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ABSTRACT
Scientists often must simultaneously localize and discover signals. For instance, in genetic fine-mapping,
high correlations between nearby genetic variants make it hard to identify the exact locations of causal
variants. So the statistical task is to output as many disjoint regions containing a signal as possible, each as
small as possible, while controlling false positives. Similar problems arise, for example, when locating stars
in astronomical surveys and in changepoint detection. Common Bayesian approaches to these problems
involve computing a posterior distribution over signal locations. However, existing procedures to translate
these posteriors into credible regions for the signals fail to capture all the information in the posterior, leading
to lower power and (sometimes) inflated false discoveries. We introduce Bayesian Linear Programming
(BLiP), which can efficiently convert any posterior distribution over signals into credible regions for signals.
BLiP overcomes an extremely high-dimensional and nonconvex problem to verifiably nearly maximize
expected power while controlling false positives. Applying BLiP to existing state-of-the-art analyses of
UK Biobank data (for genetic fine-mapping) and the Sloan Digital Sky Survey (for astronomical point
source detection) increased power by 30%–120% in just a few minutes of additional computation. BLiP
is implemented in pyblip (Python) and blipr (R). Supplementary materials for this article are available
online, including a standardized description of the materials available for reproducing the work.
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1. Introduction

1.1. Motivation

Localizing signals is an important statistical task across disci-
plines. For example, consider the problem of controlled variable
selection: given variables X1, . . . , Xp, analysts seek to identify a
few key variables which impact an outcome Y . Here, X1, . . . , Xp
could represent genetic mutations or demographic data, and Y
could represent a disease status or economic outcome. However,
when variables are highly correlated, it can be very challenging
to certify that any individual variable is important. For example,
if X1 and X2 are nearly perfectly correlated, analysts may not be
able to distinguish between them even if the data make clear that
{X1, X2} contains at least one important variable. Yet selecting
different variables may lead to qualitatively different scientific
conclusions, such as in genetic studies, where intervening on
a causal variant (e.g., X1) could help cure a disease, whereas
intervening on its highly correlated neighbor (e.g., X2) could
have no impact at all. As a result, analysts often must con-
tend with significant uncertainty in which variables ought to
be selected. Unfortunately, as observed by Wang et al. (2020),
many modern variable selection methods cannot accomplish
this task.

More generally, analysts in many settings may be able to
tell that a signal exists without perfectly localizing it. Indeed,
astronomers often can guarantee that a light source exists some-
where in a region of space without knowing its exact loca-
tion. Similarly, economists may know that a time series has
changed without knowing precisely when it did so. Lastly,
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this problem is particularly relevant in genetic fine-mapping,
where researchers attempt to identify genetic variants which
cause outcomes such as cardiovascular disease. Indeed, genetic
variants are highly locally correlated—for example, this arti-
cle analyzes a UK Biobank dataset where over 40% of genetic
variants are at least 99% correlated with a nearby variant. In
these settings, analysts often want to localize signals as pre-
cisely as possible, that is, to make statements like “there is a
signal in this region, even if we do not know exactly where
it is.” These discovered regions should be as small as possi-
ble to yield precise scientific insights, all while controlling the
false discovery rate (FDR) to ensure findings are replicable,
interpretable, and do not waste future resources. Namely, we
classify a discovered region as a false discovery if it contains
no signals, and we require that the expected proportion of false
discoveries is at most q ∈ (0, 1) (see Section 2 for a mathematical
definition).

With this motivation, our article introduces a novel proce-
dure, called Bayesian Linear Programming (BLiP), which takes
a posterior distribution over signals as an input and uses it to
localize signals as precisely as possible while controlling false
positives. Before describing our contribution, however, we pause
to survey related literature.

1.2. Related Literature

1. Frequentist methods. There is an enormous literature on fre-
quentist analysis of spatially distributed signals. However, most
methods are either tailored to a specific application or solve a
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different problem than we do. For example, there is a large liter-
ature on hierarchical testing (e.g., Meinshausen 2008; Goeman
and Solari 2012; Mandozzi and Bühlmann 2016; Renaux et al.
2018; Bogomolov et al. 2020), but only two methods (Yekutieli
2008; Katsevich, Sabatti, and Bogomolov 2021) control the FDR
as defined in Section 2, which we focus on because it is a
standard error rate in our real applications. These two meth-
ods can be powerful, but they require computing a very large
number of p-values, making them computationally expensive
in some cases. Furthermore, they either assume independence
of the p-values (Yekutieli 2008) or make conservative assump-
tions (Katsevich, Sabatti, and Bogomolov 2021); in our sim-
ulations, this leads to FDR control violations and power loss,
respectively.

Similarly, there is an important literature on post-hoc simul-
taneous inference (e.g., Goeman and Solari 2011; Katsevich and
Ramdas 2020; Rosenblatt et al. 2018; Goeman et al. 2019; Blan-
chard, Neuvial, and Roquain 2020), which can be used to output
a set of disjoint regions which each contain at least one signal
with high probability. Yet to the best of our knowledge, all com-
putationally tractable methods in this literature apply on top of
p-values for individual locations, that is, p-values testing “is there
a signal at location �?” Unfortunately, this causes a very large loss
of power in our setting. For example, consider a linear regression
of {X1, X2} on Y where X1, X2 and Y are all nearly perfectly
correlated. In this case, due to collinearity, the individual p-
values for X1 and X2 will not be significant, and existing post-hoc
approaches will be powerless; however, an F-test testing whether
either X1 or X2 influences Y may be highly significant (see
Appendix A for a concrete example). While some closed test-
ing methods can leverage (e.g.) F-test p-values, these methods
require computing O(2|L|) p-values, making them impractical
at scale (see Appendix B for discussion). Furthermore, to our
knowledge, no existing post-hoc methods control the FDR as
defined in Section 2. That said, post-hoc bounds can also be
applied to find regions where (e.g.) 95% of the region is a signal.
This is useful when signals are clustered together, for example, in
neuroscience. However, in our setting (e.g., genetics), the object
of inference is fundamentally different: signals are sparse and not
necessarily clustered together, so analysts do not aim to discover
“clusters” of signals; rather, they seek to isolate individual signals
as precisely as possible. Thus, this literature solves a different
problem than the one we consider. See Appendix B for further
discussion.

There are several other existing frequentist methods that
solve related, but distinct, problems from the one in this article.
For brevity, we give a further review in Appendix B.

2. Bayesian approaches. Many Bayesian works discuss how to
compute or approximate the posterior distribution over signal
locations (see Brooks et al. 2011; Blei, Kucukelbir, and McAuliffe
2017 for review). For example, our work builds on methods for
approximating the posterior law of the regression coefficients
in sparse Bayesian regression (Mitchell and Beauchamp 1988;
Albert and Chib 1993; George and McCulloch 1997; Wang et al.
2020; Shin and Liu 2021), many of which are commonly used in
genetic fine-mapping (e.g., Guan and Stephens 2011; Carbonetto
and Stephens 2012; Benner et al. 2016; Lee et al. 2018; Weissbrod
et al. 2020). However, a high-dimensional posterior distribution
is not directly interpretable. Indeed, even after computing the

posterior distribution, localizing signals can still be difficult
because there are combinatorially many regions which could
contain signals, making it hard to identify the smallest regions
which each contain at least one signal with high probability.
Thus, our work asks the question: given a posterior distribu-
tion over signal locations, how can we output a set of disjoint
regions which (a) each contain a signal with high probabil-
ity, (b) are as small as possible, and (c) are as numerous as
possible?

