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ABSTRACT

Attention-based architectures become the core backbone of many state-of-the-art
models for various tasks, including language translation and image classification.
However, theoretical properties of attention-based models are seldom considered.
In this work, we show that with suitable adaptations, the single-head self-attention
transformer with a fixed number of transformer encoder blocks and free parameters
is able to generate any desired polynomial of the input with no error. The number
of transformer encoder blocks is the same as the degree of the target polynomial.
Even more exciting, we find that these transformer encoder blocks in this model
do not need to be trained. As a direct consequence, we show that the single-
head self-attention transformer with increasing numbers of free parameters is
universal. Also, we show that our proposed model can avoid the classical trade-off
between approximation error and sample error in the mean squared error analysis
for the regression task if the target function is a polynomial. We conduct various
experiments and ablation studies to verify our theoretical results.

1 INTRODUCTION

By imitating the structure of brain neurons, deep learning models have replaced traditional statistical
models in almost every aspect of applications, becoming the most widely used machine learning
tools LeCun et al. (2015); Goodfellow et al. (2016). Structures of deep learning are also constantly
evolving from fully connected networks to many variants such as convolutional networks Krizhevsky
et al. (2012), recurrent networks Mikolov et al. (2010) and the attention-based transformer model
Dosovitskiy et al. (2020). Attention-based architectures were first introduced in the areas of natural
language processing, and neural machine translation Bahdanau et al. (2014); Vaswani et al. (2017);
Ott et al. (2018), and now an attention-based transformer model has also become state-of-the-art in
image classification Dosovitskiy et al. (2020). However, compared with significant achievements
and developments in practical applications, the theoretical properties of attention-based transformer
models are not well understood.

Let us describe some current theoretical progress of attention-based architectures briefly. The
universality of a sequence-to-sequence transformer model is first established in Yun et al. (2019).
After that, a sparse attention mechanism, BIGBIRD, is proposed by Zaheer et al. (2020) and the
authors further show that the proposed transformer model is universal if its attention structure contains
the star graph. Later, Yun et al. (2020) provides a unified framework to analyze sparse transformer
models. Recently, Shi et al. (2021) studies the significance of different positions in the attention matrix
during pre-training and shows that diagonal elements in the attention map are the least important
compared with other attention positions. From a statistical machine learning point of view, the
authors in Gurevych et al. (2021) propose a classifier based on a transformer model and show that
this classifier can circumvent the curse of dimensionality.

The models considered in the above works all contain attention-based transformer encoder blocks.
It is worth noting that the biggest difference between a transformer encoder block and a traditional
neural network layer is that it introduces an inner product operation, which not only makes its actual
performance better but also provides more room for theoretical derivations.

In this paper, we consider the theoretical properties of the single-head self-attention transformer
with suitable adaptations. Different from segmenting x into small pieces Dosovitskiy et al. (2020)
and capturing local information, we consider a global pre-processing of x and propose a new vector
structure of the inputs of transformer encoder blocks. In this structure, in addition to the global
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Figure 1: The Architecture of the single-head self-attention transformer. WQ,WK ,WV stand for
the query matrix, the key matrix, and the value matrix respectively. MatMul stands for the matrix
multiplication.

information we obtain from data pre-processing, we place a one-hot vector to represent different
features through the idea of positional encoding and place a zero vector to store the output values
after each transformer encoder block. With such a special design, we can fix all transformer encoder
blocks such that no training is needed for them. And it is able to realize the multiplication operation
and store values in zero positions. By applying a well-known result in approximation theory Zhou
(2018) stating that any polynomial Q ∈ Pq

(
Rd

)
of degree at most q can be represented by a linear

combination of different powers of ridge forms ξk · x of x ∈ Rd, we prove that the proposed model
can generate any polynomial of degree q with q transformer encoder blocks and a fixed number of
free parameters. As a direct consequence, we show that the proposed model is universal if we let the
the number of free parameters and transformer encoder blocks go to infinity. Our theoretical results
are also verified by experiments on synthetic data. In summary, the contributions of our work are as
follows:

• We propose a new pre-processing method that captures global information and a new
structure of input vectors of transformer encoder blocks.

