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Abstract

In this work we seek to bridge the concepts of topographic organization and equiv-
ariance in neural networks. To accomplish this, we introduce the Topographic VAE:
a novel method for efficiently training deep generative models with topographically
organized latent variables. We show that such a model indeed learns to organize its
activations according to salient characteristics such as digit class, width, and style
on MNIST. Furthermore, through topographic organization over time (i.e. temporal
coherence), we demonstrate how predefined latent space transformation operators
can be encouraged for observed transformed input sequences – a primitive form of
unsupervised learned equivariance. We demonstrate that this model successfully
learns sets of approximately equivariant features (i.e. "capsules") directly from
sequences and achieves higher likelihood on correspondingly transforming test
sequences. Equivariance is verified quantitatively by measuring the approximate
commutativity of the inference network and the sequence transformations. Finally,
we demonstrate approximate equivariance to complex transformations, expanding
upon the capabilities of existing group equivariant neural networks.

1 Introduction

Many parts of the brain are organized topographically. Famous examples are the ocular dominance
maps and the orientation maps in V1. What is the advantage of such organization and what can we
learn from it to develop better inductive biases for deep neural network architectures?

Figure 1: Overview of the Topographic VAE with shifting temporal coherence. The combined
color/rotation transformation in input space τg becomes encoded as a Roll within the capsule
dimension. The model is thus able decode unseen sequence elements by encoding a partial sequence
and Rolling activations within the capsules. We see this resembles a commutative diagram.
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One potential explanation for the emergence of topographic organization is provided by the principle
of redundancy reduction [1]. In the language of Information Theory, redundancy wastes channel
capacity, and thus to represent information as efficiently as possible, the brain may strive to transform
the input to a neural code where the activations are statistically maximally independent. In the machine
learning literature, this idea resulted in Independent Component Analysis (ICA) which linearly
transforms the input to a new basis where the activities are independent and sparse [2, 13, 29, 44]. It
was soon realized that there are remaining higher order dependencies (such as correlation between
absolute values) that can not be transformed away by a linear transformation. For example, along
edges of an image, linear-ICA components (e.g. gabor filters) still activate in clusters even though the
sign of their activity is unpredictable [48, 56]. This led to new algorithms that explicitly model these
remaining dependencies through a topographic organization of feature activations [27, 45, 46, 59].
Such topographic features were reminiscent of pinwheel structures observed in V1, encouraging
multiple comparisons with topographic organization in the biological visual system [28, 30, 42].

A second, almost independent body of literature developed the idea of “equivariance” of neural
network feature maps under symmetry transformations. The idea of equivariance is that symmetry
transformations define equivalence classes as the orbits of their transformations, and we wish to
maintain this structure in the deeper layers of a neural network. For instance, for images, asserting a
rotated image contains the same object for all rotations, the transformation of rotation then defines an
orbit where the elements of that orbit can be interpreted as pose or angular orientation. When an image
is processed by a neural network, we want features at different orientations to be able to be combined
to form new features, but we want to ensure the relative pose information between the features is
preserved for all orientations. This has the advantage that the equivalence class of rotations for the
complex composite features is guaranteed to be maintained, allowing for the extraction of invariant
features, a unified pose, and increased data efficiency. Such ideas are reminiscent of the capsule
networks of Hinton et al. [21, 22, 51], and indeed formal connections to equivariance have been
made [39]. Interestingly, by explicitly building neural networks to be equivariant, we additionally see
geometric organization of activations into these equivalence classes, and further, the elements within
an equivalence class are seen to exhibit higher-order non-Gaussian dependencies [40, 41, 56, 57]. The
insight of this connection between topographic organization and equivariance hints at a possibility to
encourage approximate equivariance from an induced topology in feature space.

