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ABSTRACT

In many scientific disciplines, we are interested in inferring the nonlinear dynamical
system underlying a set of observed time series, a challenging task in the face of
chaotic behavior and noise. Previous deep learning approaches toward this goal
often suffered from a lack of interpretability and tractability. In particular, the high-
dimensional latent spaces often required for a faithful embedding, even when the
underlying dynamics lives on a lower-dimensional manifold, can hamper theoretical
analysis. Motivated by the emerging principles of dendritic computation, we
augment a dynamically interpretable and mathematically tractable piecewise-linear
(PL) recurrent neural network (RNN) by a linear spline basis expansion. We show
that this approach retains all the theoretically appealing properties of the simple
PLRNN, yet boosts its capacity for approximating arbitrary nonlinear dynamical
systems in comparatively low dimensions. We introduce two frameworks for
training the system, one based on fast and scalable variational inference, and another
combining BPTT with teacher forcing. We show that the dendritically expanded
PLRNN achieves better reconstructions with fewer parameters and dimensions on
various dynamical systems benchmarks and compares favorably to other methods,
while retaining a tractable and interpretable structure.

1 INTRODUCTION

For many complex systems in physics, biology, or the social sciences, we do not know or have only
rudimentary knowledge about the dynamical system (DS) that may underlie those quantities that we
can empirically observe or measure. Data-driven approaches aimed at automatically inferring the
generating DS from time-series observations could therefore strongly support the scientific process,
and various such methods have been proposed in recent years (Raissi et al., 2018; Zhu et al., 2021;
Yin et al., 2021; Norcliffe et al., 2021; Mohajerin & Waslander, 2018; Karl et al., 2017; Chen et al.,
2018; Strauss, 2020). However, due to the often high-dimensional, complex, chaotic, and inherently
noisy nature of real-world DS, like the brain, weather-, or ecosystems, this remains a formidable
challenge. Moreover, although the true DS may evolve on a lower-dimensional manifold in its state
space, the system used for approximation usually needs to be of higher dimensionality to achieve a
proper embedding (Takens, 1981; Sauer et al., 1991; Kantz & Schreiber, 2004). This is especially
true when the approximating system is of a different functional form than the one that would most
naturally describe the data generation process (but is unknown), for instance, when we attempt to
approximate a system of exponential or trigonometric functions by polynomials.

In this work we sought to improve the capacity and expressiveness of a specific class of recurrent
neural networks (RNNs), achieving agreeable solutions with fewer dimensions and parameters while
retaining a set of desirable theoretical properties. Specifically, we build on piecewise-linear RNNs
(PLRNNs) based on ReLU activation functions, for which fixed points, periodic orbits, and other
dynamical properties can be derived analytically (Schmidt et al., 2021; Koppe et al., 2019), and for
which dynamically equivalent continuous-time (ordinary differential equation, ODE) systems can
be constructed (Monfared & Durstewitz, 2020b). Inspired by principles of dendritic computation in
biological neurons (Fig. 1), each PLRNN unit was endowed with a set of nonlinear pre-processing
subunits (“dendritic branches”), such that it effectively takes on the role of an equivalent much larger
network. Mathematically, this comes down, in our case, to enhancing each latent unit with a linear
spline basis expansion as popular in statistics (Hastie et al., 2009). Through this trick, we achieve
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a powerful RNN which provides reconstructions of underlying nonlinear DS in lower-dimensional
latent spaces than were needed by conventional PLRNNs. At the same time, model inference can be
performed within the scalable framework of sequential variational auto-encoders (SVAE) (Archer
et al., 2015; Girin et al., 2020; Krishnan et al., 2017), or with classical Back-Propagation-Through-
Time (BPTT; Rumelhart et al. (1986)) augmented by teacher-forcing (TF; Williams & Zipser (1989);
Pearlmutter (1990)). We further prove that these modifications preserve the mathematical and
dynamical accessibility of the resulting system, e.g., such that fixed points, cycles, and their stability,
can still be computed analytically.

Besides its effectiveness in capturing complex dynamical systems in fewer dimensions within a
tractable framework, our approach highlights more generally how principles of dendritic signal
processing may be harvested in the design of RNNs. Strongly nonlinear local computations are
known for decades to occur within dendritic trees of biological neurons (Mel, 1994; Poirazi et al.,
2003), but have hardly been exploited so far for machine learning models.

2 RELATED WORK

One class of DS reconstruction models attempts to discover governing equations from the flow field
estimated from data through differencing the time series. Sparse Identification of Nonlinear Dynamics
(SINDy), for instance, does so by sparsely regressing on a rich library of basis functions using the
least absolute shrinkage and selection operator (LASSO) (Brunton et al., 2016; Rudy et al., 2017;
de Silva et al., 2020). Other methods approximate the flow field using graph reconstruction via
differential equations (Chen et al., 2017), sparse autoencoders (Heim et al., 2019), shallow multi-layer
perceptrons reformulated as RNNs (Trischler & D’Eleuterio, 2016), or deep neural networks (Chen
et al., 2018). Some works aimed at directly learning the system’s underlying Hamiltonian (Chen
et al., 2020; Greydanus et al., 2019). Generally, numerical derivatives obtained from time series tend
to be more noise-prone than the time series observations themselves (Baydin et al., 2018; Chen et al.,
2017; Raissi, 2018). This can be a problem particularly if only comparatively short trajectories were
empirically observed or when the underlying systems are very high-dimensional, as in these cases the
system’s flow field may be (severely) under-sampled. Methods directly based on numerical derivatives
also need to be augmented by other techniques, like delay embeddings (Kantz & Schreiber, 2004) or
deep auto-encoders (Champion et al., 2019), if not all the system’s dimensions were observed.

Various RNN architectures such as Long-Short-Term-Memory networks (LSTMs) (Zheng et al.,
2017), Reservoir Computing (RC) (Pathak et al., 2018), or PLRNNs (Koppe et al., 2019; Schmidt
et al., 2021) have been employed to infer DS directly from the observed time series without going
through numerical derivatives. More recently, transformers (Shalova & Oseledets, 2020a;b) were used
as black box approaches for DS prediction. Except for PLRNNs, however, all these systems, although
optimized for DS reconstruction and prediction, rest on relatively complex model formulations that
are not easy to tackle and analyze from a DS perspective (Fraccaro et al.). The ability to gain deeper
insights into the specific DS properties and mechanisms of the recovered system is, however, often
crucial for its applicability to science and engineering problems. Transformers, unlike RNNs, do not
even constitute DS themselves (as they explicitly forgo any temporal recursions), and therefore are
not directly amenable to DS theory tools. Moreover, most of these models, RC in particular, need
very high-dimensional latent spaces, which further adds to their black-box nature.

Better interpretability and tractability is achieved by using PLRNNs (Koppe et al., 2019; Schmidt
et al., 2021) or by (locally) linearizing nonlinear systems through ideas from Koopman operator theory
(Azencot et al., 2020; Brunton et al., 2017; Yeung et al., 2017). In such systems, certain DS properties
can be analytically accessed (Schmidt et al., 2021; Monfared & Durstewitz, 2020a), or the resulting
equations can be more easily interpreted by a human reader (Heim et al., 2019). On the downside,
usually one needs to move to very high dimensions to represent the DS in question properly. Here
we aim to overcome this limitation by augmenting PLRNNs with linear basis expansions without
altering their analytical accessibility.

Finally, probabilistic (generative) latent variable models such as state space models have been applied
to the problem of posterior inference of latent state paths zt ∼ p(zt|x1:T ) of DS given time series
observations {x1:T } (Pandarinath et al., 2018; Ghahramani & Roweis, 1998; Durstewitz, 2017;
Krishnan et al., 2017). The advantage here is that they also account for uncertainty in the model
formulation or latent process itself and yield the full distribution over latent space variables (Karl
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et al., 2017). For DS reconstruction, however, we need to move beyond posterior inference: We
require that samples drawn from the model’s prior distribution p(z) after training exhibit the same
temporal and geometric structure as those produced by the unknown DS.

Here we embed PLRNNs augmented with a linear spline expansion into a fully probabilistic, varia-
tional approach that scales well with system size by employing stochastic gradient variational Bayes
(SGVB; (Kingma & Welling, 2014; Rezende et al., 2014)), thereby combining the advantages of
the two classes of models reviewed above. On the other hand, we show that the model can also be
efficiently trained by BPTT using a specific form of TF (Appx. 6.1).

3 MODEL FORMULATION AND THEORETICAL CONSIDERATIONS

3.1 PIECEWISE LINEAR RECURRENT NEURAL NETWORK (PLRNN)

Our approach builds on PLRNNs (Durstewitz, 2017; Koppe et al., 2019) because of their mathematical
tractability (see Sec. 3.3). PLRNNs are defined by the M -dimensional latent process equation

zt = Azt−1 +Wϕ(zt−1) + h+Cst + ϵt, (1)

which describes the temporal evolution of M -dimensional latent state vector zt = (z1t . . . zMt)
T .