• With the special structure of input of transformer encoder blocks, we can artificially design
all the transformer encoder blocks in a spare way and prove that the single-head self-attention
transformer with q transformer encoder blocks and a fixed number of free parameters is able
to generate any desired polynomial of degree q of the input with no error.

• As a direct consequence, we show that the single-head self-attention transformer with
increasing numbers of free parameters and transformer encoder block is universal.

• We conduct mean squared error analysis for the regression task with our proposed model.
We show that if the target function is a polynomial, our proposed model can avoid the
classical trade-off between approximation error and sample error. And the convergence rate
is only controlled by the number of samples if we treat d and q as constants.

• We apply our model to noisy regression tasks with synthetic data and real-world data-set.
Our experiments show that the proposed model performs much better than traditional fully
connected neural networks with a comparable number of free parameters.

• We apply our model to the image classification task and achieve better performance than
Vision Transformer on the CIFAR-10 data set with suitable adaptations.

2 TRANSFORMER STRUCTURES

In this section, we formally introduce the single-head self-attention transformer considered in this
paper. The overall architecture is shown in Figure 1.
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2.1 DATA PRE-PROCESSING

For an input x ∈ Rd which can be a vector or the concatenation of an image, the usual pre-processing
method is to segment it into small pieces and then conduct linear transforms, which can be thought of
as extracting local features. However, we propose to directly apply a full matrix F ∈ Rn×d to get
global features Fx = t ∈ Rn, where F = [ξ1, · · · , ξn]⊤ with ξi ∈ Rd and ∥ξi∥ ≤ 1. The matrix F
is obtained through the training process. Then we have n global features ti = ⟨ξi, x⟩ of the input x.
Now we introduce the structure of inputs for transformer encoder blocks as follows,

zi = [ti,

n︷ ︸︸ ︷
0, · · · , 0, 1︸︷︷︸

(i+1)−th entry

, 0, · · · , 0,
q︷ ︸︸ ︷

0, · · · , 0, 1]⊤,

for i = 1, · · · , n. Each one of them is a sparse vector in Rn+q+2 and all the n vectors are inputs for
the transformer encoder blocks. As we have covered before, we put a one-hot vector of dimension n
inside zi representing different features ti of the input x, which is similar to the idea of positional
encoding. And we also place a q dimensional zero vector to store outputs from each transformer
encoder block. At the last position, we place a constant 1 for the ease of computation in transformer
encoder blocks. We use F(x) : Rd → R(n+q+2)×(n) to denote the above transformation such that
F(x) = [z1, · · · , zn].

2.2 SINGLE-DEAD SELF-ATTENTION TRANSFORMER ENCODER BLOCKS

One transformer encoder block contains a self-attention layer and a fully connected layer with a
linear transformation. In the self-attention layer, we have one query matrix WQ ∈ R(n+1)×(n+q+2),
one key matrix WK ∈ R(n+1)×(n+q+2), and one value matrix WV ∈ R(n+q+2)×(n+q+2).

For every input zi, we calculate the query vector qi = WQzi ∈ Rn+1, the key vector ki = WKzi ∈
Rn+1, and the value vector vi = WV zi ∈ Rn+q+2. With all these values, we have n attention vectors

αi = [⟨qi, k1⟩, · · · , ⟨qi, ki⟩, · · · , ⟨qi, kn⟩]⊤ ∈ Rn.

In our proposed model, the soft-max function in the self-attention layer is replaced by a one hot
maximum function m̂(αi) : Rn → Rn which keeps the largest value unchanged and sets the
other values to 0. We use the notation AWQ,WK ,WV : R(n+q+2)×n → R(n+q+2)×n to denote
the mapping of the self-attention layer. Then the output of the self-attention layer is given by
AWQ,WK ,WV (z1, · · · , zn) = [ẑ1, · · · , ẑn], where ẑi = zi +WV Zm̂(αi), with Z = [z1, · · · , zn].