To our knowledge, only a small number of prior works have
addressed this question. Our work is perhaps closest in spirit to
that of Wang et al. (2020), who introduced “SuSiE,” a method
for sparse Bayesian linear regression. SuSiE localizes signals via
an iterative Bayesian stepwise selection (IBSS) algorithm, which,
roughly speaking, sequentially creates a credible region for the
signal with the largest signal size and then proceeds to the next
largest signal, and so on (see Appendix E.3 for a more detailed
review). This procedure is equivalent to (i) using a novel vari-
ational approximation (which is accurate when the number of
signals is small) to approximate the posterior distribution of the
signals and (ii) then greedily processing that posterior to localize
signals. In contrast, our method BLiP performs only the latter
task, but it can do so on any posterior. For example, it is not clear
how to apply SuSiE to astronomical point source detection prob-
lems, but BLiP can easily wrap around other Bayesian methods
in this field (see Section 5.2). Additionally, when appropriate,
BLiP can apply directly to the posterior obtained from SuSiE, as
we show in Section 4, where BLiP uniformly improves SuSiE’s
power. Indeed, even when SuSiE’s variational approximation is
inaccurate, BLiP can often partially correct this issue, leading
to improved power and sometimes improved FDR control (see
Section 4). (Note that BLiP can also apply on top of the refined
SuSiE procedure suggested in Zou et al. 2021). To our knowl-
edge, the only other comparable Bayesian method is DAP-G
(Lee et al. 2018), which also requires a specific approximation
to the posterior to localize signals. In principle, BLiP can also
wrap on top of DAP-G to improve its power, although we
did not explore this possibility because SuSiE outperformed
DAP-G. Alternatively, BLiP can be combined with any other
method to approximate the posterior, for example, MCMC, and
thus BLiP offers an attractive alternative to perform resolution-
adaptive inference without (necessarily) making any variational
approximation.

1.3. Contribution

Our key contribution is to introduce Bayesian Linear Program-
ming (BLiP), a method for performing resolution-adaptive sig-
nal detection. As an input, BLiP takes a posterior distribution
over the location of the signals (defined formally in Section 2).
For example, if Y | X follows a generalized linear model
(GLM) where nonzero coefficients are signals, one can use a
Markov chain Monte Carlo (MCMC) algorithm to sample from
the posterior distribution of the model coefficients and use the
MCMC samples as the input for BLiP. Thus, BLiP can accu-
rately be described as a type of post-processing on the posterior
(albeit with appealing statistical guarantees). As we shall see in
Section 5, this “post-processing” can dramatically improve the
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power and calibration of applied analyses in settings ranging
from GWAS to astronomical point-source detection. Indeed, to
quote Wang et al. (2020), “the output from Bayesian Variable
Selection methods is typically a complex posterior distribution,
and this can be difficult to distill into results that are easily
interpretable.” BLiP is designed to solve exactly this problem (in
the more general signal detection setting).

Given this input, BLiP will output a set of disjoint regions,
each containing a signal, which maximizes a natural measure of
power (defined in Section 2) while controlling false positives.
For example, in variable selection problems, BLiP will return a
set of disjoint groups of variables so that (a) nearly all groups
contain at least one signal variable, (b) we discover as many
groups as possible, and (c) the groups are as small as possible.

We now highlight a few attractive features of BLiP. First,
BLiP is often much more powerful than other methods (where
competitors exist), as we demonstrate in simulations and two
real data analyses. Indeed, BLiP is verifiably nearly optimal in the
sense that one can compare its power to an upper bound on the
achievable expected power, and these quantities were indistin-
guishable in all our analyses. Second, given a correct posterior,
BLiP can provably control one of several error rates, including
the FDR, familywise error rate (FWER), and local FDR. Third,
since BLiP acts directly on a posterior distribution, it can be
applied on top of any Bayesian model or algorithm, allowing
analysts to leverage arbitrary advances in Bayesian MCMC or
variational inference. Finally, although computing the posterior
over signal locations may be expensive, BLiP itself is extremely
computationally efficient, allowing it to search over billions of
candidate regions to find a near-optimal set of discoveries.

2. Problem Statement

We now introduce the problem of resolution-adaptive signal
detection. To start, let L denote a set of locations at which there
may be signals and let S ⊂ L denote the true (unknown) set of
signals. It may be helpful to keep the following two examples in
mind.

Example 1 (Variable selection in regression). Suppose we observe
variables X ∈ R

p and a response Y ∈ R, and we seek
to discover “important” variables. Here, the locations L =
{1, . . . , p} represent X1, . . . , Xp, and the signals S are the set of
“important” variables. For example, if Y depends on X through
linear coefficients β ∈ R

p, we set S = {� ∈ [p] : β� �= 0}. Note
when (X1, . . . , Xp) are highly correlated, we may not be able to
discover individual signal variables with confidence. However,
for a group G ⊂ L of highly correlated variables, we may have
power to discover that at least one variable in G is important.

Example 2 (Point source detection). Astronomers often seek
to locate point sources (e.g., stars) in the night sky. Here, the
locations L represent a region of the sky, so L ⊂ R

2 is a
continuous (infinite) set, and S ⊂ L denotes the true set of
sources. Since most images have blur, it is difficult to identify
the exact location of a source. This motivates a resolution-
adaptive approach, where we output regions G1, . . . , GR which
each contain a source with high confidence and are as small as
possible.

We take a Bayesian approach and assume that the analyst has
a prior on S and a model for the data D; however, our method
applies to any choice of model and prior with a well-defined set
of signals. We do require that the model and prior are sufficiently
tractable such that the analyst can compute or well-approximate
the posterior law of S | D.

Requirement 2.1. The analyst can compute the posterior distri-
bution of S | D.

Computing the law of S | D is not easy, but an immense
amount of literature has studied this problem (see Section 1.2).
For example, in sparse regression problems (Example 1) follow-
ing, for example, a two-groups model (Efron 2008), one can
sample from S | D by sampling from the posterior of the
coefficients β , which is a well-studied task (Brooks et al. 2011).
Choosing a good method to compute S | D is very impor-
tant, although it is a domain-specific problem; Sections 3.3, 4
and Appendix E review general guidelines which help ensure
robustness to misspecification and convergence issues. However,
BLiP can wrap around any such method. Thus, this choice is
orthogonal to our contribution.