The self-connections of the units are represented by diagonal matrix A ∈ RM×M , whereas the
connections between units are collected in off-diagonal matrix W ∈ RM×M , with the nonlinear
activation function ϕ given by the rectified linear unit (ReLU) applied element-wise:

ϕ(zt−1) = max(0, zt−1). (2)

Additionally, the PLRNN comprises a bias term h ∈ RM , potential external inputs st ∈ RK weighted
by C ∈ RM×K , and a Gaussian noise term ϵt ∼ N (0,Σ) with diagonal covariance Σ. The PLRNN
can be interpreted as a discrete-time neural rate model (Durstewitz, 2017), where the entries of A
stand for the individual neurons’ time constants, W for the synaptic connection strengths between
neurons, and ϕ(z) for a (ReLU-shaped) voltage-to-spike-rate transfer function. The probabilistic
latent RNN Eq. 1 is linked to the N -dimensional observed time series (xt)t=1...T , xt ∈ RN , drawn
from an underlying noisy DS, by an observation function (decoder model) which, in the simplest
case, may take the linear Gaussian form

xt = Bzt + ηt, (3)

where B ∈ RN×M represents a factor loading matrix and ηt ∼ N (0,Γ) is Gaussian observation
noise with diagonal covariance Γ ∈ RN×N .

3.2 DENDRITIC COMPUTATION AND SPLINE BASIS EXPANSION

Dendrites have long been known to play an active and important part in neural computation (Mel,
1994; 1999; Koch, 2004). Active, fast voltage-gated ion channels endow dendrites with strongly
nonlinear behavior, giving rise for instance to dendritic Ca2+ spikes that boost synaptic inputs
(Schiller et al., 2000; Häusser et al., 2000). It has been suggested previously that different dendritic
branches may constitute rather independent computational sub-units whose outputs are combined at
the soma, as in a 2-layer neural network (Poirazi et al., 2003; Mel, 1993; 1994), an idea that received
strong empirical support especially in recent years (Poirazi & Papoutsi, 2020). Here we mimic
this functional setup by modeling dendritic processing through a linear combination of ReLU-type
threshold-nonlinearities (Fig. 1), replacing Eq. 2 by

ϕ(zt−1) =

B∑
b=1

αb max(0, zt−1 − hb), (4)

with “dendritic input/output” slopes αb ∈ R and “activation” thresholds hb ∈ RM . As in real
dendrites, where both ion channels and morphological structure are subject to learning (Poirazi &
Papoutsi, 2020; Stemmler & Koch, 1999), we treat these as trainable parameters. We note that Eq. 4
inserted into model Eq. 1 takes the form of a linear spline basis expansion as popular in statistics
(Hastie et al., 2009) for approximating arbitrary functions (Wahba, 1990; Storace & De Feo, 2004) in
regression settings. For instance, such concepts have been frequently employed within data-analytical
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models in neuroscience (Frank et al.; Huang et al.; Qian et al.), but never within the context of DS
reconstruction enabling lower-dimensional solutions in mathematically tractable models.

To emphasize the connection to dendritic computation we call the system Eqs. 1, 3, 4, the dendPLRNN.

Figure 1: Inspired by principles of dendritic computation, our dendPLRNN extends each unit into a
set of nonlinear branches connected to a soma, yielding single unit transfer functions with increased
approximation capabilities. Image of dendrite from https://www.milad.no/blog/ (CC BY-
SA 4.0).

3.3 MATHEMATICAL TRACTABILITY AND DYNAMICAL SYSTEMS INTERPRETATION

Sharp threshold-nonlinearities (like a ReLU) are a reasonable choice from a neurobiological per-
spective, as dendrites naturally give rise to this threshold-type behavior (Mel, 1999; Koch, 2004).
Another important consideration in choosing this particular form, however, was that it preserves all
the theoretically appealing properties of a PLRNN, as we will formally establish below: For PLRNNs
fixed points and cycles can be explicitly computed (Schmidt et al., 2021; Koppe et al., 2019), and
they can be translated into dynamically equivalent continuous-time systems (Monfared & Durstewitz,
2020b), properties which profoundly ease the analysis of trained systems from a DS perspective. This
is crucial for application in the sciences, where we are specifically interested in understanding the
underlying system’s dynamics. For PLRNNs, precise connections between the long-term behavior
of the system and that of its gradients have also been established (Schmidt et al., 2021). Finally,
PLRNNs belong to the class of continuous piecewise-linear (PWL) maps, for which many important
types of bifurcations have been well characterized (Feigin, 1995; Hogan et al., 2007; Patra, 2018)
(cf. (Monfared & Durstewitz, 2020a) for an overview). Bifurcations are essential to understand how
geometrical and topological properties of the system’s state space depend on its parameters or could
be controlled, and hence are also important to characterize or improve the training process itself
(Doya, 1992; Pascanu et al., 2013; Saxe et al., 2014) or to understand properties of trained systems
(Maheswaranathan et al., 2019b;a) .

Our first proposition, therefore, assures that by the particular form of basis expansion introduced in
Eq. 4, the system will remain within the class of continuous PWL maps:

Proposition 1. The model defined through Eq. 1 and Eq. 4 constitutes a continuous PWL map.

The proof essentially straightforwardly follows from the model’s definition as a linear spline basis
expansion in each unit, but is formally provided in Appx. 6.5.4.

While Proposition 1 is all we need to ensure we can harvest all previously established results on
PLRNNs in particular, and on continuous PWL maps more generally, it is revealing to note that
any dendPLRNN (Eqs. 1, 4) can be rewritten as a conventional PLRNN, as stated in the following
theorem:

Theorem 1. Any M -dimensional dendPLRNN as defined in Eqs. 1, 4, can always be rewritten as a
M ×B-dimensional “conventional” PLRNN of the form

ẑt = Ãẑt−1 + W̃ max(0, ẑt−1) + ĥ0 + C̃st + ϵ̃t. (5)

Proof. Straightforward by construction, see Appx. 6.5.5.
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This theorem highlights why the dendPLRNN will allow to reduce the dimensionality of the recon-
structed system, as it suggests we may often be able to reformulate a high-dimensional PLRNN in
terms of an equally powerful lower-dimensional dendPLRNN. In Appx. 6.5.1 we also spell out the
exact computation of fixed points and k-cycles for the dendPLRNN.

Finally, the unboundedness of the PLRNN’s latent states due to the ReLU function can cause
divergence problems in training. The dendPLRNN, on the other hand, offers a simple and natural
way to contain the latent states without violating the basic model description above, as established in
the following theorem:
Theorem 2. For each basis {αb,hb} in Eq. 4 of a dendPLRNN let us add another basis {α∗

b ,h
∗
b}

with α∗
b = −αb and h∗

b = 0. Then, for σmax(A) < 1, any orbit of this “clipped” dendPLRNN (Eq.
10) will remain bounded.

Proof. See Appx. 6.5.6.

Appx. 6.5 collects further theoretical results, assuring, for instance, that the manifold attractor
regularization employed here (see next section) does not interfere with the results above (Proposition
2).

3.4 TRAINING THE DENDPLRNN

To infer the parameters θ = {A,W ,h,C,Σ,B,Γ, {αb,hb}} of the dendPLRNN (Eq. 1, 3, 4)
from observed data, we apply two different training strategies: First, a fast and scalable variational
inference (VI) algorithm which maximizes the Evidence Lower Bound (ELBO) L(θ, ϕ;x) :=
Eqϕ [log(pθ(x|z)] − KL[qϕ(z|x)||pθ(z)] using the reparameterization trick (Kingma & Welling,
2014), and convolutional neural networks (CNNs) for parameterizing the encoder model qϕ(z|x)
(see Appx. 6.1 for details). Furthermore, as proposed in Schmidt et al. (2021), to efficiently capture
DS at multiple time scales, we add a regularization term to the ELBO that encourages the mapping of
slow time constants and long-range dependencies (so-called manifold attractor regularization, see
Eq. 6, with regularization factor λ). Second, we employ “classical” BPTT with a variant of teacher
forcing (TF) (Williams & Zipser, 1989; Pearlmutter, 1990). TF here means that the first N latent
states zk,lτ+1, k ≤ N , were replaced by observations xk,lτ+1 at times lτ + 1, l ∈ N0, where τ ≥ 1
is the forcing interval (for details, see Appx. 6.1). All code used in here is made freely available at
[placeholder].

4 EXPERIMENTS

4.1 PERFORMANCE MEASURES

In DS reconstruction, we aim to capture invariant properties of the underlying DS like its geometrical
and temporal structure. To evaluate the quality of the reconstructions w.r.t. geometrical properties
we employed a Kullback-Leibler divergence (Dstsp) that quantifies agreement in attractor geometries
(more details in Appx. 6.2), as first suggested in Koppe et al. (2019) (see also Schmidt et al. (2021)).
Specifically, this measure evaluates the overlap between the observed data distribution p(xobs) and
the distribution p(xgen|zgen) generated from model simulations (i.e., with zgen ∼ pθ(z) after model
training) across state space (not time!). Since this measure as originally defined in Koppe et al. (2019)
is expensive to compute, for the high-dimensional benchmark DS we used another approximation,
details of which are given in Appx. 6.2. Dstsp is evaluated on a set of 100 trajectories, pulled from the
learned distribution over initial conditions, with 1000 time steps each. To assess the agreement in
temporal structure, a dimension-wise, Gaussian-kernel-smoothed power spectrum correlation (PSC)
between ground truth and model-generated trajectories was used (see Appx. 6.2). Finally, we also
computed a 20-step-ahead prediction error along test set trajectories (see Appx. 6.2), although not of
primary interest in the context of DS reconstruction.

