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Abstract

Machine learning algorithms are often repeatedly
applied to problems with similar structure over
and over again. We focus on solving a sequence
of bandit optimization tasks and develop LIBO,
an algorithm which adapts to the environment
by learning from past experience and becomes
more sample-efficient in the process. We assume
a kernelized structure where the kernel is unknown
but shared across all tasks. LIBO sequentially
meta-learns a kernel that approximates the true
kernel and solves the incoming tasks with the
latest kernel estimate. Our algorithm can be paired
with any kernelized or linear bandit algorithm and
guarantees oracle optimal performance, meaning
that as more tasks are solved, the regret of LIBO
on each task converges to the regret of the bandit
algorithm with oracle knowledge of the true
kernel. Naturally, if paired with a sublinear bandit
algorithm, LIBO yields a sublinear lifelong regret.
We also show that direct access to the data from
each task is not necessary for attaining sublinear
regret. We propose F-LIBO, which solves the
lifelong problem in a federated manner.

1 INTRODUCTION

A key aspect of human intelligence is our ability to harness
previous experience and quickly improve when repeatedly
solving similar problems. In this paper, we study how to
solve a sequence of learning problems, on related instances,
and become more efficient in the process. In particular we
focus on problems which are solved through Bayesian Opti-
mization, a.k.a. kernelized bandit algorithms (BO), where
the kernel captures regularity structure of the tasks. A mo-
tivating application are AutoML systems, which perform
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hyper-parameter tuning for the same model on different
datasets, or different models on the same dataset. We expect
that the more tasks our machine learning system solves, the
better the system becomes at solving the next one.

We model this as lifelong learning, where an agent
sequentially faces kernelized bandit problems with different
unknown reward functions. While prior work assumes the
kernel to be known (e.g., hand-designed), we consider the
kernel k∗ to be unknown, but shared between the problem
instances. After each bandit task, we use the previously
collected data to meta-learn a kernel function k̂ as a proxy
for the unknown k⋆. We transfer knowledge across tasks by
sequentially updating the meta-learned kernel and using it to
solve the next task. This way, we adapt to the environment
and gradually improve the bandit performance. Ideally,
we would like to reach the oracle-optimal performance,
i.e. the performance of a bandit algorithm with complete
knowledge of the environment.

Lifelong bandit optimization is a delicate problem for two
reasons. First, the success of each round of BO depends
on the validity of the meta-learned kernel: We only have
guaranteed convergence and sublinear regret if the reproduc-
ing kernel Hilbert space (RKHS), induced by the estimated
kernel k̂, contains the reward functions. Second, the data
that is used for meta-learning is collected at the previous
BO tasks. Thus, during each BO round, we not only have
to quickly find reward maximizing actions, but also have to
collect exploratory data that is sufficiently informative for
successful meta-learning of the kernel.

We address these challenges when the true kernel is a sparse
convex combination of a large number of candidate kernels.
We propose an approach for meta-learning a provably
consistent estimator of the true kernel, given data from
previous tasks (Theorem 3.3). To ensure that this data is
sufficiently informative, we interlace the queries of the
BO agent with purely exploratory queries. Combining
these two key ideas, we design our main algorithm, the
Lifelong Bandit Optimizer (LIBO). This algorithm is
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versatile since it is agnostic to the bandit policy, i.e. it
can be wrapped around any kernelized or linear base
bandit algorithm to influence its policy and satisfy lifelong
guarantees. We prove that it is oracle-optimal, i.e. that by
using LIBO, we can eventually achieve the same worst-case
performance as the base bandit algorithm which has oracle
knowledge of the true kernel (Theorem 4.1). We do not
make assumptions about the base bandit algorithm, and our
convergence guarantees hold for many bandit solvers such
as OFUL [Abbasi-Yadkori et al., 2011], GP-UCB [Srinivas
et al., 2010] or GP-TS [Chowdhury and Gopalan, 2017].
Additionally, we consider a federated setting where each
BO task is performed by a client node in a network and the
data ought not to be exchanged with the server node due to
privacy concerns. We propose the Federated Lifelong Bandit
Optimizer (F-LIBO), and show that it satisfies a guarantee
similar to LIBO (Theorem 5.1). If we take GP-UCB as
base bandit solver, LIBO and F-LIBO have the same
worst-case regret bound rates as the GP-UCB solver when
given oracle knowledge of the true kernel (Corollary 4.2
and 5.2). In Section 6 we support our theoretical findings by
experiments on synthetic and real-world data in the AutoML
context. Lastly, we discuss related works in Section 7.

