
DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Control

Guiliang Liu * 1 Yueci Deng * 2 Runyi Zhao 1 Huayi Zhou 1 Jian Chen 2 Jietao Chen 2 Ruiyan Xu 1

Yunxin Tai 2 Kui Jia 1 2

Abstract

A critical prerequisite for achieving generalizable
robot control is the availability of a large-scale
robot training dataset. Due to the expense of
collecting realistic robotic data, recent studies
explored simulating and recording robot skills
in virtual environments. While simulated data
can be generated at higher speeds, lower costs,
and larger scales, the applicability of such simu-
lated data remains questionable due to the gap
between simulated and realistic environments.
To advance the Sim2Real generalization, in this
study, we present DexScale, a data engine de-
signed to perform automatic skills simulation and
scaling for learning deployable robot manipula-
tion policies. Specifically, DexScale ensures the
usability of simulated skills by integrating diverse
forms of realistic data into the simulated envi-
ronment, preserving semantic alignment with the
target tasks. For each simulated skill in the envi-
ronment, DexScale facilitates effective Sim2Real
data scaling by automating the process of do-
main randomization and adaptation. Tuned by the
scaled dataset, the control policy achieves zero-
shot Sim2Real generalization across diverse tasks,
multiple robot embodiments, and widely studied
policy model architectures, highlighting its im-
portance in advancing Sim2Real embodied intel-
ligence. The project webpage at: https://edem-
ai.github.io/dexscale.github.io/.

1. Introduction
A key milestone in advancing modern AI systems is the
development of embodied intelligence, which aims to seam-
lessly integrate an agent’s physical body, sensory perception,
and environment into its learning, reasoning, and decision-

*Equal contribution 1School of Data Science, The Chinese
University of Hong Kong, Shenzhen 2DexForce, Shenzhen. Corre-
spondence to: Kui Jia <kuijia@cuhk.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

DexScale
Simulator Data ModelGenerate

Project

Deploy

Finetune

Figure 1: An example of using DexScale. Given a human
video, DexScale simulates a robot skill dataset for training
deployable control policy without requiring realistic data.

making processes (Paolo et al., 2024). In recent years,
robots have emerged as a widely studied form of embodi-
ment (Duan et al., 2022). In principle, robot control skills
can be highly versatile—generalizing across various do-
mains and incorporating multiple forms of sensory data.
Prioritizing the availability of sensors and the impact of
real-world application, we primarily focus on advancing
visuomotor robotic learning for dexterous manipulation.

Many recent studies have proposed learning-based systems
for manipulating various object based on image sensor sig-
nals. For example, modular approaches first predict affor-
dances, such as grasp poses (Mousavian et al., 2019; Sunder-
meyer et al., 2021; Wu et al., 2020; Jiang et al., 2021; Fang
et al., 2023) or keypoints (Manuelli et al., 2019; Qin et al.,
2020; Mo et al., 2021; Yuan et al., 2024), for different tasks
and train a low-level policies to complete these task. On
the other hand, end-to-end approaches aim at learning a pol-
icy model that directly maps visual inputs to robot actions
methods (Levine et al., 2016; Zhang et al., 2018; Florence
et al., 2020; Chi et al., 2023). While these methods have
promising performance in specific scenarios, the learned
skills lack generalizability to diverse environments, making
them unsuitable for deploying in the wild.

With advancements in learning algorithms, large-scale
datasets, and hardware systems, large foundation models
have achieved human-level performance across a wide vari-
ety of environments and downstream tasks. Their success
inspired the construction of foundation models for robot
control such as RDT (Liu et al., 2024b), Open-VLA (Kim

1

https://edem-ai.github.io/dexscale.github.io/
https://edem-ai.github.io/dexscale.github.io/

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills

et al., 2024), ACT (Zhao et al., 2023), and Octo (Team et al.,
2024). Training these models depends on massive amounts
of data. Apart from the text and image data readily available
on the internet, learning robotic control policies requires
multi-modal sensory signals, robot self-states (i.e., propri-
oception), action trajectories for end-effectors, and body
joints, all situated in a calibrated 3D space with real-world
physics. It often requires structured pipelines or specially
designed equipment to generate such datasets.

Although previous works have developed real-world data
collection systems for robotic action trajectories (Zhao et al.,
2023), these systems often rely on costly equipment and sub-
stantial manpower. Furthermore, in the absence of standard-
ized data collection protocols, significant effort is required
to align datasets collected from different systems. To over-
come these limitations, an alternative method is data synthe-
sis based on the simulated robot learning environment. In
principle, simulated data generation can produce an infinite
amount of robot skills (Wang et al., 2024), significantly ad-
dressing the ”data hunger” challenge in training large-scale
robotic control policy. However, skills trained on simulation
data face significant challenges when deployed to real-world
environments due to: 1) Semantic Mismatch: There is no
guarantee that the semantics of the simulated environment
align with the target environment. A policy trained in a mis-
aligned simulation is unlikely to be successfully deployed
in practice. 2) Simulation Discrepancy: Despite substantial
advancements in simulators with physics-realistic and photo-
realistic rendering (Todorov et al., 2012; Xiang et al., 2020;
Makoviychuk et al., 2021), discrepancies between simulated
and real-world environments are inevitable, continuing to
hinder deployment performance.

In this paper, we introduce a data engine, DexScale, to ad-
dress these challenges and facilitate the training of Sim2Real
transferable dexterous manipulation policies based on visual
observations. Figure 1 illustrates an example application of
DexScale. Given task-descriptive observations (e.g., human
demonstration), DexScale generates a simulated dataset,
based on which the robot control policy can generalize to
realistic tasks in a zero-shot manner.

To ensure semantic alignment, DexScale introduces a data
projection mechanism that enables practitioners to incor-
porate heterogeneous formats of environmental and action
priors from the target tasks into the simulator. These priors
capture both static features (e.g., object types and layouts)
and dynamic features (e.g., human demonstrations and in-
teractions with objects), enabling the simulator to generate
desired environments for learning preferable skills in an
effective and reliable manner.

To address the Sim2Real discrepancy, DexScale employs a
strategic data scaling approach, incorporating an automatic
domain randomization process to generate diverse learning

configurations. This enables DexScale to actively discover
effective robot control trajectories across a wide range of
scenarios. Additionally, to remove task-irrelevant features
from the dataset, DexScale adapts visual sensory data from
both real and virtual environments into object-oriented and
pose-affordance representations. The resulting trajectory
dataset facilitates the development of imitation policies that
can be seamlessly deployed in real-world applications.

We demonstrate that the DexScale pipeline can be seam-
lessly integrated into the training of widely studied em-
bodied robot policies, including Acting Transformer (Zhao
et al., 2023), Diffusion Policy (Chi et al., 2023), and Robot
Diffusion Transformer (Liu et al., 2024b). By leveraging
DexScale, these methods achieve zero-shot deployment for
desired tasks. Such deployments can be effectively scaled
across various robot configurations (e.g., single-arm and
dual-arm setups with different robot models) and diverse
manipulation tasks, including object grasping, articulated
object (e.g., box) manipulation, and table rearrangement.
With extensive performance evaluation and case studies, we
demonstrate that DexScale can significantly advance the
Sim2Real learning of deployable policies across multiple
scenarios.

2. Related works
Large-Scale Dataset for Robotic Learning. Building
large-scale datasets is essential to training generalizable
robotic policies. For instance, to support the development
of adaptable robotic controllers, RoboNet (Dasari et al.,
2019) and D4RL datasets (Fu et al., 2020) capture rich
robot actions across different manipulation tasks. In re-
cent years, to enhance the training of end-to-end foundation
models, extensive data collection systems have been built
across different scenarios, including object manipulation
(e.g., Bridgedata (Ebert et al., 2022; Walke et al., 2023))
and language conditioned and vision-based tasks (e.g., RT-
1 (Brohan et al., 2023) and RT-2 (Zitkovich et al., 2023)). To
address the scarcity of robot training data, MimicGen (Man-
dlekar et al., 2023) and DexMimicGen (Jiang et al., 2025)
leverage scaled human teleoperation motions to generate
robotic manipulation data. To further improve generaliza-
tion performance, RT-X (O’Neill et al., 2024) introduced
the Open X-Embodiment (OXE) datasets, which are cross-
domain and were collected from multiple types of robots
across numerous institutions. A fundamental challenge in
constructing real-world datasets lies in the high costs asso-
ciated with equipment and manpower.

Environment Simulation for Robotic Learning. Instead
of collecting data from real-world, an alternative method
is generating robot skills (e.g., action trajectories) from a
simulated environment based on physics engines, such as
MuJoCo (Todorov et al., 2012), PyBullet (Coumans & Bai,

2

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills

2016–2021), Isaac Gym (Makoviychuk et al., 2021) and
Sapien (Xiang et al., 2020). In this context, numerous vir-
tual environments have been proposed for a variety of tasks,
including dexterous manipulation (e.g., RLBench (James
et al., 2020), ManiSkill (Tao et al., 2024), and Robo-
Casa (Nasiriany et al., 2024)), robot skill imitation (e.g.,
RoboMimic (Mandlekar et al., 2021)), physical interactions
(e.g., ThreeDWorld (Gan et al., 2022)), rearrangement (Ba-
tra et al., 2020), high-level reasoning (e.g., Alfred (Shridhar
et al., 2020) and CabiNet (Murali et al., 2023)), and genera-
tive skill learning (e.g. GenAug (Chen et al., 2023b), Robo-
Gen (Wang et al., 2024) and GenSim (Hua et al., 2024)).
To better reflect the realistic control environment, Habitat
3.0 (Puig et al., 2024) and AI2-THOR (Kolve et al., 2017)
enable embodied agents to interact with photo-realistic en-
vironments for navigation and manipulation tasks. The con-
tinuously works ProcTHOR (Deitke et al., 2022), expand
AI2-THOR with procedurally generated environments to
enhance generalization. These simulators aim to benchmark
robotic skill learning by offering diverse environments and
tasks. However, transferring the learned control skills to
real-world scenarios often requires additional fine-tuning
with realistic data. The development of simulators for zero-
shot Sim2Real deployment remains a challenge.