Based on the posterior S | D, we aim to output a disjoint
set of regions G1, . . . , GR ⊂ L, where any group G ⊂ L is
a true discovery if it contains at least one signal, that is, G ∩
S �= ∅. Our goal is to maximize true discoveries subject to false
positive control. However, it is not obvious how to count the
number of true discoveries, because discovering a large region
G only asserts that at least one signal exists in G; as a result,
large discovered regions are less valuable than small discovered
regions. For example, in genetic fine-mapping, discovering G0 =
{�1} identifies �1 as a causal variant, whereas discovering G1 =
{�1, �2} only asserts that at least one of �1, �2 is a causal genetic
variant, which provides strictly less information. Of course, if
�1 and �2 are highly correlated, it is much easier to discover G1
than G0 because it is hard to determine which of {�1, �2} is the
causal effect. (Note this logic holds even if �1 is a signal and �2 is
not—see Appendix A for a concrete example.)

To resolve this ambiguity, we suggest weighting discoveries
to prioritize discovering smaller groups, so that, for example,
discovering a group of size 3 counts as “fewer” discoveries than
discovering a group of size 2. For example, one proposal from
Mandozzi and Bühlmann (2016) is to assign a discovered region
of size m weight 1

m , so that discovering a region of size 1 and a
region of size 2 would count as 1.5 discoveries total. Formally,
let 2L denote the set of all subsets of L. For any weighting
function w : 2L → R and discoveries G1, . . . , GR, we define
the Resolution-Adjusted number of True Positives (TPRA) as the
sum of the weights associated with each true discovery:

TPRA(G1, . . . , GR) �
R∑

r=1
w(Gr)I(Gr ∩ S �= ∅), (1)

where we remind the reader that I(Gr ∩ S �= ∅) is the indicator
that Gr is a true discovery. Colloquially, when we say that a
method is “powerful,” we mean that it has high expected TPRA.
Following Mandozzi and Bühlmann (2016), we will argue that
w(G) = 1

|G| is a good default choice, but first we give a formal
problem statement.
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Definition 2.1 (Resolution-adaptive signal detection). Suppose
we seek to discover signals among locations L. Let R ≥ 0 be
the number of discoveries and let G1, . . . , GR ⊂ L denote the
discovered regions, so R and G1, . . . , GR are our optimization
variables. For a weighting function w : 2L → R, we seek to
maximize expected TPRA subject to FDR control:

max
R≥0,G1,...,GR

E[TPRA(G1, . . . , GR) | D] (2)

s.t. FDR � E

[
#{1 ≤ r ≤ R : Gr ∩ S = ∅}

max(1, R)
| D

]
≤ q,

(3)
G1, . . . , GR ⊂ L are disjoint. (4)

Note that above, all expectations are taken over the posterior
law of S | D.

Remark 1 (Disjointness). We constrain G1, . . . , GR to be disjoint
to improve interpretability and prevent double-counting. For
example, discovering {�1} ⊂ L makes discovering {�1, �2} ⊂ L
logically redundant, so these should not count as two separate
discoveries.

Remark 2 (Terminology). We use the words “region” and
“group” interchangeably. Both refer to an arbitrary, possibly non-
contiguous subset G ⊂ L of the locations.

Remark 3 (Error rate). We focus on the FDR because it is
a popular and appealing error rate, but this problem is still
well-defined if we replace the FDR with another error rate.
Indeed, BLiP can also control (e.g.) the FWER or local FDR (see
Appendix C.2).

Remark 4 (Default Weight Function). BLiP can optimize for any
weight function, but by default, we suggest choosing w(G) =
|G|−1, because this choice is simple, interpretable, and it reflects
the intuition that discovering a region of size m gives roughly
m times less information than discovering an individual signal.
Indeed, this choice has been used in recent papers (Mandozzi
and Bühlmann 2016; Buzdugan et al. 2016; Renaux et al. 2018;
Guo et al. 2021). Of course, in variable selection problems, one
may wonder if w(G) should account for the correlation structure
of XG. For example, if X1 and X2 are perfectly correlated, does it
still make sense to count G = {X1, X2} as only half a discovery?
By default, we argue that the answer is yes when X1 and X2
represent distinct scientific hypotheses. For example, in genetic
fine-mapping, if X1 is causal and X2 is not, then discovering
X1 could help develop a drug, whereas discovering X2 is a false
positive, no matter the correlation between X1 and X2. Lastly,
we note that BLiP is not too sensitive to the precise definition
of w(G); for example, Appendix F.8 shows empirically that using
(e.g.) w(G) = 1

log2(|G|)+1 yields similar results. That said, there
are settings where this default choice is not ideal. For exam-
ple, in our astronomical application, we apply BLiP using two
different choices of w to optimize for two different scientific
objectives.

Remark 5 (Why adaptivity is important). A simplification of this
problem would be to fix a prespecified partition G1, . . . , Gm ⊂ L
and test whether a signal exists in each of G1, . . . , Gm. However,

this nonadaptive approach will not optimally localize signals,
because the best choice of partition G1, . . . , Gm depends on the
unknown data-generating process. Informally, when the “signal
size” is large, we may be able to perfectly localize individual
signals, whereas we may only be able to detect that a weak
signal exists somewhere in a relatively large region. Indeed, in
Appendix A, we give a concrete example of a regression problem
where the best partition depends on the unknown relationship
between Y and X. In contrast, resolution-adaptive methods can
use the data to discover regions G1, . . . , GR which are as small as
possible. Of course, for computational reasons, it is not possible
to consider every region G ⊂ L as a potential discovery.
However, we expect that methods which are more adaptive,
meaning they can use the data to choose from among a larger
set of candidate regions, will perform better.

3. Bayesian Linear Programming

3.1. Bayesian Linear Programming for FDR Control

We now introduce BLiP. We focus on controlling the FDR,
although Appendix C.2 also considers the FWER, local FDR,
and per-family error rate (PFER).

While Problem 2.1 may seem intractable, it turns out that
high quality solutions can be found via a convex relaxation.
That said, it is still too computationally challenging to search
over all regions G ⊂ L, since there are combinatorially many
subsets of L. To narrow the search space, we require that the
discovered regions are members of a set of candidate regions,
G. This requirement is not particularly restrictive, since one can
makeG as large as is computationally feasible, and our algorithm
can handle billions of candidate regions. For example, in variable
selection problems, one can cluster the variables X1, . . . , Xp
using (literally) a thousand different clustering algorithms and
let G equal the union of the clusters created by the algorithms.
We offer more suggestions for constructing G in Section 3.2.

Given candidate regions G, the first key observation is that
maximizing expected TPRA corresponds to maximizing a linear
function. To see this, let pG = P(G∩S �= ∅ | D) be the posterior
probability that there is a signal in region G, also known as
a posterior inclusion probability (PIP). PIPs are similar to the
“local true discovery rate” in Efron’s two-group model (Efron
2008), and they are easily computable if we have access to the
posterior distribution of S | D as per Requirement 2.1. For
example, if S(1), . . . ,S(N) denote N ergodic samples from the
law of S | D from an appropriate MCMC algorithm, then

pG ≈ 1
N

N∑
i=1

I(S(i) ∩ G �= ∅), (5)

where this approximation becomes exact as N → ∞. The choice
of MCMC algorithm is a domain-specific question which we
will discuss further in Sections 3.3–5, although this choice is
orthogonal to our contribution. Thus, for now, we assume that
we know the PIPs—later, Section 4 will study whether BLiP is
robust to PIPs which are only approximately correct.

