearities) to solve non-LDS
sequence prediction task

7
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As an empirical proof-of-concept to demonstrate that STU’s
length generalization capability extends to this regime, we
evaluate it on the induction heads synthetic sequence mod-
eling task, which is commonplace in the language modeling
literature (see (Gu & Dao, 2023)) and was experimentally
shown in (Liu et al., 2024) to be efficiently solved by a
two-layer STU. In the induction heads task, the model is
required to recall one token (sampled uniformly from a vo-
cabulary) immediately after a special flag token; the rest
of the sequence consists of the same special blank token,
which the model should learn to ignore.

The STU architecture we use is composed of an embedding
layer, two “tensordot” STU layers with MLPs and ReLU
nonlinearities, and an output projection layer (the same as
in (Liu et al., 2024)) with filters of length T = 256.

Following prior STU architecture implementations we use
no autoregressive components, and so any length gener-
alization observed here comes directly from the filtering
mechanism itself. We train these models until convergence
with a tuned Adam optimizer and various context lengths
T q . The vocabulary size is set to 4.

Figure 5. Accuracies for STU models trained on an induction heads
task of length T q and evaluated on sequence lengths increasing up
to T , averaged over random seeds.

Accuracies are plotted2 in Figure 5 for evaluation task
lengths increasing up to T . As we see, vanilla STU models
are able to nontrivially length generalize and occasionally
retain good accuracy beyond their training context lengths,
though inconsistently. Importantly, unlike algorithms that
achieve length generalization through architectural modi-
fication, we simply train with filters longer than the train

2Even though the accuracy cannot go above 1, the error bars
(1.96 times standard deviation) are still well defined above this
value. For example, T 7/8 at eval length 256 has average accuracy
of 95% with error interval roughly [85%, 105%], indicating that
most trials achieved perfect accuracy and length generalization.

context. As such, this method allows for the convolutional
mode during training and inherits all the benefits of STU
that are demonstrated in (Liu et al., 2024). For example,
the nonlinear selection mechanism of (Gu & Dao, 2023)
allows for extreme length generalization on induction heads
without prior knowledge of the evaluation length, though at
a cost to training efficiency, implementation simplicity, and
optimization complexity. We reiterate that our goal is not
to navigate such a tradeoff by modifying the STU model
so that it length generalizes on induction heads, but rather
to exhibit a provable length generalization capability of the
STU that comes for free from its natural structure.

5. Discussion
In review, we first introduced the notion of Asymmetric-
Regret as a way to describe length generalization through
the lens of online learning and regret minimization in games.
We then proved that the class of spectral filtering predic-
tors naturally enjoys sublinear Asymmetric-Regret thereby
exhibiting length generalization without any change to the
algorithm, albeit with some restrictions on the underlying
data (i.e. the spectrum of A). We introduced a new variant
of spectral filtering which uses two autoregressive com-
ponents and achieves length generalization which is more
robust to the assumptions of the underlying data. Next, we
used experiments on synthetic data generated by an LDS to
demonstrate the validity and sharpness of our theory and pro-
vided proof-of-concept length generalization experiments
on a synthetic nonlinear sequence prediction task.

Our theoretical results and initial empirical findings reveal
that some type of length generalization comes naturally
with the spectral filtering algorithm. This result implies
that spectral filtering is powerful in its ability to learn the
dynamics of a complicated underlying system with long
memory – it naturally handles the issue of what aspects in a
sequence should be memorized for the future and what as-
pects can be forgotten, whereas many existing methods are
hand engineered depending on the specific task. This adds
to the already-exciting list of its useful (and provable) prop-
erties, including: robustness to systems with long memory
and large hidden dimension, efficient training via convo-
lutions, optimization convexity, and the existence of good
parameter-efficient approximations. Given recent successful
applications of spectral filtering as the building block for
STU models in deep learning (Agarwal et al., 2023; Liu
et al., 2024), it would be valuable to research how to best
take advantage of their length generalization capacity at
scale – we leave this for future work.
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Impact Statement
This paper is primarily theoretical, proving that spectral
filtering learns LDS’s efficiently under a stronger notion of
regret which describes a type of length generalization. We
believe there are no societal consequences of our work that
require specific highlighting here.
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A. General Length Generalization
In this section we introduce a general algorithm which we will use to prove length generalization for both Algorithm 1 and
Algorithm 2.

Algorithm 3 General Spectral Filtering
1: Input: k > 0, L > 0, r > 0, functions pt(·), vectors v1:k. Initialize Mi = 0 for i ∈ [k].
2: for t = 1, 2, ..., T do
3: Compute and predict

ŷt = pt(yt−1:1) +

k∑
i=1

Miut−1:t−Lvi.

4: Observe yt, denote ℓt(M
t, L) = ∥ŷt − yt∥2 and update and project update and project onto the low Frobenius norm

ball
M̂ t+1 ←M t − ηt∇M ℓt(M

t)

Mt+1 = ProjK
(
M̂t+1

)
,

where Kr = {M s.t. ∥Mi∥ ≤ r}.
5: end for

Our workhorse theorem is presented below. We will use this theorem to prove length generalization for our special cases in
the following sections.

Theorem 7. Suppose y1:t evolves as a noiseless (A,B,C, I)-LDS and the input u(t−1):0 is such that
∑T−1

t=0 (T − t)utu
⊤
t ⪰

(2∥C∥∥B∥/
√
T )I . Let k, L, r, {vi}ki=1, pt(·), and ℓt(·) all be as defined in Algorithm 3. Suppose {vi}ki=1 is orthonormal

with ∥vi∥1 ≤ logp(T ). Suppose that pt(·) is such that there exists some function h(·), constant ℓ > 0, and some M true ∈ Kr

such that

yt − pt(yt−1:1) =

T∑
i=1

M true
i ut−1:0vi =

ℓ1∑
i=1

M true
i ut−i +

t−ℓ1∑
i=1

CAih(A)But−ℓ1−i,

where

∥
T∑

i=k+1

M true
i ut−1:t−Lvi∥ ≤ ∥C∥∥B∥/T,

and

max
α(A)

{
h(α)αL−ℓ1−1(1− αT−L+1)(1− α)−1

}
≤ 1

T 1/4
.

