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Abstract
Understanding the learning process and the em-
bedded computation in transformers is becom-
ing a central goal for the development of inter-
pretable AI. In the present study, we introduce
a hierarchical filtering procedure for data mod-
els of sequences on trees, allowing us to hand-
tune the range of positional correlations in the
data. Leveraging this controlled setting, we pro-
vide evidence that vanilla encoder-only trans-
formers can approximate the exact inference al-
gorithm when trained on root classification and
masked language modeling tasks, and study how
this computation is discovered and implemented.
We find that correlations at larger distances, cor-
responding to increasing layers of the hierarchy,
are sequentially included by the network dur-
ing training. By comparing attention maps from
models trained with varying degrees of filtering
and by probing the different encoder levels, we
find clear evidence of a reconstruction of corre-
lations on successive length scales corresponding
to the various levels of the hierarchy, which we
relate to a plausible implementation of the exact
inference algorithm within the same architecture.

1. Introduction
Transformer-based large language models have revolution-
ized natural language processing, and have notably demon-
strated their capacity to perfectly assimilate the grammati-
cal rules of the languages they are trained on. While this ev-
idence shows that transformers can handle and exploit the
subtle long-range correlations that emerge in natural lan-
guage, their inner workings remain largely unclear.
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Due to the complexity of the standard transformer archi-
tecture (Vaswani et al., 2017), understanding what strategy
is precisely implemented via the attention mechanism to
solve a given problem has been limited so far to very simple
tasks (Weiss et al., 2021; Zhong et al., 2024; Behrens et al.,
2024). Nonetheless, significant results have been obtained
by studying transformers on simplified models of language
known as Context-Free Grammars (CFGs). Through prob-
ing of the so-called parsing tree of CFGs, evidence has
notably pointed towards transformers trained on predict-
ing masked symbols implementing the optimal dynamic
programming algorithm to reconstruct the hidden structure
of the grammar, but alas without finding a fully plausible
implementation within the architecture (Zhao et al., 2023;
Allen-Zhu & Li, 2023). On the other hand, when tasked
with reconstructing the most probable parsing tree in the
context of probabilistic CFGs, transformers may struggle
to match the optimal algorithm if ambiguity is high (Kha-
lighinejad et al., 2023).

Beyond language models, the significance of data structure
in machine learning applications is well recognized yet re-
mains poorly understood. CFGs represent a data structure
characterized by hierarchical correlations (Mossel, 2016).
In general, understanding how standard deep networks can
take advantage of this hierarchical structure in their train-
ing is an important research question. Towards this objec-
tive, simplified hierarchical models of structured data on
fixed trees have proved very useful in understanding the
effectiveness of Convolutional Neural Networks (CNNs)
(Cagnetta et al., 2024), for which there are now formal
results supporting the idea that the optimal Belief Propa-
gation (BP) algorithm can be approximately implemented
(Mei, 2024). Unfortunately, while the implementation of
the hierarchy in CNNs is made quite transparent by the hi-
erarchical structure of their convolutional filters, this is not
true for transformers, and one can therefore not straightfor-
wardly transpose this interpretation to other architectures
(Cagnetta & Wyart, 2024).

In this work, we present a complementary study to those
described above, which allows us to understand further
how transformers approach optimal inference in a struc-
tured data model.
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Figure 1. Synthesis of our main results. (a) The proposed filtered hierarchical model, illustrated here with ℓ = 3 layers and with a
filtering parameter 0 ≤ k ≤ ℓ, allowing one to truncate the hierarchy and generate data with more or less structure. (b) Scatter plot
of the predictions of a trained transformer for a masked symbol (ℓ = 4, k = 0, q = 4 possible states) versus the corresponding exact
marginals obtained with the BP oracle, in-sample on 104 sequences (top), and out-of-sample on uniformly generated sequences (bottom).
(c) Evolution along training, on a root classification task with P = 217 examples (ℓ = 4, k = 0, q = 4) of the average Kullback-Leibler
divergence between transformer predictions and marginals obtained from the matched BP (black) and mismatched BP (from light green
k = 1 to purple k = 4) on identical in-sample inputs, demonstrating the transformer learns increasingly structured representations.
(d) Identical to (c) for a MLM task on P = 218 data. (e) Attention maps averaged over 104 in-sample inputs, for a transformer with
nL = ℓ = 4 layers of attention trained on the MLM task with fully hierarchical data, exhibiting a structure that mirrors the organization
of the generative tree and the sequence of operations of BP. (f) Test accuracy on root classification on fully hierarchical data (ℓ = 4,
k = 0, q = 4) versus number of labeled training samples P with no pretraining (◦) compared to MLM pretraining with frozen (□) and
unfrozen (♢) encoder weights during fine-tuning.

Our contributions. We propose a controlled hierarchical
model of discrete sequences, in which we can easily tune
the strength of correlations between tokens thanks to a “fil-
tering” parameter k, illustrated in Fig. 1(a). This tree-based
probabilistic graphical model gives us access to the exact
inference algorithm for reconstructing any symbol on the
tree, Belief Propagation (BP) (Mézard & Montanari, 2009).
Leveraging this context, we show that

• Transformers not only approach optimal performance
in root classification and Mask Language Modeling
(MLM) tasks, but they spontaneously do so in a cal-
ibrated way—i.e., by predicting probabilities that ap-
proximate those yielded by the BP oracle even on out-
of-sample inputs, see Fig. 1(b)—which provides evi-
dence of an equivalence in computation to the exact
inference algorithm.

• When trained with stochastic gradient descent, trans-
formers sequentially discover the existence of higher
hierarchical correlation levels (i.e., longer-range cor-
relations), progressively aligning with the prediction
of algorithms that impute only parts of the full corre-
lation structure, see Fig. 1(c)-(d). In other words, our

simplified setting allows us to understand how trans-
formers learn from structured data in time.

• Well-trained transformers reconstruct the correct hi-
erarchical structure through the succession of atten-
tion blocks. Matching the number of transformer lay-
ers to the number of layers in the generative tree,
we find that the attention maps are compatible with a
natural implementation of BP within the architecture,
see Fig. 1(e). We verify this affinity through prob-
ing experiments, providing strong clues on how trans-
formers learn from our structured data in “space”,
thereby explaining the effectiveness of unsupervised
pre-training for supervised classification tasks, illus-
trated in Fig. 1(f).

The paper is organized as follows. First, we provide a
detailed description of our tunable hierarchical model in
Sec. 2. We then perform numerical experiments on stan-
dard transformer architectures in Sec. 3, shedding light on
the learning dynamics. The understanding of the imple-
mentation learned by the transformer, and its compatibility
with a possible implementation of the BP algorithm in the
architecture that we propose, is analyzed in-depth in Sec. 4.
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We finally conclude and discuss the wider implications of
our results in Sec. 5.

2. A model with filtered correlations
2.1. The full hierarchical model

We consider a tree-based generative process producing
structured sequences of discrete symbols. We here focus
on the fixed tree topology case, allowing for direct control
over the effective range of the hierarchical correlations in-
duced in the generated sequences (2.2), and enabling exact
and efficient inference through Belief Propagation (2.4).

The “full” hierarchical generative process shown in the first
row of Fig 1(a) can be described as follows. The chain
starts from an initial symbol x0, which we will refer to as
the root of the tree, sampled with probability p0 from a
vocabulary X = {1, . . . , q}. Then, the first layer of the
tree is drawn randomly using a transition tensor M, which
assigns the probability of generating some children—from
the same vocabulary X—given a parent (here x0). In this
work, we will restrict ourselves to binary trees for simplic-
ity. We therefore have M ∈ Rq×q×q

+ , with Mabc the proba-
bility of generating the pair (b, c) given a parent a. Since
its elements are transition probabilities, this tensor should
satisfy Mabc ∈ [0, 1] ∀ a, b, c and

∑
bc Mabc = 1 ∀ a. The

process, with the same tensor M, is then repeated indepen-
dently for each of the newly created children nodes for a
total of ℓ generations, eventually yielding a sequence of 2ℓ

symbols {xi}i=1,...,2ℓ . We will refer to the symbols in the
sequence as the leaves of the generative tree.