With this notation, let xG ∈ {0, 1} be the indicator of
whether our procedure discovers region G. Here, {xG}G∈G are
our optimization variables which determine our discovery set
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Gdisc � {G ∈ G : xG = 1} ⊂ G. This notation plus the definition
of TPRA yields

E[TPRA(Gdisc) | D] � E

⎡
⎣ ∑

G∈Gdisc

w(G)I(G ∩ S �= ∅) | D
⎤
⎦

=
∑
G∈G

pGw(G)xG, (6)

where the last equality sums over G because xG = 1 if and only if
G is discovered. In other words, the objective is a linear function
of {xG}G∈G . Notably, the FDR constraint can also be formulated
as a linear constraint. In particular, let V = ∑

G∈Gdisc
I(G ∩

S = ∅) be the number of false discoveries and let R = |Gdisc|
denote the number of discoveries. Controlling the FDR at level
q requires that

FDR � E

[
V
R

| D
]

= E [V | D]
R

=
∑

G∈G(1 − pG)xG∑
G∈G xG

≤ q,

(7)
where in the above equation we use the convention that 0/0 = 0.
Multiplying by

∑
G∈G xG on both sides yields the linear con-

straint
∑

G∈G(1 − pG − q)xG ≤ 0. Thus, as stated below, the
resolution-adaptive signal detection problem can be formulated
as an integer linear program (LP). See Appendix C.1 for a proof.
Naturally, the same result holds for any error rate which can be
expressed as linear constraints on {xG}G∈G (see Appendix C.2).

Proposition 3.1. The solution to the resolution-adaptive signal
detection problem in Definition 2.1 is the same as the solution
to the following integer LP:

max{xG}G∈G

∑
G∈G

pGw(G)xG (8)

s.t.
∑
G∈G

(1 − pG − q)xG ≤ 0, (9)

∑
G∈G:�∈G

xG ≤ 1 ∀� ∈ L, (10)

xG ∈ {0, 1} ∀G ∈ G. (11)

For simplicity, we now assume L and G are finite sets (as
in genetics), and thus (8)–(11) is finite-dimensional. That said,
when G and L are infinite sets (e.g., Example 2), one can
efficiently reduce (8)–(11) to an equivalent finite-dimensional
problem assuming (i) the expected number of signals is finite
and (ii) a mild regularity condition on G. Intuitively, this is
because when there are only finitely many signals, only finitely
many regions have non-negligible PIPs. For brevity, we discuss
this in Appendix D.

Integer LPs are NP complete but well studied (Jünger et al.
2010), so when |L| and |G| are small, it may be possible to
directly solve the problem in Proposition 3.1. However, this
naive approach is usually too expensive. Thus, we suggest two
strategies to improve efficiency.

Strategy 1: Adaptive preprocessing. After observing the data,
we can often tell that many locations and candidate regions
almost certainly do not contain a signal, and thus we can discard
them. Formally, let L0 = {� ∈ L : p{�} > 0.01} denote

the set of locations with at least a 1% chance of being a signal,
and let G0 = {G ⊂ G : pG > 0.01, G ⊂ L0} denote
the set of regions with at least a 1% chance of containing a
signal; we recommend replacing L with L0 and G with G0 in
(8)–(11). This approach can improve computation by multiple
orders of magnitude, since when the signals are sparse, most
regions have a low posterior probability of containing a signal
and can be discarded. This common sense heuristic should have
almost no impact on the final discovery set, since (e.g.) if a region
G has only a 0.001% chance of containing a signal, we almost
certainly would not have discovered it anyway. Indeed, unlike
methods which restrict G a priori, adaptive preprocessing does
not sacrifice adaptability, since it uses the full data to prune G.

Strategy 2: LP relaxation. After adaptive preprocessing, we
recommend approximately solving the integer LP (8)-(11) by
first solving the relaxed problem which replaces the integer con-
straint xG ∈ {0, 1} with the relaxed constraint xG ∈ [0, 1]. The
relaxed problem is a simple LP with sparse constraints, so it can
be solved efficiently using standard software even when |G0| and
|L0| have millions of elements (Boyd and Vandenberghe 2004).
For example, our python and R implementations use the “CBC”
solver in the packages cvxpy andcvxr, respectively. Although
the relaxed LP may return a non-integer solution set {x�

G}G∈G0 ,
empirically, the solutions {x�

G}G∈G0 are usually composed almost
entirely of integers, making it easy to “post-process” {x�

G}G∈G0 to
obtain a fully integer solution. While we cannot prove that this
will always happen, we now give some intuition to explain this
phenomenon based on the properties of knapsack problems.

Definition 3.1. A knapsack problem with variables z1, . . . , zm is
an integer LP of the form

max
z1,...,zm∈{0,1}

m∑
i=1

aizi such that
m∑

i=1
bizi ≤ c (12)

for a1, . . . , am, b1, . . . , bm, c ∈ R.

The integer LP in Proposition 3.1 is a knapsack problem
with additional sparse constraints, where {xG}G∈G correspond
to {zi}i∈[m], {w(G)pG}G∈G correspond to {ai}i∈[m], and {(1 −
pG − q)}G∈G correspond to {bi}i∈[m]. The only difference is that
Proposition 3.1 enforces the extra constraints in (10). However,
relaxed knapsack problems with added sparse constraints are
known to admit solutions which are largely composed of integers
(see Yang and Bulfin 2009; Scatamacchia 2017; also Appendix
C.3 for further intuition). We are not aware of any theory for the
specific problem in Proposition 3.1, but this partially explains
why the relaxed LP admits a mostly integer solution. Indeed,
Figure 1 shows empirically that the relaxed LP typically outputs
a single-digit number of non-integer values even when |G| >

50, 000.
Introducing BLiP. Algorithm 1 defines BLiP for FDR con-

trol. After adaptive preprocessing, BLiP solves the relaxed LP
of Proposition 3.1. As discussed above, this typically yields a
solution {x�

G}G∈G0 with only a few non-integer values, denoted
H = {G ∈ G0 : x�

G �∈ {0, 1}}. To obtain an integer solution,
BLiP solves the integer LP (8)-(11) while holding the values of
{x�

G : G ∈ G0 \ H} constant and only optimizing over {xG : G ∈
H}. Typically, this integer LP has only a few variables, so it runs
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Figure 1. In a regression problem with p = 1000 features, 50 signals, and > 50,000 candidate regions, the left plot shows the objective function (expected TPRA) achieved
by BLiP and the upper bound from the relaxed LP, which are almost indistinguishable. The right plot shows the number of non-integer solutions to the relaxed LP. We applied
BLiP on top of PIPs from a standard Gibbs sampler for sparse regression problems as detailed in Section 4. See Appendices F.1 and C.3 for simulation details and an analogous
plot for the FWER.