Then if M t are the iterates of Algorithm 3 and T ≥ (4k logp(T )/∥C∥∥B∥)4,

T∑
t=1

ℓt(M
t, L)− min

M∗∈Kr

T∑
t=1

ℓt(M
∗, T ) ≤

(
12k3/2r2

p

log(T ) + 8∥C∥2∥B∥2
)√

T .

The proof of this theorem requires several technical lemmas which we present and prove in the subsequent subsections.
In Lemma 8 we essentially prove the standard result showing that Online Gradient Descent implemented in Algorithm 3
achieves O(

√
T ) regret. In Lemma 9 we prove the more nuanced result which shows that the optimal M which minimizes

the loss on the full T -length context achieves length generalization in the sense that it achieves small loss even when only
allowed to use context length L. Combining these two lemmas gives the proof of Theorem 7.

Proof of Theorem 7. Let

M∗
T

def
= min

M∗∈Kr

T∑
t=1

ℓt(M
∗, T )

11
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and observe that

min
M∗∈Kr

T∑
t=1

ℓt(M
∗, L) ≤

T∑
t=1

ℓt(M
∗
T , L). (8)

Combining this with Lemma 8 and Lemma 9, we conclude

T∑
t=1

ℓt(Mt, L) ≤ min
M∗∈Kr

T∑
t=1

ℓt(M
∗, L) + 12k3/2r2

p

log(T )
√
T OGD Regret Lemma 8

≤
T∑

t=1

ℓt(M
∗
T , L) + 12k3/2r2

p

log(T )
√
T Eq. 8

≤
T∑

t=1

ℓt(M
∗
T , T ) + (12k3/2r2

p

log(T ) + 8∥C∥2∥B∥2)
√
T Length Generalization Lemma 9

= min
M∗∈Kr

T∑
t=1

ℓt(M,T ) + (12k3/2r2
p

log(T ) + 8∥C∥2∥B∥2)
√
T . Definition of M∗

T

A.1. OGD Regret for Generalized Spectral Filtering

Lemma 8. Suppose the input u1:t satisfies ∥ut∥2 ≤ 1. Suppose the true output yt evolves such that for some polynomial
pt(yt−1:1) there exists some M true ∈ Kr

yt = pt(yt−1:1) +

T∑
i=1

M true
i ut−1:0vi,

and for

Em,T
def
=

T∑
i=k+1

M true
i ut−1:0vi,

we have ∥Em,T ∥ ≤ 1. Further suppose v1, . . . , vk satisfy ∥vi∥1 ≤ ci log
p(T ). Let

ℓt(M,L)
def
= ∥yt − pt(yt−1:1)−

k∑
i=1

Miut−1:t−Lvi∥2,

Then if M t are the iterates of Algorithm 3

T∑
t=1

ℓt(M
t, L)− min

M∗∈Kr

T∑
t=1

ℓt(M
∗, L) ≤ 12k3/2r2

p

log(T )
√
T .

Proof of Lemma 8. This proof is a near copy of the proof in (Hazan et al., 2017b), the difference is that we derive several
equations that we will use later and we handle the varying context length.

Let G = maxt∈[T ] ∥∇M ℓt(Mt, L)∥ and let D = maxM1,M2∈Kr
∥M1 −M2∥. By Theorem A.1 from (Hazan & Singh,

2022),
T∑

t=1

ℓt(M
t, L)− min

M∗∈Kr

T∑
t=1

ℓt(M
∗, L) ≤ 3

2
GD
√
T .

Therefore it remains to bound G and D.

First we bound D. By definition of Kr, we have that for any M ∈ Kr,

∥Mi∥ ≤ r.
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Therefore, we also have that
∥M∥ ≤

√
kr.

Therefore
D

def
= max

M,M ′∈Kr

∥M −M ′∥ ≤ 2
√
kr.

Next we bound the gradient norm G. Using the definition of Kr,

max
M∈Kr

max
i∈[k]
∥Mi∥ ≤ r.

We bound the gradient norm as follows,

∥∇Mj ℓt(M,L)∥ = ∥2

(
k∑

i=1

M true
i ut−1:0vi + Em,T −

k∑
i=1

Miut−1:t−Lvi

)
(ut−1:t−Lvj)

⊤ ∥

≤ 2

(
k∑

i=1

∥M true
i ∥∥ut−1:0∥∞∥vi∥1 + ∥Em,T ∥+

k∑
i=1

∥Mi∥∥ut−1:t−L∥∞∥vi∥1

)
∥ut:t−L∥∞∥vj∥1

≤ 2 (1 + ∥Em,T ∥)
k∑

i=1

max
M∈Kr

∥Mi∥ · ∥ut−1:0∥2∞ · ∥vi∥21

≤ 4kr
p

log(T ).

Putting everything together we have

T∑
t=1

ℓt(Mt, L)− min
M∗∈Kr

T∑
t=1

ℓt(M
∗, L) ≤ 3

2

(
4kr

p

log(T )

)(
2
√
kr
)√

T

= 12k3/2r2
p

log(T )
√
T .