To build a model, we need to ask what mechanisms could induce topographic organization of observed
transformations specifically? We have argued that removing dependencies between latent variables is
a possible mechanism; however, to obtain the more structured organisation of equivariant capsule
representations, the usual approach is to hard-code this structure into the network, or to encourage
it through regularization terms [4, 15]. To achieve this same structure unsupervised, we propose
to incorporate another key inductive bias: “temporal coherence” [18, 24, 52, 60]. The principle of
temporal coherence, or “slowness”, asserts than when processing correlated sequences, we wish for
our representations to change smoothly and slowly over space and time. Thinking of time sequences
as symmetry transformations on the input, we desire features undergoing such transformations to be
grouped into equivariant capsules. We therefore suggest that encouraging slow feature transformations
to take place within a capsule could induce such grouping from sequences alone.

In the following sections we will explain the details of our Topographic Variational Autoencoder
which lies at the intersection of topographic organization, equivariance, and temporal coherence,
thereby learning approximately equivariant capsules from sequence data completely unsupervised.

2 Related Work

The history of statistical models upon which this work builds is vast, including sparse coding [44],
Independant Component Analysis (ICA) [2, 13, 29], Slow Feature Analysis (SFA) [54, 60], and
Gaussian scale mixtures [41, 48, 56, 57]. Most related to this work are topographic generative
models including Generative Topographic Maps [6], Bubbles [25], Topographic ICA [27], and
the Topographic Product of Student’s-t [46, 59]. Prior work on learning equivariant and invariant
representations is similarly vast and also has a deep relationship with these generative models.
Specifically, Independant Subspace Analysis [26, 53], models involving temporal coherence [18,
24, 52, 60], and Adaptive Subspace Self Organizing Maps [35] have all demonstrated the ability to
learn invariant feature subspaces and even ‘disentangle’ space and time [19, 53]. Our work assumes
a similar generative model to these works while additionally allowing for efficient estimation of
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the model through variational inference [33, 50]. Although our work is not the first to combine
Student’s-t distributions and variational inference [7], it is the first to provide an efficient method to
do so for Topographic Student’s-t distributions.

Another line of work has focused on constructing neural networks with equivariant representations
separate from the framework of generative modeling. Analytically equivariant networks such as
Group Equivariant Neural Networks [11], and other extensions [9, 16, 17, 55, 49, 58, 61, 62] propose
to explicitly enforce symmetry to group transformations in neural networks through structured
weight sharing. Alternatively, others propose supervised and self-supervised methods for learning
equivariance or invariance directly from the data itself [4, 14, 15]. One related example in this
category uses a group sparsity regularization term to similarly learn topographic features for the
purpose of modeling invariance [31]. We believe the Topographic Variational Autoencoder presented
in this paper is another promising step in the direction of learning approximate equivariance, and
may even hint at how such structure could be learned in biological neural networks.

Furthermore, the idea of disentangled representations [3] has also been been connected to
equivariance and representation theory in multiple recent papers [8, 12, 10, 20]. Our work shares a
fundamental connection to this distributed operator definition of disentanglement, where the slow roll
of capsule activations can be seen as the latent operator. Recently, the authors of [34] demonstrated
that incorporating the principle of ‘slowness’ in a variational autoencoder (VAE) yields the ability
to learn disentangled representations from natural sequences. While similar in motivation, the
generative model proposed in [34] is unrelated to topographic organization and equivariance, and
is more aligned with traditional notions of disentanglement.

Finally, and importantly, in the neuroscience literature, another popular explanation for topographic
organization arises as the solution to the ‘wiring length’ minimization problem [36]. Recently, models
which attempt to incorporate wiring length constraints have been shown to yield topographic orga-
nization of higher level features, ultimately resembling the ‘face patches’ found in primates [32, 38].
Interestingly, the model presented in this paper organizes activity based on the same statistical prop-
erty (local correlation) as the wiring length proxies developed in [38], but from a generative modeling
perspective, demonstrating a computationally principled explanation for the same phenomenon.

3 Background

The model in this paper is a first attempt at bridging two yet disjoint classes of models: Topographic
Generative Models, and Equivariant Neural Networks. In this section, we will provide a brief
background on these two frameworks.