4.2 DS BENCHMARKS USED FOR EVALUATION

We evaluated our approach and the specific role of the basis expansion on five different types of
challenging DS benchmarks.
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First, the famous 3d chaotic Lorenz attractor (Lorenz-63) originally proposed by Lorenz (1963)
(formally defined in Appx. 6.4) has become a popular benchmark for DS reconstruction algorithms.
Fig. 2a (l.h.s.) illustrates true (blue) and reconstructed (orange) time series from this system, while the
r.h.s. illustrates the chaotic attractor’s geometry in its 3d state space for both the ground truth (blue)
and reconstructed (orange) systems. It is important to note that both the time and state space graphs
are not merely ahead predictions from the dendPLRNN but are produced by simulating the trained
dendPLRNN from some initial condition. This illustrates that the dendPLRNN has captured the
temporal and geometrical structure of the original Lorenz-63 system in its own governing equations.
Moreover, computing analytically (see Appx. 6.5.1) the fixed points of the reconstructed system, we
see that their positions in state space agree well with those of the true system.

Second, a 3d biophysical model of a bursting neuron (see Eq. 15 in Appx. 6.4; Durstewitz (2009))
highlights another aspect of DS reconstruction: Besides an equation for membrane voltage (V ), the
model consists of one very fast (n) and one slow (h) variable that control the gating of the model’s
ionic conductances. This produces fast spikes that ride on top of a much slower oscillation, making
this system challenging to reconstruct. One such successful dendPLRNN reconstruction is illustrated
in Fig. 2b (orange) together with time graphs and state space representations of the true system (blue).

Figure 2: Examples of low-dimensional model reconstructions: (a) Time series (left) and state
space trajectories (right) for the original Lorenz-63 chaotic attractor and simulations produced by
a dendPLRNN trained with VI (B = 20, M = 15, λ = 1, Mreg/M = 0.5). Dots indicate true and
reconstructed fixed points. (b) Same for the bursting neuron model, produced by a dendPLRNN
trained with TF (B = 47, M = 26, τ = 5). Note that the bursting is a complex limit cycle but
non-chaotic.

Third, the Lorenz-96 weather model is an example of a higher-dimensional, spatially organized chaotic
system with local neighborhood interactions that can be extended to arbitrary dimensionality (Eq. 18
in Appx. 6.4). It has also been used more widely for benchmarking DS reconstruction algorithms.
For our experiments we employed a 10-dimensional spatial layout. Fig. 3a illustrates time graphs for
selected dimensions (l.h.s.), the full evolving spatio-temporal pattern (center), and examples of power
spectra (r.h.s.) for both the ground truth system (blue) and an example reconstruction (orange). The
spatio-temporal characteristics of the true and the dendPLRNN-generated time series tightly agree.

Fourth, as another high-dimensional example we used a neural population model with structured
connectivity tuned to produce coherent chaos (Landau & Sompolinsky, 2018), from which we
produced 50d observations (see Appx. 6.4 for details). Fig. 3b provides example time series (l.h.s.),
full spatio-temporal patterns (center), and overlaid power spectra (r.h.s.) for time series drawn from
the true system (blue) and those simulated by a trained dendPLRNN (orange). Again there is a tight
agreement, and again we emphasize that - like in all the other examples - these are not mere model
ahead-predictions but fully simulated from some random initial condition.

Finally, we studied a real-world dataset consisting of electroencephalogram (EEG) recordings from
human subjects, described in more detail with results (Fig.***) in Appx. ***.

4.3 BASIS EXPANSION IMPROVES DS RECONSTRUCTION AND LOWERS PARAMETER COSTS

While, in theory, the dendPLRNN is equivalent to a larger PLRNN without basis expansion, in
practice the smaller basis-expanded models trained more successfully. Fig. 4a summarizes our
observations for the VI algorithm on the impact of the basis expansion using the Lorenz-63 DS
as an example (see Fig. S3 for further examples): Both the 20-step ahead prediction error as well
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Figure 3: Examples of high-dimensional model reconstructions: (a) Time series (left), spatio-temporal
evolution (center), and power spectra (right) for the true 10d Lorenz-96 system and for dendPLRNN
simulations (B = 50, M = 30, λ = 1.0, Mreg/M = 1.0). (b) Same for a 50d neural population
model producing coherent chaos (B = 5, M = 12, λ = 1.0, Mreg/M = 0.2).

Figure 4: Effect of basis expansion for dendPLRNN trained by VI. (a) Agreement in attractor
geometries (left) and 20-step ahead prediction error (right) for the Lorenz-63 system as a function of
the number of bases (B) for fixed numbers of total parameters. (b) Agreement in attractor geometries
(left) and 20-step ahead prediction error (right) for the Lorenz-63 system as a function of the number
of bases (B) for different numbers of latent states (M ).

as the geometrical reconstruction quality as assessed by Dstsp profoundly improve with the size
B of the basis expansion even for the same total number of trainable model parameters (given
by M(M + 1 + B + N) + B, where N is the dimensionality of the observed data). Hence, as
conjectured in Sec. 3, the basis expansion yields better reconstructions at no additional costs in terms
of numbers of model parameters. Fig. 4b looks at the impact of the basis expansion from the angle
of dimensionality reduction by systematically varying the number of bases B and latent states M
for the Lorenz-63 DS: Following the curves horizontally, it becomes clear that the basis expansion
enables to reduce the model’s overall dimensionality without compromising performance.

4.4 MODEL COMPARISONS

We compared our model to the PLRNN without the dendritic expansion and three other algorithms
purpose-tailored for DS reconstruction: First, SINDy (Brunton et al., 2016) aims to reconstruct the
governing equations by approximating numerical derivatives (obtained by differencing the time series,
and applying a variance regularization to reduce noise) through a large library of polynomial basis
functions. Sparse (LASSO) regression is used to pick out the right terms from the library (we used
the PySINDy implementation (de Silva et al., 2020) with multinomials up to sixth order). Second,
Vlachas et al. (2018) used a hybrid of truncated LSTMs and mean-field stochastic models based on
Ornstein-Uhlenbeck processes (LSTM-MSM) to approximate the true system’s flow estimated from
observed time series. Third, Pathak et al. (2018) built on reservoir computing (RC) for their approach
with reservoir parameters chosen to satisfy the “echo state property” (Jaeger & Haas, 2004). For
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Table 1: Comparison of dendPLRNN (Ours) trained by VI or BPTT+TF, RC (Pathak et al., 2018),
LSTM-MSM (Vlachas et al., 2018), and SINDy (Brunton et al., 2016) on 4 DS benchmarks and one
experimental dataset (top) and 3 challenging data situations (bottom). Values are mean ± SEM.

Dataset / Setting Method PSC Dstsp 20-step PE Dynamical variables Parameters

Lorenz

dendPLRNN VI 0.997 ± 0.001 0.80 ± 0.25 2.1e−3 ± 0.2e−3 22 1032
dendPLRNN TF 0.997 ± 0.002 0.13 ± 0.18 9.2e−5 ± 2.8e−5 22 1032
RC 0.991 ± 0.001 0.24 ± 0.05 1.2e−2 ± 0.1e−3 345 1053
LSTM-MSM 0.985 ± 0.004 0.85 ± 0.07 1.2e−2 ± 0.1e−3 29 1035
SINDy 0.998 ± 0.0003 0.04 ± 0.01 6.8e−5 ± 0.2e−5 3 252

Lorenz-
96

dendPLRNN VI 0.987 ± 0.001 0.10 ± 0.01 3.1e−1 ± 0.9e−1 42 4384
dendPLRNN TF 0.998 ± 0.0001 0.04 ± 0.01 4.1e−2 ± 0.8e−2 50 4480
RC 0.986 ± 0.008 0.25 ± 0.17 7.1e−1 ± 0.1e−2 440 4400
LSTM-MSM 0.993 ± 0.002 0.23 ± 0.03 8.2e−1 ± 0.3e−2 62 4384
SINDy 0.996 ± 0.001 0.06 ± 0.003 6.3e−2 ± 0.1e−3 10 27410

Bursting
Neuron

dendPLRNN VI 0.55 ± 0.03 7.5 ± 0.4 6.1e−1 ± 0.1e−1 26 2052
dendPLRNN TF 0.76 ± 0.04 2.9 ± 1.3 6.1e−2 ± 2.2e−2 26 2040
RC 0.51 ± 0.01 5.1 ± 0.6 8.6e−2 ± 0.1e−2 711 2133
LSTM-MSM 0.54 ± 0.02 2.83 ± 0.36 3.9e−2 ± 0.1e−2 45 2166
SINDy diverging diverging diverging 3 252

Neural
Popula-
tion
Model

dendPLRNN VI 0.45 ± 0.05 0.56 ± 0.05 0.82 ± 0.09 12 821
dendPLRNN TF 0.51 ± 0.01 0.19 ± 0.02 1.53 ± 0.03 75 9990
RC 0.30 ± 0.05 0.95 ± 0.19 1.82 ± 0.82 50 2500
LSTM-MSM 0.45 ± 0.03 0.43 ± 0.02 1.02 ± 0.02 56 848
SINDy diverging diverging diverging 50 66300

EEG

dendPLRNN VI 0.80 ± 0.01 27.9 ± 3.6 0.56 ± 0.046 117 27194
dendPLRNN TF 0.936 ± 0.017 4.7 ± 2.7 0.267 ± 0.013 128 27058
RC 0.81 ± 0.01 21.2 ± 2.2 5.4 ± 0.2 448 28672
LSTM-MSM 0.84 ± 0.005 19.9 ± 1.8 2.0 ± 0.5 168 27728
SINDy diverging diverging diverging 64 133120

Low
amount of
data

dendPLRNN VI 0.967 ± 0.007 4.36 ± 0.10 2.8e−2 ± 0.2e−2 22 1032
dendPLRNN TF 0.97 ± 0.04 6.9 ± 5.3 1.5e−2 ± 0.9e−2 22 1032
RC 0.68 ± 0.05 5.74 ± 0.11 4.1e+5 ± 1.2e+5 345 1053
LSTM-MSM 0.960 ± 0.006 6.06 ± 0.37 2.1e−1 ± 0.3e−2 29 1035
SINDy 0.998 ± 0.0003 0.04 ± 0.01 6.8e−5 ± 0.2e−5 3 252