A.2. Length Generalization on the Best Optimizer in Hindsight

Lemma 9. Let input u(t−1):0, {vi}ki=1, pt(·), and ℓt(M,L) all be as defined in Algorithm 3. Suppose the input u(t−1):0 is
such that

∑T−1
t=0 (T − t)utu

⊤
t ⪰ (2∥C∥∥B∥/

√
T )I , {vi}ki=1 is orthonormal with ∥vi∥1 ≤ logp(T ), and that there exists

some M true such that

yt − pt(yt−1:1) =

T∑
i=1

M true
i ut−1:0vi =

ℓ1∑
i=1

M true
i ut−i +

t−ℓ1−1∑
i=1

CAih(A)But−ℓ1−i,

where

∥
T∑

i=k+1

M true
i ut−1:t−Lvi∥ ≤ ∥C∥∥B∥/T,

and
max
α(A)

{
h(α)αL−ℓ1−1(1− αT−L+1)(1− α)−1

}
≤ 1

T 1/4
.

Let

M∗
T

def
= argmin

M∈Kr

T∑
t=1

ℓt(M,T ).

Then for T ≥ (4k logp(T )/∥C∥∥B∥)4, the loss with context L well approximates the loss with context T on M∗
T ,

|
T∑

t=1

ℓt(M
∗
T , L)− ℓt(M

∗
T , T )| ≤ 8∥C∥2∥B∥2

√
T .

13
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The proof of Lemma 9 requires two key helper lemmas which we develop in the following subsections. The first is Lemma 10
which establishes that when y1:t evolves as a noiseless LDS and if the input u1:t is sufficiently well-conditioned, then the
minimizer for

∑T
t=1 ℓt(M,T ) approximately recovers a collection of matrices (we denote as M true) which is generated by

the true linear dynamical system. The second key helper Lemma is Lemma 11 which establishes that an algorithm which
uses the collection of matrices that are generated by the true linear dynamical system, i.e. M true, is able to achieve small loss
even when restricted to a small context-length L << T . The proof of Lemma 9 combines these two insights to establish that
this implies that the minimizer for

∑T
t=1 ℓt(M,T ) also achieves small loss even when restricted to small context-length L.

Proof of Lemma 9. First we show that M true is a (∥C∥2∥B∥2/T )-approximate minimizer to
∑T

t=1 ℓt(M,T ). Indeed,

T∑
t=1

ℓt(M
true, T ) =

T∑
t=1

∥yt − pt(yt−1:1)−
k∑

i=1

M true
i ut−1:0vi∥2

=

T∑
t=1

∥
T∑

i=k+1

M true
i ut−1:0vi∥2

≤ ∥C∥2∥B∥2/T.

By assumption
∑T−1

t=0 (T − t)utu
⊤
t ⪰ (2∥C∥∥B∥/

√
T )I . Therefore, by Lemma 10 with ϵ = ∥C∥∥B∥/

√
T we have

M∗
T ∈ B∥C∥∥B∥/

√
T

(
M true) .

Since we assumed T ≥ (4k logp(T )/∥C∥∥B∥)4 we have

∥C∥∥B∥/
√
T ≤ ∥C∥2∥B∥2/(4kT 1/4

p

log(T )).

Therefore by Lemma 11 we have
T∑

t=1

ℓt(M
∗
T , L) ≤ 4∥C∥2∥B∥2

√
T .

Moreover note that
0 ≤ ℓt(M

∗
T , T ) ≤ ℓt(M

true, T ) ≤ ∥C∥2∥B∥2/T 2.

Combining these we conclude,

|
T∑

t=1

ℓt(M
∗
T , L)−

T∑
t=1

ℓt(M
∗
T , T )| ≤ 4∥C∥2∥B∥2

√
T + ∥C∥2∥B∥2/T ≤ 8∥C∥2∥B∥2

√
T .

A.2.1. MINIMIZATION IS RECOVERY

Lemma 10. Suppose
∑T−1

t=0 (T − t)utu
⊤
t ⪰ 2ϵI and {vi}ki=1 is orthonormal. Then there is a unique point M∗ which

minimizes the function
∑T

t=1 ℓt(M,T ) from Algorithm 3. Moreover, suppose some k satisfies

T∑
t=1

ℓt(M,T ) ≤ ϵ2.

Then there is a matrix EM such that ∥EM∥ ≤ ϵ and

M∗ = M + EM .

Proof. For convenience, let Xt be the kdin-dimensional vector which stacks the filters,

Xt =


ut−1:t−T v1
ut−1:t−T v2

...
ut−1:t−T vk

 =


ut−1:0v1
ut−1:0v2

...
ut−1:0vk

 ,

14
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where the second inequality holds since we only consider t ≤ T . Assume k is written as M =
[
M1 M2 . . . Mk

]
∈

Rdout×kdin and let Yt = yt − pt(yt−1:1). Let Y =
[
Y1 Y2 . . . YT

]
and X =

[
X1 X2 . . . XT

]
. Then we can

express the loss as

f(M)
def
=

T∑
t=1

ℓt(M,T ) = ∥Y −MX∥2.

Note that this function is twice differentiable and

∇2
Mf(M) = XX⊤.

Therefore, if λmin
(
XX⊤) ≥ µ we have that f(M) is µ-strongly convex. Then if M∗ is the optimum of f(M) we have

f(M) ≥ f(M∗) +
µ

2
∥M −M∗∥2, or equivalently, ∥M −M∗∥ ≤ 2

µ
(f(M)− f(M∗)) .

Now suppose k is such that f(M) ≤ ϵ2. Then since f(·) ≥ 0 we have

∥M −M∗∥ ≤ 2ϵ2/µ.

Therefore we can write
M∗ = M + EM∗ where ∥EM∗∥ ≤ 2ϵ2/µ. (9)

Next we must understand the eigenvalues of XX⊤ and how they relate to the input uT :1. For notational convenience, let
U = uT :1 and let Dt denote the block-diagonal T × T matrix

Dt
def
=

[
0T−t×T−t

It

]
.