3.1 Topographic Generative models

Inspired by Topographic ICA, the class of Topographic Generative models can be understood as gener-
ative models where the joint distribution over latent variables does not factorize into entirely indepen-
dent factors, as is commonly done in ICA or VAEs, but instead has a more complex ‘local’ correlation
structure. The locality is defined by arranging the latent variables into an n-dimensional lattice or grid,
and organizing variables such that those which are closer together on this grid have greater correlation
of activities than those which are further apart. In the related literature, activations which are nearby
in this grid are defined to have higher-order correlation, e.g. correlations of squared activations (aka
‘energy’), asserting that all first order correlations are removed by the initial ICA de-mixing matrix.

Such generative models can be seen as hierarchical generative models where there exist higher
level independent ‘variance generating’ variables V which are combined locally to generate the
variances σ = ϕ(WV) of the lower level topographic variables T ∼ N (0,σ2I), for an appropriate
non-linearity ϕ. The variables T are thus independent conditioned on σ. Other related models which
can be described under this umbrella include Independent Subspace Analysis (ISA) [26] where all
variables within a predefined subspace (or ‘capsule’) share a common variance, and ‘temporally
coherent’ models [24] where the energy of a given variable between time steps is correlated by
extending the topographic neighborhoods over the time dimension [25]. The topographic latent
variable T can additionally be described as an instance of a Gaussian scale mixture (GSM). GSMs
have previously been used to model the observed non-Gaussian dependencies between coefficients of
steerable wavelet pyramids (interestingly also equivariant to translation & rotation) [48, 56, 57].
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3.2 Group Equivariant Neural Networks

Equivariance is the mathematical notion of symmetry for functions. A function is said to be an
equivariant map if the the result of transforming the input and then computing the function is the same
as first computing the function and then transforming the output. In other words, the function and
the transformation commute. Formally, f(τρ[x]) = Γρ[f(x)], where τ and Γ denote the (potentially
different) operators on the domain and co-domain respectively, but are indexed by the same element ρ.

It is well known that convolutional maps in neural networks are translation equivariant, i.e., given
a translation Γρ (applied to each feature map separately) and a convolutional map f(·), we have
f(Γρ[x]) = Γρ[f(x)]. This can be extended to other transformations (e.g. rotation or mirroring)
using Group convolutions (G-convolutions) [11]. As a result of the design of G-convolutions, feature
maps that are related to each other by a rotation of the filter/input are grouped together. Moreover, a
rotation of the input results in a transformation (i.e. a permutation and rotation) on the activations of
each of these groups in the output. Hence, we can think of these equivalence class groups as capsules
where transformations of the input only cause structured transformations within a capsule. As we
will demonstrate later, this is indeed analogous to the structure of the representation learned by the
Topographic VAE with temporal coherence – a transformation of the input yields a cyclic permutation
of activations within each capsule. However, due to the approximate learned nature of the equivariant
representation, the Topographic VAE does not require the transformations τρ to constitute a group.

4 The Generative Model

The generative model proposed in this paper is based on the Topographic Product of Student’s-t
(TPoT) model as developed in [46, 59]. In the following, we will show how a TPoT random variable
can be constructed from a set of independent univariate standard normal random variables, enabling
efficient training through variational inference. Subsequently, we will construct a new model where
topographic neighborhoods are extended over time, introducing temporal coherence and encouraging
the unsupervised learning of approximately equivariant subspaces we call ‘capsules’.