Partially
observed

dendPLRNN VI 0.940 ± 0.006 12.6 ± 1.0 6.5e−2 ± 1.4e−2 22 1032
dendPLRNN TF 0.993 ± 0.003 0.54 ± 0.16 5.3e−3 ± 0.2e−3 22 1032
RC 0.981 ± 0.001 2.92 ± 0.08 7.6e−3 ± 0.1e−3 345 1053
LSTM-MSM 0.934 ± 0.005 6.06 ± 0.37 2.3e−2 ± 0.3e−2 29 1035
SINDy 0.974 ± 6e− 4 17.5 ± 0.4 5.1e−2 ± 0.4e−2 3 252

High
noise

dendPLRNN VI 0.973 ± 0.006 4.9 ± 0.75 3.5e−2 ± 0.1e−2 22 1032
dendPLRNN TF 0.995 ± 0.002 0.4 ± 0.13 4.6e−3 ± 0.4e−3 22 1032
RC 0.988 ± 0.001 2.33 ± 0.21 3.1e−2 ± 0.2e−2 345 1053
LSTM-MSM 0.967 ± 0.006 1.19 ± 0.27 3.3e−2 ± 0.2e−2 29 1035
SINDy 0.984 ± 0.005 1.01 ± 0.05 2.3e−3 ± 0.1e−4 3 252

higher-dimensional systems, a spatially arranged set of reservoirs with local neighborhood relations
is employed. For all these systems, optimized hyper-parameters were used as reported by the authors.
For our own system, the dendPLRNN, we also performed a grid search for optimal hyper-parameters
λreg, τTF, M , and B (see Appx. 6.1 and Table S1 for details). For all four methods, to the degree
possible we tried to ensure roughly the same number of trainable parameters (see Table S2).

Results for all four models on all five DS benchmarks employed here are summarized in the upper
part of Table S2, using the temporal and geometrical reconstruction measures introduced in Sec. 4.2
(as well as a 20-step-ahead prediction error for comparison). To produce this table, 100,000 time
steps for both training and testing were simulated from each ground truth system, all dimensions
were standardized to have zero mean and unit variance, and process noise and observation noise (with
1% of the data variance) were added while simulating the (now stochastic) differential equations,
and after drawing the observations, respectively (see Appx. 6.4 for further methodological details).
To produce statistics, each method was run from a total of 20 randomly chosen initial conditions
for the parameters. We also tested all four methods on the real EEG data and on challenging data
situations produced using the Lorenz-63 system (Fig. 2a), with either short time series of just 1000
time steps, only partial observations (just state variable x in Eq.14 in Appx. 6.4), or high process and
high observation noise (drawing from a Gaussian with dϵ ∼ N (0, 0.1dt× I) for the process noise
as described in Appx. 6.4, and using 10% of the observation variance, respectively). SINDy cannot
naturally handle missing observations, as it has no latent variables but formulates the model directly
in terms of the observations. Therefore, for the partially observed system, we used delay embedding
(Takens, 1981; Sauer et al., 1991) to create a 3d dataset, adding two time-lagged versions of x as
coordinates.1

A general observation is that indeed all four models are quite powerful for reconstructing the
underlying DS. However, in most comparisons the dendPLRNN had an edge over the other methods,

1We point out that this may already impose a restriction for methods like SINDy as one moves to very
high-dimensional systems.
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or came out second after SINDy, especially when trained by BPTT+TF. SINDy tends to outperform
the dendPLRNN on the Lorenz-63 DS, but it completely fails on the bursting-neuron and population
model examples, and on the real EEG data, and generally becomes comparatively slow to train on
high-dimensional systems. This can be explained by the fact that SINDy already has the correct
functional form for the Lorenz-63 (and also Lorenz-96) DS: Both of these have a strictly polynomial
form (see Eq. 14 and Eq. 18 in Appx. 6.4), and SINDy works with a set of polynomial library
functions to begin with. Hence, SINDy only needs to pick out the right terms from its expansion to
succeed, giving it a clear advantage on these model systems by design. On the other hand, as revealed
in Table S2, it completely fails on systems which have a different (non-polynomial) functional form
(or when the true form, as in the EEG case, is simply not known). SINDy therefore appears less
suitable as a general framework for DS reconstruction if an appropriate library of basis functions
cannot be specified a priori, unlike the other methods.

While our conclusion is that essentially all of the three tested models LSTM-MSM, RC, and dend-
PLRNN are suitable for reconstruction of arbitrary DS even in very challenging data situations
(Table S2, bottom), LSTM-MSM and RC performed worse on average and have other profound
disadvantages compared to our method: First, they are quite complex in their architectures and
hence not easily interpretable, i.e. much harder to track and analyze mathematically.2 In contrast, as
summarized in Sec. 3.3, the dendPLRNN is a continuous PWL map and as such comes with a huge
bulk of already existing theoretical results (Schmidt et al., 2021; Monfared & Durstewitz, 2020b;a),
as well as with mathematical tractability (see Fig. 2a and Appx. 6.5.1). On top, the dendPLRNN
achieves reconstruction of all DS in (much) lower dimensions than the RC or LSTM-MSM (see Table
S2), further adding to its better interpretability. Second, by embedding the dendPLRNN within a
SVAE (Archer et al., 2015) framework we also obtain uncertainty estimates on the state trajectories
and can perform posterior inference, features that the other models lack.

5 CONCLUSIONS

In this work we augmented PLRNNs (Durstewitz, 2017; Koppe et al., 2019) by a linear spline basis
expansion inspired by principles of dendritic computation. We show mathematically that by doing so
we remain within the theoretical framework of continuous PWL maps and hence can harvest a huge
bulk of existing DS theory (Sec. 3.3), while at the same time achieving better performance with less
parameters and in lower dimensions. Another contribution of this work is transferring the PLRNN
into the framework of SVAEs which allow for fast and scalable inference and training. These are
two key advantages from both a scientific perspective where mechanistic insight and understanding
of the system under study are sought, and a prediction perspective where we are also interested in
uncertainty estimates.

We close by pointing out two open issues: First, somewhat surprisingly, the BPTT+TF approach
to model training clearly outperformed the more sophisticated VI approach. This could be rooted
in suboptimal encoder models or in suboptimal sampling from the approximate posterior: While
BPTT+TF assesses longer bits of trajectory during optimization, in VI single time-point samples are
drawn and the temporal consistency is ensured only through the Kullback-Leibler term in the ELBO.
Other more expressive yet still fast to compute encoder models, e.g., based on normalizing flows
(Rezende & Mohamed, 2015), may boost performance. Smart initialization techniques (Talathi &
Vartak, 2016) or specific annealing and curriculum training protocols (as used in Koppe et al. (2019))
are other amendments to consider. Second, we felt that quantitative measures for assessing the quality
of DS reconstructions in high-dimensional, high-noise situations are an interesting research topic
in their own right. It is known that “classical” DS measures like Lyapunov spectra or correlation
dimensions (Kantz & Schreiber, 2004) are very hard to robustly assess for higher-dimensional or
more noisy systems (Schreiber & Kantz, 1996), and are often not even known for comparatively
simple models. Yet, the geometrical and temporal measures employed here come with their own
pitfalls, some of them alluded to in Appx. 6.2.

ACKNOWLEDGMENTS
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6 APPENDIX

6.1 FURTHER METHODOLOGICAL DETAILS

Manifold Attractor Regularization As proposed in Schmidt et al. (2021), to encourage the
discovery of long-term dependencies and slow time scales in the data, a subset of Mreg ≤M states
was regularized by adding the following term to the ELBO for the VI approach:

Lreg = λ

Mreg∑
i=1

(Aii − 1)2 +

Mreg∑
i=1

M∑
j ̸=i

(Wij)
2 +

Mreg∑
i=1

h2
i

 . (6)

This regularization pushes the regularized subset of states toward a continuous set of marginally
stable fixed points that tends to form an attracting manifold in the full state space, which supports the
learning of systems with widely differing time scales, such as the bursting neuron model (cf. Sec.
4). We found that for all datasets this regularization significantly helped to discover the underlying
dynamics. To put it on equal grounds with the regularization term, the ELBO was divided by the
number of time steps T of a given batch. Regularization settings used are summarized in Table S1
along other hyper-parameter settings.

BPTT-TF To train a deterministic version of the dendPLRNN, we employ BPTT with a scheduled
version of TF (Williams & Zipser, 1989; Pearlmutter, 1990). To do so, we choose an “identity-
mapping” for the observation model x̂t = Izt, where I ∈ RN×M with Ikk = 1 if k ≤ N and zeroes
everywhere else. This allows us to regularly replace latent states with observations to “recalibrate”
the model and break trajectory divergence in case of chaotic dynamics. Consider a time series
{x1,x2, · · · ,xT } generated by a DS we want to reconstruct. At times lτ + 1, l ∈ N0, where τ ≥ 1
is the forcing interval, we replace the first N latent states by observations ẑk,lτ+1 = xk,lτ+1, k ≤ N .
The remaining latent states, ẑk,lτ+1 = zk,lτ+1, k > N , remain unaffected by the forcing. This
means that we optimize the dendPLRNN such that a subspace of the latent space directly maps
to the observed time series variables. The forcing interval τ is a hyperparameter, with optimal
settings varying depending on the dataset. The settings we chose are summarized in Table S1. With
F = {lτ + 1}l∈N0

, the dendPLRNN updates can then be written as

zt+1 =

{
dendPLRNN(z̃t) if t ∈ F
dendPLRNN(zt) else

. (7)

The loss is calculated prior to the forcing, such that Lt = ∥xt − Izt∥22 for every time step. To
improve performance we employ a mean-centred dendPLRNN (for details see next paragraph). In
the evaluation phase, the trained dendPLRNN is simulated freely without any forcing. As the model
is deterministic, the initial condition z1 = [x1,Lx1]

T is estimated from the first data point x1 with a
matrix L ∈ R(M−N)×N which is jointly learned with the other model parameters.