Finally, let

V =


v1
v2
...
vk

 ∈ RTm×1

Then we have Xt = (Ik ⊗ UDt)V and we observe

XX⊤ =

T∑
t=1

XtX
⊤
t =

T∑
t=1

((Ik ⊗ UDt)V ) ((Ik ⊗ UDt)V )
⊤

=

T∑
t=1

(Ik ⊗ UDtU
⊤)

= Ik ⊗ U

(
T∑

t=1

Dt

)
U⊤.

Observe that
T∑

t=1

Dt = diag
([
1 2 . . . T

])
.

Using this we can further refine

U

(
T∑

t=1

Dt

)
U⊤ =

T−1∑
t=0

(T − t)utu
⊤
t .

By assumption, this matrix has minimum eigenvalue bounded below by 2ϵ. Therefore λmin(XX⊤) ≥ 2ϵ. Plugging this
value in for µ in Eq. 9 concludes the proof.
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A.2.2. UNIFORM LENGTH GENERALIZATION AROUND LDS GENERATED SOLUTIONS

The following lemma shows that any k in an (appropriately defined) ϵ-ball around M true obtains length generalization in the
sense that it achieves O(

√
T ) L-context-length-limited loss

∑T
t=1 ℓt(·, L).

Lemma 11. Suppose yt evolves as a noiseless (A,B,C, I)-LDS with input ut. Suppose pt(·) and M true is such that

yt − pt(yt−1:1) =

T∑
i=1

M true
i ut−1:0vi =

ℓ1∑
i=1

M true
i ut−i +

t−ℓ1−1∑
i=1

CAih(A)But−ℓ1−i.

Suppose for a given k > 0,

∥
T∑

i=k+1

M true
i ut−1:t−Lvi∥ ≤

∥C∥∥B∥
T

.

Suppose

max
α(A)

{
h(α)αL−ℓ1−1(1− αT−L+1)(1− α)−1

}
≤ 1

T 1/4
.

If

δ ≤ 1

4m

∥C∥2∥B∥2

T 1/4 logp(T )
,

then we have for any M ∈ Bδ(M true)

T∑
t=1

ℓt(M,L) ≤ 4∥C∥2∥B∥2
√
T .

Proof of Lemma 11. Let M = M true + EM , where ∥EM∥ ≤ δ. By definition,

ℓt(M
true + EM , L) = ∥yt − pt(yt−1:1)−

k∑
i=1

(
M true + EM

)
i
ut−1:t−Lvi∥2

= ∥yt − pt(yt−1:1)−
k∑

i=1

M true
i ut−1:t−Lvi −

k∑
i=1

EMi
ut−1:t−Lvi∥2

≤ ∥yt − pt(yt−1:1)−
k∑

i=1

M true
i ut−1:t−Lvi∥2

+ 2∥yt − pt(yt−1:1)−
k∑

i=1

M true
i ut−1:t−Lvi∥∥

k∑
i=1

EMi
ut−1:t−Lvi∥

+ ∥
k∑

i=1

EMi
ut−1:t−Lvi∥2.

Observe that

∥
k∑

i=1

EMi
ut−1:t−Lvi∥ ≤

k∑
i=1

∥EMi
∥∥ut−1:t−L∥∞∥vi∥1 ≤ kδ

p

log(T ).

For the remainder of the proof we work towards bounding ∥yt − pt(yt−1:1) −
∑k

i=1 M
true
i ut−1:t−Lvi∥. We re-

place yt − pt(yt−1:1) with
∑T

i=1 M
true
i ut−1:0vi and we replace

∑k
i=1 M

true
i ut−1:t−Lvi with

∑T
i=1 M

true
i ut−1:t−Lvi −

16
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i=k+1 M

true
i ut−1:t−Lvi to get

∥yt − pt(yt−1:1)−
k∑

i=1

M true
i ut−1:t−Lvi∥2 = ∥

(
T∑

i=1

M true
i ut−1:0vi

)
−

(
T∑

i=1

M true
i ut−1:t−Lvi −

T∑
i=k+1

M true
i ut−1:t−Lvi

)
∥2

≤ ∥
T∑

i=1

M true
i (ut−1:0 − ut−1:t−L)vi∥2

+ 2∥
T∑

i=1

M true
i (ut−1:0 − ut−1:t−L)vi∥∥

T∑
i=k+1

M true
i ut−1:t−Lvi∥

+ ∥
T∑

i=k+1

M true
i ut−1:t−Lvi∥2.

Next we note that ∥
∑T

i=k+1 M
true
i ut−1:t−Lvi∥ is assumed to be at most ∥C∥∥B∥/T and so we now focus on bounding the

norm:

∥
T∑

i=1

M true
i (ut−1:0 − ut−1:t−L)vi∥. (10)

Towards bounding Eq. 10, assume L > ℓ1 so that

T∑
i=1

M true
i (ut−1:0 − ut−1:t−L)vi =

t−ℓ1−1∑
i=L−ℓ1+1

CAih(A)But−ℓ1−i

=

t−ℓ1−1∑
i=L−ℓ1+1

dA∑
j=1

αi
jh(αj)CjB

⊤
j ut−ℓ1−i.

Then

∥
t−ℓ1−1∑

i=L−ℓ1+1

CAih(A)But−ℓ1−i∥ ≤ max
j∈[dA]

αi
jh(αj)

t−ℓ1−1∑
i=L−ℓ1+1

∥CjB
⊤
j ut−ℓ1−i∥

≤ max
α(A)

t−ℓ1−1∑
i=L−ℓ1+1

αih(α)∥C∥∥B∥.