4.1 The Product of Student’s-t Model

We assume that that our observed data is generated by a latent variable model where the joint
distribution over observed and latent variables x and t factorizes into the product of the conditional and
the prior. The prior distribution pT(t) is assumed to be a Topographic Product of Student’s-t (TPoT)
distribution, and we parameterize the conditional distribution with a flexible function approximator:

pX,T(x, t) = pX|T(x|t)pT(t) pX|T(x|t) = pθ(x|gθ(t)) pT(t) = TPoT(t; ν) (1)

The goal of training is thus to learn the parameters θ such that the marginal distribution of the
model pθ(x) matches that of the observed data. Unfortunately, the marginal likelihood is generally
intractable except for all but the simplest choices of gθ and pT [45]. Prior work has therefore resorted
to techniques such as contrastive divergence with Gibbs sampling [59] to train TPoT models as
energy based models. In the following section, we instead demonstrate how TPoT variables can be
constructed as a deterministic function of Gaussian random variables, enabling the use of variational
inference and efficient maximization of the likelihood through the evidence lower bound (ELBO).

4.2 Constructing the Product of Student’s-t Distribution

First, note a univariate Student’s-t random variable T with ν degrees of freedom can be defined as:

T =
Z√

1
ν

∑ν
i U

2
i

with Z,Ui ∼ N (0, 1) ∀i (2)

Where Z and {Ui}νi=1 are independent standard normal random variables. If T is a multidimensional
Student’s-t random variable, composed of independent Zi and Ui, then T ∼ PoT(ν), i.e.:

T =

 Z1√
1
ν

∑ν
i=1 U

2
i

,
Z2√

1
ν

∑2·ν
i=ν+1 U

2
i

, . . .
Zn√

1
ν

∑n·ν
i=(n−1)·ν+1 U

2
i

 ∼ PoT(ν) (3)
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Note that the Student’s-t variable T is large when most of the {Ui}i in its set are small. We can
therefore think of the {Ui}i as constraint violations rather then pattern matches: if the input matches
all constraints Ui ≈ 0, the corresponding T variables will activate (see [23] for further discussion).

4.3 Introducing Topography

To make the PoT distribution topographic, we strive to correlate the scales of Tj which are ‘nearby’ in
our topographic layout. One way to accomplish this is by sharing some Ui-variables between neigh-
boring Tj’s. Formally, we define overlapping neighborhoods N(j) for each variable Tj and write:

T =

 Z1√
1
ν

∑
i∈N(1) U

2
i

,
Z2√

1
ν

∑
i∈N(2) U

2
i

, . . .
Zn√

1
ν

∑
i∈N(n) U

2
i

 ∼ TPoT(ν) (4)

With some abuse of notation, if we define W to be the adjacency matrix which defines our
neighborhood structure, U and Z to be the vectors of random variables Ui and Zj , we can write
the above succinctly as:

T =

 Z1√
1
νW1U2

,
Z2√

1
νW2U2

, . . .
Zn√

1
νWnU2

 =
Z√

1
νWU2

∼ TPoT(ν) (5)

Due to non-linearities such as ReLUs which may alter input distributions, it is beneficial to allow
the Z variables to model the mean and scale. We found this can be achieved with the following
parameterization: T = Z−µ

σ
√

1/νWU2
. In practice, we found that σ =

√
ν often works well, finally yielding:

T =
Z− µ√
WU2

(6)

Given this construction, we observe that the TPoT generative model can instead be viewed as a latent
variable model where all random variables are Gaussian and the construction of T in Equation 6
is the first layer of the generative ‘decoder’: gθ(t) = gθ(u, z). In Section 5 we then leverage this
interpretation to show how an approximate posterior for the latent variables Z and U can be trained
through variational inference.

4.4 Capsules as Disjoint Topologies

Figure 2: An example of a neighborhood
structure which induces disjoint topolo-
gies (aka capsules). Lines between vari-
ables Ti indicate that sharing of Ui, and
thus correlation.