Sim2Real Generalization. In the application of robot con-
trol, Sim2Real generalization techniques often involve: 1)
Domain randomization tackles Out-of-Distribution (OoD)
scenarios in practical applications augmenting the training
dataset with randomized visual and physical features (Chen
et al., 2022a). To determine the scale of randomization,
recent studies consider updating the distribution of random-
ization parameters by automatic learning (OpenAI et al.,
2019), active exploration (Mehta et al., 2019), Bayesian
update (Muratore et al., 2021b;a), offline inference (Ti-
boni et al., 2023) and continual learning (Josifovski et al.,
2024). 2) Domain adaption addresses the gap between
simulated and real-world domains by mapping them into
a feature space. Commonly studied spaces include depth
images (Agarwal et al., 2022; Cheng et al., 2024), point
clouds (Lobos-Tsunekawa & Harada, 2020; Qin et al., 2022;
Chen et al., 2023a; Hua et al., 2024), and environmental
dynamics (Memmel et al., 2024). 3) Feature alignment is
essential when the learned policy depends on privileged
information that is inaccessible in real-world applications.
A commonly studied approach is knowledge distillation,
where skills are transferred from the learned policy to a de-
ployable policy using a teacher-student framework (Kumar
et al., 2021; Qi et al., 2022; Agarwal et al., 2022; Cheng
et al., 2024).

3. Problem Formulation
Simulation Environments for Robotic Learning. The goal
of DexScale is to learn robot control skills based on simu-

lated environments. These environments can be modeled as
an episodic Markov Decision Process (MDP), represented
as M = (S,A,PT , R, γ, ρ0), where:

• a state st ∈ S captures the semantic information of a
scene, encompassing the configuration (e.g., layouts, ap-
pearance, and physical characteristics) of various types of
objects and the robots subject to control.

• an action at ∈ A define control signals for robot. The
common representations of action include the end effec-
tor pose of the robot, the angle of each joint, the torque
applied to each joint, and the velocity of each joint.

• Transition function PT characterizes the impact of robot
action at to the configuration of current state st, thereby
projecting the st to a new scene represented by st+1 .

• Reward function R(s, a) captures various degrees of opti-
mality of the robotic agent in completing targeted tasks
after acting a in state s. For instance, R(s, a) can assess
”hard” optimality (i.e., sparse rewards), which determines
whether a task is completed (e.g., whether the target object
is successfully grasped) or ”soft” optimality (i.e., dense
rewards), which measures the degree of task completion
(e.g., how close the gripper is to the target object).

• ρ0 denotes the initial state distribution. Our DexScale
support projecting the initial state from realistic scene or
automatically generating a new scene.

• γ ∈ (0, 1] denotes the discounting factor which weights
the importance of future rewards relative to immediate
rewards in decision-making processes such that a lower γ
emphasizes immediate rewards more heavily, and a higher
γ gives greater significance to future rewards.

Note that we consider an episodic MDP with stationary
policy π(a|s), which depends only on the current state and
is invariant to the decision time step t. Additionally, in
many environments, robot sensors only observe partial in-
formation about the underlying states. In this case, a com-
mon method is to embed the historical observations into
the state, such that st = [ot, ot−1, . . .], where ot represents
the partial observation at time step t. As a data engine,
DexScale supports the automatic discovery of skills, denot-
ing the sequence of action trajectory for finishing a task
τ = [s0, a0, . . . , sT , aT]. To acquire these skills, DexScale
automatically decomposes long-term tasks (e.g., cooking a
meal) into atomic tasks (e.g., chopping potatoes). For tasks
with a ”hard” optimality (e.g., whether the target object is
successfully grasped), DexScale primarily relies on motion
planning techniques (e.g., antipodal point detection (Chen &
Burdick, 1993) combined with inverse kinematics (D’Souza
et al., 2001)). For tasks with ”soft” optimality (e.g., how
close the gripper is to the target object), DexScale sup-
ports the automatic design of dense reward functions (Ma
et al., 2024) and employs Reinforcement Learning (RL)
algorithms (Sutton, 2018) to acquire control skills.

3

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills

Image

Tele-
operation

Video

Heterogeneous Data
Projection

Action
Trajectory

Objects

Actions

Environment Simulation

Pro-
ject

Sim2Real Data Scaling

Read Config

DR Features Ranking

#1 #2 #N

Auto.
DR

LLM

AIDR

SADR

Policy Fine-TuningReinforcement Learning, Trajectory Optimization, and Motion Planning

Feedback

Sim2Real Deployment

Layouts

Scene

DA

… Obs.-Action Trajectories

…

Deployable model

Imitate

Figure 2: The pipeline of DexScale operates as a data engine, taking task-descriptive data as input and generating a skill
dataset to support Sim2Real transfer. This enables the zero-shot deployment of robot policies in realistic environments. The
details of these components are introduced in Section 4.

Sim2Real Domain gap. The skills learned in a simulated
environment often face a significant domain gap when ap-
plied to the deployment environment (Xie et al., 2024). In
this section, we systematically analyze the factors that cause
the gap in deploying models trained with simulated data
onto real robots. As it is illustrated in Table 1, we analyze
by inspecting the steps in a simulation-perception-acting
loop. Such analyses would give us insights on how to better
design the simulated robotic learning environment that can
effectively close the Sim2Real gap.

Simulation Stage. A major factor impacting Sim2Real per-
formance is the inaccuracy in simulating real-world sce-
narios. Notably, the semantic information in the simulated
environment often does not align with that of the realistic
environment. For instance, objects may be inaccurately
scaled, either oversized or undersized, and the location and
shapes may not accurately reflect those found in the real
world. More importantly, there is no guarantee that the sim-
ulated environment can fully cover the realistic semantic
distributions, and the disparity between simulated and real-
world environments can result in Out-of-Distribution (OoD)
scenarios during deployment, making the planned motions
less adaptable to the deployment environment.

Perception Stage. A primary application of a simulator is to
replicate or reconstruct perception from realistic sensors. A
critical factor affecting Sim2Real performance during this
process is the inconsistency in hardware setups between the
simulated and real environments (e.g., differences in the
position, orientation, and field of view of cameras).

Acting Stage. Embodied agents control various types of
embodiments (e.g., arm, and hand) by executing robot ac-
tions. In this stage, mismatches between embodiments can
impact deployment. For example, using different robots
during simulation and deployment, or having URDF config-
uration errors, can lead to discrepancies. More importantly,

the physical properties in the realistic environment might
misalign with those in the simulated environment, inducing
inconsistent outcomes of implementing the same action.

Table 1: Features that might induce Domain Gap. The
determination of such parameters is a recent study of the
generalization gap (Xie et al., 2024).

Simulation
Stage

Lighting, Table Texture,
Background, Distractors,

Object Locations, Object Orientations,
Object Texture and Object Shape

Perception
Stage

Camera Position,
Camera Orientation,

Camera Field of View
Acting
Stage

Robot Configuration,
Physics Properties

4. Data Engine for Sim-to-Real Generalization
To acquire robot control skills that effectively bridge the
aforementioned Sim2Real gap, DexScale can serve as an
automated data engine. As shown in Figure 2, DexScale
takes descriptive data (e.g., scenes and demonstrations) from
the target task as input and generates a scalable dataset
that supports the efficient training of Sim2Real-deployable
policies. We detail the design of DexScale in the following.

4.1. Heterogeneous Data Projection
The goal of heterogeneous data projection is to map descrip-
tive observations of the target task from real-world applica-
tions to a simulated environment, ensuring the applicability
of the generated skills. To achieve this, DexScale primarily
supports two key types of projection: scene projection and
action trajectory projection, as detailed below.

Scene Projection. To overcome the Sim2Real gap, a crit-
ical challenge to handle the semantics disparity between
simulated and real-world environments. For example, in the

4

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills

scene constructed by generative simulation, there is no guar-
antee the distribution of objects and their configurations can
semantically align with these in realistic scenarios. To over-
come this limitation, DexScale enables projecting the static
scene information to the simulated environment. Specifi-
cally, inspired by Digital Cousin (Dai et al., 2024), DexScale
extracts relevant per-object information from the input RGB
image. Using this information, DexScale matches each de-
tected object to their ”digital cousins” (i.e., similar objects)
in the asset dataset. For the articulated objects (e.g., draw-
ers and boxes), DexScale can post-process them to create
a fully interactive simulated scene by matching them with
CAD models and the generated objects (Liu et al., 2024a).
Besides the automatic scene project, DexScale provides
user-friendly interfaces to support manual adjustment of the
retrieved objects and the generated scenes. This adjustment
is essential if the single-view image can capture only partial
information about the scene (e.g., details on sides not visible
to the camera are unknown) or if the retrieved scene can not
match the realistic semantics.