Next we have (
max
α(A)

t−ℓ1−1∑
i=L−ℓ1+1

αih(α)

)
≤ h(α)αL−ℓ1−1

T−L∑
i=0

αi

= h(α)αL−ℓ1−1 1− αT−L+1

1− α

≤ T−1/4,

where the last inequality holds by assumption. Therefore Eq. 10 is at most

∥
T∑

i=1

M true
i (ut−1:0 − ut−1:t−L)vi∥ ≤ ∥C∥∥B∥T−1/4.

Then we have

∥yt − pt(yt−1:1)−
k∑

i=1

M true
i ut−1:t−Lvi∥2 ≤

∥C∥2∥B∥2

T 1/2
+ 2
∥C∥2∥B∥2

T 3/4
+
∥C∥2∥B∥2

T 2
≤ 2
∥C∥2∥B∥2

T 1/2
.

17
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Finally we conclude

ℓt(M
true + EM , L) ≤ 2

∥C∥2∥B∥2

T 1/2
+ 2

(
2
∥C∥2∥B∥2

T 1/2

)1/2(
kδ

p

log(T )

)
+

(
kδ

p

log(T )

)2

≤ 4
∥C∥2∥B∥2

T 1/2
,

where the last inequality holds since we assumed

δ ≤ 1

4m

∥C∥2∥B∥2

T 1/4 logp(T )
.

B. Length Generalization for Vanilla Spectral Filtering
The proof of Theorem 5 ultimately comes from Theorem 7 and its proof in Appendix A. Theorem 7 abstracts the necessary
assumptions needed to obtain a length generalization guarantee. In Lemma 12 we prove that Algorithm 1 satisfies these
assumptions.

Proof of Theorem 5. By Lemma 12 and the assumptions made in the statement of Theorem 5, we may apply Theorem 7 to
Algorithm 1 to get that

T∑
t=1

ℓt(M
t, L)− min

M∗∈K∥C∥∥B∥

T∑
t=1

ℓt(M
∗, T ) ≤

(
12k3/2∥C∥2∥B∥2 log(T ) + 8∥C∥2∥B∥2

)√
T .

Lemma 12 (Length Generalization for Vanilla Spectral Filtering). Recall that in Algorithm 1 we define

µα
def
= (α− 1)

[
1 α . . . αT−1

]⊤ ∈ RT−1

and HT−1 =
∫
α∈[0,1]

µαµ
⊤
αdα and we let ϕ1, . . . , ϕT−1 be the orthonormal eigenvectors of HT−1 with eigenvalues

σ1, . . . , σT−1. Algorithm 1 is equivalent to Algorithm 3 with the following:

(a) pt(yt−1:1) = yt−1

(b) v1 = e1

(c) vi = (0, σ
1/4
i−1ϕi−1) for i = 2, . . . , T

Define M true as follows:

M true
1

def
= CB,

and for i ≥ 2

M true
i

def
=

dA∑
n=1

σ
−1/4
i−1 ϕ⊤

i−iµαn
(CnB

⊤
n ).

Then the following properties hold

1. For h(A) = A− I and ℓ1 = 1

yt − pt(yt−1:1) =

ℓ1∑
i=1

M true
i ut−i +

t−ℓ1∑
i=1

CAih(A)But−ℓ1−i.

18
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2. yt − pt(yt−1:1) =
∑T

i=1 M
true
i ut−1:1vi.

3. For k = Ω(log(TdA∥C∥∥B∥/ϵ)),

∥
T∑

i=k+1

M true
i ut−1:1vi∥ ≤ ϵ/T.

4. For any i ∈ [T ]
∥M true

i ∥ ≤ ∥C∥∥B∥.

5. For any i ∈ [T ], ∥vi∥1 ≤ log(T ) and {vi}i∈[T ] are orthonormal.

6. Finally if the spectrum of A lies in the interval[
0, 1− log(T )

2(L− 2)

]
∪
[
1− 1

2T 5/4
, 1

]
,

then
max
α(A)

{
|h(α)αL−ℓ1−1(1− αT−L+1)(1− α)−1|

}
≤ 1

T 1/4
.

Proof. Points (a)− (c) are evident by definition of Algorithm 1. Now suppose yt evolves as an LDS. By definition, there
exist matrices (A,B,C,D) such that

yt =

t∑
i=1

CAi−1But−i,

where we assume D = I and A is diagonal without loss of generality. Let α1, . . . , αdA
denote the eigenvalues of A. and let

ut:0 be the din × T (padded) matrix ut:0 =
[
ut ut−1 . . . u0 0

]
. Then we have

yt − yt−1 =

t∑
i=1

CAi−1But−i −
t−1∑
i=1

CAi−1But−1−i

= CBut−1 +

t−1∑
i=1

C
(
Ai −Ai−1

)
But−1−i.

We pause here to note this proves (1). We continue rearranging the equation to finish the derivation of (2).

yt − yt−1 = CBut−1 +

t−1∑
i=1

C
(
Ai −Ai−1

)
But−1−i

= CBut−1 +

dA∑
n=1

Cene
⊤
nB

t−1∑
i=1

(
αi
n − αi−1

n

)
ut−1−i

= CBut−1 +

dA∑
n=1

(CnB
⊤
n )u(t−2):0µαj

.

Observe that
T−1∑
i=1

ϕiϕ
⊤
i = I.

Using this we have,

yt − yt−1 = CBut−1 +

dA∑
n=1

(CnB
⊤
n )u(t−2):0µαn

= CBut−1 +

dA∑
n=1

(CnB
⊤
n )u(t−2):0

(
T∑

i=1

ϕiϕ
⊤
i

)
µαn

= CBut−1 +

T∑
i=1

dA∑
n=1

ϕ⊤
i µαn

(CnB
⊤
n )u(t−2):0ϕi.
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Recalling the definition of M true and vi = σ
1/4
i−1ϕi−1 we therefore have established (2):

yt − yt−1 = M true
1 u(t−1):0e1 +

T−1∑
i=2

M true
i u(t−1):0vi.