Mean-Centered dendPLRNN Layer normalization has recently been developed as a way of
significantly improving RNN training (Ba et al., 2016). Here we adapt the idea of layer normalization
to the piecewise-linear nature of our dendPLRNN. Instead of fully standardizing the latent states at
every time step before applying the activation function, we only mean-center them:

zt = Azt−1 +Wϕ
(
M(zt−1)

)
+ h0, (8)

where ϕ(·) is given in Eq. 4 and M(zt−1) = zt−1 − µt−1 = zt−1 − 1
1

M

M∑
j=1

zj,t−1, where

1 ∈ RM is a vector of ones. Note that this mean-centering is linear and can be rewritten as a
matrix-multiplication

M(zt−1) = zt−1 − µt−1

=
1

M

M − 1 −1 · · · −1
−1 M − 1 · · · −1
· · · · · · · · · · · ·
−1 −1 · · · M − 1

 zt−1 = Mzt−1. (9)

As Remark 1 points out, all results about the tractability of the dendPLRNN also hold for the
mean-centred dendPLRNN.
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State clipping Since the ReLU function used in the dendPLRNN is non-saturating, states may
diverge to infinity. As Theorem 2 guarantees, there is a simple and natural way to construct a “clipped”
dendPLRNN

zt = Azt−1 +W

B∑
b=1

αb

[
max(0, zt−1 − hb)−max(0, zt−1)

]
+ h0. (10)

Note that the results of Theorem 2 also hold true when the manifold attractor regularization is applied.
This is detailed in Proposition 2 further below.

Approximate posterior and hyperparameter settings To estimate the true unknown pos-
terior p(z|x), we make a Gaussian assumption for the approximate posterior qϕ(z|x) =
N (µϕ(x),Σϕ(x)), where mean and covariance are functions of the observations. Without any
simplifying assumptions, the number of parameters in Σϕ(x) ∈ RMT×MT would scale unacceptably
with time series length T . We therefore made a mean field assumption and factorized qϕ(z|x)
across time. Specifically, a time-dependent mean µt,ϕ and covariance Σt,ϕ were parameterized
through stacked convolutional networks which take the observations {xt−w...xt+w} as inputs, with
w given by the largest kernel size. The mean is given by a 4-layer CNN with decreasing kernel
sizes (41, 31, 21 and 11, respectively), with the last layer of the CNN feeding into a fully connected
layer. For the diagonal covariance, the observations are mapped directly onto the logarithms of
the covariance through a single convolutional layer (with a kernel size of 41) feeding into a fully
connected layer. The classical motivation behind using CNNs rests on the assumption that the
data contains translationally invariant patterns, and that this allows the recognition model to embed
potentially meaningful temporal context into the latent representation (see e.g. Cui et al. (2016)). We
note that while the mean-field approximation is computationally highly efficient, it makes potentially
strongly simplifying assumptions (Blei et al., 2017; Bayer et al.) that may limit the ability of the
encoder model to approximate the true posterior.

To train the dendPLRNN in the VI framework, Adam (Kingma & Ba, 2015), with a batch size of
1000 and learning rate of 1e− 3 was used as the optimizer. For the training with BPTT, we used the
Adam optimizer with an initial learning rate of 1e− 3 that was iteratively reduced during training
down to 1e− 5. For each epoch we randomly sampled sequences of length Tseq = 500 (except for
the Lorenz-63 runs, where Tseq = 200 time steps were sufficient) from the total training data pool of
each dataset, which are then fed into the reconstruction method in batches of size 16. Initial weights
were drawn from a uniform distribution.

To find optimal hyper-parameters we performed a grid search within λreg ∈ {0, 0.01, 0.1, 1, 10}
(VI), τTF ∈ {1, 5, 10, 25, 50, 100} (BPTT-TF), M ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100},
and B ∈ {0, 1, 2, 5, 10, 20, 35, 50}. Hyper-parameters chosen for the benchmarks in Sec. 4 are
reported in Table S1 below (note that these may not fully agree with the ranges initially scanned, as
given above, since we attempted to adjust them further in order to approximately match the number
of parameters among models in Table S2).

Table S1: Hyperparameter settings for dendPLRNN VI/TF for the four different data sets from Sec.
4.

Dataset M B Mreg/M λreg τTF
Lorenz-63 22 20 1.0/− 1.0/− −/25
Lorenz-96 42/50 50/30 1.0/− 1.0/− −/10

Bursting Neuron 26 50/47 0.5/− 1.5/− −/5
Neural Population Model 12/75 5/40 0.2/− 1.0/− −/5

EEG 117/128 50/50 0.8/0.5 1.0/1.0 −/10

6.2 PERFORMANCE MEASURES

Geometrical measure Dstsp used for evaluating attractor geometries (Fig. 4) measures the match
between the ground truth distribution ptrue(x) and the generated distribution pgen(x | z) through the
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discrete binning approximation (Koppe et al., 2019)

Dstsp (ptrue(x), pgen(x | z)) ≈
K∑

k=1

p̂
(k)
true(x) log

(
p̂
(k)
true(x)

p̂
(k)
gen(x | z)

)
, (11)

where K is the total number of bins, and p̂
(k)
true (x) and p̂

(k)
gen (x | z) are estimated as relative frequen-

cies through sampling trajectories from the benchmark DS and the trained reconstruction method,
respectively. A range of 2× the data standard deviation on each dimension was partioned into m
bins, yielding a total of K = mN bins, where N is the dimension of the ground truth system. Initial
transients are removed from sampled trajectories to ensure that the system has reached a limiting set.
If the bin size is chosen too large, important geometrical details may be lost, while if it is chosen too
small, noise and (low) sampling artifacts with many empty bins may misguide the approximation
above. Here we chose a bin number of m = 30 per dimension as an optimal compromise that
distinguished well between successful and poor reconstructions.

Since the number of bins needed to cover the relevant (populated) region of state space scales
exponentially with the number of dimensions, for high-dimensional systems evaluating Dstsp as
outlined above is not feasible. We therefore resorted to an approximation of the densities based on
Gaussian Mixture Models (GMMs), similar to a strategy outlined in (Koppe et al., 2019). Specifically,
we approximate the true data distribution by a GMM ptrue(x) ≈ 1

T

∑T
t=1N (xt,Σ) with Gaussians

centered on the observed data points {xt} and covariance Σ, which we treat as a hyper-parameter
that determines the granularity of the spatial resolution (similar to the bin size in Eq. 11). We can
generate a likewise distribution by sampling trajectories from the trained models (or one very long
trajectory) and placing Gaussians on the sampled data points, pgen(x|z) ≈ 1

L

∑L
l=1N (x̂l | zl,Σ)

(in the case of VI, rather than sampling, one could also use the model’s distributional assumptions
to build this posterior across the observations). For the Kullback-Leibler divergence between two
GMMs efficient approximations are at hand (Hershey & Olsen, 2007). Here we employ a Monte
Carlo approximation

D̃stsp

(
ptrue(x), pgen(x|z)

)
≈ 1

n

n∑
i=1

log
1/T

∑T
t=1N (x(i);xt,Σ)

1/L
∑L

l=1N (x(i); x̂l,Σ)
, (12)

where n Monte-Carlo samples x(i) are drawn from the GMM representing ptrue. In practice, we set
the covariance Σ = σ2I equal to a scaled identity matrix, with a single hyperparamter σ2. Scanning
the range σ2 ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5}, we found that values for σ2 = 0.1 − 1.0 to
differentiate best between good and bad reconstructions. We chose σ2 = 1.0 for numerical stability.
For this setting, Dstsp as derived with the binning method and D̃stsp computed through the GMMs
also correlated highly on the low-dimensional benchmark systems (see Figure S1).

Power Spectrum Correlation The power spectrum correlations (PSC) were obtained by first
sampling time series of 100,000 time steps, standardizing these, and computing dimension-wise Fast
Fourier Transforms (using scipy.fft) for both the ground truth systems and model-simulated time
series. Individual power spectra were then slightly smoothed with a Gaussian kernel, normalized, and
the long, high-frequency tails of the spectra, mainly representing noise, were cut off. Smoothing width
σ and cutoff values scale linearily with the length of the time series used to compute the spectrum,
and were chosen by visual inspection of the individual spectra. Dimension-wise correlations between
smoothed power spectra were then averaged to obtain the reported PSC scores.

Mean Squared Prediction Error A mean squared prediction error (PE) was computed across test
sets of length T = 1000 by initializing the reconstruction model with the benchmark time series up
to some time point t, from where it was then iterated forward by n time steps to yield a prediction at
time step t+ n. The n-step ahead prediction error (PE) is then defined as the MSE between predicted
and true observations:

PE(n) =
1

(T − n)

T−n∑
t=1

||xt+n − x̂t+n||22. (13)

Note that for a chaotic system initially close trajectories will exponentially diverge, such that PEs for
too large prediction steps n are not meaningful anymore (in a chaotic system with noise, for large n
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Figure S1: Correlation between the binning approximation (m = 30) and the logarithm of the
GMM approximation (σ2 = 1) to Dstsp on the Lorenz-63 system for different noise realizations
and variances. Similar as reported for the KLZ approximation in Koppe et al. (2019) we observed a
logarithmic relation between the GMM and binning based measures.