2 PROBLEM STATEMENT

We consider a lifelong optimization setting, where an agent
interacts with a sequence of black-box optimization prob-
lems, arriving one after another. Throughout the sequence of
optimization tasks, the agent can adapt to the environment
based on the previously collected data and improve its
performance on the succeeding tasks. Formally, the agent
iteratively faces bandit problems with unknown reward func-
tions f1, ..., fm residing in a RKHS Hk⋆ that corresponds
to an unknown kernel function k⋆. To impose regularity,
we assume that the reward function has a bounded kernel
norm ∥f∥k⋆ ≤ B and that the domain X ⊂ Rd0 is compact.
The agent interacts with each task fs for n time steps. For
each task s = 1, . . . ,m, at time step i = 1, . . . , n, the agent
selects an action xs,i ∈ X and receives a stochastic reward
via ys,i = fs(xs,i) + εs,i. Here, εs,i are i.i.d. samples from
a zero-mean sub-Gaussian noise with variance proxy σ2.
The goal of the agent is to maximize its rewards across all
tasks. This can be formalized as minimizing the lifelong
regret over m tasks of size n, defined as

R(m,n) :=

m∑
s=1

n∑
i=1

fs(x
⋆
s)− fs(xs,i),

where x⋆
s is a global maximum of fs. If R(m,n)

mn → 0 as
m,n → ∞ then the agent eventually converges to the global
optimum of each upcoming optimization task. This property
is commonly referred to as sublinearity of the regret. To
attain a small regret, the agent maintains an estimate of the
unknown reward function fs based on its history. Typically,

a kernelized regression oracle (e.g. kernel ridge regression
or Gaussian Processes) is employed for this task. The choice
of the kernel function plays a key role in the success and
data-efficiency of the bandit optimization. If the hypothesis
space Hk induced by the kernel k is too restrictive and
does not contain the true reward functions fs, the agent will
likely never find reward maximizing actions. To prevent
this, most practitioners pick a kernel with a conservatively
complex kernel with a large hypothesis space that is very
likely to contain Hk∗ . However, the larger Hk, the more
observations it takes to form a good reward estimate,
making the finding an optimal solution less efficient.

We take a data-driven approach to select the kernel. In
particular, we aim to sequentially meta-learn a kernel k̂
which approximates the true kernel k⋆, using the data from
previous bandit tasks. Let Ds := {(xs,i, ys,i)i≤n} be the
data corresponding to task s, and D1:s := D1 ∪ · · · ∪ Ds be
the collection of datasets from the first s tasks. Then once
the agent solves task s, we pass D1:s to the meta-agent,
who meta-learns a kernel k̂s. This kernel is then provided
to the agent who uses it for solving the next BO task. Our
meta-learning algorithm can be paired with any kernelized
bandit algorithm and achieves sublinear lifelong regret, if
the bandit algorithm achieves sublinear single-task regret
given oracle knowledge of the kernel.

3 META-LEARNING KERNELS

We first present Meta Kernelized Group Lasso (META-
KGL), our approach to estimate the kernel k⋆, given data
from previous tasks. We consider a large set of eligible
known base kernels {k1, . . . , kp} where kj : X × X → R
for all j = 1, . . . , p and kj(x,x

′) ≤ 1 for all x,x′ ∈ X
without loss of generality. We assume that while k⋆ is
unknown, it is a sparse linear combination of kernels se-
lected from this set, i.e., there exists J⋆ ⊂ {1, . . . , p} and
α1, . . . αp ∈ R such that

k⋆(x,x′) =
∑
j∈J⋆

αjkj(x,x
′),

where |J⋆| ≪ p. The set {k1, . . . , kp} can be very large,
since we prove that the cost of finding J⋆ depends only
logarithmically on p. We further assume that each kj corre-
sponds to a dj-dimensional feature map, i.e., kj(x,x′) =
ϕj(x)

Tϕj(x
′), where ϕj ∈ Rdj and dj < ∞. This set-

ting generalizes the common linear bandit assumption, to
also account for higher-order terms and interaction between
coordinates of the input. Let ϕ(x) denote the concate-
nated d-dimensional feature map, where d :=

∑p
j=1 dj and

ϕ(x) := [ϕT
j (x)]j≤p. Then for s = 1, . . . ,m the reward

functions can be written as fs(·) =
∑p

j=1 ϕ
⊤
j (·)β⋆

s
(j) such

that β⋆
s
(j) = 0 for all j /∈ J⋆. Moreover, the RKHS norm of

fs will be equal to ∥fs∥2k⋆ =
∑p

j=1 ∥β⋆
s
(j)∥22. This kernel



model is inspired by Kassraie et al. [2022], who assume k⋆

lies in the convex cone of the base kernels.

In the lifelong setting, we sequentially form kernel estimates
k̂s based on D1:s for s = 1, . . . ,m. In this section, we
consider one snapshot of this process for s = m, where we
have fixed meta-training data D1:m and meta-learn k̂ := k̂m.
We assume without loss of generality (c.f. Appendix C),

k⋆(x,x′) =
1

|J⋆|
∑
j∈J⋆

kj(x,x
′),

and minimize a sparsity inducing loss which allows us to
discard kernels that do not appear in the above formulation.
META-KGL first minimizes L(β;D1:m) over β ∈ Rmd.

L (β;D1:m) :=
1

|D1:m|
∥y −Φβ∥22 + λ

p∑
j=1

∥β(j)∥2 (1)

=
1

mn

m∑
s=1

n∑
i=1

(
ys,i −

p∑
j=1

ϕT
j (xs,i)βs

(j)
)2

+ λ

p∑
j=1

√√√√ m∑
s=1

∥βs
(j)∥22

The vectorized formulation uses the following notation

y :=
[
[y1,i]i≤n , . . . , [ym,i]i≤n

]
∈ Rmn,

β :=
[
[β1

(j)]j≤p, . . . , [βm
(j)]j≤p

]
∈ Rmd,

β(j) :=
[
β1

(j), . . . ,βm
(j)

]
∈ Rmdj ,

Φ := diag(Φ1, . . .Φm) ∈ Rmn×dm.