The class of transition tensors M that we use is defined pre-
cisely in Appendix A. In short, we will resort to randomly
sampled log-normal transition probabilities, yielding com-
plex long-range correlations along the sequences. Impor-
tantly, we will only consider tensors with non-overlapping
entries, such that: if Mabc > 0, then ∀a′ ̸= a Ma′bc = 0.
As a result, the production rules of our unfiltered generative
model are non-ambiguous in the sense that a pair of chil-
dren symbols can only have a single parent. Given all the
symbols on the leaves, one can therefore deterministically
reconstruct the underlying generative tree, all the way up to
the root.

2.2. Filtering hierarchical correlations

We develop a filtering tool that enables control over the cor-
relation structure in the generated sequences. In particular,
we consider a family of generative models, indexed by an
integer k ≤ ℓ, with hierarchical correlations truncated at a
given depth k of the tree.

In the k = 0 case described in the previous paragraph, all
children generated at any level of the tree are sampled in

pairs from their respective parents and are strongly cor-
related. When k > 0, we instead generate the tree by
drawing the children at level k conditionally independently
given the root, with the same marginals as the full (k = 0)
model. Then, for layers below layer k, the generative pro-
cess is the standard one described above, inducing correla-
tions within blocks of 2ℓ−k tokens. The procedure is illus-
trated in Fig. 1(a), where dashed segments indicate condi-
tional independence.

In order to match the correct marginal probabilities in the
truncated models, the conditional independent sampling at
level k is done as follows. For each of the 2k variables at
level k, say xj ,1 one considers the unique path that relates
the root to this intermediate child in the original fully hier-
archical tree, yielding a probability

P (xj = b | x0 = a) =
(
p0M

σ0(j)Mσ1(j) . . .Mσk−1(j)
)
a,b

,

(1)
with σm(j) ∈ {L,R} indicating whether the path leading
to the tree element j considered at layer k takes a left or
right branching at the previous layer m. The q × q tran-
sition matrices ML and MR are computed by tracing the
original tensor

ML
ab =

∑
c

Mabc, MR
ac =

∑
b

Mabc. (2)

By constructing filtered trees in such a way, we ensure that
the conditional correlations of the leaves capture up to the
kth level of the hierarchy. Note, however, that when k > 0
the root can no longer be recovered deterministically from
the leaves.

2.3. Related data models

Context-free grammars. Our hierarchical model can
be considered as an instance of a simplified probabilis-
tic context-free grammar (PCFG) with log-normally dis-
tributed transition rates (De Giuli, 2019). The simplifica-
tion is two-fold. Standard CFGs typically include two dis-
tinct sets of symbols, non-terminals and terminals, repre-
senting parts of speech—i.e. nouns, verbs etc.—and actual
words respectively, plus a root symbol. Here, instead, we
consider a single vocabulary X for all the symbols in the
tree, including the root—which allows us to define a root
classification task. Moreover, the parsing trees underlying
CFGs are not fixed: terminals can be produced at differ-
ent levels and the sequence length can vary. Instead, we
assume a fixed parsing tree for our model, where the 2ℓ

leaves are collected from the last layer—which allows us
to define a filtering procedure based on removing layers of
hidden symbols above the leaves.

1Here we take j > 2ℓ to refer to the internal nodes of the
tree, while x0 remains the root and xi with i = 1, . . . , 2ℓ are the
leaves.
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The Random Hierarchy Model. Our model is closely
related to the recently introduced Random Hierarchy
Model (RHM) of Cagnetta et al. (2024), which was studied
to improve the understanding of the effect of hierarchical
structures on generative diffusion (Sclocchi et al., 2025) or
last token prediction (Cagnetta & Wyart, 2024). The main
differences to our formulation are that in the RHM the al-
lowed transitions have uniform transition rates—while we
consider a log-normal distribution—and that the produc-
tion rules depend on the layer—while we here consider a
single transition tensor throughout the tree. Correlations
between the leaves arise in the RHM when some children
pairs cannot be produced, leading to a reduced entropy of
viable sequences. Having non-uniform transitions in our
model similarly limits the entropy, while leading to a sig-
nificantly different correlation structure. One should for in-
stance notice that the staircase decrease of the correlations
as a function of the distance between leaves presented in
Cagnetta & Wyart (2024) is not visible in our case.

2.4. Exact inference

A key advantage of generating sequences through a tree-
based process is that we can perform exact inference ef-
ficiently using a dynamic programming approach. More-
over, the fixed tree topology allows us to consider a simpli-
fied version of the general inside-outside algorithm (Baker,
1979), which can be written in a message-passing form
within the Belief Propagation (BP) formalism (Sato, 2007;
Mézard & Montanari, 2009). Assuming that the transi-
tion tensor M and root probabilities p0 are known, with
BP one can compute the exact marginal probabilities for
all the symbols at any position in the tree, with a computa-
tional cost linear in the size of the tree. More precisely, on
the tree structures we consider, BP can be shown to con-
verge in 2(ℓ− k+1) steps i.e. an upwards and downwards
pass along the tree. This procedure can be used to infer
the root given the leaves and to find the most likely value
of a masked leaf (or set of leaves) given the rest of the se-
quence: we’ll use it as an optimal solution against which
to compare our numerical results. The details on the BP
scheme for the filtered tree graphs we are considering can
be found in Appendix B.

3. How transformers learn to climb the
hierarchy in time

3.1. Experimental setup

We will focus on the encoder-only variant (Devlin et al.,
2019) of the celebrated “vanilla” transformer architecture,
introduced in (Vaswani et al., 2017). A full recap of this
parametrization is given in Appendix C.

In a nutshell, each of the sequence elements xi ∈

{1, . . . , q} is first converted to a positionally-informed to-
ken x

(0)
i ∈ Rd. For our experiments, we consider d =

128 and the standard sinusoidal positional encoding of
(Vaswani et al., 2017). Each transformer block in the net-
work then maps the previous encoded sequence onto a new
sequence of tokens with the same length and embedding di-
mension, through a concatenation of a self-attention layer
and a fully connected layer, with residual connections and
layer normalization. The self-attention layer importantly
introduces some mixing between the different tokens in the
sequence, represented by what we will refer to as an at-
tention matrix A ∈ R2ℓ×2ℓ

+ . We take the fully connected
layer to be a standard 2-layer network with relu activations
and hidden dimension d′ = 2048. Following these opera-
tions, repeated nL times to obtain the full encoder, we ob-
tain a position-dependent high-dimensional representation
of each of the original symbols in the sequence. What is
finally done with this sequence of tokens depends on the
task at hand: we consider root classification in Sec. 3.2 and
masked language modeling in Sec. 3.3.

Motivated by our focus on understanding the transformer’s
implementation, we will take the number of attention layers
to match the depth of the unfiltered generative tree, nL = ℓ.
Studying varying values of k for the training data will ef-
fectively allow us to explore cases where there are more at-
tention layers than hierarchical levels in the generative tree,
while we discuss the consequences of having nL smaller
than the number of hierarchical levels in Appendix E.1.