Next we aim to prove (3). We consider

∥
T∑

i=k+1

M true
i u(t−2):0vi∥.

By Lemma 13.4 in (Hazan & Singh, 2022) there is some universal constant c′ such that,

max
α∈[0,1]

|ϕ⊤
i µα| ≤ c′T 2 exp(−i/ log(T )).

So,

∥M true
i u(t−2):0vi∥ = ∥

dA∑
n=1

σ
−1/4
i−1 ϕ⊤

i−iµαn
(CnB

⊤
n )u(t−2):0

(
σ
1/4
i−1ϕi−1

)
∥

= ∥
dA∑
n=1

ϕ⊤
i−iµαn(CnB

⊤
n )u(t−2):0ϕi−1∥

≤ dA(c
′T 2 exp(−(i− 1)/ log(T )))∥CnB

⊤
n ∥∥ϕi−1∥1

≤ c′dAT
3/2 exp(−(i− 1)/ log(T )))∥C∥∥B∥.

Therefore,

∥
T∑

i=k+1

M true
i u(t−1):0ϕi∥ ≤ c′dAT

5/2 exp(−k/ log(T )))∥C∥∥B∥

Therefore as long as

k ≥ log(T ) log

(
T 5/2c′dA∥C∥∥B∥

ϵ

)
,

then

∥
T∑

i=k+1

M true
i u(t−1):0ϕi∥ ≤

ϵ

T
.

Next we note that the proof of (4) that ∥M true
i ∥ ≤ ∥C∥∥B∥ is proven in Lemma D.1 of (Hazan et al., 2017b). Similarly,

the proof of (5) that ∥vi∥1 ≤ log(T ) is proven by Lemma 13 from (Hazan et al., 2017b). Finally we prove (6). Since
h(α) = α− 1 and ℓ1 = 1, we have

max
α(A)

{
|h(α)αL−ℓ1−1(1− αT−L+1)(1− α)−1|

}
= max

α(A)
αL−2(1− αT−L+1). (11)

To bound Eq. 11, consider the case where α is bounded away from 1. Suppose α = 1− δ, then

(1− δ)L−2 ≤ 1

T p
⇐⇒ log

(
1

1− δ

)
≥ p log(T )

L− 2
.

Observe that for δ ∈ [0, 1], log(1/(1− δ)) ≥ δ/2. Therefore, if

δ ≥ 2p log(T )

L− 2
,

we are guaranteed that αL−2 ≤ 1/T p. Next consider when α is very close to 1; suppose α ≥ 1− 1
TpT for p < 1/2. Then

using that (1− x)q ≥ 1− 2qx for x ∈ [0, 1] we have

αT−L+1 ≥
(
1− 1

T pT

)T−L+1

≥ 1− 2
T − L+ 1

T pT
=⇒ 1− αT−L+1 ≤ 2

T − L+ 1

T pT
≤ 2

T p
.
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Plugging in p = 1/4 we conclude that

αL−2(1− αT−L+1) ≤ T−1/4 for any α ∈
[
0, 1− log(T )

2(L− 2)

]
∪
[
1− 1

2T 5/4
, 1

]
.

The following lemma comes from (Hazan et al., 2017b).

Lemma 13 (Hazan, Singh, Zhang). Let (σj , ϕj) be the j-th largest eigenvalue-eigenvector pair of the T × T Hankel matrix.
Then,

∥ϕj∥1 ≤ O

(
log(T )

σ
1/4
j

)
.

C. Length Generalization for Spectral Filtering Using Two Autoregressive Components
The proof of Theorem 6 ultimately comes from Theorem 7 and its proof in Appendix A. Theorem 7 abstracts the necessary
assumptions needed to obtain a length generalization guarantee. In Lemma 14 we prove that Algorithm 2 satisfies these
assumptions.

Proof of Theorem 6. By Lemma 14 and the assumptions made in the statement of Theorem 6, we may apply Theorem 7 to
Algorithm 2 to get that

T∑
t=1

ℓt(M
t, L)− min

M∗∈K∥C∥∥B∥

T∑
t=1

ℓt(M
∗, T ) ≤

(
12k3/2∥C∥2∥B∥2

2

log(T ) + 8∥C∥2∥B∥2
)√

T .

Lemma 14 (Length Generalization Using Two Autoregressive Components). Recall that in Algorithm 2 we define

µ̃α,T
def
= (α− 1)2

[
1 α . . . αT

]⊤ ∈ RT

and and NT =
∫
α∈[0,1]

µ̃α,T µ̃
⊤
α,T dα and we let ϕ̃1, . . . , ϕ̃T−2 be the orthonormal eigenvectors of NT−2 with eigenvalues

σ̃1, . . . , σ̃T−2. Algorithm 2 is equivalent to Algorithm 3 with the following:

(a) pt(yt−1:1) = 2yt−1 − yt−2

(b) v1 = e1, v2 = e2 and for i ≥ 3, vi = (0, 0, σ
1/4
i−2ϕ̃i−2)

Define M true as follows:

M true
1

def
= CB,

M true
2

def
= C(A− 2I)B,

and for i ≥ 3,

M true
i

def
=

dA∑
n=1

(
σ
−1/4
i ϕ̃⊤

i µ̃αn

)
(CnB

⊤
n ).