Here Φs := (ϕ⊤(xs,1), . . . ,ϕ
⊤(xs,n))

⊤ is the n × d fea-
ture matrix of a task s, and therefore Φ denotes a block
diagonal matrix which gathers the features across all tasks.
This meta-loss function is convex, and is equivalent to the
well-known Group Lasso objective [Lounici et al., 2011].
Therefore, it can be efficiently optimized using Group Lasso
solvers [e.g., Massias et al., 2018] and enjoys the statistical
properties of the Group Lasso, e.g., consistency and variable
selection. Let β̂ := argminL(β;D1:m). The first term in
Eq. (1) represents the squared prediction error of β̂, while
the second is a regularization term that induces group spar-
sity in β̂. Mainly, the solutions β̂ = (β̂(1), . . . , β̂(p)) to this
problem are group sparse, i.e. β̂(j) = 0 for many of the in-
dices j ∈ {1, . . . , p}. META-KGL then constructs the set of
plausible kernels Ĵ , by thresholding ∥β̂(j)∥2 and discarding
the kernels that do no appear to be influencing the data, i.e.,

Ĵ :=
{
j | j ∈ {1, . . . , p} s.t. ∥β̂(j)∥2 > ω

√
m
}
.

where ω > 0 is a hyperparamter of the algorithm. We then
construct the estimated kernel as

k̂(x,x′) :=
1

|Ĵ |

∑
j∈Ĵ

k(x,x′).

META-KGL is summarized in Algorithm 1. Under mild
assumptions on the dataset, we can show that k̂ converges
to the true kernel k⋆ in probability. Our first assumption
ensures that if j ∈ J⋆, i.e., kj is active in the true kernel,
then the contribution of kj to the data is large enough to
be statistically detectable under noise.

Assumption 3.1 (Beta-min). There exists c1 > 0 such that
for all j ∈ J⋆,

∥β∗(j)∥2 ≥ c1
√
m.

This assumption is commonly used in the high-dimensional
statistics literature [Bühlmann and Van De Geer, 2011,
Bunea et al., 2013, Zhao and Yu, 2006]. Our second as-
sumption requires that the meta-training data is sufficiently
diverse. In Proposition 4.3, we propose a policy which
provably satisfies this assumption.

Assumption 3.2 (Sufficiently Informative Data). The fea-
ture matrix Φ ∈ Rmn×d is sufficiently informative if there
exists a constant cκ > 0 such that κ(Φ) ≥ cκ where

κ(Φ) := inf
(J,b)

1√
n

∥Φb∥2∑
j∈J ∥b(j)∥2

s.t. b ∈ Rd\{0},
∑
j /∈J

∥b(j)∥2 ≤ 3
∑
j∈J

∥b(j)∥2,

J ⊂ {1, . . . , p}, |J | ≤ |J⋆|.

Intuitively, κ(Φ) measures the quality of the data: data
points that are almost identical decrease κ(Φ), and κ(Φ)
is large when data points are diverse. If the minimum
eigenvalue of Φ is positive, Assumption 3.2 is automatically
fulfilled. This type of assumption is common in the
literature on representation/meta-learning for sequential
decision-making [Yang et al., 2021, Cella and Pontil, 2021,
Kassraie et al., 2022] and sparse linear bandits [Bastani
and Bayati, 2020, Hao et al., 2020, Kim and Paik, 2019].
It is also known in the Lasso literature as the compatibility
condition [Bühlmann and Van De Geer, 2011]. Given these
assumptions, we show that META-KGL recovers the true
kernel with high probability.

Theorem 3.3 (Consistency of META-KGL). Suppose D1:m

satisfies Assumption 3.1 and 3.2 with constants c1 and cκ
respectively. Set ω ∈ (0, c1) and define ω̄ = min{ω, c1 −
ω}. Choose λ = ω̄c2κ/(8

√
m). Then for

√
n > 32σ/(ω̄c2κ),

META-KGL satisfies

P
[
Ĵ = J⋆

]
≥ 1− p exp

(
−m

(
ω̄c2κ

√
n

32σ − 1
)2

)
.

In particular, Ĵ is a consistent estimator both in n and m,

lim
n→∞

P
[
Ĵ = J⋆

]
= 1, and lim

m→∞
P
[
Ĵ = J⋆

]
= 1.

Appendix D presents the proof to Theorem 3.3. This the-
orem shows that our meta-learned kernel converges to k⋆



as the number of meta-training tasks increases. First, this
implies that the meta-learned hypothesis space includes the
unknown reward functions allowing downstream bandit al-
gorithms to provably converge to the optimum. Second, all
candidate kernels kj that are not active in k⋆ are eventually
excluded from k̂. By excluding all kj with j /∈ J⋆ which are
not necessary for estimating fs ∈ Hk⋆ , we effectively shrink
the size of the hypothesis space, thereby reducing the uncer-
tainty of the reward function estimates during bandit opti-
mization. Compared to kfull := 1

p

∑p
j=1 kj , which naively

uses all kernels, this leads to significant improvements in the
query efficiency and performance of the bandit optimization.