In the following, all numerical experiments are performed
on the same realization of the transition tensor, randomly
sampled for q = 4 using the parametrization described in
Appendix A (see also our Reproducibility Statement be-
low). While there may be quantitative differences for dif-
ferent randomly generated tensors—particularly at small
q—results remain qualitatively unchanged in experiments
on different grammars, see Appendix E.2.

3.2. Supervised classification

In the context of our model, a natural idea is to use the root
of a tree x0 as a label for the generated sequence {xi}, and
to train a transformer encoder architecture on the associated
classification task using a dataset of P labeled sequences.
To perform the root prediction, the tokens in the final layer
are concatenated position-wise (forming a large d×2ℓ vec-
tor) and fed to a linear readout, which outputs q logits as-
sociated with the possible root symbols. The network is
trained by minimizing the cross-entropy loss between these
logits and the correct one-hot encoding of the root.

Optimal test accuracy. We find that given sufficient la-
beled data P ≥ P ∗, transformers achieve perfect in-sample
root classification accuracy in the fully hierarchical model,

4



How Transformers Learn Structured Data: Insights From Hierarchical Filtering

103 104 105

P

0.6

0.8

1.0
T

es
t

ac
cu

ra
cy

(a)

0 100 101 102

Epoch

0.2

0.4

0.6

0.8

1.0
(b)

Figure 2. (a) Evolution of the root prediction accuracy on full hi-
erarchical ktest = 0 test samples for transformers trained on P
labeled samples generated with ktrain = 0, 1, 2, 3, 4 (top to bot-
tom). Dashed lines indicate, the accuracy computed with the BPk

algorithm on unfiltered data. (b) Evolution of the root prediction
accuracy of the ktrain = 0 model computed on filtered test datasets,
with ktest = 0, 1, 2, 3, 4 (top to bottom), for transformers trained
on P = 217 ktrain = 0 data. Dashed lines represent the out-of-
sample BP0 prediction. In both plots ℓ = 4, q = 4.

k = 0, as illustrated in Fig. 2(a). When the training data
has filtering parameter k > 0, the networks approach the
optimal in-sample accuracy predicted by BPk, see Fig. 8
of Appendix E.3. Notice that, while in the case k = 0 the
exact algorithm finds the value of the root with accuracy
1, this is no longer the case for k ≥ 1 where the optimal
accuracy is < 1.

Different from the Random Hierarchy Model of Cagnetta
et al. (2024), characterizing analytically the scaling of P ∗

with the parameters of the grammar with our non-uniform
transition probabilities is a challenging goal, and is left for
future work. Still, we discuss the role of the filtering pa-
rameter k of the data model on the sample complexity in
Appendix E.3

Out-of-sample testing. In our data model, one can also
test out-of-sample with respect to the filtering parameter k.
For example, we test models trained on intermediate fil-
tered data on a fully hierarchical dataset, i.e., ktrain > 0
and ktest = 0, in Fig. 2(a), or vice-versa, i.e., ktrain = 0
and ktest > 0, in Fig. 2(b). In both cases, the transformers
achieve a performance that exactly matches that of BPktrain ,
in the presence of the same mismatch between the assumed
inference model and the data generative model. We stress
that, in this mismatched task, the BP prediction is no longer
optimal, yet the trained networks systematically reach the
same accuracy. This observation provides the first evidence
that the transformers are implementing an approximation
of the BPktrain algorithm matched to the training data distri-
bution.

Full prediction matching. So far, we have established
that the trained transformers match the accuracy of the ex-
act inference algorithm on the root prediction in- and out-
of-sample. We can however go one step further, as the
transformers output q logits, which were passed through
an argmax operation to yield a prediction. Taking the
softmax instead gives a normalized q-dimensional vec-
tor, which we can interpret as the predicted probabilities
of the root symbol given the input sequence, to be com-
pared to the exact marginals obtained with BP. We find a
close match at the end of training, as shown by the small
Kullback-Leibler divergences averaged over in-sample in-
puts in the k = 0 case in Fig. 1(c), and similarly for
k ≥ 0, on both in-sample and entirely out-of-sample in-
puts in Fig. 9 of the Appendix. While such a match is not
entirely surprising in the deterministic k = 0 problem, as
the one-hot encoding of the root label against which the
transformer logits are compared at training corresponds to
the exact marginal distribution yielded by BP0, the match is
highly non-trivial in the ambiguous k > 0 instances, where
the transformer is never explicitly guided towards the cor-
rect values during training, as the one-hot encoding of the
root label does not correspond to the exact marginals any-
more. This calibration therefore provides a second strong
piece of evidence that the transformers spontaneously im-
plement exact inference.

Supervised learning dynamics. Looking more specifi-
cally at the learning dynamics of a network trained on the
full hierarchy sheds some light on the learning process of
the transformer encoder. Fig. 2(b) shows the evolution of
the test accuracy of the ktrain = 0 model both in-sample,
with ktest = 0 data, and out-of-sample, on filtered data with
ktest > 0. One can notice multiple stages in the learning
procedure: in the first epochs, the network imputes a sim-
plistic explanation of the training data, resolving the leaf-
to-root correlations—aided by the supervised signal—, as
well as the short-range correlations between the leaves. As
a result, the test accuracy increases for all values of ktest.
As time progresses and longer-range correlations are dis-
covered in the training data, the accuracy on the most fil-
tered datasets drops towards the mismatched BP0 predic-
tion, since the imputed higher correlation levels are not
present in the out-of-sample ktest > 0 data. In the mean-
time, the accuracy for the smallest values of ktest keeps in-
creasing. In a limited number of epochs, as the network
perfectly learns to infer the root on ktest = 0 data, the BP0

oracle accuracy is reached on test sets generated with all
levels of factorization.

This picture can be further refined by considering the pre-
dictions of a transformer trained on the full hierarchy and
the evolution of their distance from the marginals predicted
on the same data by the BPk oracles, for all k ≥ 0. As
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illustrated by the DKL in Fig. 1(c), we observe an ini-
tial stronger alignment to BPℓ, which only considers leaf-
to-root correlations. As training on ktrain = 0 data pro-
gresses and the transformer shifts towards the correct pre-
diction, the model predictions sequentially align to versions
of BP that incorporate more and more of the correlation
structure—i.e., BPk with decreasing values of k.

3.3. Masked Language Modeling

We now turn to self-supervised training, where the model
learns from a dataset of P unlabeled sequences. In sim-
ple terms, the Masked Language Modeling (MLM) train-
ing procedure consists of randomly masking parts of the
sequences and asking the model to recover them from the
context. This is closer to what is done in practice to train
large language models, see e.g. Devlin et al. (2019); Liu
et al. (2019). While in principle one could mask several
symbols simultaneously in training, we focus on single-
symbol masking—at a random position in the sequence—
in the following, given the limited length of our sequences
(a single symbol representing already 6.25% of the se-
quence for ℓ = 4). Contrary to the root inference task,
in MLM perfect accuracy cannot be achieved even in the
fully hierarchical case, because of the stochastic nature of
the branching process in the generative tree. The optimal
performance is still yielded by the BP matched to the test
data.

To reconstruct the masked symbol, we now feed a single
token, selected from the final transformer encoding at the
positions associated with the masked element, to a linear
layer producing a vector of logits. The network is then
trained by minimizing the cross-entropy loss between these
logits and the one-hot encoding of the masked element in
the sequence.

Optimal reconstruction performance. Given sufficient
data, we find that transformers again approach optimal in-
sample accuracy on data with any level of filtering. We
show the case trained on ktrain = 0 in Fig. 3(a), where
the transformer reaches the BP0 accuracy also on out-of-
sample test data with ktest > 0. Consistent with intuition,
the required amount of training data P ∗ is increased rel-
ative to the supervised task, as the network must learn to
resolve the weak long-range correlations in the sequence
without any supervised signal from the top of the hierar-
chy. Moreover, compared to root classification, the net-
works trained for MLM require much longer training to
approach optimal performance—typically ∼ 103 epochs
in place of a mere ∼ 10 epochs for classification—, see
Fig. 3(a) vs Fig. 2(b).