Figure S2: Example power spectrum for different values of the smoothing factor σ2.

the PE may be high even when estimated from two different runs of the same ground truth model
from the same initial condition; see (Koppe et al., 2019)). How quickly this happens depends on
the rate of exponential divergence as quantified through the system’s maximal Lyapunov exponent
(Kantz & Schreiber, 2004).

6.3 FURTHER RESULTS

Figure S3: Effect of basis expansion for dendPLRNN trained by VI. (a) Agreement in attractor
geometries (left) and 20-step ahead prediction error (right) for the bursting neuron system as a
function of the number of bases (B) for fixed numbers of total parameters. (b) Agreement in power
spectrum correlation (left) and 20-step ahead prediction error (right) for the Lorenz-96 system as a
function of the number of bases (B) for different numbers of latent states (M ).
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Figure S4: We observed that the dendPLRNN frequently underwent bifurcations between fixed point
or various cyclic solutions until it reaches the chaotic behavior of the ground truth system.

Table S2: Comparison of dendPLRNN (Ours) trained by VI or BPTT+TF, and a standard PLRNN
(Schmidt et al., 2021), trained by VI or BPTT+TF on four DS benchmarks (top) and three challenging
data situations (bottom). Values are mean ± SEM.

Dataset / Setting Method PSC Dstsp 20-step PE Dynamical variables Parameters

Lorenz

dendPLRNN VI 0.997 ± 0.001 0.80 ± 0.25 2.1e−3 ± 0.2e−3 22 1032
dendPLRNN TF 0.997 ± 0.002 0.13 ± 0.18 9.2e−5 ± 2.8e−5 22 1032
PLRNN VI 0.94 ± 0.004 16.6 ± 0.4 1.8e−1 ± 0.1e−1 22 1032
PLRNN TF 0.994 ± 0.001 0.4 ± 0.09 4.3e−3 ± 0.2e−3 30 1011

Lorenz-
96

dendPLRNN VI 0.987 ± 0.001 0.10 ± 0.01 3.1e−1 ± 0.9e−1 42 4384
dendPLRNN TF 0.998 ± 0.0001 0.04 ± 0.01 4.1e−2 ± 0.8e−2 50 4480
PLRNN VI 0.93 ± 0.002 1.68 ± 0.03 2.1e−3 ± 0.2e−3 60 4260
PLRNN TF 0.996 ± 0.0003 0.05 ± 0.01 2.2e−1 ± 0.2e−1 64 4700

Bursting
Neuron

dendPLRNN VI 0.55 ± 0.03 7.5 ± 0.4 6.1e−1 ± 0.1e−1 26 2052
dendPLRNN TF 0.76 ± 0.04 2.9 ± 1.3 6.1e−2 ± 2.2e−2 26 2040
PLRNN VI 0.54 ± 0.01 17.5 ± 0.5 1.17 ± 0.14 42 2021
PLRNN TF 0.72 ± 0.07 3.2 ± 2.0 7.0e−2 ± 2.7e−2 43 2021

Neural
Popula-
tion
Model

dendPLRNN VI 0.45 ± 0.05 0.56 ± 0.05 0.82 ± 0.09 12 821
dendPLRNN TF 0.51 ± 0.01 0.19 ± 0.02 1.53 ± 0.03 75 9990
PLRNN VI 0.48 ± 0.01 11.65 ± 1.32 0.68 ± 0.09 13 832
PLRNN TF 0.38 ± 0.15 9.6 ± 7.3 19 ± 23 98 12102

Low
amount of
data

dendPLRNN VI 0.967 ± 0.007 4.36 ± 0.10 2.8e−2 ± 0.2e−2 22 1032
dendPLRNN TF 0.97 ± 0.04 6.9 ± 5.3 1.5e−2 ± 0.9e−2 22 1032
PLRNN VI 0.96 ± 0.01 18.1 ± 0.10 1.08 ± 0.02 30 1020
PLRNN TF 0.96 ± 0.04 9.0 ± 5.4 1.8e−2 ± 0.5e−2 30 1011

Partially
observed

dendPLRNN VI 0.940 ± 0.006 12.6 ± 1.0 6.5e−2 ± 1.4e−2 22 1032
dendPLRNN TF 0.993 ± 0.003 0.54 ± 0.16 5.3e−3 ± 0.2e−3 22 1032
PLRNN VI 0.944 ± 0.002 17.2 ± 0.2 2.7e−1 ± 0.03e−1 30 1020
PLRNN TF 0.994 ± 0.003 0.56 ± 0.34 5.0e−3 ± 0.2e−3 30 1011

High
noise

dendPLRNN VI 0.973 ± 0.006 4.9 ± 0.75 3.5e−2 ± 0.1e−2 22 1032
dendPLRNN TF 0.995 ± 0.002 0.4 ± 0.13 4.6e−3 ± 0.4e−3 22 1032
PLRNN VI 0.94 ± 0.004 18.2 ± 0.04 6.4e−1 ± 0.1e−1 30 1020
PLRNN TF 0.994 ± 0.002 0.5 ± 0.08 4.3e−3 ± 0.2e−3 22 1032

EEG Dataset Electroencephalogram (EEG) data were taken from a study by (Schalk et al.,
2000) available at https://physionet.org/content/eegmmidb/1.0.0/. These are
64-channel EEG data obtained from human subjects during different motor and imagery tasks. We
trained the dendPLRNN using BPTT+TF on the ”eyes open” baseline time series from subject 0,
which had a total of 9760 time steps. The signal was standardized and smoothed with a Hann function,
using numpy.hanning and a window length of 15. Results for ground-truth and freely generated
EEG signals from several brain regions are shown in figure S5.

6.4 DETAILS ON DYNAMICAL SYSTEMS BENCHMARKS

Lorenz-63 system The famous 3d chaotic Lorenz attractor with the butterfly wing shape, originally
proposed in (Lorenz, 1963), is defined by
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Figure S5: EEG recordings from frontal, occipital, parietal and temporal lobe vs. freely gener-
ated trajectories, sampled from the dendPLRNN, trained with BPTT (M = 128, B = 50, τ =
10,Mreg/M = 0.5, λ = 1.0).

dx

dt
= σ(y − x) +

dϵ1(t)

dt
,

dy

dt
= x(ρ− z)− y +

dϵ2(t)

dt
, (14)

dz

dt
= xy − βz +

dϵ3(t)

dt
.

Parameters used for producing ground truth data in the chaotic regime were σ = 10, ρ = 28,
and β = 8/3. Process noise was injected into the system by drawing from a Gaussian term
dϵ ∼ N (0, 0.01dt× I).

Bursting neuron model The 3d biophysical bursting neuron model was introduced in (Durstewitz,
2009) and is defined by one voltage and two ion channel gating variables (one slow and one fast):

−CmV̇ = gL (V − EL) + gNam∞(V ) (V − ENa)

+ gKn (V − EK) + gMh (V − EK)

+ gNMDA

[
1 + .33e−.0625V

]−1
(V − ENMDA)

(15)

ḣ =
h∞(V )− h

τh

ṅ =
n∞(V )− n

τn

(16)

The limiting values of the ionic gates are given by

{m∞, n∞, h∞} =
[
1 + e({VhNa,VhK ,VhM}−V )/{kNa,kK ,kM}

]−1

. (17)

We borrowed parameter settings from Schmidt et al. (2021) to place the system into the burst-firing
regime:

Cm = 6µF, gL = 8mS, EL = −80mV, gNa = 20mS, ENa = 60mV, VhNa = −20mV,

kNa = 15, gK = 10mS, EK = −90mV, VhK = −25mV, kK = 5, τn = 1 ms, gM = 25mS

VhM = −15mV, kM = 5, τh = 200 ms, gNMDA = 10.2mS
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Lorenz-96 system The Lorenz-96 is a high-dimensional, spatially extended weather model, also
introduced by Edward Lorenz (Lorenz, 1996):

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F ++

dϵi(t)

dt
, i = 1 . . . N, (18)

with (constant) forcing term F . F = 8 is a common choice that leads to chaotic behavior. Process
noise was added as for the Lorenz-63 system, dϵ ∼ N (0, 0.01dt× I). In our simulations we used
N = 10, but in principle the system allows for arbitrary dimensionality.

Neural population model A larger-scale neural population model was recently introduced in
Landau & Sompolinsky (2018) to examine the effect of structured connectivity on top of a randomly
initialized network matrix. Specifically, an independently Gaussian distributed weight structure was
combined with a rank-1 component with coupling strength J1. The dynamics of the single unit
currents were defined as

dh

dt
= −h+ Jϕ(h) +

J1√
N

ξvTϕ(h), (19)

where ϕ(h) = tanh(h(t)). We produced a 50-dimensional chaotic network model based on the
code provided in Landau & Sompolinsky (2018) using J1 = 0.09 and seeding the random number
generator with 35.

The Lorenz-63 and Lorenz-96 systems were simulated using scipy.integrate, while for the
bursting neuron and neural population model we used the code provided in Schmidt et al. (2021) and
Landau & Sompolinsky (2018), respectively.