Comparison with Prior Work. Kassraie et al. [2022]
propose META-KEL, a Lasso-equivalent loss for meta-
learning a sparse kernel, given i.i.d. offline data from
i.i.d. tasks. We emphasize that is not possible to achieve
lifelong guarantees by sequentially applying this algorithm.
META-KGL differs from META-KEL in key points, and
satisfies stronger consistency guarantees: 1) It converges to
k⋆ as either n the number of samples per task, or m number
of tasks grow. In contrast, META-KEL converges in m only.
2) META-KGL satisfies the exact recovery guarantee for k⋆

since J∗ = Ĵ with high probability. While META-KEL only
guarantees that J⋆ ⊂ Ĵ . This is not sufficient to show that
meta-learning improves upon the trivial kernel choice kfull.
Both of these properties are required in the lifelong analysis.

4 LIFELONG BANDIT OPTIMIZATION

We now use META-KGL as a building block to develop
the Lifelong Bandit Optimizer (LIBO), an algorithm for
lifelong bandit or Bayesian optimization. LIBO is paired
with a BASEBO agent which can be instantiated by any
kernelized bandit algorithm, e.g., GP-UCB [Srinivas et al.,
2010] or GP-TS [Chowdhury and Gopalan, 2017]. For each
task fs, the BASEBO agent is given the kernel k̂s−1 meta-
learned on the s − 1 first tasks. Equipped with the kernel,
BASEBO interacts with the current bandit environment,
aiming to optimize its payoff by balancing exploration and
exploitation.

In the lifelong setting, we not only have to explore for the
sake of optimizing the current reward function fs, but also
we need to make sure to that the sequence of action-reward
pairs will be sufficiently informative (in the sense of As-
sumption 3.2) for meta-learning k̂s in the next stage. To
this end, LIBO forces the base agent to select purely ex-
ploratory actions for the first ns steps of the task, by i.i.d.
sampling from uniform distribution on X . Following Basu
et al. [2021], we refer to this as forced exploration and use
Dexp

s := {(xs,i, ys,i), i ≤ ns} to refer to the collected ex-
ploratory data of task fs. We use a decreasing sequence
(n1, . . . , nm) as detailed below, since less exploration by
BASEBO will be required once more multi-task data is col-
lected. For steps i > ns, BASEBO selects actions according

BASEBO
(i > ns)

Environment

Forced Exploration
(i ≤ ns)

META-KGL

k̂s−1

xs,i

fs(xs,i) + ϵs,i

Dexp
s

Dexp
1

, Dexp
2

, . . . , Dexp
s−1

Figure 1: Overview of LIBO.

to its normal bandit policy. After the agent has interacted
with the current task for n steps, we pass the exploratory
data Dexp

1:s to META-KGL to meta-learn k̂s. We then an-
nounce this new kernel estimate to the BASEBO agent for
solving the next task s+ 1. Figure 1 visualizes this process
and Algorithm 2 summarizes LIBO.

4.1 REGRET BOUNDS

Let R⋆(n) be the worst-case regret of BASEBO with oracle
knowledge of true kernel k⋆ on single tasks when the
reward resides in Hk⋆ . When employed sequentially on
m bandit tasks, the worst-case lifelong regret R(m,n) will
be of the order mR⋆(n) with high probability. We refer to
this as oracle regret, since the BASEBO has access to the
true kernel k∗ which does not hold in practice. Since our
meta-learned kernels k̂s are an approximations of k∗, the
oracle regret is a natural lower bound on the regret of LIBO.

In the following, we show that if R⋆(n) the single-task
oracle regret of the base bandit algorithm is sublinear
(e.g., as for GP-UCB or GP-TS), then so is the lifelong
regret R(m,n) of LIBO. Importantly, R(m,n) is not only
sublinear in n, but also converges with high probability to
R⋆(m,n). Theorem 4.1 presents this guarantee, assuming
that the forced exploration datasets Dexp

s satisfy assumption
Assumption 3.2 which META-KGL requires to yield a
provably consistent estimator of k⋆. Later in Proposition 4.3,
we show that exploration by i.i.d. sampling from a uniform
distribution over X will guarantee this assumption.

Theorem 4.1. For all tasks s = 1, . . . ,m, assume that
the reward function fs ∈ Hk⋆ has bounded RKHS norm
∥fs∥k⋆ ≤ B. Set the number of forced exploration actions
as ns =

√
n

s1/4
, and assume that Assumption 3.1 and 3.2

hold for the data Dexp
1:s for all s = 1, . . . ,m. Suppose, with

probability greater than 1− δ/2, BASEBO has worst-case
oracle regret R⋆(m,n). Then, the lifelong regret of LIBO
satisfies

R(m,n)−R⋆(m,n) = O
(
Bm3/4

√
n︸ ︷︷ ︸

forced exp.

+B(nm)1/3 log3/4(mp/δ)︸ ︷︷ ︸
kernel mismatch

)
with probability greater than 1− δ.



The explicit inequality without the O-notation can be found
in Appendix E, together with the proof. In the following, we
give a sketch of the proof, aiming to explain the source of
each term in the bound. For every forced exploration step, in
the worst-case, we suffer regret of 2B. When accumulated
over a total of

∑m
s=1 ns such steps, this gives the first term

in the bound. If k̂s ̸= k⋆, it is possible to suffer from linear
regret in the worse-case. To account for this, we calculate
the smallest integer m0, for which, with high probability,
k̂s = k⋆ for all m0 < s ≤ m. Based on Theorem 3.3,
we show that m0 = O((m/n2)1/3 log3/4(mp/δ)). For ev-
ery task s ≤ m0 we suffer a linear regret of 2Bnm0 in the
worst-case. This is upper bounded by the second term in The-
orem 4.1, which can be regarded as the cost of learning J⋆.
Notably, it grows only logarithmically with p the number of
considered features/kernels, offering a significant improve-
ment about the polynomial rates given by prior works [e.g.,
Yang et al., 2021, Hong et al., 2022]. Table 1 and Table 2
present a comprehensive list of the related regret bounds.