Full prediction matching. To go beyond test accuracy,
we also consider the full probabilities outputted by the

0 100 101 102 103

Epoch

0.4

0.6

T
es

t
ac

cu
ra

cy

(a)

3210
Tree layer

0.4

0.6

0.8

1.0

(b)

4

3

2

1

Figure 3. (a) Evolution of the MLM test accuracy computed on
filtered test datasets, with ktest = 0, 1, 2, 3, 4 (from top to bot-
tom), for a model trained on ktrain = 0 data and P = 217. The
dashed lines represent the in- and out-of-sample BP0 predictions.
(b) Test accuracy in the ancestor prediction task (layer 0 is the
root) with ktrain = ktest = 0 obtained by reading out the interme-
diate transformer encoding levels (legend) of a model pre-trained
on the full hierarchy. The readout is trained on 214 labeled exam-
ples. In both plots ℓ = 4, q = 4.

transformer. As shown in the top panel Fig. 1(b), we find
a close match with the exact marginals obtained from BP
when measured on in-sample inputs. To confirm the gener-
ality of this correspondence, we extend the comparison to
uniformly sampled data in the bottom panel of Fig. 1(b). In
this setting, we still observe high correlations between the
outputs, albeit with more dispersion related to the markedly
atypical nature of these test samples compared to the train-
ing data distribution. Measuring the alignment using the
Kullback-Leibler divergence, shown in Fig. 1(d), or else
the sample-specific prediction match and Spearman (rank-
ing) correlation between the two discrete probability dis-
tributions, shown in Fig. 10 of Appendix E.4, confirms
the near equivalence between transformer and BP compu-
tation. Note again the remarkable calibration of the log-
its, although the network is trained with hard labels for the
masked symbols despite the probabilistic nature of the task.

Self-supervised learning dynamics. By analyzing the
out-of-sample performance with different filtering levels,
we also unveil the sequential nature of the MLM learn-
ing process. Computing the test accuracy on all ktest lev-
els throughout the training dynamics, we observe a clean
“staircase” behavior in the test accuracy, as shown in
Fig. 3(a). This picture confirms and clarifies the experi-
ments in Fig. 2(b), showing that the network sequentially
resolves the nested levels of the hierarchy, in a bottom-up
order. Note that the observation of the shorter-range corre-
lations being learned first is consistent with the signal-to-
noise picture exposed in Cagnetta & Wyart (2024). More-
over, the presence of a sequential mechanism of discovery
and resolution of different moments of the data distribution
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has been studied in (Refinetti et al., 2023; Bardone & Goldt,
2024; Rende et al., 2024). Overall, the convergence of the
transformer to both the in-sample and the out-of-sample
token prediction accuracy of BP supports the claim that
the model learns to implement a close approximation of
the exact algorithm. The learning mechanism is also con-
firmed by the behavior of DKL along the training, shown
in Fig. 1(d): analogous to the root inference case, but more
qualitatively compelling, the predictions of a transformer
trained on the fully hierarchical data sequentially align with
the marginals yielded by BPk, with decreasing k as training
progresses and longer-range correlations are accounted for.

4. How transformers embed the exact
inference computation

Attention map analysis. In the root inference task, the
readout performing the prediction is fed with the entire se-
quence of tokens. As a result, there are many ways for the
transformer encoder to distribute the computation across its
layers, and no necessity for single tokens to carry informa-
tion on all the ancestry levels in the tree, making it a non-
ideal setting for mechanistic interpretation.2 In the MLM
task, on the other hand, single token encodings are used
to predict the masked symbols. This requirement seems to
guide the model towards more interpretable attention maps,
shedding some light on how the model may approximate
the optimal algorithm. They are shown in Fig. 4, each row
referring to a transformer encoder trained on data with dif-
ferent filtering levels—k increasing from top to bottom.

In the fully filtered case (bottom row) there is no need to
combine the different elements of the sequence before the
readout and the attention matrices are nearly uniform. Now,
as we reduce the level of filtering in the generative process,
clear patterns emerge in the attention map.

First, the model focuses on short-ranged correlations be-
tween nearest neighbors when k = 3 and, as we decrease
k, towards patterns of size ∼ 2ℓ−k, which is the exact size
of the stronger correlated block with a filtering parameter
k—see Sec. 2. Note that the similarity between the k = 1
and k = 0 cases (top two rows) is natural, the tree topol-
ogy in these two cases being identical and with only the
transition probabilities for this first layer differing.

Interestingly, the network naturally organizes the attention
layers hierarchically. This is particularly visible when there
are fewer redundant layers i.e. in the cases k = 0, 1 (two
top rows in Fig. 4). Such a layout is consistent with the
BP algorithm on the full tree, where one combines ele-
ments pairwise while going up the tree. While a typical

2Note that transformers trained on the classification task still
present some patterns related to the hierarchical nature of the data
model, albeit less clearly, see Appendix E.5.

Figure 4. Visualization of the nL = 4 attention matrices (aver-
aged over 104 input sequences) for transformers trained on the
MLM task on different filtered datasets, with k = 0, 1, 2, 3, 4
(top to bottom rows), and P = 218, ℓ = 4, q = 4. For the
fully factorized model, k = 4, where the leaves are independent
conditional to the root the attention matrix appears structureless.
When k decreases one sees the emergence of attention blocks of
size ≤∼ 2ℓ−k. For k = 0, 1, the trained attention matrices reflect
all the hierarchies of the correlations.

BP implementation includes a downward pass, it is possi-
ble to avoid this step if the token embedding dimension,
d, is sufficiently large. To illustrate this point, we propose
an existence proof of a plausible implementation of the BP
algorithm in an architecture.

Exact transformer embedding of BP. In a natural im-
plementation of BP, inference for the MLM task requires
the messages from the visible leaves to reach the top of the
hierarchy and descend back to the masked symbol, effec-
tively propagating through 2ℓ layers. A proposal in Zhao
et al. (2023) for a transformer embedding of the inside-
outside parsing algorithm—a generalization of the above-
described BP to the unknown topology setting—requires as
many transformer blocks as double the sequence length—
here 2ℓ—, and an attention head per hidden symbol in the
hierarchy. Thus, it might seem surprising that a single-
head transformer encoder with ℓ blocks could be sufficient
to mimic the BP algorithm. To prove the feasibility of its
implementation within these architectural constraints, we
propose an idealized transformer implementation of the BP
algorithm. Note that some of the key ingredients of this
feasible implementation are introduced for the sake of in-
terpretability but are not imposed in our experiments, and
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therefore this does not represent an exact explanation of the
trained transformer computation. The complete existence
argument is deferred to Appendix F, while here we provide
a high-level description of some key ideas.

We consider a fully disentangled embedding of positional
and semantic information in the vectorized tokens, con-
tained in d = q(q + 2) + ℓ dimensions. The isolation of
the semantic information allows the implementation of a
simple position-based attention mechanism, inspired by the
factor graph structure, and compatible with the attention
matrices in Fig. 4. Then, going up the hierarchy requires
the computation of a trace of products (see equation 6
in Appendix B), which can be well approximated by the
fully connected layers in the second part of the transformer
blocks, provided the attention selects the right terms in the
product. The less intuitive component of the implementa-
tion is the computation of the messages directed towards
the leaves, used in the MLM task. Given the limit on the
number of transformer blocks, this computation must be
done in parallel with the upward climb of the hierarchy, de-
spite the missing downward messages. It turns out that, by
exploiting O(q2) memory slots in the token embedding—
and thus with an increased memory cost compared to BP—
a different recursion with the same result as the standard
message-passing can be implemented, within the nL = ℓ
constraint for the number of transformers layers.