6.5 THEORETICAL ANALYSIS

Consider the PLRNN with linear spline basis expansion as defined by Eq. 1, Eq. 4, reproduced here
for convenience:

zt =Azt−1 +W

B∑
b=1

αb max(0, zt−1 − hb) + h0 +Cst + ϵt, (20)

where ϵt ∼ N(0,Σ), E[ϵt, ϵ
T
t′ ] = 0 for t ̸= t′, αb ∈ R are scalar weighting factors and hb ∈ RM

different ReLU “activation thresholds”, and all other parameters are as in conventional PLRNNs
(Koppe et al., 2019).

Defining

D
(b)
Ω(t−1)(zt−1 − hb) := max(0, zt−1 − hb), (21)

Eq. 20 can be rewritten as

zt =

(
A+W

B∑
b=1

αb D
(b)
Ω(t−1)

)
zt−1

+ W

B∑
b=1

αb D
(b)
Ω(t−1) (−hb) + h0 + Cst + ϵt, (22)

where D
(b)
Ω(t−1) = diag

(
d
(b)
1,t−1, d

(b)
2,t−1, · · · , d

(b)
M,t−1

)
are diagonal binary indicator matrices with

d
(b)
m,t−1 = 1 if zm,t−1 > hm,b and 0 otherwise.
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6.5.1 FIXED POINTS AND n-CYCLES OF SYSTEM EQ. 22

Defining

DB
Ω(t−1) :=

B∑
b=1

αb D
(b)
Ω(t−1),

hB
Ω(t−1) :=

B∑
b=1

αb D
(b)
Ω(t−1)(−hb), (23)

WB
Ω(t−1) := A+W DB

Ω(t−1),

and considering the autonomous system (i.e., without external inputs or noise terms), Eq. 22 can be
rewritten as

zt = WB
Ω(t−1) zt−1 +W hB

Ω(t−1) + h0. (24)

Fixed points and cycles of Eq. 20, and their eigenvalue spectra, can now be computed in a way
analogous to standard PLRNNs. Specifically, solving the equation F (z∗1) = z∗1, fixed points of the
dendPLRNN are given by

z∗1 =
(
I −WB

Ω(t∗1)

)−1[
W hB

Ω(t∗1) + h0

]
, (25)

where z∗1 = zt∗1 = zt∗1−1, and det(I −WB
Ω(t∗1)) = PWB

Ω(t∗1)
(1) ̸= 0, i.e. WB

Ω(t∗1) has no

eigenvalue equal to 1.

For n > 1, an n-cycle with periodic points {z∗n, F (z∗n), F 2(z∗n), · · · , Fn−1(z∗n)} of map F can
be obtained by solving Fn(z∗n) = z∗n. Therefore, in order to find the periodic points, we first
compute Fn in the following way:

zt = F (zt−1) = WB
Ω(t−1) zt−1 +W hB

Ω(t−1) + h0,

zt+1 = F 2(zt−1) = F (zt) = WB
Ω(t) W

B
Ω(t−1) zt−1 +

(
WB

Ω(t) W hB
Ω(t−1) + W hB

Ω(t)

)
+
(
WB

Ω(t) + I
)
h0,

zt+2 = F 3(zt−1) = F (zt+1) = WB
Ω(t+1)W

B
Ω(t)W

B
Ω(t−1) zt−1 +

(
WB

Ω(t+1)W
B
Ω(t)WhB

Ω(t−1)

+ WB
Ω(t+1)WhB

Ω(t) +WhB
Ω(t+1)

)
+
(
WB

Ω(t+1)W
B
Ω(t) + WB

Ω(t+1) + I
)
h0,

...

zt+(n−1) = Fn(zt−1) =

n+1∏
i=2

WB
Ω(t+n−i) zt−1 +

n∑
j=2

[ n−j+2∏
i=2

WB
Ω(t+n−i) W hB

Ω(t+j−3)

]

+ WhB
Ω(t+n−2) +

( n∑
j=2

n−j+2∏
i=2

WB
Ω(t+n−i) + I

)
h0, (26)

where
n+1∏
i=2

WB
Ω(t+n−i) = WB

Ω(t+n−2)W
B
Ω(t+n−3) · · ·W

B
Ω(t−1).

Defining t+ n− 1 =: t∗n, the periodic point z∗n of the n-cycle of F can now be obtained as the
fixed point of the n-times iterated map Fn as

z∗n =

(
I −

n∏
i=1

WB
Ω(t∗n−i)

)−1( n∑
j=2

[ n−j+1∏
i=1

WB
Ω(t∗n−i)WhB

Ω(t∗n−n+j−2)

]
+ WhB

Ω(t∗n−1)
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+
( n∑

j=2

n−j+1∏
i=1

WB
Ω(t∗n−i) + I

)
h0

)
, (27)

where z∗n = zt∗n = zt∗n−n, if (I −
∏n

i=1 W
B
Ω(t∗n−i)) is invertible, i.e.

det

(
I −

n∏
i=1

WB
Ω(t∗n−i)

)
= P∏n

i=1 WB
Ω(t∗n−i)

(1) ̸= 0,

which implies WΩ∗n :=
∏n

i=1 W
B
Ω(t∗n−i) has no eigenvalue equal to 1.

Remark 1. These results about fixed points and n-cycles also hold for the mean-centred dendPLRNN.
This can easily be seen by defining WB

Ω(t−1) := A+W DB
Ω(t−1) M and noting that the elements

of D(b)
Ω(t−1) are now determined by the mean-centred latent states. That is d(b)m,t−1 = 1 if zm,t−1 −

1
M

∑M
j=1 zj,t−1 > hm,b and 0 otherwise. The rest of the calculations then proceeds as above.

6.5.2 SUB-REGIONS AND DISCONTINUITY BOUNDARIES CORRESPONDING TO SYSTEM EQ. 22

Consider system Eq. 22 without external input and noise terms. Denoting hb =
(h1,b, h2,b, · · · , hM,b)

T in Eq. 22, for b = 1, 2, · · · , B, we can order the elements hj,1, hj,2, · · · , hj,B

for every j ∈ {1, 2, · · · ,M}. Without loss of generality, let

hj,1 < hj,2 < · · · < hj,B , j = 1, 2, · · · ,M. (28)

Then, for every j, we define the intervals Ij,b as follows:

Ij,1 := (−∞, hj,1],

Ij,b := (hj,b−1, hj,b], b = 2, 3, · · · , B, (29)

Ij,B+1 := (hj,B ,+∞).

By definition of D(i)
Ω(t−1) in Eq. 22, the phase space is separated into (B + 1)M sub-regions by

MB(B+1)M−1 hyper-surfaces as discontinuity boundaries. Every sub-region can be defined by the
thresholds hb as Cartesian product of suitable intervals in Eq. 29 for j ∈ {1, 2, · · · ,M}. (Note that if
in Eq. 28 we had ” ≤ ” instead of strict inequalities ” < ”, obviously the number of intervals, hence
sub-regions, would decrease.) In each sub-region the matrices D(b)

Ω(t−1), b = 1, 2, · · · , B, have a
different configuration. Therefore, in Eq. 24 there are (B + 1)M different forms for DB

Ω(t−1), and so
for WB

Ω(t−1) and hB
Ω(t−1) as well. Hence, indexing DB

Ω(t−1), W
B
Ω(t−1) and hB

Ω(t−1) as DB
(r), W

B
(r)

and hB
(r) for r ∈ {1, 2, · · · , (B + 1)M}, Eq. 22 can be written as

zt = WB
(r) zt−1 +W hB

(r) + h0. (30)

To visualize the sub-regions and their borders, let for example M = 2 and B = 2. In this case there
are 9 sub-regions divided by 12 borders. As illustrated in Fig. 6.5.2, there are different matrices
D

(b)
Ω(t−1), b = 1, 2, and DB

(r) = D2
(r), r = 1, 2, · · · , 9, for each sub-region.

6.5.3 BOUNDED ORBITS ARE COMPATIBLE WITH THE MANIFOLD ATTRACTOR
REGULARIZATION

Proposition 2. The results of Theorem 2 are also true when the manifold-attractor regularization,
Eq. 6, is strictly enforced for the dendPLRNN, Eq. 10.

Proof. Assume A, W , ϕ̃(zt−1) (see proof of Theorem 2 in Appx. 6.5.6 for the definition) and h0

have the partitioned forms

A =

 Ireg OT

O Anreg

 , W =

 Oreg OT

S Wnreg

 ,
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Figure S6: Example of different sub-regions and related matrices D(b)
Ω(t−1), b = 1, 2, and DB

(r), r =

1, 2, · · · , 9, for M = 2 and B = 2. Here, it is assumed that the components of h1 = (h1,1, h2,1)
T

and h2 = (h1,2, h2,2)
T satisfy Eq. 28 with ” < ”.

h0 =

 hreg
0

hnreg
0

 , ϕ̃(zt−1) =

 ϕ̃reg(zt−1)

ϕ̃nreg(zt−1)

 , (31)

where IMreg×Mreg
=: Ireg ∈ RMreg×Mreg ,OMreg×Mreg

=: Oreg ∈ RMreg×Mreg , O,S ∈
R(M−Mreg)×Mreg , the sub-matrices A{Mreg+1:M,Mreg+1:M} =: Anreg ∈ R(M−Mreg)×(M−Mreg)

and W{Mreg+1:M,Mreg+1:M} =: Wnreg ∈ R(M−Mreg)×(M−Mreg) are diagonal and off-diagonal

respectively. Furthermore, hreg
0 , ϕ̃reg(zt−1) ∈ RMreg and h

{Mreg+1:M,Mreg+1:M}
0 =: hnreg

0 ,
ϕ̃{Mreg+1:M,Mreg+1:M}(zt−1) =: ϕ̃nreg(zt−1) ∈ RM−Mreg .