We highlight that the excess regret of LIBO in Theorem 4.1
is sublinear in both m and n. This implies that the algorithm
is oracle optimal, meaning that as m → ∞, the single-task
regret without knowledge of k⋆, eventually approaches the
oracle single-task regret. Recall that R⋆(m,n) = mR⋆(n)
and therefore, R(m,n)/m → R⋆(n). This guarantee is
stronger than that of [Basu et al., 2021, Peleg et al., 2022],
where the excess regret depends linearly on m due to ex-
cessive forced exploration. By decreasing ns ∝ s−1/4 the
number of exploratory steps vanishes throughout the se-
quence of tasks.

As an example, we analyze the performance if GP-UCB1

[Srinivas et al., 2010] is used as the BASEBO algorithm.
In this case, we demonstrate that the worst-case lifelong
regret of LIBO is of the same rate as the correspond-
ing oracle regret. To highlight the benefit of this oracle
optimality we compare to a naive baseline which uses
k̂s = kfull =

∑p
j=1

1
pkj for all tasks instead of meta-

learning k̂s sequentially. In particular, we consider solving
a sequence of m tasks in three scenarios: 1) running LIBO
paired with GP-UCB 2) repeatedly running GP-UCB with
oracle access to k∗, and 3) repeatedly running GP-UCB
with kfull. The following corollary shows that the worst-case
upper bound for the first two scenarios match in O-notation.
Appendix E.2 presents the proof.

Corollary 4.2 (Lifelong GP-UCB). Consider the setting of
Theorem 4.1 with GP-UCB as BASEBO agent. Then, with
probability at least 1−δ, the lifelong regret of LIBO paired
with GP-UCB satisfies

R(m,n) = O
(
R⋆(m,n)

)
= O

(
Bmd⋆

√
n log n

d⋆ +m
√
nd⋆ log n

d⋆ log 1
δ

)
1Appendix E.1 provides a background on GP-UCB.

where d⋆ :=
∑

j∈J⋆ dj .

In the third scenario, we conservatively set k̂s = kfull for
all s = 1, . . . ,m. While this is sufficient for attaining a
lifelong regret that is sublinear in n, the performance will
not be oracle optimal. In particular, this algorithm suffers
from a regret of

R(m,n) = O
(
Bmdp

|J⋆|
√
n log n

d +
√

nd log n
d log 1

δ

)
where d =

∑p
j=1 dj ≫ d⋆ and p/|J⋆| can be very large.

Our experiments confirm that the performance of the naive
approach is significantly worse than the other variants. This
is due to the fact that confidence bounds constructed using
kfull tend to contract slower than the ones constructed with
the sparse meta-learned k̂s.

4.2 FORCED EXPLORATION

Our forced exploration scheme ensures that the collected
data is sufficiently informative to guarantee successful meta-
learning. From a technical perspective, it ensures that As-
sumption 3.2 is met and allows for a consistent estimator of
k⋆. The cost of this exploration in the regret of each task is
smaller in rate than the minimax regret bound [Lattimore
and Szepesvári, 2020]. Therefore it has only a negligible
effect on the overall performance guarantees of LIBO (see
Corollary 4.2). We show that by uniformly drawing actions
from the domain, the collected data satisfies this assumption:

Proposition 4.3. Assume that ϕj ∈ L2(X ), j ∈ {1, . . . , p}
are orthonormal and let dj = 1. Draw x1, . . . ,xn1

inde-
pendently and uniformly from X , and repeatedly use them to
construct Dexp

1:s . Then with probability at least 1− δ, Dexp
1:s

satisfies Assumption 3.2, for s = 1, . . . ,m.

The proof can be found in Appendix E.3. The dj = 1
condition is met without loss of generality, by splitting
the higher dimensional feature maps and introducing
more base features, which will increase p. Moreover,
the orthonormality condition is met by orthogonalizing
and re-scaling the feature maps. Basis functions such as
Legendre polynomials and Fourier features [Rahimi et al.,
2007] satisfy these conditions.

Generally, it is natural to require BASEBO to explore more
in lifelong setting compared to when it is used in isolation
and with a known kernel. We observe in our experiments
that LIBO has a better empirical performance with forced
exploration (i.e., ns > 0) than without. This additional
exploration is also required in the Representation Learning
[Yang et al., 2021, 2022, Cella and Pontil, 2021, Cella et al.,
2022] and hierarchical Bayesian bandit literature [Basu
et al., 2021, Peleg et al., 2022, Hong et al., 2022], where
it is assumed that either the context distribution or the



chosen actions are diverse enough. In the case of contextual
bandits, if there is sufficient randomness, the BASEBO can
be greedy and yet sample diverse enough actions [Bastani
et al., 2021]. Table 3 gives a detailed overview of how the
related works rely on uniform exploration.