Probing the encoder representations. To confirm that
the computation going up the tree is distributed sequen-
tially in the transformer blocks, consistent with the pro-
posed embedding of BP, we undertake a probing experi-
ment similar to those performed e.g. in Zhao et al. (2023).
First, we analyze the encoder trained for the MLM task
on k = 0 data, cf. top row of Fig. 4. Keeping the en-
coder weights frozen, we investigate how much information
about the ancestors of any leaf is contained in the succes-
sive hidden representations of the corresponding token—
see Appendix E.6 for implementation details. While in the
exact embedding of BP the k-th level ancestor information
must be available at layer k to iterate the recursion for the
downgoing messages, the MLM training does not set such
a requirement. To probe the encodings, we employ a spe-
cialized two-layer readout for each encoder-layer/ancestry-
level pair—independent of the token position—trained on
a supervised dataset with 214 examples. In Fig. 3(b), we
show that the prediction accuracy is high on ancestors up
to the same level as the probed layer and deteriorates on
higher levels of ancestry. Note that, unless the information
about the entire block of 2ℓ−k tokens is properly mixed
in through the attention mechanism, a perfectly accurate
prediction of the common kth level ancestor from a sin-
gle token representation is impossible, as the mapping be-
comes non-deterministic. Moreover, the “overfitting” sce-

nario, where the ancestors are reconstructed solely by the
trained probes and the sequential reconstruction is an ar-
tifact, can be ruled out by considering the gap between
the accuracies achieved from different layers—the relative
comparisons are fair since the readouts are trained on the
same datasets—, and by training the probes only on some
positions—see Appendix E.7.

In Appendix E.7, we also conduct similar ancestor predic-
tion experiments on the last encoder layer of models trained
with k > 0 data (lower rows of Fig. 4), where we again find
that the ancestry information is consistent with the attention
maps.

Synergy between tasks and MLM pre-training. In the
context of our model, we can straightforwardly explain
why self-supervised pre-training allows a large speed-up
in the supervised training process, in line with many em-
pirical observations on real-world data (Howard & Ruder,
2018). We show in Fig. 1(f) an MLM pre-trained model
fine-tuned for root inference. A significant reduction in the
labeled data required to achieve optimal root inference —
P ∗ in Sec. 3.2— is observed, both with frozen and with
fine-tuned encoder weights.

5. Conclusions
By using a simple, tunable, hierarchical model of struc-
tured sequences, we were able to shed some light on the
inner workings of transformer encoders and better under-
stand how they achieve optimal inference on both super-
vised and self-supervised tasks. The modularity of our
data model also allowed us to uncover how transform-
ers sequentially implement longer-range correlations dur-
ing the learning dynamics, compatible with similar con-
trolled studies (Rende et al., 2024) and with the general un-
derstanding of LLMs trained on natural language (Kaplan
et al., 2020). This mechanism could perhaps be exploited to
shape theory-driven curriculum learning strategies for NLP,
where curating the presentation order of training examples
was already proven effective (Campos, 2021). Moreover,
because blocks of symbols inherited from common ances-
tors are progressively integrated during training, learning
our data model may perhaps be related to a form of motif
learning, with increasingly longer motifs being identified
over time (Wu et al., 2023).

Generalizing our filtering-based interpretative tool to the
case of variable sequence lengths (Allen-Zhu & Li, 2023;
Zhao et al., 2023)—where the topology of the parsing tree
is not known a priori—is a challenging but promising di-
rection for approaching a more detailed understanding of
the learning dynamics and the embedded computation in
transformers trained on natural language. On the other
hand, while the idealized model of structured sequences
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studied in the present work might be less suited for mod-
eling natural language compared to standard CFGs, the ag-
nostic nature of the approach could open connections to
other related fields, like protein sequences analysis (Zhang
et al., 2023) and immunology (Meynard-Piganeau et al.,
2024). It could finally be interesting to undertake a similar
investigation on the way transformers learn in other prob-
lems where optimal inference can also be achieved via dy-
namic programming (Mossel et al., 2014; 2023).
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A. Further details on our data model
The transition tensor M—the “grammar” of our genera-
tive model in CFG terminology—fully controls the prop-
erties of the above-defined generative process. We define a
parametrized ensemble of random grammars, from which
multiple transition tensors can be sampled independently.
Two grammars generated with the same parameters are ex-
pected to share some high-level features and produce data
of comparable complexity, at least in the large vocabu-
lary size limit. Elaborating on recent work on context-free
grammars (see Sec. 2.3 of the main text), we generate tran-
sition probabilities as

Mabc =
ehabc∑

b′c′ e
hab′c′

(3)

where the logits habc are generated as

habc =

{
σξabc if (b, c) ∈ Oa,

−∞ otherwise,
(4)

with ξabc independent Gaussian random variables of zero
mean and unit variance, and σ controlling the probability
fluctuations between likely and unlikely transitions. Here,
the q sets Oa build a equal-sized partition of the q2 possible
children pairs (b, c), i.e. Oa ∩ Oa′ = ∅ if a ̸= a′ and | ∪a

Oa| = q2. This non-overlapping prescription implies that
the broadcast from the root to the leaves has no ambiguity.
Therefore, as stated in the main text, if the transition tensor
M is known, one can deterministically go up the hierarchy
of the tree and infer the root given a set of leaves. We leave
generalizations of this setting for future work.
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Figure 5. Illustration of the two types of BP updates: (a) above;
(b) below the filter level k.

B. The BP inference algorithm
Here we present the exact Belief Propagation algorithm
used as the gold standard against which to compare the nu-
merical results. For the full derivation, see Mézard & Mon-
tanari (2009). We start by randomly initializing an upgoing
and downgoing message—each one being a vector in Rq

that represents a probability distribution over the q possible
symbols—for each edge in the generative tree. In the fol-
lowing, we denote with νj→α a message going from a so-
called variable node j (shown by a circle in the sketches)
to a factor node α (shown by a full or empty square in the
sketches), and with ν̂α→j the message in the opposite di-
rection. Wherever there is a known variable one should
then fix νj→α[xj ] = δxj ,a, where a is the known value e.g.
of the leaf.

When the hierarchy is truncated, two distinct types of up-
dates are possible, depending on whether one lies in the
filtered or unfiltered regions of the tree. In the former, the
root is directly connected to 2k “empty” factor nodes, as
shown in Fig. 5(a), each connected to a single and distinct
variable node below. In this case the BP fixed point equa-
tions for messages from the root to the empty factor are
given by

ν0→αj [x0] ∝
∏
ℓ ̸=j

ν̂αℓ→0[x0], (5)

i.e. outgoing messages are simply a product of the incom-
ing messages from all the other edges. At each of the 2k

factor nodes, both upgoing and downgoing messages sat-
isfy

ν̂αj→0[x0] ∝
∑
xj

P (xj | x0)νj→αj
[xj ],

ν̂αj→j [xj ] ∝
∑
x0

P (xj | x0)ν0→αj
[x0],

(6)

where P (xj | x0) is given by equation 1, and is specific
to the factor node considered. The notation ∝ means that
the messages—that are probabilities—are to be normalized
(e.g.

∑
x0

ν̂αj→0[x0] = 1).