Hand Gripper
Action Videos End-Effector Pose

Object Mesh

HandAction-Object
Detection

𝑎!

𝑠!Refine
Object

Retarget

Figure 3: The flowchart of action-trajectory projection.

Action-Trajectory Projection. Given an egocentric video
of humans manipulating objects (e.g., picking up a teapot
and pouring tea into a paper cup), DexScale projects actions
and objects from realistic human motion onto robot control
signals within the simulated environment. We illustrate this
process in Figure 3. This action trajectory captures dynamic
information from human motion and can act as the seeding
trajectories for the following skill scaling.

1) Robot-Action Projection. DexScale enables detecting
movements of hand models from video data and retargeting
these models to robotic end effectors, such as grippers and
dexterous hands, thereby transforming human hand poses
into those compatible with robotic devices. Within thin pro-
cess, a significant challenge is the disparity in the Degrees of
Freedom (DoF) between the hand model and the robotic end
effectors. For instance, a robot hand might possess 6 DoFs,
whereas the human hand model features over 20 DoFs. To
align the movements of the human and robotic hands effec-
tively, it is essential to consolidate multiple DoFs from the
human hand into a single DoF of the robotic hand, ensur-
ing minimal impact on model performance. In the case of
retargeting to a gripper, that has only one DoF (either open
or closed), we select two fingers to act as pivotal points for
picking up and placing objects, and then retargeting these
fingers’ movements to the jaw movements of the gripper.

2) Robot-Object Interaction. A crucial prerequisite for ac-
tion projection is reconstructing the objects and their rela-
tionships with the operators (Liu et al., 2024c). For example,
as shown in Figure 3, it is essential to determine the 3D pose
at which the end effectors (e.g., hands) interact with the ob-
jects (e.g., the cup), thereby ensuring the projected action
trajectory can accurately reflect the interaction under real-
world physics. To achieve this goal, DexScale reconstructs
the 3D meshs and the poses of objects from the sequences
of images in the action trajectory video data. The sequence
of object poses, along with the object models, is then jointly
optimized with the poses of the target end effectors captured
in the robot-action projections (as mentioned above), until
they are properly aligned. This process is fully automatic
without any manual intervention. For each image, the goal
of joint optimization is to refine the interaction between ob-
jects and end effectors, accurately capturing realistic contact
dynamics such as grasping forces and stability. DexScale
further refines the trajectory by ensuring smoothness and
plausibility for the sequence of actions. Figure 6 shows an
example of the recovered 3D mesh.

4.2. Environment Simulation for Robot Learning
DexScale enables the conditional generation of a robot learn-
ing environment based on the projected data. This environ-
ment can simulate static and dynamic features by integrating
scenes and action trajectories as described below.

Scene Simulation. DexScale supports the construction of
different scenarios by leveraging scene projection, which
focuses on providing static features such as shape, pose,
appearance, object layout, and other background details.
However, since our scene projection primarily relies on
single-view or multi-view images, there is no guarantee that
the scene is fully observable, nor that these visual observa-
tions capture complete information about the scene. As a
result, in addition to the projected information, DexScale en-
ables the automatic construction of a complete scene based
on the available data. To achieve this, we follow (Wang
et al., 2024; Hua et al., 2024) and leverage large foundation
models, such as GPT-4, to generate the scene configuration
based on the projected information and task description.
DexScale supports retrieving objects in the scene from the
Objaverse-XL dataset (Deitke et al., 2023) or generating
them based on language descriptions. Furthermore, if the
generated scene does not align with practical requirements,
DexScale provides a user-friendly interface that allows users
to manually adjust and refine the generated scenarios.

Action-Trajectory Simulation. The objective of action
simulation is to generate continuous action trajectories for
the robot, enabling it to execute the tasks effectively and
achieve the desired results. To construct such action tra-
jectories, DexScale primarily relies on the projected poses
of end effector extracted from human video, or the robot

5

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills

joint positions collected from tele-operation. For the pro-
jected end-effector poses, DexScale utilizes a generalized
Inverse Kinematics (IK) algorithm to compute the corre-
sponding joint configurations, ensuring precise achievement
of the desired end-effector pose. To maintain a smooth
trajectory, joint-space interpolation is applied across the mo-
tion. In scenarios requiring obstacle avoidance, DexScale
integrates widely used motion planning algorithms, such as
RRT-Connect (Kuffner & LaValle, 2000), to efficiently gen-
erate collision-free trajectory. In applications where action
projection is unavailable, DexScale supports the automatic
design of reward and goal functions by consulting with large
language models (Ma et al., 2024). This enables the RL and
trajectory optimization algorithms to effectively learn robot
control skills. To ensure that the simulated actions align
with the projected action trajectories, DexSca le allows for
the replay and automatic refinement of these trajectories
via learning-based methods. Using these refined trajecto-
ries, we can train an imitation policy πθ0(a|s), for robot
control. However, directly deploying πθ0(a|s) in real-world
applications is challenging due to the existing Sim2Real
gap between the simulated and real-world environments.
To address this issue, DexScale incorporates the following
Sim2Real scaling techniques to bridge this gap.

4.3. Sim2Real Data Scaling
In a simulated environment, various factors can contribute
to the Sim2Real gap (Section 3), undermining the effec-
tiveness of generalizing the learned robot control policy
to real-world applications. To address this gap, DexScale
primarily focuses on establishing a pipeline for automatic
domain randomization and adaptation, as outlined below.

Automatic Domain Randomization. Domain Randomiza-
tion (DR) enables Sim2Real transfer by varying simulated
environments (Chen et al., 2022b). We achieve DR by mod-
ifying the original environment M with configuration ξ,
creating a new environment Mξ. In robotic learning en-
vironments, to better assess the effects of different DRs,
we categorize these DRs based on their impact on agents’
actions in the following.

1) Action-Invariant Domain Randomization (AI-DR). Within
our DexScale, the goal of AI-DR is to prevent the em-
bodied agent from overfitting to the simulated features
that are irrelevant or ineffective in completing a task (e.g.,
the lighting condition on manipulations). By removing
the effects of these features and concentrating only on
essential features for finishing a task, the agent experi-
ences a less complex sim-to-real gap, and the learned skills
have stronger transferability. For these DRs (configured
by ξ), they have limited impact on the agents’ decisions
and movements. To better formulate this consistency, we
assume the optimal actions remain uninfluenced before
and after applying AI-DR to an environment M, so that

π∗
θξ(a|s) = πθ0(a|s) ∀(s, a) ∈ S ×A where π∗

θξ denotes
the optimal policy under the DR environment Mξ.

2) Semantic-Aware Domain Randomization (SA-DR). The
goal of SA-DR is to generalize the embodied agents’ skills
from the source environment M to different variations of
DR environment Mξ′ . This approach allows the agent’s
skills to overcome the Sim2Real gap, provided that the gap
falls within the range of simulated variations. To better
handle these DRs (configured by ξ′), the agent must adapt
the decisions and movements so that the optimal actions may
vary before and after applying SA-DR to an environment
M. The adapted policy π∗,ξ′ can be represented as:

π∗
θξ′ = argmax

π
θξ

′
J (Mξ′ , πθξ′)− Div(πθξ′∥πθ0) (1)

Where J (Mξ′ , ·) denotes the optimality function under
the environment Mξ′ and Div(πθξ′∥π∗

θ0) indicate the di-
vergence between policies πθξ′ and π∗

θ0 . For example, in
the continual learning setting, by setting Div(πθξ′∥π∗

θ0) =

λ∥θξ′ − θ0∥, the objective (1) can effectively represent the
Elastic Weight Consolidation (EWC) objective. More im-
portantly, as opposed to the action invariance in AI-DR, we
must finetune the policy π∗

θ0 based on the updated objective
J (Mξ′ , πθξ′) under the new environment Mξ′ after apply-
ing SA-DR. In this setting, both RL and motion planning
algorithms can be utilized to fine-tune the original policy
and adapt it to the new environment.

Automating DR. Each DR configuration ξ corresponds to
a control policy π∗

θξ , which captures skill for solving the
task under the DR environment Mξ. By generating skills
τ using π∗

θξ , we can construct a Sim2Real dataset DDR.
Based on this dataset, the imitation policy can effectively
bridge the Sim2Real gap, provided that the experimented
DR configurations and their combinations accurately cap-
ture the underlying Sim2Real discrepancies. To achieve
this goal, a critical prerequisite is being able to characterize
the types, ranges, and styles of applied DRs. Within DexS-
cale, our DR selection primarily focuses on the key factors
for the Sim2Real gap (Section 3). For example, given an
environment M, we must first identify which features are
suitable for DR and determine the corresponding types of
DRs, such as AI-DR and SA-DR. Additionally, for a specific
DR parameter ξ, we need to model the distribution of DR
parameters, pϕ(ξ) ∈ ∆Ξ (Chen et al., 2022a). While tradi-
tional simulators often manually specify pϕ(ξ), DexScale
seeks to automate the selection of DR features and mod-
eling pϕ(ξ) conditioning on specific tasks. As illustrated
in Figure 2, DexScale integrates a large foundation model
into the DR process by leveraging its ability to rank DR
features based on the configuration of the simulated envi-
ronment. For each DR configuration ξ, DexScale employs
the ADR algorithm (OpenAI et al., 2019) to calculate and
update pϕ(ξ) by incorporating feedback from the fine-tuned
policies and their outcomes in the environment. Domain

6

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills
H

um
an

D

em
o.