One setting of neighborhood structure W which is of par-
ticular interest is when there exist multiple sets of disjoint
neighborhoods. Statistically, the variables of two disjoint
topologies are completely independent. An example of a
capsule neighborhood structure is shown in Figure 2. The
idea of independant subspaces has previously been shown
to learn invariant feature subspaces in the linear setting and
is present in early work on Independent Subspace Analysis
[26] and Adaptive Subspace Self Organizing Maps (AS-
SOM) [35]. It is also very reminiscent of the transformed
sets of features present in a group equivariant convolu-
tional neural network. In the next section, we will show
how temporal coherence can be leveraged to induce the
encoding of observed transformations into the internal di-
mensions of such capsules thereby yielding unsupervised
approximately equivariant capsules.

4.5 Temporal Coherence and Learned Equivariance

We now describe how the induced topographic organization can be leveraged to learn a basis of ap-
proximately equivariant capsules for observed transformation sequences. The resulting representation
is composed of a large set of ‘capsules’ where the dimensions inside the capsule are topographically
structured, but between the capsules there is independence. To benefit from sequences of input,
we encourage topographic structure over time between sequentially permuted activations within a
capsule, a property we refer to as shifting temporal coherence.
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4.5.1 Temporal Coherence

Temporal Coherence can be measured as the correlation of squared activation between time steps.
One way we can achieve this in our model is by having Tj share Ui between time steps. Formally,
the generative model is identical to Equation 1, factorizing over timesteps denoted by subscript l, i.e.
pXl,Tl

(xl, tl) = pXl|Tl
(xl|tl)pTl

(tl). However, Tl is now a function of a sequence {Ul+δ}Lδ=−L:

Tl =
Zl − µ√

W
[
U2

l+L; · · · ;U2
l−L

] (7)

Where
[
U2

l+L; · · · ;U2
l−L

]
denotes vertical concatenation of the column vectors Ul, and 2L can be

seen as the window size. We see that the choice of W now defines correlation structure over time. In
prior work on temporal coherence (denoted ‘Bubbles’ [25]), the grouping over time is such that a
given variable Tl,i has correlated energy with the same spatial location (i) at a previous time step
(l − 1)

(
i.e. cov(T 2

l,i, T
2
l−1,i) > 0

)
. This can be implemented as:

W
[
U2

l+L; · · · ;U2
l−L

]
=

L∑
δ=−L

WδU
2
l+δ (8)

Where Wδ defines the topography for a single timestep, and is typically the same for all timesteps.

4.5.2 Learned Equivariance with Shifting Temporal Coherence

In our model, instead of requiring a single location to have correlated energies over a sequence, we
would like variables at sequentially permuted locations within a capsule to have correlated energy
between timesteps

(
cov(T 2

l,i, T
2
l−1,i−1) > 0

)
. Similarly, this can be implemented as:

W
[
U2

l+L; · · · ;U2
l−L

]
=

L∑
δ=−L

WδRollδ(U
2
l+δ) (9)

Where Rollδ(U
2
l+δ) denotes a cyclic permutation of δ steps along the capsule dimension. The exact

implementation of Roll can be found in Section A.11. As we will show in Section 6.3, TVAE models
with such a topographic structure learn to encode observed sequence transformations as Rolls within
the capsule dimension, analogous to a group equivariant neural network where τρ and Roll1 can be
seen as the action of the transformation ρ on the input and output spaces respectively.

5 Topographic VAE

To train the parameters of the generative model θ, we use the above formulation to parameterize an
approximate posterior for t in terms of a deterministic transformation of approximate posteriors over
simpler Gaussian latent variables u and z. Explicitly:

qϕ(zl|xl) = N
(
zl;µϕ(xl), σϕ(xl)I

)
pθ(xl|gθ(tl)) = pθ(xl|gθ(zl, {ul})) (10)

qγ(ul|xl) = N
(
ul;µγ(xl), σγ(xl)I

)
tl =

zl − µ√
W

[
u2
l+L; · · · ;u2

l−L

] (11)

We denote this model the Topographic VAE (TVAE) and optimize the parameters θ, ϕ, γ (and µ)
through the ELBO, summed over the sequence length S:

S∑
l=1

EQϕ,γ(zl,ul|{xl})
(
[log pθ(xl|gθ(tl))]−DKL[qϕ(zl|xl)||pZ(zl)]−DKL[qγ(ul|xl)||pU(ul)]

)
(12)

where Qϕ,γ(zl,ul|{xl}) = qϕ(zl|xl)
∏L

δ=−L qγ(ul+δ|xl+δ), and {·} denotes a set over time.