We now consider the lower, unfiltered part of the tree. As
illustrated in Fig. 5(b), each of the “full” factor nodes is

connected to three variable nodes, representing the parent
and two children in the standard branching process. The
outgoing messages from the factor node should satisfy

ν̂α→u[xu] ∝
∑
xl,xr

Mxuxℓxrνl→α[xl]νr→α[xr]. (7)

For all variable nodes except for the root detailed above, the
single outgoing messages are equal to the single incoming
messages in these variable nodes at the previous/next layer
of the tree. For example, the upgoing messages ν1→α1

in
Fig. 5(a) is simply ν̂α→1, where α is the full factor node
lying below variable 1 (assuming k < ℓ). Efficient conver-
gence to the fixed point is guaranteed if one starts from the
leaves and updates the messages in an upgoing pass, and
then performs a downgoing pass from the root, for a total
of 2(ℓ− k + 1) steps. Once the messages have converged,
any unknown variable can be optimally reconstructed by
computing the marginals as

µ[xi] ∝
∏
α∈∂i

ν̂α→i[xi], (8)

where ∂i is the set of factor nodes connected to variable
node i. In our problem, this product will therefore typically
be over a single factor node when inferring masked leaves,
or 2k factor nodes when inferring the root.

C. Vanilla encoder-only transformer
architecture

A sequence of leaves {xi} generated by the hierarchical
model and represented by 2ℓ integers is first converted into
a sequence of one-hot vectors {xi}, with xi ∈ Bq . 3 Then,
we perform the first encoding step producing a sequence
of tokens {x(0)

i } ∈ Rd, with arbitrary dimension d ≥ q,
obtained through a learnable projection to the embedding
space and the inclusion of positional encoding pi,

x
(0)
i = WExi + pi, (9)

with WE ∈ Rd×q and pi ∈ Rd. For our experiments, we
consider d = 128 and the standard sinusoidal positional
encoding of (Vaswani et al., 2017).

As described in the main text, each transformer block in the
3For simplicity, the procedure described here does not con-

sider special tokens. In practice, we will take a vocabulary of
size q + 1 to account for masked symbols when doing MLM, see
Devlin et al. (2019).
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network then transforms the tokens as follows,

x̃
(l)
i = layernorm

(
x
(l−1)
i +

+selfattention(x(l−1);W
(l)
Q ,W

(l)
K ,W

(l)
V )
)
,

(10)

x
(l)
i = layernorm

(
x̃
(l)
i + FC(x̃

(l)
i ;W

(l)
1 ,W

(l)
2 )
)
.

(11)

The single-head self-attention layer considered in this work
entails the computation of three different quantities from
each token: the query qi = WQxi, the key ki = WKxi

and the value vi = WV xi. For simplicity, we take WQ,
WK and WV in Rd×d. The queries and keys are combined
to compute the attention matrix

Aij = softmax

(
qi · kj√

d

)
, (12)

then used to build a linear combination of the values,

selfattention(x;WQ,WK ,WV ) =

2ℓ∑
j=1

Aijvj . (13)

The fully-connected layer, instead, is a standard 2-layer
network with relu activations:

FC(xi;W1,W2) = W2 relu (W1xi) , (14)

where W1 ∈ Rd×d′
, W2 ∈ Rd′×d, and d′ = 2048 in our

experiments. We refer the reader to the original paper by
(Vaswani et al., 2017) for additional details on the trans-
former encoder operations.

D. Further details on numerical experiments
All numerical experiments presented in this paper were per-
formed using PyTorch (Paszke et al., 2019) version 2.3.0.
We use the Adam (Kingma & Ba, 2014) optimizer with
batches of size 32 and a fixed learning rate of 10−4, other
parameters left as default. We did not find learning rate
scheduling to provide significant benefits in our experi-
ments. All models were initialized randomly using the de-
fault settings (Xavier uniform distribution).

In both root inference and MLM, the accuracy of the trans-
former implementation and of the BP over M trials is mea-
sured straightforwardly as

Accuracy =
1

M

M∑
γ=1

δx̂ν ,xν
, (15)

where xν is understood as the ground truth and x̂ν the sym-
bol inferred using the network or BP.

The Kullback-Leibler divergence between two discrete
probability distributions encoded as n-dimensional vectors
u and v, is given by

DKL(u ∥ v) =

n∑
α=1

uα log

(
uα

vα

)
. (16)

E. Additional figures
E.1. Influence of the number of attention layers

Establishing a relation between the number of encoder lay-
ers nL in the transformer and the ability to achieve this
optimal classification on data generated from hierarchical
models is also not straightforward. Indeed, given the con-
catenation of operations involved in a single transformer
block and the presence of residual and normalization lay-
ers, the effective number of computational layers in a trans-
former is not as explicit as in a multilayer perceptron or
a CNN architecture. As apparent in the main text, setting
nL = ℓ—or nL ≥ ℓ−k for filtered data—enables the trans-
former to converge towards a very interpretable parameter
configuration. However, this natural choice does not ap-
pear to be strictly necessary for the transformers to achieve
optimal inference, at least when the number of embedding
dimensions d is large.

More specifically, Fig. 6 shows that the test accuracy on the
root classification task on k = 0 unfiltered data can reach
the optimal value for nL < ℓ. While nL = ℓ = 4 is the
most sample efficient, it is clear that nL = 3 provides com-
parable performance, and only nL = 1 appears to lead to
poor sample efficiency. In all the performed experiments,
a bigger value for nL corresponded to better sample effi-
ciency, which seems to indicate that more flexible models
require less data to reach the same performance level de-
spite the increased number of parameters to train.

In any case, the required complexity of the architecture
is clearly related to the amount of structure in the data
model. As an extreme illustration, in the case of fully fil-
tered correlations k = ℓ, the BP marginals for the root are
just products of conditional probabilities on the leaves as
P (x0 = a | {xi}) ∝

∏2ℓ

i=1 P (xi | x0 = a), i.e. a “Naive
Bayes” classifier is optimal. Any layer of attention is thus
superfluous since a standard feed-forward network with a
single hidden layer is sufficient for this task. In fact, the
analysis of the attention maps (trained this time on MLM)
in Sec. 4 confirms this natural intuition, as most attention
layers appear effectively unused by the transformer when
nL > k.

E.2. Other grammars

As expected from the log-normal nature of its entries, there
may be significant sample to sample fluctuations in the
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Figure 6. Reproduction of Fig. 1(b) with now nL ≤ 4 atten-
tion layers in the transformer encoder and restricted to the “worst
case” k = 0 unfiltered dataset.

transition tensor M for a given value of σ, which we ex-
pect to (slowly) decay as q becomes large. All the results
presented in the main text come from the same grammar
with q = 4, σ = 1 (corresponding to seed = 0 in the
data generation script provided in the SM, see the Repro-
ducibility Statement above), however we illustrate that all
our conclusions should qualitatively hold for any realiza-
tions of M in Fig. 7. Indeed, while there are some very clear
differences in the “difficulty” of the grammars presented,
the transformer architecture performs very similarly, here
on the root inference task. All subsequent experiments can
be reproduced on these different grammars, yielding an un-
changed phenomenology.

E.3. In-sample classification performance on filtered
datasets

Fig. 8 shows the test accuracy computed in-sample for the
factorized datasets as a function of the training set size
P . The optimal inference accuracy predicted by the Be-
lief Propagation, which is not unity when k > 0, is reached
by the transformers in all cases when trained on sufficient
data.