Si
m

2R
ea

l D
at

a
Sc

al
in

g

(Action Trajectory Generated by DexSim × (Size of Dataset)

Po
lic

y
D

ep
lo

ym
en

t

…… …… ……

Domain Gap: DistractorsDomain Gap: Background

Figure 4: Visualizing the input demonstration (top row), examples of the scaled data (middle rows), and the realistic
deployment of the robot policy (bottom row). The Sim2Real domain gaps are background (left) and distractors (right).

randomization alters the size, shape, pose, and texture of
objects during training, enabling the model to generalize its
learned skills to a wide variety of objects. As a result, the
model can effectively handle real-world objects, even if they
differ significantly from those seen in simulation.

Domain Adaption (DA). To more effectively bridge the gap
between simulation and reality, domain adaptation project
the observations from the simulated and realistic environ-
ment to a into a unified target space. DexScale supports
various types of DAs, including 1) Object-Oriented Rep-
resentations, where DexScale excludes background infor-
mation from image observations from RGB cameras and
focuses only on each object. To better capture the geometric
and spatial properties of objects, DexScale can map objects
into point clouds based on their masks within the simulated
environment. 2) Pose Affordance Representations, where
DexScale selects key affordances (e.g., pose) from an action
trajectory, capturing the critical poses necessary to complete
the task. For example, when grasping an object, the affor-
dance represents the gripper’s pose when it first contacts
the object, enabling the robot to complete the task by reach-
ing these poses using inverse kinematics. These prediction
targets, derived from affordance representations, occur less
frequently than full action trajectories, thereby reducing
accumulated errors during deployment. With these meth-
ods, DexScale can map DDR to the post-adaptation dataset
DDR+AR.

4.4. Sim2Real Depolyment
DexScale adopts a data-driven approach to achieve
Sim2Real deployment. Specifically, the deployable policy
is trained by imitating the data trajectories in DDR+AR. Since
DDR+AR captures diverse and rich action trajectories across
various environments, the resulting control policy remains
effective under the Sim2Real gap, provided the realistic envi-
ronment lies within the support of the dataset’s distribution.

In the following experiment section, we demonstrate that
various high-performing imitation models—including ac-
tion transformer policies (Zhao et al., 2023), diffusion poli-
cies (Chi et al., 2023), and Vision-Language-Action (VLA)
policies (Liu et al., 2024b)—can be trained and deployed to
control real-world robots under different environments.

5. Experiments
The pipeline of DexScale is generic and agnostic to simula-
tion platforms (Appendix A.1 shows our specifications). We
evaluate the performance of Sim2Real deployment across
various applications and assess the validity of Real2Sim
projection in terms of action and object mapping by ad-
dressing the following questions: 1) Generalizability: How
effectively does DexScale bridge the Sim2Real gap between
simulated environments and real-world applications? 2)
Scalability: Can the control skills learned by DexScale be
scaled across different models and embodiments?

5.1. Generalizability: Bridging the Sim2Real Gap
Experiment Setting. This experiment aims to quantify
DexScale by how effectively it can overcome the Sim2Real
gap. We first simulate a baseline environment by projecting
the real-world scene into a simulation (via our Real2Sim
projection in Section 4.1) and then manually refining it
to ensure alignment with the realistic setting. Using this
baseline environment, we can modify its parameters and
intentionally introduce the Sim2Real gaps that frequently
occur in practice based on our analysis (see Table 1). We
summarize such modifications in Appendix A.2. DexScale
is then evaluated based on its effectiveness in overcoming
these gaps and acquiring robust skills that can be seamlessly
applied to real-world applications. To gain a deeper under-
standing of DexScale, we conducted an ablation study by
removing either the strategic Domain Adaptation (DA) or
Domain Randomization (DR) components from our DexS-
cale dataset. This resulted in a skill only dataset that records

7

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills

Table 2: Success rates of imitation policies learned by different datasets
under various Sim2Real gaps. For the first eight domain gaps, we employ
the transformer-based policy (Zhao et al., 2023) to tackle grasping tasks.
For the last two domain gaps, we use the diffusion-based policy (Chi et al.,
2023) to address the open-box task.

Dataset Skills Only Skills+DR Skills+DA DexScale
Domain Gap Sim. Real. Sim. Real. Sim. Real. Sim. Real.
Light 64/100 0/10 75/100 4/10 74/100 1/10 73/10 4/10
Object Texture 49/100 1/10 81/100 5/10 75/100 3/10 83/100 6/10
Table Texture 55/100 2/10 81/100 4/10 73/100 2/10 82/100 4/10
Background 67/100 1/10 83/100 3/10 71/100 1/10 82/100 3/10
Distractors 46/100 0/10 65/100 2/10 73/100 2/10 72/100 4/10
Camera Position 72/100 2/10 73/100 4/10 71/100 2/10 80/100 5/10
Camera Orientation 69/100 0/10 74/100 4/10 66/100 0/10 78/100 3/10
Camera Field of View 69/100 1/10 80/100 3/10 66/100 1/10 82/100 6/10
Object Pose 15/100 1/10 33/100 2/10 42/100 3/10 69/100 4/10
Object Shape 11/100 0/10 27/100 2/10 38/100 2/10 61/100 3/10

Table 3: Robot control performance for dif-
ferent tasks under both realistic (upper) and
simulated (lower) environments.

only the action trajectory for the target task in the simu-
lated environment. Additionally, To prevent overfitting, we
augment the skill dataset by adding random noise to skills.

To evaluate the model’s control performance in bridging the
Sim2Real gap, we trained the control model using different
methods and assessed its performance through 100 trials in
the simulated environment and 10 trials in the real-world
environment. The success rates are presented in Table 2. We
found that the Sim2Real data scaling performed by DexS-
cale significantly enhances the control model’s ability to
consistently bridge the domain gap across both simulated
and real-world environments. Removing the designed DA
and DR components leads to a notable decline in perfor-
mance. To better understand the performance of DexScale,
Figure 4 shows keyframes of scaled data and policy de-
ployment in realistic scenarios (Appendix B.2 shows more
examples). To address the domain gap caused by distracting
items (e.g., umbrellas, scissors, or pens not being the target
in the right columns of Figure 4), an interesting observation
is that DexScale not only randomizes different objects but
also backgrounds and textures in the scene. While textures
are not directly related to distractors, they are effectively
in bridging the Sim2Real gap, and DexScale discovers this
relation. To better understand the difficulty of real-world
performance, we include a failure case study on the project
page, highlighting the following common issues: 1) unob-
servable grasping orientation, 2) incorrectly predicted grasp
pose, 3) inaccurate grasp depth prediction, and 4) cross-
chunk jitter.

Comparison with Handcrafted DR. In addition, we inves-
tigate an alternative approach that relies on human expertise
to manually select the type and scale of DR, instead of us-
ing our DexScale. Following the empirical analysis in (Xie
et al., 2024), which ranks the importance of various DR
features, we apply the top-ranked features, 1) camera ori-
entation, 2) table texture, and 3) distractors, to bridge the
Sim2Real gap. We then evaluate model performance under
each setting and report the results accordingly. We observe

that the success rates of pick-and-place tasks in simulation
and the real world are 0.62/0.10, 0.63/0.30, 0.73/0.40, and
0.79/0.56, respectively. This increasing trend highlights
the critical role of automatic DR in improving Sim2Real
transfer performance.

5.2. Scalability across Diverse Tasks and Embodiments
Experiment Setting. A critical prerequisite for developing
a Sim2Real simulator is its ability to scale across diverse
robot control tasks and environments. Unlike most prior
work, which primarily demonstrates realistic performance
with a single embodied robot, our approach emphasizes
cross-embodiment evaluation to comprehensively assess
Sim2Real performance. In this experiment, we evaluate
our approach on four challenging tasks: 1) object grasping,
which requires the robot to accurately detect objects and
predict appropriate grasp poses; 2) paper box manipulation,
involving precise control and planning to sequentially open
all four flaps of a box; 3) dual-arm table rearrangement,
where the robot must reorient both a fork and a spoon to
face the front of the plate and place them accurately around
it; and 4) bottled water pouring, which involves grasping
and reorienting a water bottle to pour water precisely into a
paper cup. For these tasks, we train imitation models using
various architectures, including the transformer-based pol-
icy (Zhao et al., 2023) for grasping, the diffusion policy (Chi
et al., 2023) for manipulation, and Vision-Language-Action
(VLA) models (Liu et al., 2024b) for table rearrangement.
Appendix A.3 reports the specific training configurations.

Figures 4, and 5 illustrate examples of action trajectories
for the tasks of object grasping, box manipulation, and table
rearrangement. To demonstrate the scalability of DexScale,
the control policies are deployed on different robots, includ-
ing two single-arm robots and a dual-arm robot equipped
with wrist-mounted cameras. Figure 3 presents the end-
to-end performance across various tasks, showcasing both
real-to-sim (from task-descriptive data to the simulator) and
sim-to-real (from simulation to real-world deployment) tran-

8

https://edem-ai.github.io/dexscale.github.io/
https://edem-ai.github.io/dexscale.github.io/

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills

sitions. By leveraging the scaled data generated by DexS-
cale, our models consistently outperform baseline meth-
ods across different tasks, model architectures, and robot
platforms, highlighting the scalability and effectiveness of
DexScale.