6 Experiments

In the following experiments, we demonstrate the viability of the Topographic VAE as a novel method
for training deep topographic generative models. Additionally, we quantitatively verify that shifting
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temporal coherence yields approximately equivariant capsules by computing an ‘equivariance loss’
and a correlation metric inspired by the disentanglement literature. We show that equivariant capsule
models yield higher likelihood than baselines on test sequences, and qualitatively support these results
with visualizations of sequences reconstructed purely from Rolled capsule activations.

6.1 Evaluation Methods

As depicted in Figure 1, we make use of capsule traversals to qualitatively visualize the transforma-
tions learned by our network. Simply, these are constructed by encoding a partial sequence into a t0
variable, and decoding sequentially Rolled copies of this variable. Explicitly, in the top row we show
the data sequence {xl}l, and in the bottom row we show the decoded sequence: {gθ(Rolll(t0))}l.
To measure equivariance quantitatively, we measure an equivariance error similar to [15]. The
equivariance error can be seen as the difference between traversing the two distinct paths of the
commutative diagram, and provides some measure of how precisely the function and the transform
commute. Formally, for a sequence of length S, and t̂ = t/||t||2, the error is defined as:

Eeq({tl}Sl=1) =

S−1∑
l=1

S−l∑
δ=1

∣∣∣∣Rollδ (̂tl)− t̂l+δ

∣∣∣∣
1

(13)

Additionally, inspired by existing disentanglement metrics, we measure the degree to which observed
transformations in capsule space are correlated with input transformations by introducing a new
metric we call CapCorry. Simply, this metric computes the correlation between the amount of
observed Roll of a capsule’s activation at two timesteps l and l + δ, and the shift of the ground truth
generative factors yl in that same time. Formally, for a correlation coefficient Corr:

CapCorr(tl, tl+δ, yl, yl+δ) = Corr (argmax [tl ⋆ tl+δ] , |yl − yl+δ|) (14)

Where ⋆ is discrete periodic cross-correlation across the capsule dimension, and the correlation
coefficient is computed across the entire dataset. We see the argmax of the cross-correlation is an
estimate of the degree to which a capsule activation has shifted from time l to l + δ. To extend this
to multiple capsules, we can replace the argmax function with the mode of the argmax computed
for all capsules. We provide additional details and extensions of this metric in Section A.10. For
measuring capsule-metrics on baseline models which do not naturally have capsules, we simply
arbitrarily divide the latent space into a fixed set of corresponding capsules and capsule dimensions,
and provide such results as equivalent to ‘random baselines’ for these metrics.

6.2 Topographic VAE without Temporal Coherence

Figure 3: Maximum activating images
for a Topographic VAE trained with a
2D torus topography on MNIST.

To validate the TVAE is capable of learning topographi-
cally organized representations with deep neural networks,
we first perform experiments on a Topographic VAE with-
out Temporal Coherence. The model is constructed as in
Equations 10 and 11 with L = 0, and is trained to maxi-
mize Equation 12. We fix W such that globally the latent
variables are arranged in a grid on a 2-dimensional torus (a
single capsule), and locally W sums over 5x5 2D groups
of variables. In this setting, W can be easily implemented
as 2D convolution with a 5x5 kernel of 1’s, stride 1, and
cyclic padding. We see that training the model with 3-
layer MLP’s for the encoders and decoder indeed yields
a 2D topographic organization of higher level features. In
Figure 3, we show the maximum activating image for each
final layer neuron of the capsule, plotted as a flattened
torus. We see that the neurons become arranged according
to class, orientation, width, and other learned features.