It appears that the required amount of data P ∗ for reaching
optimal accuracy not only depends on the specific transi-
tion tensor M (see Fig. 7 for an illustration for k = 0), but
also on the level of factorization. For intermediate values
of k, P ∗ is notably larger than with the k = 0 full hier-
archy. This is due to the fact that the k = 0 case is quite
unique for two (related) reasons. The first is that the logits
outputted from the network need not be calibrated, so the
accuracy can reach the optimum without the transformer
having fully implemented an algorithm equivalent to BP,
whereas the relative weights of prediction must be well un-
derstood to match the optimal inference in the ambiguous
k > 0 cases—in other words it is easier to match perfect
accuracy with approximate weights when the true distri-

bution is δ-distributed. The other is that this being said,
matching the BP is also easier in the k = 0 case because it
is the only case where the training cross-entropy loss corre-
sponds exactly to that computed with the true marginals—
that are also delta distributed due to the determinism of
the task—whereas in the k > 0 cases the training loss
does not guide explicitly to the exact marginals. The latter
clearly appears in Fig. 9, showing the Kullback-Leibler di-
vergence between the transformer outputted logits and the
BP marginals instead of the test accuracy.

Note that the other case which has a singularly small sam-
ple complexity is that of the fully filtered data, k = ℓ, as
it is implementable in a single feedforward layer and does
not require an implementation equivalent to BP.

E.4. Additional comparison of the outputs

For completeness, we show the comparison between the
full transformer predictions and the BP marginals through
MLM training using the percentage of matches in the
largest value (i.e. prediction match) and the spearman (or-
dering) correlation in Fig. 10. These confirm the observa-
tions described in the main text.

E.5. Classifier attention maps

Fig. 11 shows the attention maps resulting from the super-
vised training for transformers achieving the optimal per-
formance on datasets with different filtration levels. As
in the masked language modeling task, one immediately
notices the emergence of blocks of size ∼ 2ℓ−k. In this
prescription, where tokens are not required to be fully de-
scriptive, it is however difficult to identify a clear pattern
relating to the distribution of the computation across the
different layers.

E.6. Details on the probing experiments

In order to perform the experiments presented in Fig. 3(b),
we replace the linear readout of a trained MLM transformer
by a two-layer feedforward network with 64 hidden units,
acting independently on all of the d-dimensional sequences
(d = 128 in all of our experiments, see Sec. 3) outputted by
the frozen transformer encoder. The training of the readout
is performed on 214 labeled sequences, the labels being,
for each of the elements of the sequence, the symbol on
the relevant ancestor in the generative tree. Here again,
the loss is taken to be the cross-entropy between the logits
outputted by the network for each token and their correct
ancestor label, then averaged on all the sequence elements.
We present another experiment, where the cross-entropy is
measured only with the first and the last token embeddings
of the sequence, just below. The readout is trained on 100
epochs in all cases, which we found to be sufficient for the
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Figure 7. Reproduction of Fig. 1(b) on other realizations of the transition tensor M for the same parameters ℓ = 4, q = 4, σ = 1. We
remind that for the k > 0 cases, the BP predictions (dashed lines) are not Bayes optimal, as the test accuracy is measured out-of-sample
here. From left to right, these grammars can be reproduced by fixing seed = {1,15,31} in the data generation code provided in the
SM.
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Figure 8. Reproduction of Fig. 2(a) with the test accuracy com-
puted on (in-sample) factorized data, rather than the out-of-
sample testing presented in the main text.

103 104 105

P

10−3

10−2

10−1

100

D
K

L

103 104 105

P

Figure 9. Reproduction of Fig. 8 with the Kullback-Leibler diver-
gence between the transformer outputs BP marginals for identical
levels of factorizations for (Left) in-sample inputs, (Right) uni-
formly randomly generated inputs.
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Figure 10. Reproduction of Fig. 1(d) with the prediction (i.e.
argmax) match (left) and Spearman (i.e. ranking) correlation
(right) between the transformer outputs and BP marginals.

Figure 11. Reproduction of Fig. 4 for the supervised task on fil-
tered datasets of size P = 217 for k = 0 and P = 220 for k > 0.
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Figure 12. (Left) Reproduction of the probing experiment pre-
sented in Fig. 3(b), with the readout trained only on the first and
last token embeddings of the sequences and tested on all elements.
(Right) Test accuracy in the ancestor prediction task (layer 0 is
the root) with ℓ = 4, q = 4, ktest = 0, obtained by read-
ing out the complete transformer encoding of models pre-trained
ktrain = 0, 1, 2, 3, 4 (from top to bottom), i.e. using the attention
maps illustrated in Fig. 4 The readout is trained on 214 labeled
examples.

relatively small training set size we used.

E.7. Further probing experiments

To complement and contextualize the probing experiments
presented in the main text, we provide two additional ex-
periments. In the left panel of Fig. 12, we perform the
same experiment as in Fig.3(b), but with probes trained
only on two positions in the token sequence (first and last)
and tested across all positions. While some accuracy is
lost, since the readout cannot fully disentangle the posi-
tional information from the semantic one in positions that
were never seen at training, the sequential effect is still ev-
ident. Moreover, we also performed the same procedure
as Fig. 3(b) on the tokens’ hidden representations, but with
models trained on factorized data. As visible in the right
panel of Fig. 12, a model trained of filtered data can only
accurately recover ancestors up to the level in which filter-
ing kicks in. For example, in an l = 4 tree, a model trained
on ktrain = 2 data can only predict ancestors up to level 2
(two ancestry layers above the leaves—above that, the tree
is filtered), while a model trained on ktrain = 3 can only
predict ancestors up to level 3 (the ancestors right above the
leaves - for the same reason). This is exactly what could be
expected from the attention maps of Fig. 4. As before, we
are probing the hidden representations of individual tokens,
so this happens because the attention must provide mixing
between ∼ 2ℓ−k elements of the sequence in order for in-
dividual tokens to carry information up to the level k of the
fully hierarchical generative model.

F. A possible transformer implementation of
Belief Propagation

We show here how the BP algorithm for leaf inference can
be implemented using ℓ layers of transformers with token
sizes which are compatible with what is used in our exper-
iments. We consider the “worst case” scenario of a com-
plete, unfiltered tree generative process of depth ℓ.

Token embedding. We propose an implementation that
relies on vectorized tokens with a structure of the form

x
(m)
i =



r
(1,m)
i

...
r
(q,m)
i

m
(m)
i

m
(m)
i

p̃i


, (17)

where:

• i ∈ {1, ..., 2ℓ} is the index of a leaf

• m ∈ {1, ..., ℓ} is the index of a transformer layer

• r
(1,m)
i , . . . , r

(q,m)
i are q vectors of dimension q (q2 el-

ements in total) storing the quantities needed to com-
pute the final leaf marginals,

• m
(m)
i is a vector of size q storing the up-going mes-

sage for the ancestor of leaf i at level m,

• m
(m)
i is a vector of size q storing the up-going mes-

sage for the mth complementary ancestor of leaf i, see
Fig. 13,

• p̃i is a ℓ-dimensional binary vector containing posi-
tional information on the full path from root to leaf i
(see below).

In this prescription, the total dimension of each token is
therefore d = q2 + 2q + ℓ.

Initialization. We are going to consider the following
initialization,(

r
(a,0)
i

)
b
=

1

q
, ∀a, b = 1, . . . , q, (18)

m
(0)
i = 0, (19)

while the messages m
(0)
i should be initialized as in the

standard BP given a sequence, i.e. with a Kronecker δ for
known symbols and a uniform vector for masked leaves.
The positional vector p̃i should finally be a binary ±1 vec-
tor representing the sequence of left/right turns from the
root to leaf i (as σ in equation 1).
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Figure 13. Illustration of the upgoing messages embedded in the
tokens of the transformer implementation of BP for a tree with
ℓ = 3. Complementary ancestors are shown with dashed lines.