H
um

an

D
em

o.
Si

m
2R

ea
l D

at
a

Sc
al

in
g

(Action Trajectories Generated by DexSim) ×	𝐾

Po
lic

y
D

ep
lo

ym
en

t

…… …… ……

H
um

an

D
em

o.
Si

m
2R

ea
l D

at
a

Sc
al

in
g

(Action Trajectories Generated by DexSim) ×𝐾

Po
lic

y
D

ep
lo

ym
en

t

…… …… ……

H
um

an

D
em

o.
Si

m
2R

ea
l D

at
a

Sc
al

in
g

(Action Trajectories Generated by DexSim) ×𝐾

Po
lic

y
D

ep
lo

ym
en

t

…… …… ……

Figure 5: Visualizing the human demonstration, scaled tra-
jectories and realistic robot action for the task of opening a
box, table rearrangement and pouring water.

6. Conclusion
We introduce DexScale, a data engine designed to generate
simulated robot action trajectories for learning deployable
control policies by mapping realistic observations into sim-
ulation and utilizing automated domain randomization and

adaptation for data scaling. These capabilities can be ef-
ficiently expanded to accommodate a wide range of tasks,
learning models, and robotic platforms. In future work, we
aim to extend DexScale to more complex robots (e.g., hu-
manoid robots) and long-term tasks (e.g., cooking a meal).

Acknowledgments
This work is supported in part by Science and Technol-
ogy Major Program under grant KJZD20240903104008012,
Guangdong-Shenzhen Joint Research Fund under grant
2023A1515110617, Guangdong Basic and Applied Basic
Research Foundation under grant 2024A1515012103, and
Guangdong Provincial Key Laboratory of Mathematical
Foundations for Artificial Intelligence (2023B1212010001).

Impact Statement
The broader impact of this work lies in its potential to sig-
nificantly advance the field of robotics by addressing one
of its most pressing challenges: the gap between simulated
and real-world environments.

From an ethical perspective, DexScale promotes more inclu-
sive and equitable innovation by making the development of
robotic systems more accessible, even to those with limited
resources. However, as with any technology that advances
automation, there are potential societal consequences to con-
sider. The widespread adoption of robots in tasks such as
manufacturing, service, or even domestic work could lead
to significant shifts in labor markets, raising concerns about
job displacement and economic inequality.

In the long term, DexScale’s ability to scale robotic intelli-
gence across diverse applications could have transformative
societal implications. Robots trained using DexScale could
be deployed in healthcare, disaster response, education, and
other critical areas, amplifying their positive impact on soci-
ety. However, ensuring the ethical use of such robots will
require careful consideration of privacy, safety, and account-
ability. Future research should also explore ways to mitigate
potential biases in simulated datasets to ensure fairness and
reliability in real-world deployments.

References
Agarwal, A., Kumar, A., Malik, J., and Pathak, D. Legged

locomotion in challenging terrains using egocentric vi-
sion. In Conference on Robot Learning, CoRL 2022,
14-18 December 2022, Auckland, New Zealand, volume
205, pp. 403–415. PMLR, 2022.

Batra, D., Chang, A. X., Chernova, S., Davison, A. J., Deng,
J., Koltun, V., Levine, S., Malik, J., Mordatch, I., Mot-
taghi, R., et al. Rearrangement: A challenge for embodied

9

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills

ai. arXiv preprint arXiv:2011.01975, 2020.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis, J.,
Finn, C., Gopalakrishnan, K., Hausman, K., Herzog, A.,
Hsu, J., et al. RT-1: robotics transformer for real-world
control at scale. In Robotics: Science and Systems, RSS,
2023.

Chen, I.-M. and Burdick, J. W. Finding antipodal point
grasps on irregularly shaped objects. IEEE transactions
on Robotics and Automation, 9(4):507–512, 1993.

Chen, S., Xu, H., Li, R., Liu, G., Fu, C., and Liu, S.
SIRA-PCR: sim-to-real adaptation for 3d point cloud
registration. In IEEE/CVF International Conference
on Computer Vision, ICCV 2023, Paris, France, Oc-
tober 1-6, 2023, pp. 14348–14359. IEEE, 2023a. doi:
10.1109/ICCV51070.2023.01324.

Chen, X., Hu, J., Jin, C., Li, L., and Wang, L. Understand-
ing domain randomization for sim-to-real transfer. In
International Conference on Learning Representations,
ICLR. OpenReview.net, 2022a.

Chen, X., Hu, J., Jin, C., Li, L., and Wang, L. Understand-
ing domain randomization for sim-to-real transfer. In The
Tenth International Conference on Learning Representa-
tions, ICLR, 2022b.

Chen, Z. Q., Kiami, S. C., Gupta, A., and Kumar, V. Genaug:
Retargeting behaviors to unseen situations via generative
augmentation. In Robotics: Science and Systems, RSS,
2023b.

Cheng, X., Shi, K., Agarwal, A., and Pathak, D. Extreme
parkour with legged robots. In IEEE International Con-
ference on Robotics and Automation, ICRA, pp. 11443–
11450. IEEE, 2024.

Chi, C., Feng, S., Du, Y., Xu, Z., Cousineau, E., Burchfiel,
B., and Song, S. Diffusion policy: Visuomotor policy
learning via action diffusion. In Robotics: Science and
Systems, RSS, 2023.

Coumans, E. and Bai, Y. Pybullet, a python module for
physics simulation for games, robotics and machine learn-
ing. http://pybullet.org, 2016–2021.

Dai, T., Wong, J., Jiang, Y., Wang, C., Gokmen, C., Zhang,
R., Wu, J., and Fei-Fei, L. Acdc: Automated creation of
digital cousins for robust policy learning. arXiv preprint
arXiv:2410.07408, 2024.

Dasari, S., Ebert, F., Tian, S., Nair, S., Bucher, B., Schmeck-
peper, K., Singh, S., Levine, S., and Finn, C. Robonet:
Large-scale multi-robot learning. In Annual Conference
on Robot Learning, CoRL, volume 100, pp. 885–897.
PMLR, 2019.

Deitke, M., VanderBilt, E., Herrasti, A., Weihs, L., Ehsani,
K., Salvador, J., Han, W., Kolve, E., Kembhavi, A., and
Mottaghi, R. Procthor: Large-scale embodied AI using
procedural generation. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Deitke, M., Liu, R., Wallingford, M., Ngo, H., Michel, O.,
Kusupati, A., Fan, A., Laforte, C., Voleti, V., Gadre, S. Y.,
VanderBilt, E., Kembhavi, A., Vondrick, C., Gkioxari, G.,
Ehsani, K., Schmidt, L., and Farhadi, A. Objaverse-xl:
A universe of 10m+ 3d objects. In Advances in Neural
Information Processing Systems, NeurIPS, 2023.

D’Souza, A., Vijayakumar, S., and Schaal, S. Learning in-
verse kinematics. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS, volume 1, pp.
298–303, 2001.

Duan, J., Yu, S., Tan, H. L., Zhu, H., and Tan, C. A sur-
vey of embodied AI: from simulators to research tasks.
IEEE Transactions on Emerging Topics in Computational
Intelligence, 6(2):230–244, 2022.

Ebert, F., Yang, Y., Schmeckpeper, K., Bucher, B., Geor-
gakis, G., Daniilidis, K., Finn, C., and Levine, S. Bridge
data: Boosting generalization of robotic skills with cross-
domain datasets. In Robotics: Science and Systems, RSS,
2022.

Fang, H., Wang, C., Fang, H., Gou, M., Liu, J., Yan, H., Liu,
W., Xie, Y., and Lu, C. Anygrasp: Robust and efficient
grasp perception in spatial and temporal domains. IEEE
Transactions on Robotics, 39(5):3929–3945, 2023.

Florence, P. R., Manuelli, L., and Tedrake, R. Self-
supervised correspondence in visuomotor policy learning.
IEEE Robotics Autom. Lett., 5(2):492–499, 2020.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4RL: datasets for deep data-driven reinforcement
learning. CoRR, abs/2004.07219, 2020.

Gan, C., Zhou, S., Schwartz, J., Alter, S., Bhandwaldar, A.,
Gutfreund, D., Yamins, D. L. K., DiCarlo, J. J., McDer-
mott, J. H., Torralba, A., and Tenenbaum, J. B. The three-
dworld transport challenge: A visually guided task-and-
motion planning benchmark towards physically realistic
embodied AI. In International Conference on Robotics
and Automation, ICRA, pp. 8847–8854, 2022.

Hua, P., Liu, M., Macaluso, A., Lin, Y., Zhang, W., Xu, H.,
and Wang, L. Gensim2: Scaling robot data generation
with multi-modal and reasoning llms. arXiv preprint
arXiv:2410.03645, 2024.

James, S., Ma, Z., Arrojo, D. R., and Davison, A. J. Rlbench:
The robot learning benchmark & learning environment.
IEEE Robotics and Automation Letters, 5(2):3019–3026,
2020.

10

http://pybullet.org

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills

Jiang, Z., Zhu, Y., Svetlik, M., Fang, K., and Zhu, Y. Syn-
ergies between affordance and geometry: 6-dof grasp
detection via implicit representations. In Robotics: Sci-
ence and Systems, RSS, 2021.