Then the following properties hold

1. For h(A) = (A− I)2 and ℓ1 = 2

yt − pt(yt−1:1) =

ℓ1∑
i=1

M true
i ut−i +

t−ℓ1∑
i=1

CAih(A)But−ℓ1−i.
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2. yt − pt(yt−1:1) =
∑T

i=1 M
true
i ut−1:1vi.

3. For k = Ω(log(TdA∥C∥∥B∥/ϵ)),

∥
T∑

i=k+1

M true
i ut−1:1vi∥ ≤ ϵ/T.

4. For any i ∈ [T ]
∥M true

i ∥ ≤ ∥C∥∥B∥.

5. For any i ∈ [T ], ∥vi∥1 ≤ log(T ) and {vi}i∈[T ] are orthonormal.

6. Finally if the spectrum of A lies in the interval[
0, 1− log(T )

2(L− 2)

]
∪
[
1− 1

2T 1/4
, 1

]
,

then
max
α(A)

{
|h(α)αL−ℓ1−1(1− αT−L+1)(1− α)−1|

}
≤ 1

T 1/4
.

Proof. Suppose yt evolves as an LDS. By definition, there exist matrices (A,B,C,D) such that

yt =

t∑
i=1

CAi−1But−i,

where we assume D = I and A is diagonal without loss of generality. Let α1, . . . , αdA
denote the eigenvalues of A. and let

ut:0 be the din × T (padded) matrix ut:0 =
[
ut ut−1 . . . u0 0

]
. Then we have (1):

yt − 2yt−1 + yt−2 = CBut−1 + C(A− 2I)But−2 +

t−3∑
i=0

CAi(A2 − 2A+ I)But−3−i.

Let α1, . . . , αdA
denote the eigenvalues of A. We observe the following equality:

t−3∑
i=0

CAi(A2 − 2A+ I)But−3−i =

t−3∑
i=0

C

dA∑
n=1

αi
n(αn − 1)2ene

⊤
nBut−3−i

=

dA∑
n=1

(
Cene

⊤
nB
) t−3∑
i=0

αi
n(αn − 1)2ut−3−i

=

dA∑
n=1

(
CnB

⊤
n

)
u(t−3):0µ̃αn

.

Observe that
T−2∑
i=1

ϕ̃iϕ̃
⊤
i = I.

Using this we have,
t−3∑
i=0

CAi(A2 − 2A+ I)But−3−i =

dA∑
n=1

(
CnB

⊤
n

)
u(t−3):0µ̃αn

=

dA∑
n=1

(
CnB

⊤
n

)
u(t−3):0

(
T−2∑
i=1

ϕ̃iϕ̃
⊤
i

)
µ̃αn

=

T−2∑
i=1

(
dA∑
n=1

ϕ̃⊤
i µ̃αn

(
CnB

⊤
n

))
u(t−3):0ϕ̃i

=

T∑
ℓ=3

M true
ℓ u(t−1):0vℓ.
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Therefore we have established (2). Next we aim to prove (3). We consider

∥
T∑

i=k+1

M true
i u(t−1):0vi∥.

Combining Lemma 15 and Lemma 16 gives us that there is some constant c′ such that,

max
α∈[0,1]

|ϕ̃⊤
i µ̃α| ≤ c′ exp(−i/4 log(T )).

So,

∥M true
i u(t−1):0vi∥ = ∥

dA∑
n=1

σ
−1/4
i−1 ϕ̃⊤

i−iµ̃αn
(CnB

⊤
n )u(t−1):0

(
σ
1/4
i−1ϕ̃i−1

)
∥

= ∥
dA∑
n=1

ϕ̃⊤
i−iµ̃αn

(CnB
⊤
n )u(t−2):0ϕ̃i−1∥

≤ dA exp(−(i− 1)/4 log(T ))∥CnB
⊤
n ∥∥ϕi−1∥1

≤ c′dA
√
T exp(−(i− 1)/4 log(T ))∥C∥∥B∥.

Therefore,

∥
T∑

i=k+1

M true
i u(t−1):0vi∥ ≤ c′dAT

3/2 exp(−i/4 log(T ))∥C∥∥B∥.

Therefore as long as

k ≥ 4 log(T ) log

(
T 3/2c′dA∥C∥∥B∥

ϵ

)
,

then

∥
T∑

i=k+1

M true
i u(t−1):0vi∥ ≤

ϵ

T
.

To prove (4) we note that the statement is obvious for i ≤ 2. For i ≥ 3 the proof from Lemma D.1 of (Hazan et al.,
2017b) directly applies due to Lemma 15. Next, Lemma 17 proves (5). Finally we prove (6). Next, Lemma 17 proves (5).
Finally we prove (6). Since we have h(α) = (α− 1)2 and ℓ = 2,

max
α(A)

{
|h(α)αL−3(1− αT−L+1)(1− α)−1|

}
= max

α(A)

{
(1− α)αL−3(1− αT−L+1)

}
. (12)

To bound Eq. 12, consider the case where α is bounded away from 1. Suppose α = 1− δ, then

(1− δ)L−3 ≤ 1

T p
⇐⇒ log

(
1

1− δ

)
≥ p log(T )

L− 3
.

Observe that for δ ∈ [0, 1], log(1/(1− δ)) ≥ δ/2. Therefore, if

δ ≥ 2p log(T )

L− 3
,

we are guaranteed that αL−3 ≤ 1/T p. Next consider when α is very close to 1. To ensure that Eq. 12 is bounded by 1/T p

we only require

α ≥ 1− 1

T p
.

Plugging in p = 1/4, we conclude that Eq. 12 is bounded by T−1/4 if

αn ∈
[
0, 1− log(T )

2(L− 3)

]
∪
[
1− 1

T 1/4
, 1

]
for all n ∈ [dA].
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C.1. Properties of the Hankel Matrix for Two Autoregressive Terms

In Algorithm 2 we define

µ̃α
def
= (α− 1)2

[
1 α . . . αT

]⊤ ∈ RT

and

NT =

∫
α∈[0,1]

µ̃αµ̃
⊤
αdα.