5 FEDERATED LIBO

We consider a federated extension of the lifelong learning
problem. Here, each BO task is performed by a peer in a
network and the corresponding data is not exchanged due
to privacy concerns, limited bandwidth, etc. Operations are
mainly done at the client level, and the central server only
performs light computations. This setting formalizes prob-
lems such as optimizing the user experience of a software
product on each user’s device, e.g., for making better rec-
ommendations. Limiting the client-server communication
reduces the transmit overhead time and motivates faster fed-
erated computation. Moreover, sending detailed data on user
preferences and interaction patterns to the central server may
jeopardize the user’s privacy. However, we want to harness
the statistical patterns across the user pool to improve the
automated tailoring of the software product to new users.
We interpret such a federated learning problem [Kairouz
et al., 2021] as a client-server adaptation of our lifelong
setting as described in Section 2. The meta-agent represents
the server and BO tasks arise sequentially at a client node
s = 1, ...,m with a client specific reward function fs.

We propose the Federated Lifelong Bandit Optimizer (F-
LIBO) to solve this problem without directly sharing Ds

the data corresponding to each client with the server. F-
LIBO, pairs the clients and the server as follows. First, the
client node s receives k̂s−1, the most recent estimate of the
true kernel, and the required number of forced exploration
queries ns from the server. After taking some exploratory
steps, the client performs actions according to its BASEBO
policy. In contrast to LIBO, once the task is over after n
steps, the client keeps Dexp

s to itself, instead of passing it
back the server. The client node optimizes for a local loss

β̂(client)
s := argmin

βs∈Rd

L (βs;Dexp
s )

= argmin
βs∈Rd

1

ns
∥ys −Φsβs∥22 + λ

p∑
j=1

∥βs
(j)∥2,

and calculates a local estimate of J⋆ by thresholding
β̂
(client)
s with the hyperparamter ω > 0

Ĵ (client)
s :=

{
j ∈ {1, . . . , p} s.t. ∥β̂(client)

s
(j)∥2 > ω

}
.

It then sends only the indices Ĵ
(client)
s back to the server.

This leaves the server with the simple task of taking a α-
majority vote among the s first clients, to decide which base

kernels to include in k̂s. Formally, the server chooses

k̂s(x,x
′) :=

1

|Ĵs|

∑
j∈Ĵs

kj(x,x
′)

where for α ∈ [0, 1],

Ĵs :=

{
j ∈ {1, . . . , p} s.t.

s∑
r=1

1(j ∈ Ĵ (client)
r ) ≥ sα

}
.

In other words, after client s finishes its job, the server
includes the j-th kernel into its updated estimate Ĵs, if and
only if more than sα of the clients so far believe that it
should be included. Figure 1 in the appendix visualizes
this process and Algorithm 3 presents the pseudo-code to
F-LIBO. Similar to LIBO, we show that if R⋆(n) the worst-
case oracle regret of the base bandit algorithm is sublinear
in n, then so is the lifelong regret R(n,m) of F-LIBO:

Theorem 5.1. For all tasks s = 1, . . . ,m, assume that
the reward function fs ∈ Hk⋆ has bounded RKHS norm
∥fs∥k⋆ ≤ B. Set the number of forced exploration actions
as ns =

√
n, and assume that Assumption 3.1 and 3.2 hold

for the data Dexp
s . Suppose, with probability > 1−δ/2, that

BASEBO has worst-case oracle regret R⋆(m,n). Then the
lifelong regret of F-LIBO satisfies

R(m,n)−R⋆(m,n) = O
(
Bm

√
n+B

√
n log(mp/δ)

)
with probability greater than 1− δ.

See Appendix F.2 for the proof. Theorem 5.1 demonstrates
that even without direct access to the data, the lifelong regret
of F-LIBO will be sublinear in n. This theorem does not
imply oracle optimality, since R(m,n)/m − R⋆(n) ̸→ 0
for m → ∞. This is due to the linear dependency of the
first term on m, which arises from forced exploration.
In the federated setting, we require all clients to take a
fixed number of exploratory action ns =

√
n, so that they

have equal resources for estimating J⋆ and the server’s
majority vote is fair. We conjecture that with simple
modifications, LIBO can become provably differentially
private. Replacing the majority voting step with GNMax
Aggregator [Papernot et al., 2018] or PRIME [Liu et al.,
2021] yields a differential private voting mechanism to
select Ĵs, while preserving the lifelong regret guarantee.

Consider an example where we instantiate F-LIBO with
GP-UCB as BASEBO. The worst-case regret bound of
F-LIBO, which neither has knowledge of k⋆ nor direct
access to Dexp

s , matches the worst-case regret of the oracle
GP-UCB in O-notation. Corollary 5.2 formalizes this
claim. Here, R⋆(m,n) is the same as in Corollary 4.2.

Corollary 5.2 (Federated Lifelong GP-UCB). Consider
the setting of Theorem 5.1 with GP-UCB as BASEBO.
Then, with probability at least 1− δ, F-LIBO paired with
GP-UCB satisfies

R(m,n) = O
(
R⋆(m,n)

)
.
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Figure 2: Singe-task cumulative regret of GP-
UCB with meta-learned kernel k̂m on an in-
creasing number of meta-training tasks m.