Jiang, Z., Xie, Y., Lin, K., Xu, Z., Wan, W., Mandlekar,
A., Fan, L., and Zhu, Y. Dexmimicgen: Automated data
generation for bimanual dexterous manipulation via imi-
tation learning. In 2025 IEEE International Conference
on Robotics and Automation (ICRA), 2025.

Josifovski, J., Auddy, S., Malmir, M., Piater, J. H., Knoll, A.,
and Navarro-Guerrero, N. Continual domain randomiza-
tion. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS, pp. 4965–4972, 2024.

Kim, M. J., Pertsch, K., Karamcheti, S., Xiao, T., Bal-
akrishna, A., Nair, S., Rafailov, R., Foster, E. P., Lam,
G., Sanketi, P., Vuong, Q., Kollar, T., Burchfiel, B.,
Tedrake, R., Sadigh, D., Levine, S., Liang, P., and Finn, C.
Openvla: An open-source vision-language-action model.
CoRR, abs/2406.09246, 2024.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L.,
Herrasti, A., Deitke, M., Ehsani, K., Gordon, D., Zhu, Y.,
et al. Ai2-thor: An interactive 3d environment for visual
ai. arXiv preprint arXiv:1712.05474, 2017.

Kuffner, J. J. and LaValle, S. M. Rrt-connect: An efficient
approach to single-query path planning. In Proceedings
2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Pro-
ceedings (Cat. No. 00CH37065), volume 2, pp. 995–1001.
IEEE, 2000.

Kumar, A., Fu, Z., Pathak, D., and Malik, J. RMA: rapid
motor adaptation for legged robots. In Robotics: Science
and Systems, 2021.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-end
training of deep visuomotor policies. Journal of Machine
Learning Research, JMLR, 17:39:1–39:40, 2016.

Liu, J., Savva, M., and Mahdavi-Amiri, A. Survey
on modeling of articulated objects. arXiv preprint
arXiv:2403.14937, 2024a.

Liu, S., Wu, L., Li, B., Tan, H., Chen, H., Wang, Z., Xu, K.,
Su, H., and Zhu, J. RDT-1B: a diffusion foundation model
for bimanual manipulation. CoRR, abs/2410.07864,
2024b.

Liu, Y., Long, X., Yang, Z., Liu, Y., Habermann, M.,
Theobalt, C., Ma, Y., and Wang, W. Easyhoi: Unleashing
the power of large models for reconstructing hand-object
interactions in the wild. arXiv preprint arXiv:2411.14280,
2024c.

Lobos-Tsunekawa, K. and Harada, T. Point cloud based
reinforcement learning for sim-to-real and partial observ-
ability in visual navigation. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS, pp.
5871–5878, 2020.

Ma, Y. J., Liang, W., Wang, G., Huang, D., Bastani, O.,
Jayaraman, D., Zhu, Y., Fan, L., and Anandkumar, A.
Eureka: Human-level reward design via coding large lan-
guage models. In The Twelfth International Conference
on Learning Representations, ICLR, 2024.

Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey,
K., Macklin, M., Hoeller, D., Rudin, N., Allshire, A.,
Handa, A., and State, G. Isaac gym: High performance
GPU based physics simulation for robot learning. In
Vanschoren, J. and Yeung, S. (eds.), Neural Information
Processing Systems Track on Datasets and Benchmarks,
NeurIPS Datasets and Benchmarks, 2021.

Mandlekar, A., Xu, D., Wong, J., Nasiriany, S., Wang, C.,
Kulkarni, R., Fei-Fei, L., Savarese, S., Zhu, Y., and
Martı́n-Martı́n, R. What matters in learning from of-
fline human demonstrations for robot manipulation. In
Faust, A., Hsu, D., and Neumann, G. (eds.), Conference
on Robot Learning, CoRL, volume 164, pp. 1678–1690,
2021.

Mandlekar, A., Nasiriany, S., Wen, B., Akinola, I., Narang,
Y., Fan, L., Zhu, Y., and Fox, D. Mimicgen: A data
generation system for scalable robot learning using hu-
man demonstrations. In Annual Conference on Robot
Learning, CoRL, 2023.

Manuelli, L., Gao, W., Florence, P. R., and Tedrake,
R. KPAM: keypoint affordances for category-level
robotic manipulation. In The International Symposium
of Robotics Research, volume 20, pp. 132–157. Springer,
2019.

Mehta, B., Diaz, M., Golemo, F., Pal, C. J., and Paull, L.
Active domain randomization. In Conference on Robot
Learning, CoRL, volume 100, pp. 1162–1176, 2019.

Memmel, M., Wagenmaker, A., Zhu, C., Fox, D., and Gupta,
A. ASID: active exploration for system identification in
robotic manipulation. In International Conference on
Learning Representations, ICLR, 2024.

Mo, K., Guibas, L. J., Mukadam, M., Gupta, A., and Tul-
siani, S. Where2act: From pixels to actions for articulated
3d objects. In IEEE/CVF International Conference on
Computer Vision, ICCV, pp. 6793–6803. IEEE, 2021.

Mousavian, A., Eppner, C., and Fox, D. 6-dof graspnet:
Variational grasp generation for object manipulation. In
IEEE/CVF International Conference on Computer Vision,
ICCV, pp. 2901–2910. IEEE, 2019.

11

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills

Murali, A., Mousavian, A., Eppner, C., Fishman, A., and
Fox, D. Cabinet: Scaling neural collision detection for
object rearrangement with procedural scene generation.
In IEEE International Conference on Robotics and Au-
tomation, ICRA, pp. 1866–1874. IEEE, 2023.

Muratore, F., Eilers, C., Gienger, M., and Peters, J. Data-
efficient domain randomization with bayesian optimiza-
tion. IEEE Robotics and Automation Letters, 6(2):911–
918, 2021a.

Muratore, F., Gruner, T., Wiese, F., Belousov, B., Gienger,
M., and Peters, J. Neural posterior domain randomization.
In Conference on Robot Learning, CoRL, volume 164, pp.
1532–1542, 2021b.

Nasiriany, S., Maddukuri, A., Zhang, L., Parikh, A., Lo, A.,
Joshi, A., Mandlekar, A., and Zhu, Y. Robocasa: Large-
scale simulation of everyday tasks for generalist robots.
arXiv preprint arXiv:2406.02523, 2024.

O’Neill, A., Rehman, A., Maddukuri, A., Gupta, A.,
Padalkar, A., Lee, A., Pooley, A., Gupta, A., Mandlekar,
A., Jain, A., et al. Open x-embodiment: Robotic learning
datasets and RT-X models : Open x-embodiment collab-
oration. In IEEE International Conference on Robotics
and Automation, ICRA, pp. 6892–6903. IEEE, 2024.

OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M.,
Litwin, M., McGrew, B., Petron, A., Paino, A., Plap-
pert, M., Powell, G., Ribas, R., Schneider, J., Tezak, N.,
Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba,
W., and Zhang, L. Solving rubik’s cube with a robot hand.
CoRR, abs/1910.07113, 2019.

Paolo, G., Gonzalez-Billandon, J., and Kégl, B. Position:
A call for embodied AI. In International Conference on
Machine Learning, ICML, 2024.

Puig, X., Undersander, E., Szot, A., Cote, M. D., Yang,
T., Partsey, R., Desai, R., Clegg, A., Hlavac, M., Min,
S. Y., Vondrus, V., Gervet, T., Berges, V., Turner, J. M.,
Maksymets, O., Kira, Z., Kalakrishnan, M., Malik, J.,
Chaplot, D. S., Jain, U., Batra, D., Rai, A., and Mot-
taghi, R. Habitat 3.0: A co-habitat for humans, avatars,
and robots. In International Conference on Learning
Representations (ICLR), 2024.

Qi, H., Kumar, A., Calandra, R., Ma, Y., and Malik, J.
In-hand object rotation via rapid motor adaptation. In
Conference on Robot Learning, CoRL, volume 205, pp.
1722–1732, 2022.

Qin, Y., Huang, B., Yin, Z., Su, H., and Wang, X. Dexpoint:
Generalizable point cloud reinforcement learning for sim-
to-real dexterous manipulation. In Conference on Robot
Learning, CoRL 2022, 14-18 December 2022, Auckland,
New Zealand, volume 205, pp. 594–605. PMLR, 2022.

Qin, Z., Fang, K., Zhu, Y., Fei-Fei, L., and Savarese, S.
KETO: learning keypoint representations for tool manip-
ulation. In IEEE International Conference on Robotics
and Automation, ICRA, pp. 7278–7285. IEEE, 2020.

Ravi, N., Gabeur, V., Hu, Y.-T., Hu, R., Ryali, C., Ma, T.,
Khedr, H., Rädle, R., Rolland, C., Gustafson, L., et al.
Sam 2: Segment anything in images and videos. arXiv
preprint arXiv:2408.00714, 2024.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W.,
Mottaghi, R., Zettlemoyer, L., and Fox, D. ALFRED:
A benchmark for interpreting grounded instructions for
everyday tasks. In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition,CVPR, pp. 10737–
10746, 2020.

Sundermeyer, M., Mousavian, A., Triebel, R., and Fox,
D. Contact-graspnet: Efficient 6-dof grasp generation
in cluttered scenes. In IEEE International Conference
on Robotics and Automation, ICRA, pp. 13438–13444.
IEEE, 2021.

Sutton, R. S. Reinforcement learning: An introduction. A
Bradford Book, 2018.