Algorithm 1 BLiP for FDR control.
Input: Candidate regionsG, PIPs {pG}G∈G , a weighting function
w, a nominal level q.

1: Adaptive preprocessing: Replace L with L0 � {� ∈ L :
p{�} > ε} and G with G0 � {G ∈ G : G ⊂ L0, pG > ε}
for some small ε, for example, ε = 0.01.

2: LP relaxation: Solve the relaxed variant of (8)–(11) to obtain
a solution set {x�

G}G∈G . Let H = {G ∈ G : x�
G �∈ {0, 1}}

denote the non-integer solutions.
3: Convert to integers: Fix xG = x�

G for G ∈ G \ H and run the
integer LP (8)–(11) on the remaining variables {xG : G ∈
H}, yielding (integer) solutions {x��

G : G ∈ G}.
4: Ensure feasibility: If the integer LP in Step 3 is feasible, detect

signals in Gdisc � {G : x��
G = 1} and terminate.

Else, define Gmin � arg min{G:x�
G=1} pG, set H = H ∪ Gmin,

and return to Step 3.

practically instantly, yielding integer solutions {x��
G : G ∈ G0}.

Then, BLiP outputs Gdisc � {G ∈ G0 : x��
G = 1}.

Technically, up to two things could go wrong with this algo-
rithm. First, if the final integer LP is large, it may be chal-
lenging to solve efficiently. However, the user will know this
in advance and can use polynomial-time heuristic methods
instead (see Appendix C.4). Second, it is technically possible
for the integer LP to be infeasible, in which case we propose
a backtracking algorithm that iteratively finds the group Gmin
in {G : x�

G = 1} with the smallest PIP and adds Gmin to H.
This guarantees that BLiP can find a feasible solution, because
after |{G : x�

G = 1}| steps, it is possible for the integer
LP to set xG = 0 for all G, which is always feasible. That
said, neither of these two phenomena ever occurred in any
of our analyses, despite our applying BLiP thousands of times
in large-scale settings. This suggests that these modifications
are only required in pathological examples. Even in patho-
logical cases, however, the output of BLiP is always a feasible
solution to (8)–(11) and thus provably controls the FDR by
Proposition 3.1.

To aid intuition, note that when backtracking is not required
(as in all of our simulations and applications), BLiP outputs
{G ∈ G0 : x�

G = 1}, the regions selected by the relaxed LP,
plus a few regions from H, the non-integer solutions from the
relaxed LP.

The overall runtime of BLiP is dominated by a single large
sparse linear program, whose computational complexity is at
most O(|G0|2|L0|) (Boyd and Vandenberghe 2004). In prac-
tice, LP solvers may be much faster than their worst-case per-
formance; usually, it is possible to solve LPs with millions
of variables (Boyd and Vandenberghe 2004). In Sections 4–5,
we find that BLiP is always less expensive than computing its
input PIPs.

We now discuss the claim that BLiP finds “nearly” the optimal
set of discoveries among G0. This is because the relaxed LP
solution {x�

G}G∈G0 is usually almost entirely integral. Thus, the
expected TPRA achieved by BLiP is very close to the expected
TPRA obtained by the relaxed LP, which is an upper-bound on
the maximum achievable expected TPRA of any valid method
whose discoveries are elements of G0. Of course, even when
this is not true, one can compute and compare the expected
TPRA achieved by the relaxed LP and BLiP, so BLiP also comes
with “warning lights” which signal when it is not optimal. How-
ever, Figure 1 confirms empirically that in a high-dimensional
regression problem with > 50,000 candidate regions, the nom-
inal expected TPRA achieved by BLiP is indistinguishable from
the upper bound provided by the relaxed LP. This suggests
BLiP is effectively optimal.

3.2. Choosing the Candidate Groups

We now discuss the choice of candidate groups G. Up to com-
putational limits, we suggest adding every conceivably useful
region to G, since adding more regions should increase expected
TPRA without affecting validity, and BLiP is usually efficient
enough to handle millions of candidate regions. That said, we
recommend two general approaches.

First, we can include all contiguous groups below some max-
imum size m. This approach makes sense when the locations
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have spatial or temporal structure. For example, suppose L =
{�1, . . . , �p} consists of p ordered locations of genetic variants
on the genome. In this context, a contiguous group is of the
form {�i, �i+1, . . . , �i+k} for some i, k ∈ N. Since genetic variants
exhibit local biological similarities and mostly local correlations,
considering contiguous groups is often more interpretable and
useful than considering groups of far-flung genetic variants.
Of course, correlations among genetic variants are not per-
fectly explained by spatial structure, which is why the next
paragraph recommends including some non-contiguous groups
as well—however, including contiguous groups is a good first
step. This option is also attractive in change point detection
(Appendix F.10), where the set of locations L = {1, . . . , T}
is a set of ordered times. Notably, there are roughly m · p
contiguous groups of length m or less when considering p
locations, so the number of candidate groups scales linearly
with p. Lastly, when there are more spatial dimensions, we
use spherical subsets of L as candidate regions. For example,
in our astronomical application in Section 5.2, L = [0, 1]2,
and we let G include the set of circles of radius ε centered at
one of a few million equidistant lattice points in [0, 1]2, for
many values of ε. We review efficient algorithms for this in
Appendix D.

The second main approach we recommend is tailored to
regression problems, where we seek to discover important vari-
ables among X = (X1, . . . , Xp). Here, we recommend apply-
ing many clustering algorithms to X and letting G denote the
union of the clusters. For example, one could generate candidate
regions by hierarchically clustering X based on its correlation
matrix, or its partial correlation matrix (Bühlmann et al. 2012),
or any combination thereof. Furthermore, we suggest running
these algorithms many times using different tuning parameters
to add more candidate regions to G. Finally, there is no need to
choose between multiple approaches: when (X1, . . . , Xp) exhibit
spatial structure, we can combine this approach with that of the
previous paragraph.

3.3. Robustly Computing the PIPs

BLiP’s theoretical guarantees assume that its input PIPs are
accurate. That said, estimating PIPs can be challenging in large-
scale problems where (a) the prior may be misspecified and
(b) standard MCMC algorithms may not converge. Below, we
describe heuristics to improve robustness to these issues. Using
these heuristics, our simulations in Section 4 show that BLiP is
highly robust to misspecification and convergence issues.

To address (a), we recommend using hierarchical priors. For
example, many sparse Bayesian models require some knowledge
of s, the proportion of signals. We suggest picking fairly unin-
formative priors for such parameters, for example, letting s ∼
Unif(0, smax) for some smax ≤ 1. To determine the hyperparam-
eters (e.g., smax), we suggest using a conservative choice or taking
an empirical Bayesian approach. (Here, “conservative” choices
are choices that may yield an error rate below the nominal level.)
Section 4 shows empirically that fairly conservative choices, such
as when smax = s

2 � s, do not lose much power and reliably
control the FDR even when the hyperprior is quite different from
the true sparsity.