6.3 Learning Equivariant Capsules

In the remaining experiments, we provide evidence that the Topographic VAE can be leveraged to
learn equivariant capsules by incorporating shifting temporal coherence into a 1D baseline topographic
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model. We compare against two baselines: standard normal VAEs and models that have non-shifting
‘stationary’ temporal coherence as defined in Equation 8 (denoted ‘BubbleVAE’ [25]).

In all experiments we use a 3-layer MLP with ReLU activations for both encoders and the decoder.
We arrange the latent space into 15 circular capsules each of 15-dimensions for dSprites [43], and 18
circular capsules each of 18-dimensions for MNIST [37]. Example sequences {xl}Sl=1 are formed by
taking a random initial example, and sequentially transforming it according to one of the available
transformations: (X-Pos, Y-Pos, Orientation, Scale) for dSprites, and (Color, Scale, Orientation)
for MNIST. All transformation sequences are cyclic such that when the maximum transformation
parameter is reached, the subsequent value returns to the minimum. We denote the length of a full
transformation sequence by S, and the time-extent of the induced temporal coherence (i.e. the length
of the input sequence) by 2L. For simplicity, both datasets are constructed such that the sequence
length S equals the capsule dimension (for dSprites this involves taking a subset of the full dataset
and looping the scale 3-times for a scale-sequence). Exact details are in Sections A.8 & A.9.

In Figure 4, we show the capsule traversals for TVAE models with L ≈ 1
3
S. We see that despite the

t0 variable encoding only 2
3 of the sequence, the remainder of the transformation sequence can be

decoded nearly perfectly by permuting the activation through the full capsule – implying the model
has learned to be approximately equivariant to full sequences while only observing partial sequences
per training point. Furthermore, we see that the model is able to successfully learn all transformations
simultaneously for the respective datasets.

Figure 4: Capsule Traversals for TVAE models on dSprites and MNIST. The top rows show the
encoded sequences (with greyed-out images held-out), and the bottom rows show the images generated
by decoding sequentially Rolled copies of the initial activation t0 (indicated by a grey border).

Capsule traversals for the non-equivariant baselines, as well as TVAEs with smaller values of L (which
only learn approximate equivariance to partial sequences) are shown in Section D. We note that the
capsule traversal plotted in Figure 1 demonstrates a transformation where color and rotation change
simultaneously, differing from how the models in this section are trained. However, as we describe in
more detail in Section B.4, we observe that TVAEs trained with individual transformations in isolation
(as in this section) are able to generalize, generating sequences of combined transformations when
presented with such partial input sequences at test time. We believe this generalization capability
to be promising for data efficiency, but leave further exploration to future work. Additional capsule
traversals with such unseen combined transformations are shown in Section B.4 and further complex
learned transformations (such as perspective transforms) are shown at the end of Section D.

For a more quantitative evaluation, in Table 1 we measure the equivariance error and log-likelihood
(reported in nats) of the test data under our trained MNIST models as estimated by importance
sampling with 10 samples. We observe that models which incorporate temporal coherence (Bubble-
VAE and TVAE with L > 0) achieve low equivariance error, while the TVAE models with shifting
temporal coherence achieve the highest likelihood and the lowest equivariance error simultaneously.

Table 1: Log Likelihood and Equivariance Error on MNIST for different settings of temporal
coherence length L relative to sequence length S. Mean ± std. over 3 random initalizations.

Model TVAE TVAE TVAE BubbleVAE VAE
L L = 1

2S L = 5
36S L = 0 L = 5

36S L = 0

log p(x) ↑ −186.8 ± 0.1 −186.0 ± 0.7 -218.5± 0.9 -191.4 ± 0.5 -189.0 ± 0.8
Eeq ↓ 574 ± 2 3247 ± 3 3217 ± 105 3370 ± 12 13274 ± 1
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Table 2: Equivariance error (Eeq ↓) and correlation of observed capsule roll with ground truth factor
shift (CapCorr ↑) for the dSprites dataset. Mean ± standard deviation over 3 random initalizations.