Figure 3: Lifelong cumulative regret of GP-UCB for synthetic tasks (left)
and GLMNET hyperparameter tuning (right). Vertical lines indicate the
beginning of a new task.

6 EXPERIMENTS

In all experiments, we use GP-UCB as the BASEBO. We
repeat all experiments with 20 random seeds and report
the corresponding mean outcome with standard error. To
evaluate the proposed algorithms, we use a synthetic as well
as a hyper-parameter tuning environment.

Synthetic environment. The synthetic environment is based
on our data model from Section 2. We choose X = [0, 1] as
the domain and use the first p = 50 cosine basis functions
ϕj(x) = cos(jπx) as feature maps which form the kernels
kj(x, x

′) = ϕj(x)
⊤ϕj(x

′) for j ∈ {1, ..., 50}. The active
kernel indices J⋆ are sampled uniformly from the set of 5-
element subsets of {1, ..., 50}, i.e., |J⋆| = 5. We sample the
reward functions fs independently and uniformly from Hk⋆

such that ||f ||k⋆ ≤ 10 and beta-min condition of c1 ≥ 0.5
holds. To the function evaluations we add i.i.d. Gaussian
noise with a standard deviation of σ = 0.1.

AutoML data. A common application of Bayesian Opti-
mization is AutoML, i.e., optimizing the hyper-parameters
of machine learning algorithms. In this setting, X is the
learning algorithm’s hyper-parameter space, and fs repre-
sents the test performance of the machine learning system.
In our experiments, we consider a realistic lifelong AutoML
setting where we face a sequence of hyper-parameter
optimization problems. Here, each task corresponds to
tuning the hyper-parameters of the GLMNET learning
algorithm [Friedman et al., 2010] for a different dataset.
Following previous work [e.g. Perrone et al., 2018, Rothfuss
et al., 2021b], we replace the evaluation step by a table
lookup based on a large number of hyper-parameter
evaluations [Kühn et al., 2018] on 38 classification datasets
from the OpenML platform [Bischl et al., 2017].

6.1 EXPERIMENT WITH OFFLINE DATA

We investigate how meta-leaning kernels with META-KGL
and its federated variant (F-META-KGL) affects the per-

formance of test tasks. In particular, we use meta-training
data that was generated offline, based on the synthetic
environment. We create data for m = 30 synthetic tasks,
each of size n = 10 to be used as offline meta-data. The
tasks are generated according to our synthetic environment
and the details can be found in Appendix G.1. Note that
n ≪ p i.e., we are in the overparameterized setting. We
meta-learn a kernel with META-KGL and F-META-KGL
using the meta-training data D1:s for s = 1, ...,m, and
evaluate the estimated kernel k̂ by running GP-UCB,
equipped with k̂, for n = 70 iterations. Figure 2 illustrates
the corresponding single-task regrets in response to
increasing the number of meta-training tasks in the offline
data. We report the performance of the agent that uses kfull

(red) as a naive baseline, and the performance of an oracle
agent that uses the true kernel (blue) as a natural lower
bound for the achievable regret. Figure 2 shows that the
regret of both meta-learned agents quickly converges to the
regret of the oracle agent as the number of meta-training
tasks increases. META-KGL performs slightly better than
F-META-KGL, since it has direct access to all the data
while the federated algorithm loses information during the
voting mechanism. In Appendix G.3, we evaluate META-
KGL and F-META-KGL with other choices of base kernels
and higher dimensional action domains. Similar to Figure
2, we observe fast convergence to the oracle regret. Further
details about the experiments are provided in Appendix G.1.

6.2 LIFELONG EXPERIMENTS

We return to the lifelong setting where the tasks arrive
sequentially and evaluate our algorithms. We consider both
the synthetic and AutoML environments. The horizon of
each task is set to n = 100 time steps. To solve the synthetic
problem, we consider the p = 50 first 1-dimensional cosine
bases as the candidate feature maps. Since GLMNET
has two hyper-parameters to tune, i.e., X ⊂ R2, here
we use the p = 100 first 2-dimensional cosine bases, i.e.
ϕi,j(x) = cos(iπx1) cos(jπx2) for i, j = 1, ..., 10.



oracle
optimal

policy
agnostic

learns
sparsity

meta
cost tasks

Hu et al. ✗ ✗ ✗ poly d conc

Yang et al. ✓ ✗ ✗ poly d conc

Peleg et al. ✗ ✗ ✗ poly d seq

Hong et al. ✓ ✗ ✗ poly d seq
✗ ✗ ✗ poly d conc

LIBO ✓ ✓ ✓ log d seq

Table 1: Related work (Table 3 gives a comprehensive list.)

Figure 3 illustrates the cumulative lifelong regrets achieved
by LIBO, F-LIBO, the baseline GP-UCB with kfull, and
oracle GP-UCB with access to k⋆. Note that in the AutoML
environment, we do not know the true kernel k⋆ and thus,
cannot report the oracle performance. As we would expect,
LIBO and F-LIBO initially suffer the same regret as the the
naive actor with kfull since no meta-learning data is available
yet. However, as more tasks are attempted, the estimated
kernel is improved and in turn, the base algorithm becomes
more sample efficient on future tasks. In case of LIBO
(green), over time, the forced exploration decreases and the
estimated kernel converges to the true kernel. As a result,
the behavior of the actor paired with the LIBO becomes
indistinguishable from the actor using the oracle kernel,
reflected by the same slope of the regret curves. Compared to
the naive actor (red), our lifelong BO methods significantly
improve the efficiency of the base agent as they accumulate
more experience. In the AutoML setting, this means that we
can find good hyper-parameters with fewer costly function
evaluations. This showcases how incorporating knowledge
transfer into deployed machine learning systems can yield
significant performance gains and cost savings.