To address (b), we recommend sampling from multiple
MCMC chains with random initialization. Even if each chain
does not converge, we expect that aggregating results across
chains will usually overestimate the uncertainty in the location
of a signal. This allows BLiP to empirically control the error rate,
even if it is conservative. For example, in a bivariate regression
problem, suppose {X1, X2} clearly contains a signal variable, but
X1 and X2 are highly correlated, so it is not clear which one is
the signal variable. Consider a worst-case scenario where the
MCMC algorithm randomly initializes (e.g.) X1 to be a signal
variable, but then keeps X1 as a signal variable at every iteration.
If we compute p{1} just using this chain, we will falsely conclude
that p{1} ≈ 1. However, if we run 10 MCMC chains which each
have a 50% chance of initializing X1 or X2 as a signal variable,
then we will conclude p{1}, p{2} ≈ 50%, or equivalently, that we
are maximally uncertain about which of {X1, X2} is a signal. This
will yield (conservative) error rate control in this toy example,
even though the MCMC algorithm did not converge whatsoever.
Note this intuition also extends to variational approaches which
use random initialization.

To empirically demonstrate the effect of using multiple
MCMC chains, in Section 4, we rerun our core simulations
with only 200 MCMC samples per chain (our default is 5000
samples per chain). We describe these simulations completely in
Section 4—for now, we note this is a high-dimensional setting
with p = 1000 highly correlated covariates, so we should
not expect the first 200 MCMC samples to converge. Indeed,
Figure 5 shows that using only one chain leads to substantial
FDR control violations. Using 10 chains, however, yields FDR
control without reducing power. See Section 4 for details.

4. Simulations

We now show that BLiP is powerful, robust, and efficient com-
pared to its competitors. We focus on variable selection in
Gaussian linear models. However, the appendix contains more
simulations, including a concrete example demonstrating the
strengths of different methods (Appendix F.4), comparisons to
more competitors (Appendix F.2), sensitivity analyses for the
weight function (Appendix F.8) and prior (Appendix F.6), analy-
sis of the correlations among discovered groups (Appendix F.5),
simulations for binary regression (Appendix F.9), change point
detection (Appendix F.10), and simulations using real genotype
data (Appendix G.2). All code is publicly available at https://
github.com/amspector100/blip_sims.

We simulate Y | X ∼ N (Xβ , σ 2) where β has �sp� ran-
domly chosen nonzero coefficients, for sparsity s ∈ (0, 1). The
nonzero coefficients are iid N (0, τ 2) random variables; this is
often called a “Linear Spike and Slab” (LSS) model (Mitchell and
Beauchamp 1988). The locationsL = [p] represent (X1, . . . , Xp)
and the signals are S = {� ∈ [p] : β� �= 0}. To capture a
challenging setting, we sample X from a nonstationary AR(k)
model, meaning X exhibits high local correlations; for example,
the average correlation between two adjacent variables is ≈ 90%
but can be as high as 99.99% (see Appendix F.1 for details and a
picture of the covariance matrix). Unless otherwise specified, we
set k = 3, p = 1000, and the FDR level is q = 0.1. We compare
the performance of four classes of methods:

https://github.com/amspector100/blip_sims
https://github.com/amspector100/blip_sims
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1. BLiP: We apply BLiP on top of a standard Gibbs sampler
for the LSS model (George and McCulloch 1997). We consider
a well-specified case, where the sampler uses the true values
of s, τ 2, and σ 2, and a misspecified case, where the sampler
uses standard choices of uninformative conjugate priors (see
Appendix E.1).1 We use the default settings in pyblip.

2. SuSiE: SuSiE approximates the posterior law of the signals
S | D using an efficient variational approximation which is
accurate when |S| is small. The form of SuSiE’s posterior auto-
matically yields one set of regions Gsusie

1 , . . . , Gsusie
R ⊂ [p] which

localize signals and control the FDR as per Definition 2.1. How-
ever, we can also apply BLiP directly to the posterior from SuSiE;
since BLiP explicitly maximizes expected TPRA subject to FDR
control, we should expect SuSiE + BLiP to have weakly higher
expected TPRA than SuSiE alone. For brevity, see Appendix E.3
for further review of SuSiE and SuSiE + BLiP. We apply SuSiE
with the default settings in susieR, except we input the true
number of signals.

3. FBH: Katsevich, Sabatti, and Bogomolov (2021) intro-
duced the Focused Benjamini-Hochberg (FBH), a method for
localizing signals based on a set of frequentist p-values {pfreq

G :
G ∈ Gtree}, where Gtree is a set of groups from a hierarchical clus-
tering of the variables X, and pfreq

G tests the null hypothesis HG :
G∩S = ∅ that there is no signal in G. Our simulations apply the
FBH on top of p-values from a lasso-based distilled conditional
randomization test (dCRT) (Candès et al. 2018; Liu et al. 2021).
We used the dCRT because it was powerful empirically and it can
produce frequentist p-values in high dimensions. We implement
these methods in the python package blip_sims.

4. Baselines: We also apply the standard Benjamini-Hochberg
(BH) method for FDR control on top of individual p-values pfreq

{j}
from the dCRT. Second, the “LSS (indiv. only)” method discov-
ers as many individual signals as possible based on individual
PIPs from the well-specified LSS sampler. That is, after sorting
the PIPs, this method rejects as many signals as possible such
that the average rejected PIP is ≥1 − q. We compare to these
methods (which can only discover individual signals) to assess
the benefit of resolution-adaptivity.

See Appendix F.2 for a rigorous review of each method and
implementation details. We also compared to methods from
Yekutieli (2008) and Lee et al. (2018), but the FBH and SuSiE
uniformly outperformed these methods, so we defer this analysis
to Appendix F.2.

We compare these methods using three main metrics. First,
we compute the realized FDR of each method. Note that given
correct PIPs, BLiP provably controls the FDR conditional on the
data, and thus it should control the FDR in our plots, which
average over the randomness in both the data and the data-
generating parameters, for example, β . Of course, we cannot
perfectly compute the PIPs due to prior misspecification or other
error in approximating the posterior. Thus, these simulations
also assess BLiP’s robustness to (somewhat) inaccurate PIPs.
Second, Figure 3 plots the distribution of the sizes of true

1The “well-specified” case is not perfectly well-specified because the prior
assumes |S| ∼ Bin(p, s) signals, whereas in our simulations |S| = �sp�
deterministically. Nonetheless, it is almost perfectly well-specified.

discoveries from each method. Third, we measure resolution-
adjusted power (PowerRA), defined as the expected TPRA using
the default weight function from Section 2 divided by the total
number of signals. Formally, if G1, . . . , GR ⊂ L are the discov-
eries from a method:

PowerRA � E [TPRA(G1, . . . , GR)]
|S| , (13)

where the expectation is taken over both the data and the data-
generating parameters (note that the number of signals |S|
is nonrandom in our simulations). PowerRA is proportional to
expected TPRA, but it is more interpretable because it takes
values in [0, 1]. For example, PowerRA= 1 indicates that we
perfectly localized all signals and PowerRA= 1

4 is consistent with
perfectly localizing 25% of the signals or localizing all the signals
in regions of size 4.