Tao, S., Xiang, F., Shukla, A., Qin, Y., Hinrichsen, X.,
Yuan, X., Bao, C., Lin, X., Liu, Y., Chan, T.-k., et al.
Maniskill3: Gpu parallelized robotics simulation and
rendering for generalizable embodied ai. arXiv preprint
arXiv:2410.00425, 2024.

Team, O. M., Ghosh, D., Walke, H., Pertsch, K., Black, K.,
Mees, O., Dasari, S., Hejna, J., Kreiman, T., Xu, C., Luo,
J., Tan, Y. L., Chen, L. Y., Sanketi, P., Vuong, Q., Xiao,
T., Sadigh, D., Finn, C., and Levine, S. Octo: An open-
source generalist robot policy. CoRR, abs/2405.12213,
2024.

Tiboni, G., Arndt, K., and Kyrki, V. DROPO: sim-to-real
transfer with offline domain randomization. Robotics and
Autonomous Systems, 166:104432, 2023.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics en-
gine for model-based control. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS, pp.
5026–5033. IEEE, 2012.

Walke, H. R., Black, K., Zhao, T. Z., Vuong, Q., Zheng, C.,
Hansen-Estruch, P., He, A. W., Myers, V., Kim, M. J., Du,
M., Lee, A., Fang, K., Finn, C., and Levine, S. Bridgedata
V2: A dataset for robot learning at scale. In Conference
on Robot Learning, CoRL, volume 229, pp. 1723–1736,
2023.

Wang, Y., Xian, Z., Chen, F., Wang, T., Wang, Y., Fragki-
adaki, K., Erickson, Z., Held, D., and Gan, C. Robo-
gen: Towards unleashing infinite data for automated robot

12

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills

learning via generative simulation. In International Con-
ference on Machine Learning, ICML, 2024.

Wu, C., Chen, J., Cao, Q., Zhang, J., Tai, Y., Sun, L., and Jia,
K. Grasp proposal networks: An end-to-end solution for
visual learning of robotic grasps. In Advances in Neural
Information Processing Systems, NeurIPS, 2020.

Xiang, F., Qin, Y., Mo, K., Xia, Y., Zhu, H., Liu, F., Liu,
M., Jiang, H., Yuan, Y., Wang, H., Yi, L., Chang, A. X.,
Guibas, L. J., and Su, H. SAPIEN: A simulated part-
based interactive environment. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR, pp.
11094–11104, 2020.

Xiang, J., Lv, Z., Xu, S., Deng, Y., Wang, R., Zhang, B.,
Chen, D., Tong, X., and Yang, J. Structured 3d latents
for scalable and versatile 3d generation. arXiv preprint
arXiv:2412.01506, 2024.

Xiao, B., Wu, H., Xu, W., Dai, X., Hu, H., Lu, Y., Zeng,
M., Liu, C., and Yuan, L. Florence-2: Advancing a
unified representation for a variety of vision tasks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4818–4829, 2024.

Xie, A., Lee, L., Xiao, T., and Finn, C. Decomposing
the generalization gap in imitation learning for visual
robotic manipulation. In IEEE International Confer-
ence on Robotics and Automation, ICRA, pp. 3153–3160.
IEEE, 2024.

Xu, G., Wang, X., Ding, X., and Yang, X. Iterative geometry
encoding volume for stereo matching. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
CVPR, pp. 21919–21928. IEEE, 2023.

Yang, J., Cao, Z.-a., Deng, C., Antonova, R., Song, S., and
Bohg, J. Equibot: Sim(3)-equivariant diffusion policy for
generalizable and data efficient learning. In 8th Annual
Conference on Robot Learning, 2024.

Yuan, W., Duan, J., Blukis, V., Pumacay, W., Krishna, R.,
Murali, A., Mousavian, A., and Fox, D. Robopoint: A
vision-language model for spatial affordance prediction
for robotics. CoRR, abs/2406.10721, 2024.

Zhang, T., McCarthy, Z., Jow, O., Lee, D., Chen, X., Gold-
berg, K., and Abbeel, P. Deep imitation learning for
complex manipulation tasks from virtual reality teleoper-
ation. In IEEE International Conference on Robotics and
Automation, ICRA, pp. 1–8. IEEE, 2018.

Zhao, T. Z., Kumar, V., Levine, S., and Finn, C. Learn-
ing fine-grained bimanual manipulation with low-cost
hardware. In Robotics: Science and Systems, RSS, 2023.

Zitkovich, B., Yu, T., Xu, S., Xu, P., Xiao, T., Xia, F.,
Wu, J., Wohlhart, P., Welker, S., Wahid, A., et al. RT-2:
vision-language-action models transfer web knowledge
to robotic control. In Tan, J., Toussaint, M., and Darvish,
K. (eds.), Conference on Robot Learning, CoRL, volume
229, pp. 2165–2183, 2023.

13

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills

A. Implementation Details
A.1. Specification of DexScale

DexScale is a scalable, automated data engine designed to bridge the Sim2Real gap in robot skill learning by combining
physically based rendering (PBR), physics simulation and high performance multi-threading system. Its architecture
is optimized for generating large-scale, diverse, and realistic robot learning environments and datasets, while ensuring
computational efficiency. Below, we detail its core specifications:

System Architecture. DexScale is built on a modular framework with three interconnected subsystems:

• Physically-Based Rendering Engine: Combines ray tracing and rasterization techniques to synthesize photorealistic visuals
with dynamic lighting effects and physically accurate material properties, such as surface roughness, metallic reflectance,
and albedo maps.

• Physics Simulation Engine: Employs a rigid-body dynamics solver with support for frictional contacts and articulation
modeling (e.g., grippers, robotic arms)

• Scene Composition: Compose complex scenes with customizable objects, lighting, and backgrounds. Users can define
object dynamics properties, such as mass, friction, and elasticity, or material properties to match real-world conditions.

DexScale’s modular architecture is engine-agnostic, enabling seamless integration with arbitrary rendering or physics
engines as backends. This design ensures adaptability to diverse use cases while decoupling core functionality from
third-party dependencies.

Robotic Simulation. Our robot simulation module provides a unified framework for modeling, controlling, and training
robotic systems through three core components:

• Robot Abstract Models: Predefines the parameterized templates for common robotic platforms, such as Manipulators
((e.g., 6-DoF industrial arm), Dexterous Hands and Humanoids with unified URDF description and configurable kinematic
chains, inertial properties, Joint limits, etc. It also supports the customization of robot morphologies through a modular
assembly of actuators and sensors.

• Control System: Provides forward/inverse kinematics solvers with singularity handling and motion generation capacities
with trajectory interpolation and collision-aware planners. It has user-friendly interface to access robot proprioception and
execute the control signal in both joint space and task space (eg, euclidean space)

• Robot Learning Environment: Adopts OpenAI gym-compatible API with standardized method (e.g., reset, step), and
support domain randomization for both dynamics and visuals properties of the objects and scene. It includes task suites
(e.g., manipulation, locomotion) equipped with configurable callback and reward functions, enabling the implementation
of customized features tailored for both imitation learning and reinforcement learning.

Data Generation. Our data generation module enables large-scale synthesis of labeled simulation datasets through a
pipeline combining assets generation, geometric processing, and automated annotation. The architecture comprises four
core subsystems:

• Scene Construction: Combines procedural generation, leveraging parameterized templates for randomized object place-
ment, lighting configurations, and camera viewpoints, with rule-based scene assembly (e.g., clutter or ordered ar-
rangements) and collision-free guarantees. It integrates 3D AIGC for asset synthesis via state-of-the-art models like
TRELLIS (Xiang et al., 2024), while also supporting retrieval of 3D assets from a large-scale, multi-label database.

• Mesh Processing: Provides an automated pipeline to ensure 3D geometry assets are simulation-ready. This pipeline
includes UV mapping, geometric processing (e.g., remeshing, hole filling, and simplification), and convex decomposition
for efficient collision detection.

• Domain Randomization: Provides interface to adjust or change the parameters of the domain randoization factors described
in section 4.3.

14

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills

• Annotation Computation: Supports diverse annotation types, including instance/semantic segmentation masks, 6D object
poses, keypoints, and physics-based ground truth such as contact vectors at interaction points. It also provides interfaces
to export datasets in standard formats like COCO and HDF5.

A.2. The Details of Sim2Real Gap

• Light. We adjust the lighting conditions by varying the distance between the light source and the scene of the given tasks.
Specifically, a 3-meter difference is introduced between the simulated and real-world environments, resulting in a darker
lighting condition in the real-world setting.

• Object Texture. We primarily focus on the material properties and appearance, including the color, of each object.
Specifically, in the real-world environment, the objects are covered with tissues, while in the simulated environment, the
color and texture are tailored to match the object type (e.g., a banana has a smooth yellow surface).

• Table Texture. We primarily focus on the differences in table surface patterns between the simulated and real-world
environments. Specifically, in the real-world environment, the table is covered with dark paper, while in the simulated
environment, a table surface in a light grey table surface is used.

• Background Texture. Since the camera’s view primarily captures the floor where the table is placed, we focus on the
differences in floor surface patterns between the simulated and real-world environments. Specifically, in the real-world
environment, the floor is covered with a light grey surface, while in the simulated environment, a wooden surface is used.

• Distractors. The distractors consist of objects that are not intended to be grasped by the gripper. In the real-world
environment, these objects include a paper cup, a folding umbrella, a pull-tab can, scissors, and a spray bottle. However,
in the simulated environment, these objects are intentionally removed.