The fully connected layer with a linear transformation contains two matrices W1 ∈ R2×(n+q+2),
and W2 ∈ R(n+q+2)×2, and two bias vectors b1 ∈ R2, b2 ∈ Rn+q+2. We use the notation
BW1,W2,b1,b2 : R(n+q+2)×n → R(n+q+2)×n to denote the mapping of the fully connected layer
with a linear transformation. Then we have BW1,W2,b1,b2(ẑ1, · · · , ẑn) = [z′1, · · · , z′n], where
z′i = ẑi +W2σ (W1ẑ1 + b1) + b2, and σ is the ReLU activation function acting component-wise.

Now we define our single-head self-attention transformer model with ℓ transformer encoder blocks as

T ℓ(x) = Bℓ ◦ Aℓ ◦ · · · ◦ B1 ◦ A1 ◦ F(x),

where F ,Ai,Bi are the mappings defined above. We further concatenate the output matrix into one
vector and apply a linear transformation with a bias term to get our final output, that is,

Cℓ(x) = β · concat
(
T ℓ(x)

)
+ b,

with β ∈ Rn(n+q+2) and b ∈ R. We require the vector β to possess a sparse structure which will
be shown in the proof. The values in β and b are obtained through the training process. The layer
normalization is not considered in our model.

3 MAIN RESULTS

3.1 ZERO APPROXIMATION ERROR

In this section, we first present our main result from an approximation theory point of view, showing
that the single-head self-attention transformer model can generate any desired polynomial with a
fixed number of transformer encoder blocks and free parameters. Before stating our main theorem,
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we first present two important lemmas. For the following lemma, we construct a sparse single-head
self-attention block with a fixed design that is able to realize the multiplication operation and store
different products in the output vectors simultaneously.
Lemma 3.1. For all n input vectors in the form of

zi = [ti, ei,

q︷ ︸︸ ︷
xi, yi, 0, · · · , 0, 1]⊤ ∈ R(n+q+2)×1,

with ti, xi, yi ∈ R and absolute values bounded by some known constant M for i = 1, · · · , n, there
exists a sparse single-head self-attention transformer encoder block with fixed matrices WQ, WK ,
WV , W1, W2 and vectors b1, b2 that can produce output vectors as

z′i = [ti, ei,

q︷ ︸︸ ︷
xi, yi,−xiyi, 0, · · · , 0, 1]⊤ ∈ R(n+q+2)×1,

where ei denotes the one-hot vector of dimension n with value 1 in the i-th position of ei. The softmax
function is replaced by one hot maximum function. The number of non-zero entries is 2n+ 8.
Remark 3.2. The above lemma shows that a fixed single-head self-attention transformer encoder
block is able to simultaneously calculate the product of two elements in all n input vectors within the
same two entries and store the negative value in the same 0 positions. Since the construction is fixed,
these transformer encoder blocks in the whole model do not need to be trained.

Now we introduce a well-known result in approximation theory showing that any polynomial function
Q ∈ Pq

(
Rd

)
of degree at most q can be represented by a linear combination of different powers of

ridge forms ξk · x of x ∈ Rd. The following lemma is first presented and proved in Zhou (2018) and
also plays an important role in the analysis of deep convolutional neural networks Zhou (2020); Mao
et al. (2021).
Lemma 3.3. Let d ∈ N and q ∈ N. Then there exists a set {ξk}

nq

k=1 ⊂
{
ξ ∈ Rd : ∥ξ∥ = 1

}
of vectors with ℓ2−norm 1 such that for any Q ∈ Pq

(
Rd

)
we can find a set of coefficients

{βk,s : k = 1, · · · , nq, s = 1, · · · , q} ⊂ R such that

Q(x) = Q(0) +

nq∑
k=1

q∑
s=1

βk,s (ξk · x)s , x ∈ Rd, (1)

where nq =
(
d−1+q

q

)
is the dimension of Ph

q (Rd), the space of homogeneous polynomials on Rd of
degree q.
Remark 3.4. The above lemma shows that any polynomial Q ∈ Pq

(
Rd

)
can be uniquely determined

by Q(0), βk,s and ξk. So by applying the above lemma, we can perfectly reproduce any polynomial
with proper construction.