Figure 2 shows the PowerRA and FDR for each method while
varying the number of data-points n and the sparsity s. It
shows that LSS + BLiP uniformly has the highest PowerRA by
wide margins and reliably controls the FDR, even when p �
n. Remarkably, LSS + BLiP (misspec.) achieves essentially the
same performance as the well-specified LSS model with oracle
knowledge of the hyperparameters. We emphasize that the prior
and posterior of LSS (misspec.) can be quite misspecified. For
example, the prior mean of τ 2 is five times larger than its true
value, and when s = 0.2 and κ = 2, the true value of τ 2 is on
average the ≈ 5 × 10−4 quantile of its estimated posterior law.
That said, the posteriors of s and σ 2 are more accurate (despite
the prior misspecification—see Appendix F.6 for precise details).
Appendix F.6 contains additional experiments which make the
prior on s even more misspecified and anti-conservative. It
shows that BLiP controls the FDR even when the prior mean of
s is 9 times larger than and 8 prior standard deviations above its
true value (causing the posterior mean of s to be 4 times larger
than and 5 posterior standard deviations above its true value).
These results show BLiP’s robustness in challenging estimation
settings.

Besides LSS + BLiP, only FBH and the baselines (BH and LSS
(indiv. only)) reliably control the FDR. Furthermore, SuSiE +
BLiP has uniformly higher PowerRA than SuSiE and sometimes
simultaneously improves upon SuSiE’s FDR control. Finally,
note that these results are not sensitive to the definition of
PowerRA; Figure 3 shows that for almost every integer k, LSS +
BLiP makes more true discoveries of size k or less than every
other method. Similarly, SuSiE+BLiP makes either as many or
more true discoveries of size k or less than SuSiE (up to MCMC
error). Thus, BLiP improves “power” by nearly any metric. The
next two paragraphs give intuition to explain this result.

First, we discuss SuSiE. Recall that SuSiE makes a varia-
tional approximation which is accurate when the number of
signals is small. When s = 0.01 and there are 10 signals,
the approximation is accurate and SuSiE almost matches the
performance of LSS + BLiP. Yet for s ≥ 0.05, SuSiE has
much lower PowerRA than LSS + BLiP and violates FDR control.
Indeed, SuSiE’s approximation is inaccurate when the absolute
number of signals is large, so SuSiE may perform poorly even
in very sparse problems with large p (see also the simulations
in Appendix F.7). However, applying BLiP on top of SuSiE can
partially remedy this problem. Indeed, any disjoint output from
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Figure 2. Resolution-adaptive variable selection for Gaussian linear models as described in Section 4 with p = 1000 and �sp� signals. Note PowerRA is defined in (13). See
Appendix F.1 for further simulation details.

Figure 3. This figure plots the cumulative frequency of the discovered group sizes in the same setting as Figure 2 with n = 1100, p = 1000, and �sp� signals. That is, the
point with x-value k on the blue curve counts the expected number of true discoveries of size k or less made by LSS + BLiP.

SuSiE is a feasible output for BLiP, so we expect BLiP to have
uniformly higher PowerRA than SuSiE, which is supported by all
of our simulations. Furthermore, by increasing the number of
true discoveries, BLiP can simultaneously improve FDR control,
as shown in Figure 2 for s ≥ 0.1. See Appendix E.3 for details on
how SuSiE’s approximation breaks down and intuition explain-
ing how BLiP can partially correct this problem.

LSS + BLiP also has uniformly higher PowerRA than the
FBH procedure, we suspect because BLiP can search over hun-
dreds of times more candidate regions than the FBH, which
is restricted to search over a single hierarchical tree. Further-
more, BLiP explicitly maximizes PowerRA when searching over
candidate regions, whereas the FBH only searches heuristically
over its input p-values and may not find a rejection set which
maximizes PowerRA (or any measure of power). For example,
Figure 3 confirms that FBH makes over twice as many true
discoveries as the baseline BH procedure; however, it makes
many of these discoveries at very coarse resolutions, presum-
ably because it cannot search over many candidate regions.
That said, there are other possible explanations. For example,
perhaps there are more powerful p-values that could be used
with the FBH, although we are not aware of p-values more
powerful than the ones we used. Either way, it is not clear how
one could apply the FBH in a way that is more powerful than
LSS + BLiP.

Figure 4. In sparse linear regression, this figure shows the computation time
required to fit the underlying model and the total time to both fit the model and
run BLiP. In this setting, n = 0.5p and there are �0.05p� signals. Note all methods
controlled the FDR (see Appendix F.7).

Next, Figure 4 analyzes the runtime of BLiP in large-scale
settings with p varied from 500 to 10,000. It shows that the cost
of applying BLiP is trivial compared to the cost of running SuSiE
or the LSS sampler: when p = 10,000 and |S| = 500, BLiP runs
in a few minutes, whereas fitting LSS and SuSiE requires 2 and 9
hours, respectively. All other methods (e.g., dCRT + FBH) were
too expensive to fit with p > 1000.

Lastly, Figure 5 shows that the heuristics in Section 3.3 make
BLiP quite robust to convergence issues for MCMC algorithms.
See Section 3.3 and the figure caption for details.
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Figure 5. This figure replicates the “LSS + BLiP (misspec.)” method from Figure 2 with sparsity s = 0.05 but uses only 200 samples per MCMC chain (Figure 2 uses 5000).
The individual chains do not converge, since the realized FDR is up to three times the nominal level when using just one chain. Despite this, aggregating results from 5 to
10 chains leads to FDR control without losing much PowerRA. The simulation details are otherwise identical to Figure 2 (see Appendix F.1).

Figure 6. This figure shows that SuSiE + BLiP made 30%–50% more resolution-adjusted discoveries than SuSiE alone in our application to UK Biobank data.

5. Real Data Applications

5.1. Application to Genetic Fine-Mapping

As discussed in Section 1, resolution-adaptive methods are
particularly attractive in fine-mapping problems, where corre-
lations among genetic variants are very strong. Thus, it can
be very challenging to detect individually important genetic
variants. Resolution-adaptive methods instead allow the analyst
to localize causal variants as precisely as possible given the
data at hand, and for this reason, a few recent works (Weiss-
brod et al. 2020; Wang et al. 2020; Wallace 2021) have used
resolution-adaptive methods in fine-mapping problems. Fur-
thermore, Bayesian variable selection methods are commonly
used in genetic fine-mapping (Guan and Stephens 2011; Car-
bonetto and Stephens 2012; Benner et al. 2016; Lee et al. 2018;
Weissbrod et al. 2020). All this suggests that BLiP can help solve
an important problem in the domain of fine-mapping.