7 RELATED WORK

The lifelong bandit optimization problem addresses key
shortcomings of classic kernelized bandits and Bayesian
optimization. Early approaches assume that the agent knows
the true kernel [Srinivas et al., 2010, Valko et al., 2013,
Chowdhury and Gopalan, 2017], which is often not the case
in practice. Recent work addresses this problem, either by
studying the implications of misspecified kernels [Foster
et al., 2020, Simchowitz et al., 2021, Bogunovic and Krause,
2021, Camilleri et al., 2021] or proposing methods for adapt-
ing kernel parameters during the optimization [Wang and
de Freitas, 2014, Berkenkamp et al., 2019]. Alternatively,
the appropriate kernel can be learned from related data. To
this end, a number of algorithms are developed for meta-
learning a kernelized Gaussian process (GP) prior [Harrison
et al., 2018, Perrone et al., 2018, Rothfuss et al., 2021a,b,
2022]. However, they come without theoretical guarantees.

Theory of knowledge transfer between concurrent or
sequential linear bandits has received recent attention from
multiple perspectives. Representation Learning literature
[Yang et al., 2021, Hu et al., 2021, Yang et al., 2022,
Cella et al., 2022] assumes existence of a shared low-
dimensional linear representation for the reward function,
i.e. fs(x) = ⟨θs,BTx⟩ where B ∈ Rd×d⋆

is shared by the
tasks. This matrix is unknown, however d⋆ is known and
d⋆ ≪ d. Feature selection [Cella and Pontil, 2021] takes
a similar approach by assuming that fs(x) = ⟨θs,STx⟩,
where the unknown matrix S screens the relevant features
{xj , j ∈ J⋆}. The elements of this matrix are 0 or 1, but
contrary to representation learning, d⋆ = |J⋆| is unknown.
Alternatively, works on Bayesian Prior learning assume ex-
istence of a shared Gaussian prior over the parameter vector,
i.e. fs(x) = ⟨θs,x⟩, where θs ∼ N (µ,Σ). This formula-
tion does not aim for a low-dimensional solution. Following
this model, Basu et al. [2021] and Hong et al. [2022] assume
that Σ is known and learn distribution of µ. Peleg et al.
[2022] estimate both the mean and the covariance. We con-
sider a more relaxed setup where the mean is not shared, and
meta-learn a shared covariance function. Appendix B goes
into more depth to formally compare the mentioned work.

We compare LIBO with prior algorithms based on the fol-
lowing properties. In the context of meta-learning for BO, a
desirable method is 1) oracle optimal, i.e., attains the regret
guarantee of the oracle solver as m grows, 2) able to utilize
any BO algorithm, 3) sample efficient, i.e., pays a small cost
for meta-learning the prior/relevant features and 4) recovers
low-dimensional solutions, since the effective dimension in-
fluences the sample efficiency of the base algorithm. Table 1
compares LIBO with previous work applicable to infinite
action domains. Works limited to finite action sets are
considered in Table 3. LIBO is the only oracle optimal algo-
rithm that learns the effective dimension d⋆, while paying a
cost that scales only logarithmically with the Euclidean di-
mension d. This is an exponential improvement compared to
the polynomial dependency of prior work; moreover, it also
applies to reward functions that are a linear combinations of
non-linear features fs(x) = ⟨θs,ϕ(x)⟩. Further, it can be
wrapped around any linear or kernelized bandit algorithm,
while earlier work require a specific bandit policy.

F-LIBO contributes to recent literature on federated learn-
ing which studies how agents can cooperate to solve a single
bandit task [Dubey and Pentland, 2020, Shi et al., 2021,
Huang et al., 2021, Dai et al., 2022]. In federated lifelong
learning, each agent interacts with a different environment,
but collaborates with others to learn relevant features.

Our work builds on ideas from Multiple-Kernel Learning
[Cristianini et al., 2001, Bach et al., 2004, Ong et al., 2005,
Xu et al., 2010, Gönen and Alpaydın, 2011] and Multi-Task
Lasso [Obozinski et al., 2006, Argyriou et al., 2006, Lounici
et al., 2011] which address consistency of model selection
for offline supervised learning. Our contribution is lifelong



uncertainty quantification, using a meta-learned kernel.

8 CONCLUSION

We introduce LIBO, an algorithm which allows for lifelong
knowledge transfer across BO tasks trough meta-learned
kernels. We show theoretically and empirically that, if
paired with LIBO, the performance of a base bandit algo-
rithm improves as more experience is gained on previous
tasks. In particular, we prove that LIBO is oracle optimal in
the limit. With F-LIBO, the federated variant of our main
algorithm, we establish that sublinear knowledge transfer
is possible even without direct access to the bandit data.

This work opens up directions of future research such as
quantifying the cost of privacy in Lifelong Learning, under-
standing the necessity of exploration in lifelong setting, or
using large neural networks to extract relevant features from
prior tasks instead of working with pre-determined features.
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