Attention layer. In our implementation, the dot product

(
W

(m)
Q x

(m)
i

)⊤ (
W

(m)
K x

(m)
j

)

entering the softmax and at the heart of the attention mech-
anism only encodes positional information; more precisely,
it combines the common ancestors of tokens i and j down
to layer ℓ−m of the generative tree. This can be achieved

with query and key matrices such that
(
W

(m)
Q

)⊤
W

(m)
K

has elements equal to zero except in its lower right corner
of size ℓ× ℓ which has the following structure:

β1(ℓ−m−1)×(ℓ−m−1) 0 0
0 −β 0
0 0

[
0
]
m×m

 , (20)

with β ≫ 1. Let us detail the role of this ℓ× ℓ sub-matrix.
Its upper left terms proportional to β will be relevant in the
softmax, when β ≫ 1, if they are positive, meaning these
are common ancestors to tokens i and j, and negligible if
they are negative. The diagonal term proportional to −β
requires the two considered tokens to be in different posi-
tions in the sequence to contribute to the softmax, ensuring
there is no influence of the messages on themselves in the
following steps. Its lower right corner, which is populated
by a m×m matrix of zeros, ensures that layers below ℓ−m
in the generative tree are no longer considered.

On the other hand, the value matrix may be used to select
the correct messages in the token vector, with zeros else-
where.

As a result, the total operation amounts to averaging the
message incoming from the complementary sub-tree over

all the trajectories within the complementary sub-tree

selfattention(x(m);W
(m)
Q ,W

(m)
K ,W

(m)
V )i ≈

≈



0
...

E
j∈S(m)

i

[
m

(m)
j

]
...
0


=



0
...

m
(m)
i
...
0

 , (21)

where S(m)

i is the set of tokens belonging to the comple-
mentary tree of token i at layer ℓ − m of the generative
tree. Note that in principle it is not necessary to average
since all of the paths should lead to the same message from
the complementary tree, however keep in mind that in prac-
tice some tokens will be masked. The averaging procedure
therefore allows recovering the information (unless all of
the tokens in S(l)

i happen to be masked). Thanks to the
skip connections, this contribution is added to the initial
token, populating the initially empty entries of these com-
plementary messages while leaving the rest of the tokens
unaffected.

Fully connected feedforward layer. Following the ini-
tialization and after the attention layer, the encoded token
has the correct structure of equation 17. One must now up-
date the relevant information in order to go to the next at-
tention layer and therefore the next layer in the generative
tree. More precisely, we need to:

• Compute the messages of the m+ 1th ancestor,

• Update the quantities needed to compute the marginal
for the leaf associated with the token considered,

• Remove temporary or unwanted quantities stemming
from the previous steps.

All of these must be done with an identical operation for
all tokens as the feedforward layer is applied independently
for all positions in the sequence.

The first part is to update the messages following the equiv-
alent of equation 6,(

m
(m+1)
i

)
a
∝
∑
bc

MaPi(b,c)

(
m

(m)
i

)
b

(
m

(m)
i

)
c
, (22)

where Pi(b, c) is either bc or cb depending on the topol-
ogy of the factor node at which the update takes place—
a piece of information fully contained in p̃i. This type
of operation should be implementable, at least approxi-
mately, by a two-layer network since it is known to be
a universal approximator. A possible, non-parsimonious

16



How Transformers Learn Structured Data: Insights From Hierarchical Filtering

way to perform the above update with two-layer fully-
connected network with O(q3) neurons is the following. In
the first layer, one can readily select the appropriate entries

in the embedding vector to output
(
m

(m)
i

)2
b
,
(
m

(m)
i

)2
c

and
((

m
(m)
i

)
b
+
(
m

(m)
i

)
c

)2
for all pairs (b, c). Then,

for each transition MaPi(b,c) the argument of the sum in
equation 22 can be obtained as it is equal to

1

2
MaPi(b,c)

(((
m

(m)
i

)
b
+
(
m

(m)
i

)
c

)2
−
(
m

(m)
i

)2
b
−
(
m

(m)
i

)2
c

)
.

(23)

The trace over b and c is then performed by the second layer
of the fully-connected block. For each transition, it reads
the three corresponding hidden units and multiplies them
by the same learned weights 1

2MaPi(b,c) (using the appro-
priate positional embedding entry), while the summation is
done as usual. In the sparse transition tensors we are con-
sidering, this in fact only requires O(q2) hidden units. Note
that this exact operation would require squared activations,
but can be approximated with a ReLU network by means
of a piece-wise linear approximation.

Now, we are to compute the actual leaf marginals. As men-
tioned in the presentation of the standard BP implementa-
tion (Sec. 2.4), the standard approach is to perform both
an upwards and downwards pass, which would require 2ℓ
attention layers.

Here, we instead wish to perform the computation in ℓ step,
as we have seen from experiments that the transformer can
achieve perfect accuracy with ℓ attention layers and that it
does not appear to use all layers when k < ℓ. To do so, we
have included the q2 elements of r(l)1 , . . . , r

(l)
q in the token

and now show how to update these. Note that if we had 2ℓ
layers, we could instead only store q quantities.

As an example, consider the factor graph in Fig. 13 and as-
sume the root is not pinned. We can start from the standard
BP recursion for the down-going message received by leaf
i:(

m̂
(1)
i

)
b1

∝
∑
a2,c1

(∑
a3,b2

(∑
a4,c3

(
m

(3)
i

)
c3

Ma4a3c3

)
×

×
(
m

(2)
i

)
b2

Ma3b2a2

)(
m

(1)
i

)
c1

Ma2b1c1

(24)

and define an auxiliary message with a double index depen-
dence: (

r(a2,1)
)
b1

=
∑
c1

(
m

(1)
i

)
c1

Ma2b1c1 . (25)

In particular, the idea is that we are tracing only over the
index of the complement ancestor—which is already avail-
able from the first layer—but not on the index of the down-
going message, which can only be computed after reaching
the top of the hierarchy. Instead, we keep in memory all the
separate contributions for each parent index. Then, we can
obtain a recursion for the auxiliary messages:(

r
(a,m+1)
i

)
b
∝
∑
h,k

MbPi(h,k)

(
r
(a,m)
i

)
h

(
m

(m)
i

)
k
,

(26)
with the base case given in Eq. 25 treated in the transformer
first layer. At the last transformer layer, one can also trace
over the root index, completing the recursion. Doing so in
the final feedforward layer notably yields, at the end of the
transformer encoder,

∑
b

(
r
(a,ℓ)
i

)
b
∝
∑
h,k

(∑
b

MbPi(h,k)

)

×
(
r
(a,ℓ−1)
i

)
h

(
m

(ℓ−1)
i

)
k
,

(27)

which is proportional to the incoming message on the leaf
and therefore to its marginal if it is to be inferred. The
final linear readout may then select this relevant part of
the outputted tokens to perform the masked language mod-
elling. This requires the embedding of a negative identity
operation for each the r and m component, which can still
be done with O(q3) hidden units in general (O(q2) in our
sparse case).

Including intermediate layers. In principle, one could
add q × (ℓ − 1) new vectors entries in the token in or-
der to store the marginals at intermediate layers. These
would simply be used to store the intermediate values of
the
∑

b

(
r
(a,l)
i

)
b
.

Accommodating for filtration. The implementation de-
scribed above considered the case of k = 0, unfiltered gen-
erative trees, i.e. the most complex case from the BP stand-
point. In the case of a dataset with filtering parameter k,
one can adapt the implementation by taking ℓ − k layers.
The central difference then lies in the ℓ− kth block, which
must then combine the 2k messages going up to the root
in its feedforward layer (instead of two messages like at all
other layers in the k = 0 case).
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