To test BLiP’s effectiveness, we apply BLiP to a dataset of n ≈
337,000 individuals from the UK Biobank with p ≈ 19,000,000
genetic variants. We seek to identify causal genetic variants
for four traits of interest: cardiovascular disease, height, low-
density lipoprotein (LDL) cholesterol, and high-density lipopro-
tein (HDL) cholesterol. This dataset was previously analyzed
by Weissbrod et al. (2020), and indeed, our work explicitly
builds upon theirs. SuSiE is an attractive model in this setting
because we expect that each genetic locus has a small num-
ber of causal variants, and our simulations suggest that SuSiE
performs almost as well as full Bayesian inference when the
number of signals is small. Thus, we run BLiP directly on top

of the SuSiE model that Weissbrod et al. (2020) fit on this
dataset. For each method’s discoveries G1, . . . , GR ⊂ L, we
calculate the resolution-adjusted number of discoveries, defined
as

∑R
r=1

1
|Gr| . (This is identical to TPRA except we do not include

the indicators that Gr are true discoveries since we do not know
the ground truth.)

Running BLiP requires less than 1 min of computation per
trait, but as shown by Figure 6, SuSiE + BLiP makes 30%–
50% more resolution-adjusted discoveries than SuSiE alone.
Crucially, this result is not sensitive to the metric of power:
Figure 7 shows that for every k, SuSiE + BLiP discovers more
groups of size k or less than SuSiE alone, and thus SuSiE +
BLiP makes more discoveries at finer resolutions by nearly any
metric. Indeed, for every region G discovered by SuSiE, SuSiE +
BLiP discovers a group G′ which overlaps with G. This suggests
that BLiP is successfully optimally localizing signals based on
the information available in the SuSiE model—see Appendix E.3
for more intuition on why SuSiE + BLiP can outperform SuSiE
alone. Notably, SuSiE + BLiP makes more singleton discoveries
than SuSiE alone, in part because SuSiE + BLiP uses PIPs which
are provably more powerful than the default SuSiE algorithm.
However, we caution that discovering singleton groups is not the
primary purpose of BLiP and the interpretation of this result is
subtle, so we discuss this further in Appendix G.4. Lastly, note
that each group we discover is roughly (but not perfectly) con-
tiguous, meaning that each group only contains nearby genetic
variants. Thus, BLiP’s outputs are interpretable: each discovery
asserts that one of k nearby genetic variants has a causal effect
on a trait. See Appendix G.1 for methodological details.
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Figure 7. This figure plots the cumulative frequency of the discovered group sizes. That is, the point with x-value k on the green curve (resp. blue curve) counts the number
of groups of size k or less discovered by SuSiE (resp. SuSiE + BLiP).

To validate our findings, we first confirm that SuSiE + BLiP
controls the FDR in simulations using the real genotype data
(shown in Appendix G.2). Furthermore, we compare our find-
ings to those of previous work. To start, as a sanity check, we
compare the discoveries from SuSiE + BLiP with those of the
SuSiE model from Weissbrod et al. (2020) (i.e., the model repre-
sented by the green bars in Figure 6).2 Appendix G.3 shows that
SuSiE + BLiP replicates every finding from the SuSiE model but
makes roughly 15%–20% more discoveries (note this number is
not resolution-adjusted). Since SuSiE + BLiP makes 30%–50%
more resolution-adjusted discoveries than SuSiE, this shows
that the power gain comes both from more precisely localizing
existing discoveries and from making entirely new discoveries.
Crucially, of the new discoveries made by SuSiE + BLiP, we
found that 45%–65% are corroborated by a separate study in
the NHGRI-EBI GWAS Catalog (Buniello et al. 2018), which
is comparable to the corroboration rate of the initial analysis
from Weissbrod et al. (2020). This is arguably a remarkable (pos-
itive) result, since one might expect that any novel discoveries
would informally be “harder to discover” and thus corroborate,
since the initial model did not discover them. Nonetheless, the
additional discoveries from SuSiE + BLiP were corroborated at
a similar rate to the original discoveries. See Appendix G.3 for
details. Overall, these results suggest that BLiP enhanced SuSiE’s
power to find real causal variants, and they give no indication
that the increased resolution-adjusted power of SuSiE + BLiP
results from false discoveries. All code and data are publicly
available at https://github.com/amspector100/ukbb_blip.

Lastly, we emphasize that BLiP can be applied on top of any
Bayesian model, yielding more discoveries at finer resolutions
with little additional computational cost. For example, in this
section, SuSiE uses an uninformative prior for simplicity, but
several recent works have used priors based on (e.g.) func-
tional annotations, other complex traits, and prior knowledge
about genetic effect sizes (Weissbrod et al. 2020; O’Connor
2021; Trippe, Finucane, and Broderick 2021). Similarly, the fine-
mapping literature contains many inferential algorithms besides
SuSiE (Carbonetto and Stephens 2012; Hormozdiari et al. 2014;
Benner et al. 2016; Kichaev et al. 2016). BLiP can wrap on top
of any of these methods, and, we hope, enhance their power to
make meaningful scientific discoveries.

2Note that this is not a replication analysis, since both analyses use the same
dataset and model.

5.2. Application to Astronomical Point Source Detection

Appendix H performs a similarly detailed application to detect
and localize astronomical point sources (e.g., stars). We apply
BLiP on top of pretrained Bayesian models from the literature
and show that BLiP dramatically increases PowerRA compared
to the state-of-the-art. Furthermore, BLiP achieves remarkably
good FDR calibration as verified by comparison to the ground
truth, since the true positions of the stars in our dataset were
later observed using a much more powerful telescope. We also
demonstrate the flexibility of BLiP by using two weight functions
to accommodate two scientific objectives.

6. Discussion

This article introduces BLiP, a method for performing
resolution-adaptive signal detection. Our simulations and
two applications show that BLiP is computationally efficient,
robust, and powerful while providing provable error control.
That said, BLiP does have a few limitations. First, BLiP’s provable
guarantees assume that its input PIPs are correct. In practice,
this condition will not hold exactly due to (e.g.) misspecification
or MCMC error. Although we have devised methods which
empirically make BLiP robust to this issue, there is certainly
room for improvement. Indeed, it may be worthwhile to design
BLiP-like methods which have provable guarantees under
misspecification. Second, although BLiP was verifiably nearly
optimal (as described in Section 3.1) in all of our analyses, we
can only give a heuristic explanation of this, and we cannot fully
rigorously explain this result. Future theoretical work is needed
to better understand this phenomenon.

A last notable benefit of BLiP is that it is a highly flexible
method for a very general problem. As a result, there are many
possible extensions of BLiP which may be of interest, including
optimizing for different objective functions (see Appendix C.5
for an example of an objective function which flexibly bal-
ances resolution-adjusted power against false positives), apply-
ing BLiP on different Bayesian models, and using BLiP in differ-
ent application areas.

Supplementary Materials

Supplementary Material: The supplement contains further discussion,
simulations, an additional real application, and a few proofs (.pdf file).

https://github.com/amspector100/ukbb_blip
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