Model TVAE TVAE TVAE TVAE BubbleVAE VAE
L L = 1

2S L = 1
3S L = 1

6S L = 0 L = 1
3S L = 0

CapCorrX ↑ 1.0 ± 0 1.0 ± 0 0.67 ± 0.02 0.17 ± 0.03 0.13 ± 0.01 0.18 ± 0.01
CapCorrY ↑ 1.0 ± 0 1.0 ± 0 0.66 ± 0.02 0.21 ± 0.02 0.12 ± 0.01 0.16 ± 0.01
CapCorrO ↑ 1.0 ± 0 1.0 ± 0 0.52 ± 0.01 0.09 ± 0.01 0.10 ± 0.01 0.11 ± 0.00
CapCorrS ↑ 1.0 ± 0 1.0 ± 0 0.42 ± 0.01 0.51 ± 0.01 0.50 ± 0.00 0.52 ± 0.00

Eeq ↓ 344 ± 5 1034 ± 6 2549 ± 38 2971 ± 9 1951 ± 34 6934 ± 0

To further understand how capsules transform for observed input transformations, in Table 2 we
measure Eeq and the CapCorr metric on the dSprites dataset for the four proposed transformations.
We see that the TVAE with L ≥ 1

3S achieves perfect correlation – implying the learned representation
indeed permutes cyclically within capsules for observed transformation sequences. Further, this
correlation gradually decreases as L decreases, eventually reaching the same level as the baselines.
We also see that, on both datasets, the equivariance losses for the TVAE with L = 0 and the
BubbleVAE are significantly lower than the baseline VAE, while conversely, the CapCorr metric is
not significantly better. We believe this to be due to the fundamental difference between the metrics:
Eeq measures continuous L1 similarity which is still low when a representation is locally smooth
(even if the change of the representation does not follow the observed transformation), whereas
CapCorr more strictly measures the correspondence between the transformation of the input and
the transformation of the representation. In other words, Eeq may be misleadingly low for invariant
capsule representations (as with the BubbleVAE), whereas CapCorr strictly measures equivariance.

7 Future Work & Limitations

The model presented in this work has a number of limitations in its existing form which we believe
to be interesting directions for future research. Foremost, the model is challenging to compare
directly with existing disentanglement and equivariance literature since it requires an input sequence
which determines the transformations reachable through the capsule roll. Related to this, we note the
temporal coherence proposed in our model is not ‘causal’ (i.e. t0 depends on future xl). We believe
these limitations could be at least partially alleviated with minor extensions detailed in Section C.

We additionally note that some model developers may find a priori definition of topographic structure
burdensome. While true, we know that the construction of appropriate priors is always a challenging
task in latent variable models, and we observe that our proposed TVAE achieves strong performance
even with improper specification. Furthermore, in future work, we believe adding learned flexibility
to the parameters W may alleviate some of this burden.

Finally, we note that while this work does demonstrate improved log-likelihood and equivariance
error, the study is inherently preliminary and does not examine all important benefits of topographic
or approximately equivariant representations. Specifically, further study of the TVAE both with
and without temporal coherence in terms of the sample complexity, semi-supervised classification
accuracy, and invariance through structured topographic pooling would be enlightening.

8 Conclusion

In the above work we introduce the Topographic Variational Autoencoder as a method to train deep
topographic generative models, and show how topography can be leveraged to learn approximately
equivariant sets of features, a.k.a. capsules, directly from sequences of data with no other supervision.
Ultimately, we believe these results may shine some light on how biological systems could hard-wire
themselves to more effectively learn representations with equivariant capsule structure. In terms of
broader impact, it is foreseeable our model could be used to generate more realistic transformations
of ‘deepfakes’, enhancing disinformation. Given that the model learns approximate equivariance, we
caution against the over-reliance on equivariant properties as these have no known formal guarantees.
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