In this case ∥A∥ = σmax(A) = max{1, σmax(Anreg)} and∥∥∥Aj W ϕ̃(zT−1−j)
∥∥∥ =

∥∥∥∥∥∥
 O

Aj
neg S ϕ̃nreg(zt−1) +Aj

neg Wneg ϕ̃nreg(zt−1)

∥∥∥∥∥∥
=
∥∥∥Aj

neg S ϕ̃nreg(zt−1) +Aj
neg Wneg ϕ̃nreg(zt−1)

∥∥∥ ,
∥∥Aj W h0

∥∥ =

∥∥∥∥∥∥
 O

Aj
neg S hnreg

0 +Aj
neg Wneg h

nreg
0

∥∥∥∥∥∥
=
∥∥Aj

neg S hnreg
0 +Aj

neg Wneg h
nreg
0

∥∥ . (32)

Thus, for σmax(Anreg) < 1

∥zT ∥ ≤ ∥A∥T−1 ∥z1∥ +

T−2∑
j=0

∥∥∥Aj W ϕ̃(zT−1−j)
∥∥∥+ T−2∑

j=0

∥∥Aj h0

∥∥

≤ ∥z1∥ +
(
c̃+ ∥h0∥

)(
∥S∥+ ∥Wneg∥

) T−2∑
j=0

∥Aneg∥j
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=

(
c̃+ ∥h0∥

)(
∥S∥+ ∥Wneg∥

)
1− ∥Aneg∥

< ∞. (33)

6.5.4 PROOF OF PROPOSITION 1

Proof. For A = (aij) ∈ RM×M , W = (wij) ∈ RM×M , ϵt = (ϵ1,t, ϵ2,t, · · · , ϵM,t)
T, st =

(s1,t, s2,t, · · · , sM,t)
T and C = (cij) ∈ RM×M , writing Eq. 22 in scalar form yields

zl,t =

M∑
j=1

aljzj,t−1 +

M∑
j=1

wlj

B∑
b=1

αb d
(b)
j,t−1[zj,t−1 − hj,b] + hl,0 +

M∑
j=1

clj sj,t + ϵl,t

=

M∑
j=1

(
aljzj,t−1 + wlj

B∑
b=1

αb d
(b)
j,t−1[zj,t−1 − hj,b]

)
+ hl,0 +

M∑
j=1

clj sj,t + ϵl,t

=:

M∑
j=1

fl,j(zj,t−1) + hl,0 +

M∑
j=1

clj sj,t + ϵl,t =: Fl(zt−1), l = 1, 2, · · · ,M. (34)

Using this, we can write Eq. 22 in the vector form

zt =
(
F1(zt−1), F2(zt−1), · · · , FM (zt−1)

)T
. (35)

We show that every Fl is continuous and so Eq. 22 is a continuous PWL map. For this purpose, by
Eq. 34, it suffices to prove that every fl,j(zj,t−1) is continuous. According to the definition of the
intervals Ij,b, Eq. 29, for any j ∈ {1, 2, · · · ,M} we have

zj,t−1 ∈ Ij,1 ⇒ d
(b)
j,t−1 = 0 ∀ b = 1, 2, · · · , B,

zj,t−1 ∈ Ij,s ⇒


d
(b)
j,t−1 = 1, b = 1, 2, · · · , s− 1

d
(b)
j,t−1 = 0, b = s, s+ 1, · · · , B

s = 2, 3, · · · , B,

zj,t−1 ∈ Ij,B+1 ⇒ d
(b)
j,t−1 = 1 ∀ b = 1, 2, · · · , B. (36)

Hence, for l, j = 1, 2, · · · ,M , each function fl,j(zj,t−1) can be stated as

fl,j(zj,t−1) =



f
(1)
l,j = alj zj,t−1; zj,t−1 ∈ Ij,1

f
(2)
l,j = (alj + α1 wlj) zj,t−1 − α1 wljhj,1; zj,t−1 ∈ Ij,2

...

f
(B)
l,j = (alj + wlj

∑B−1
b=1 αb) zj,t−1 − wlj

∑B−1
b=1 αb hj,b; zj,t−1 ∈ Ij,B

f
(B+1)
l,j = (alj + wlj

∑B
i=1 αb) zj,t−1 − wlj

∑B
b=1 αb hj,b; zj,t−1 ∈ Ij,B+1

(37)

Since for every b = 1, 2, · · · , B,

lim
zj,t−1→hj,b

f
(b)
l,j (zj,t−1) = lim

zj,t−1→hj,b

f
(b+1)
l,j (zj,t−1) = f

(b)
l,j (hj,b), (38)

each function fl,j(zj,t−1) is continuous. Hence, Eq. 22 is a continuous PWL map in z (but has
discontinuities in its Jacobian matrix across the borders). Because of these properties, all the results
established for standard PLRNNs in Monfared & Durstewitz (2020a;b); Schmidt et al. (2021) apply
to the dendPLRNN as well, only that the sub-regions and discontinuity boundaries are different.
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6.5.5 PROOF OF PROPOSITION 1

Proof. Defining z̃t as B identical copies of zt,

z̃t =



z̃1,t
z̃2,t

...
z̃M,t

z̃M+1,t

...
z̃BM,t


:=


zt
zt
...
zt


BM×1

(39)

and likewise

h̃ =



h̃1

h̃2

...
h̃M

h̃M+1

...
h̃BM


=


h1

h2

...
hB


BM×1

, h̃0 =



h̃0,1

h̃0,2

...
h̃0,M

h̃0,M+1

...
h̃0,BM


=


h0

h0

...
h0


BM×1

ÃBM×BM = diag
(
AM×M ,AM×M , · · · ,AM×M︸ ︷︷ ︸

B times

)
,

W̃BM×BM =



α1WM×M α2WM×M . . . αBWM×M

α1WM×M α2WM×M . . . αBWM×M

...
...

. . .
...

α1WM×M α2WM×M . . . αBWM×M


,

C̃st =



c̃s1,t
c̃s2,t

...
c̃sM,t

c̃sM+1,t

...
c̃sBM,t


=


Cst
Cst

...
Cst


BM×1

, ϵ̃t =



ϵ̃1,t
ϵ̃2,t

...
ϵ̃M,t

ϵ̃M+1,t

...
ϵ̃BM,t


=


ϵt
ϵt
...
ϵt


BM×1

(40)

one can rewrite the dendPLRNNfrom Eq. 20 as

z̃t = Ãz̃t−1 + W̃ max(0, z̃t−1 − h̃) + h̃0 + C̃st + ϵ̃t. (41)

Now performing the substitution

∀ t ẑt ← z̃t − h̃, (42)

Eq. 41 can be rewritten as the M ×B-dimensional “conventional” PLRNN Eq. 5 with

ĥ0 =
(
Ã− I

)
h̃ + h̃0. (43)
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6.5.6 PROOF OF THEOREM 2

Proof. It can easily be shown that for every i ∈ {1, 2, · · · ,M}

αb

[
max(max(0, zi,t−1 − hi,b)−max(0, zi,t−1)

]
∈

{
[−αbhib , 0] if sgn(αb) = sgn(hi,b)

[0, αbhi,b] else
.

(44)

By defining

B∑
b=1

αb

[
max(0, zt−1 − hb)−max(0, zt−1)

]
:= ϕ̃(zt−1) =

(
ϕ̃1(zt−1), · · · , ϕ̃M (zt−1)

)T
,

(45)

and

cup
i,b =

{
0 if sgn(αb) = sgn(hi,b)

αbhi,b else
, clow

i,b =

{
−αbhi,b if sgn(αb) = sgn(hi,b)

0 else
, (46)

we can conclude that
clowi ≤ ϕ̃i(zt−1) ≤ cupi ,

where c
low/up
i =

∑B
b=1 c

low/up
i,b . For ci = max{|clowi |, |c

up
i |} we have

ϕ̃i(zt−1)
2 ≤ c2i ,

and so letting c = max{c1, c2, · · · , cM} yields

∥∥∥ϕ̃(zt−1)
∥∥∥ =

√√√√ M∑
i=1

(
ϕ̃i(zt−1)

)2 ≤
√√√√ M∑

i=1

c2 := c̃. (47)

Since

zt = Azt−1 + W ϕ̃(zt−1) + h0, (48)

for T ∈ N and t = 2, · · · , T , computing z2, z3, · · · , zT recursively leads to

z2 = Az1 + W ϕ̃(z1) + h0

z3 = A2 z1 + AW ϕ̃(z1) +W ϕ̃(z2) +
[
A+ I

]
h0

...

zT = AT−1 z1 +

T−2∑
j=0

Aj W ϕ̃(zT−1−j) +

T−2∑
j=0

Aj h0. (49)

Therefore, by Eq. 47, for every T ≥ 2, we have

∥zT ∥ ≤ ∥A∥T−1 ∥z1∥ + c̃ ∥W ∥
T−2∑
j=0

∥A∥j +
T−2∑
j=0

∥A∥j ∥h0∥ . (50)

If σmax(A) < 1, then lim
T→∞

∥A∥T−1
= 0 and

lim
T→∞

∥zT ∥ ≤ c̃ ∥W ∥
∞∑
j=0

∥A∥j +
∞∑
j=0

∥A∥j ∥h0∥ =
c̃ ∥W ∥+ ∥h0∥

1− ∥A∥
< ∞. (51)
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