Now we are ready to state our main result on the single-head self-attention transform model.
Theorem 3.5. Let B > 0 and q ∈ N. For any polynomial function Q ∈ Pq(Rd) of degree at most q,
there exist a single-head self-attention transformer model with q transformer encoder blocks such
that the output function Cq equals Q on

{
x ∈ Rd : ∥x∥ ≤ B

}
Cq(x) = Q(x), ∀ ∥x∥ ≤ B.

The number of free parameters is less then dq+1+ qdq +1 which comes from F , β and b. The number
of non-zero entries in this model is less than dq+1 + 3qdq + 8q + 1.

Remark 3.6. The above theorem shows a very strong property of the self-attention transformer
model that it can generate any desired polynomial with a finite number of free parameters. As we can
see, the degree of the polynomial is reflected in the number of transformer encoder blocks, showing
that the more blocks the transformer have, the more complex polynomial it can represent. Clearly,
this result outperforms that of the other classical deep learning models without attention-based
structure in at least two aspects. First, since the linear combination of the output units of traditional
ReLU neural networks is only a piece-wise linear function of the input, no matter how many finite
layers and free parameters, it can never produce a polynomial of the input with no error. Second, the
transformer encoder blocks in our construction only serve as the realization of the multiplication
operation. The non-zero values are all pre-designed constants, so no training is needed for these
blocks. We only need to train free parameters in F , β, and b.
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As a direct consequence of the above result, the proposed single-head self-attention transform model
is universal.
Corollary 3.7. Let d ∈ N and q ∈ N. For any bounded continuous function f on [0, 1]d, there exists
a single-head self-attention transformer with increasing numbers of free parameters and transformer
encoder blocks such that

lim
q→∞

∥Cq − f∥C([0,1]d) = 0

The above result is a simple application of the denseness of the polynomial set, which shows that the
transformer model discussed in our paper is universal if we let the number of free parameters and
transformer encoder blocks go to infinity.

3.2 MEAN SQUARED ERROR ANALYSIS

In this subsection, we consider the regression problem with mean squared error in the setting
of statistical learning theory with our single-head self-attention transformer model. Let X :={
x : ∥x∥2 ≤ B, x ∈ Rd

}
and Y ⊂ R. We observe N i.i.d. vectors xi ∈ X with an unknown

probability distribution ρX and N responses yi ∈ R from the model

yi = fρ (xi) + ϵi, i = 1, · · · , N,

where the noise variables ϵi are assumed to satisfy E (ϵi|xi) = 0. Usually the noise variables
satisfy standard normal distribution. We denote the joint distribution of (xi, yi) by ρ and D =

{(xi, yi)}Ni=1 is drawn from the probability measure ρ. Our goal is to recover the regression function
fρ from the sample D. For any measurable function, we can define the population risk as E(f) :=∫
X×Y(f(x)− y)2dρ, and the empirical risk as ED(f) := 1

N

∑N
i=1 (f(xi)− yi)

2
. We use fD,H =

argminf∈H ED(f), to approximate fρ where H is the hypothesis space generated by our proposed
model given by

H := Hℓ,B̃ :=
{
Cℓ(x) : ∥ξi∥ ≤ 1, ∥β∥∞ ≤ B̃,∥b∥∞ ≤ B̃

}
. (2)

Let
(
L2
ρX

, ∥·∥ρX

)
be the space of ρX square-integrable functions on X such that ∥f∥2ρX

:=∫
X f2(x)dρX . The target of mean squared error analysis is to derive convergence rate of
E(fD,H)− E(fρ) = ∥fD,H − fρ∥2ρX

. Now we are ready to state our main result of mean squared
error analysis.