In what follows we present and prove several lemmas needed for the proof of Theorem 6.

Lemma 15 (Properties of NT ). For any α ∈ [0, 1] and 1 ≤ i ≤ T ,

max
α∈[0,1]

|ϕ⊤
i µ̃α| ≤ 61/4σ

1/4
i .

Proof. We have ∫
α∈[0,1]

(
ϕ⊤
i µ̃α

)2
dα = ϕ⊤

i

(∫
α∈[0,1]

µ̃αµ̃
⊤
αdα

)
ϕi

= ϕ⊤
i NTϕi = σi.

Next we observe that for fw(α)
def
=
(
w⊤µ̃α

)2
, where w is any unit-norm vector, we have that fw is 6-Lipschitz on [0, 1].

Indeed,

f ′
w(α) =

d

dα
(α− 1)4

(
T∑

i=1

wiα
i−1

)2

= 2(α− 1)4

(
T∑

i=1

wiα
i−1

)(
T∑

i=2

(i− 1)wiα
i−2

)
+ 4

(
T∑

i=1

wiα
i−1

)2

(α− 1)3

≤ 2(α− 1)4
(
1− αT

1− α

)(T−1∑
i=1

iαi−1

)
+ 4

(
1− αT

1− α

)2

(α− 1)3

= 2(α− 1)4
(
1− αT

1− α

)(
1− TαT−1 + (T − 1)αT

(1− α)2

)
+ 4

(
1− αT

1− α

)2

(α− 1)3

= 2
(
1− αT

) (
1− TαT−1 + (T − 1)αT

)
+ 4

(
1− αT

)2
(α− 1)

≤ 2 + 4 = 6.

Consider any non-negative L-Lipschitz function f that reaches some maximum value gmax over [0, 1]. The function f which
satisfies L-Lipschitzness, attains gmax(f) and also has minimum possible area A(f)

def
=
∫
α∈[0,1]

f(α)dα is

f∗(α) =

{
Lα, for α ∈ [0, α∗]

max {gmax − L(α− α∗), 0} , for α ∈ [α∗, 1]

=


Lα, for α ∈ [0, α∗]

gmax − L(α− α∗), for α ∈ [α∗, α∗ + gmax
L ]

0, for α ∈ [α∗ + gmax
L , 1]

.

Indeed, any oscillation away from this piecewise linear function would either increase the total area or violate the Lipschitz
constraint. For this to be a valid construction we must have Lα∗ = gmax and therefore the minimum corresponding area is

A(f∗) =

∫
α∈[0,1]

f∗(α)dα =
1

2
(α∗)(Lα∗) +

1

2
(gmax/L)gmax =

g2max

L
.
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And therefore for any function f we have gmax(f) ≤
√

LA(f). Using this for fϕi
(α) we have

max
α∈[0,1]

fϕi
(α) = max

α∈[0,1]
(ϕ⊤

i µ̃α)
2 ≤

√
6

∫
α∈[0,1]

(
ϕ⊤
i µ̃α

)2
dα =

√
6σi.

We conclude by noting

max
α∈[0,1]

|ϕ⊤
i µ̃α| =

√
max
α∈[0,1]

(ϕ⊤
i µ̃α)2 ≤ 61/4σ

1/4
i .

Lemma 16 (Adapted from Lemma E.2 from (Hazan et al., 2017b)). Let σj be the j-th top singular value of NT . Then for
all T ≥ 10 we have

σj ≤ min

(
3

2
,K · c−j/ log(T )

)
,

where c = eπ
2/4 ≈ 11.79 and K ≤ 106 is an absolute constant.

Proof. The proof provided in (Hazan et al., 2017b) applies directly to NT with only one necessary modification to bound
the trace. Observe that we have

(NT )ij =

∫
α∈[0,1]

(α− 1)4αi+j−2dα

=

∫
α∈[0,1]

αi+j − 2αi+j−1 + αi+j−2dα

=
24

(i+ j − 1)(i+ j)(i+ j + 1)(i+ j + 2)(i+ j + 3)
.

Therefore,

σj ≤ tr(NT ) =

T∑
i=1

24

(2i− 1)(2i)(2i+ 1)(2i+ 2)(2i+ 3)
≤

T∑
i=1

24

(2i)5
=

3

4

T∑
i=1

1

i5
<

3

2
.

The remainder of the proof is an exact copy of the proof of Lemma E.2 with 3/4 replaced by 3/2.

Lemma 17 (Controlling the ℓ1 norm of the filters). Let (σj , ϕj) be the j-th largest eigenvalue-eigenvector pair of NT . Then
for T ≥ 4,

∥ϕj∥1 ≤ O

(
log T

σ
1/4
j

)
.

Proof. This proof is a copy from the proof of Lemma E.5 in (Hazan et al., 2017b) with only one noted modification. We
note that E as defined in their proof is entrywise bounded (for T ≥ 4) by 24/T 5 ≤ 2/T 3 (which is the stated bound they
use for their matrix of interest). We also must show the base case is true for T0 = 4 instead of T0 = 2. We have

∥N1/4
4 ∥2→1 = sup

x:∥x∥2 ≤ 1

∥N1/4
4 x∥1 ≤

4∑
i,j=1

|
(
N

1/4
4

)
ij
| < 2.

We note that a tighter result is actually true for NT in that ∥ϕj∥1 ≤ O

(
log T

σ
1/8
j

)
. However, we omit this statement and proof

because we don’t leverage it for a tighter result overall.

25