• Camera Position. We adjust the camera position in the simulated environment. Specifically, the camera is placed 5 cm
higher and 5 cm to the right compared to the position of the camera in the real-world environment.

• Camera Orientation. We adjust the camera orientation in the simulated environment. The camera is rotated 5 degrees
counterclockwise around both the X and Z axes in the simulated environment.

• Camera Field of View. We adjust the camera orientation by modifying its parameters. Specifically, the focal length is set
to 1.15 times the actual focal length to achieve the desired adjustments.

• Object Pose. We adjust the object pose in the simulated environment by applying a rotation of up to 15 degrees and
shifting their x-y positions by up to 5 centimeters.

• Object Shape. We rescale the width, length, and height of the object in the simulated environment, with the scaling ranging
from 0.9 to 1.1 times the object’s size in the realistic environment.

A.3. Model Training Configurations

A.3.1. OBJECT GRASPING

Model Structure. We adopt the HumanPlus HIT model configuration and outline the following details:

• Model Architecture: The model employs 2 ResNet18 backbones to process visual inputs and output visual latents. Action
data is projected into action latents using an MLP. The visual and action latents are then fed into 6 BERT-style transformer
decoders for further processing.

• Number of Parameters: The total number of parameters in the model is 30.4M.

• Activation Functions: GELU is used as the activation function throughout the network.

Dataset Details. The dataset consists of 2000 trajectories for each feature and each setting (gap, domain randomization,
domain adaptation, domain randomization and adaptation), with each trajectory containing 50 steps. Each trajectory includes
21-dimensional action data (comprising 6-dim joint angles, 7-dim end-effector pose under the robot base frame, 1-dim
gripper open state, and 7-dim end-effector pose under the camera frame) and two 512× 640 rectified images. The dataset is

15

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills

split into 99% training and 1% validation. Data preprocessing involves normalization for action data, ImageNet-statistics
normalization for images, and image rectification. During training, color-jitter data augmentation is applied to the images.

Training Hyperparameters. The model is trained with a batch size of 12 for 200, 000 epochs using the AdamW optimizer
with a learning rate of 1× 10−5. The training objective is guided by the mean squared error (MSE) loss for actions and a
1-dimensional error for image latents.

Training Environment. Training was conducted on 4 NVIDIA A800 GPUs, with each policy trained for 36 hours. PyTorch
version 2.0.1 was used as the deep learning framework.

A.3.2. OPEN BOX

Model Structure. We follow the network architecture of EquiBot (Yang et al., 2024), with several modifications to enhance
sim-to-real transfer. Our model is based on the SIM(3)-Equivariant Diffusion Policy (Yang et al., 2024), with the following
details:

• Network Architecture: The original EquiBot processes entire scene point clouds as the observed input environment, with a
sampling point number of 1024 or 2048 depending on the task type. In our modified version, we use the cropped point
clouds of manipulated objects as input and always set the sampling point number to 1024.

• Mask Detection: The 2D mask of manipulated objects is obtained automatically in simulation using the DexScale
simulator. During real-world inference, the mask is detected using vision foundation models, such as Florence2 (Xiao
et al., 2024) and SAM2 (Ravi et al., 2024).

• Prediction and Observation Horizon: The prediction horizon is set to 72, and the observation horizon is 1. Unlike the
high-frequency dynamic style used in the original EquiBot (prediction-conduction-observation), we observe once and
execute all predicted actions at once.

• Stereo Vision: Our model uses a binocular camera to capture left and right images simultaneously. The left image branch
lifts 2D pixels into 3D using a stereo matching algorithm (Xu et al., 2023). This approach significantly reduces domain
gaps caused by hardware differences between real and simulated environments.

• Number of Parameters: The total parameter size is 111.43 MB.

Dataset Details. The dataset consists of 50 demonstrations in the training set, with each demonstration containing 75
timesteps. The dataset is split into 50 demonstrations for training and 10 demonstrations for testing. Additionally, 100
evaluation trials are conducted in the simulator to assess performance.

Training Hyperparameters. The training process uses a batch size of 16 and runs for 150,000 epochs. The model is
optimized using the Adam optimizer with a cosine learning rate scheduler, starting with a learning rate of 5× 10−4. The
training objective is guided by the Chamfer Distance loss function for point clouds and the Mean Squared Error (MSE) loss
for action predictions.

Training Environment. Training was performed on a single NVIDIA A100 GPU for a total of 48 hours. PyTorch version
2.0.1 was used as the deep learning framework.

A.3.3. TABLEWARE REARRANGEMENT

Model Structure. We follow the original Robotics Diffusion Transfromer (RDT) model configuration (Liu et al., 2024b)
and make the following modifications:

• Vision Encoder: Replace SigLip with DINOv2 (base) with registers as the vision encoder.

• Image Conditions: Use one stereo camera along with two wrist-mounted RGB cameras, resulting in the following image
conditions: 2 RGB images, 1 disparity image, and 2 additional RGB images.

• Mask Predictor Module: Add a small mask predictor module consisting of 3 convolutional layers to predict the mask for
each image. The updated image condition is then computed using the following equation:

img cond new = img cond + mask · mask embed

16

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills

• Transformer Block Settings: The transformer block is configured with a hidden size of 512, a depth of 8 layers, and 16
attention heads.

• Model Size: The total number of parameters is 116.66MB.

Dataset Details. The dataset used in this work consists of multiple trajectories designed to capture diverse scenarios for
training and evaluation. Specifically: 1) Number of Trajectories: The dataset includes 200 trajectories, each consisting of
200 steps. 2) Data Preprocessing: The data is preprocessed using the same pipeline as described in the original RDT setup.

Training Hyperparameters. The training process utilizes a batch size of 8 and runs for 40,000 iterations. The model is
optimized using the Adam optimizer with a cosine learning rate scheduler, starting with a learning rate of 1× 10−4. The
training objective is guided by the Mean Squared Error (MSE) loss function.

Training Environment. The training was conducted on a single NVIDIA A100 GPU using PyTorch version 2.0.1 as the
deep learning framework.

A.3.4. HARDWARE DETAILS FOR DIFFERENT TASKS

Table 4: Robot Specifications for Different Tasks

Task Robot Name DOF Maximum Reach (mm) Maximum Payload (kg)

Object Grasping Rokae SR3 6 705 3
Open Box AUBO I5 6 886.5 5
Tableware Rearrangement WidowX 250 S 7 650 0.25

B. More Experiment Results
B.1. Human-Object Interaction Example

Figure 6 visualize the input image alongside the output hand-object interactions as a 3D mesh, which can be directly
projected into a simulated environment. To enhance the visualization of the 3D mesh details, we present observations from
six different angles.

B.2. Examples of using DexScale

17

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills

input image 3D Hand-Object Interaction input image 3D Hand-Object Interaction

input image 3D Hand-Object Interaction

Figure 6: Visualizing the input image and the output hand-object interactions in 3D mesh.

H
um

an

D
em

o.
Si

m
2R

ea
l D

at
a

Sc
al

in
g

Po
lic

y
D

ep
lo

ym
en

t

…… …… ……

Domain Gap: Camera Field of ViewDomain Gap: Camera Orientation

(Action Trajectory Generated by DexSim × (Size of Dataset) (Action Trajectory Generated by DexSim × (Size of Dataset)

Figure 7: Visualizing the input demonstration (top row), examples of the scaled data (middle rows), and the realistic
deployment of the robot policy (bottom row). The Sim2Real domain gaps are camera orientation (left) and field of views
(right).

18

DexScale: Automating Data Scaling for Sim2Real Generalizable Robot Skills
H

um
an

D

em
o.

Si
m

2R
ea

l D
at

a
Sc

al
in

g
Po

lic
y

D
ep

lo
ym

en
t

…… …… ……

Domain Gap: Object TextureDomain Gap: Light

(Action Trajectory Generated by DexSim × (Size of Dataset) (Action Trajectory Generated by DexSim × (Size of Dataset)

Figure 8: Visualizing the input demonstration (top row), examples of the scaled data (middle rows), and the realistic
deployment of the robot policy (bottom row). The Sim2Real domain gaps are lighting (left) and object texture (right).

H
um

an

D
em

o.
Si

m
2R

ea
l D

at
a

Sc
al

in
g

Po
lic

y
D

ep
lo

ym
en

t

…… …… ……

Domain Gap: Table Texture Domain Gap: Background

(Action Trajectory Generated by DexSim × (Size of Dataset) (Action Trajectory Generated by DexSim × (Size of Dataset)

Figure 9: Visualizing the input demonstration (top row), examples of the scaled data (middle rows), and the realistic
deployment of the robot policy (bottom row). The Sim2Real domain gaps are table texture (left) and background (right).

H
um

an

D
em

o.
Si

m
2R

ea
l D

at
a

Sc
al

in
g

Po
lic

y
D

ep
lo

ym
en

t

…… …… ……

Domain Gap: Camera PositionDomain Gap: Distractors

(Action Trajectory Generated by DexSim × (Size of Dataset) (Action Trajectory Generated by DexSim × (Size of Dataset)

Figure 10: Visualizing the input demonstration (top row), examples of the scaled data (middle rows), and the realistic
deployment of the robot policy (bottom row). The Sim2Real domain gaps are distractors (left) and camera position (right).

19