Theorem 3.8. Let B, B̃ > 0. Let d ∈ N+, q ∈ N, H be defined as (2) and fρ be a polynomial of
degree at most q on X such that |fρ| ≤ 2qnqB̃Bq . Then for N ∈ N such that N ≥ nq we have

E ∥fD,H − fρ∥2ρX
≤ C̃q,d,B̃,B

n3
q logN

N
,

where C̃q,d,B̃,B is a constant depending on q, d, B̃, B and nq =
(
d−1+q

q

)
is the dimension of Ph

q (Rd).

Remark 3.9. For classical mean squared error analysis of the regression task, there is a trade-off
between approximation error and sample error and the convergence rate is controlled by the maximum
value of these two errors. Since our model can achieve zero approximation error for polynomial
target functions, our main result shows that this trade-off can be avoided. As a direct consequence,
the convergence rate O

(
logN
N

)
is only controlled by the number of samples if we treat d and q as

constants. The above result is also verified in our experiment 5.2.

4 COMPARISON AND DISCUSSION

In this section, we compare our work with some existing theoretical results on the transformer model
Yun et al. (2019; 2020); Zaheer et al. (2020); Shi et al. (2021). Since these works use similar methods
to those in Yun et al. (2019), we focus on the theoretical contributions of this paper.

In Yun et al. (2019), the authors show that transformer models are universal approximators of
continuous sequence-to-sequence functions with compact support with trainable positional encoding.
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(a) ATTENTION with MSE 0.02. (b) NNdepth with MSE 134.23. (c) NNwidth with MSE 10237.27.

Figure 2: For the target polynomial fρ,1, the above 3-D surface plots are output functions of three
different models after the training process. ATTENTION stands for our single-head self-attention
transformer model, while NNdepth and NNwidth stand for fully connected neural networks illustrated
in experimental setting 5.1. MSE stands for the Mean Squared Error evaluated at testing data.

The notion of contextual mappings is also formalized, and it is shown that the attention layers can
compute contextual mappings, where each unique context is mapped to a unique vector.

The universality result is achieved in three key steps: Step 1. Approximate continuous permutation
equivariant functions with piece-wise constant functions F̄PE(δ). Step 2. Approximate F̄PE(δ) with
modified Transformers T̄ . Step 3. Approximate modified Transformers T̄ with original Transformers
T .

In order to express the above steps more clearly, we show the idea of proof as follows. For an
input X ∈ Rd×n, the authors first use a series of feed-forward layers that can quantize X to an
element L on the extended grid G+

δ :=
{
−δ−nd, 0, δ, · · · , 1− δ

}d×n
. Activation functions that are

applied to these layers are piece-wise linear functions with at most three pieces, and at least one
piece is constant. Then, the authors use a series of self-attention layers in the modified transformer
network to implement a contextual mapping q(L). After that, a series of feed-forward layers in the
modified transformer network can map elements of the contextual embedding q(L) to create a desired
approximator ḡ of the piece-wise constant function f̄ ∈ F̄PE(δ) which is the approximator of the
target function.

We would like to address major differences between our work and theirs. First, the output functions
are different. In the above work, the goal is to approximate a continuous function defined from
Rn×d to Rn×d, which focuses on sequence-to-sequence functions. In our setting, we use the linear
combination of the units in the last layer as our output, which focuses on regression and classification
tasks. Second, the two structures we consider are slightly different. The self-attention layers and
feed-forward layers in their transformer model are set in an alternate manner. Although this may
explain the different functions of different types of layers, it changes the structure of the transformer
model in real applications. In our setting, we guarantee the integrity of transformer encoder blocks
and analyze each transformer encoder block as a whole. Last but not least, the ultimate goals and core
ideas of the theoretical analysis of our two papers are different. Because the inner product operation is
the biggest difference between the attention layer and the traditional network layer, we focus on this
special structure for analysis. We find that if we can make good use of this inner product structure,
then from the perspective of theoretical analysis, we do not have to think about approximation but
can directly generate the function we want. And the exact construction only requires a finite number
of free parameters with fixed transformer encoder blocks. This shows the different thinking in our
theory and distinguishes our method from using piece-wise functions to approximate target functions.

5 EXPERIMENTS

In this section, we first verify our main results of our single-head self-attention transformer model by
experiments on two groups of synthetic data. Then, we conduct several ablation studies to demonstrate
the superiority of the self-attention transformer.
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5.1 EXPERIMENTS ON POLYNOMIAL FUNCTIONS AND REAL-WORLD DATA-SET

Target functions For these two experiments, we consider the noisy regression task

y = fρ(x) + ϵ,

where fρ is the target polynomial and ϵ is the standard normal noise.

For the first experiment, in order to visualize the advantages of our proposed model, we consider a
simple polynomial,

fρ,1(x) = x2
1 + x2

2,

which satisfies d = 2 and q = 2.

For the second experiment, to show the strong expressiveness of our model, we consider a complicated
polynomial

fρ,2(x) = x5
1 + 3x4

2 + 2x3
3 + 5x3x4 + 3x2

5 + 2x6x7x8 + 2x9,

which satisfies d = 10 and q = 5.

Experimental setting To demonstrate the power of attention-based structures, we compare our
proposed model with two types of ReLU fully connected neural networks with a comparable number
of free parameters. Since for a polynomial Q of degree q, our proposed model has one linear
transformation with matrix F ∈ Rnq×d and q transformer encoder blocks, we use NNdepth to denote
the fully connected network with q + 1 layers, and we use NNwidth to denote the shallow net with
nq units in the hidden layer. For these two fully connected networks, we use the same way as our
ATTENTION model to generate output value, which is the linear combination of units in the last
layer with a bias term. The detailed descriptions of the experiments, i.e., data generating process,
training hyper-parameter, and model architectures, can be found in B.

0 250 500 750 1000 1250 1500 1750 2000
epoch
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ATTENTION train_MSE
ATTENTION test_MSE
NN_depth train_MSE
NN_depth test_MSE
NN_width train_MSE
NN_width test_MSE

Figure 3: A comparison of the convergence speed and generalization gap between our single-head
self-attention model and two types of fully connected neural networks.

Table 1: A comparison of three models learning fρ,2. MSETr and MSETe stand for the mean-squared
error of the training data and the testing data after 2000 epochs training, respectively. We say that a
model achieves convergence if the absolute difference of MSETr of two consecutive epochs is less
than 0.01. # EPOCHS stands for the number of epochs the model used before achieving convergence,
and RUN TIME represents the corresponding running time of the training process.

MSETr MSETe # EPOCHS RUN TIME1

ATTENTION 0.938 0.109 212 1.9
NNdepth 5.884 103.916 956 7.6
NNwidth 50.282 35.662 329 2.4

Experimental results For the target polynomial fρ,1, Figure 2 demonstrates the strong power
of learning polynomials of our proposed model. With only 19 free parameters, our single-head
self-attention transformer can perfectly capture the target function by using noisy data. Due to
the nature of piece-wise linear output function, both two types of fully connected neural networks
obviously can not achieve comparable results with very few parameters.

1GPU * min on NVIDIA A100 Tensor Core GPU.
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For the target function fρ,2, Table 1 and Figure 3 also demonstrate the superior ability of our model
to learn a complicated polynomial. Our single-head self-attention transformer is the only one that
can fit the ground truth function exactly with good convergence speed. Moreover, our model has
a much better generalization power than both two types of fully connected neural networks with a
comparable number of free parameters.

5.2 THE SIGNIFICANCE OF THE SELF-ATTENTION TRANSFORMER

In this part, we conduct several experiments to address the following question:

• Given that neural networks can approximate any continuous function with enough width,
what is the significance of zero approximation error achieved by the self-attention trans-
former?

• Can zero approximation error be achieved by using the quadratic activation function instead
of the Relu or Sigmoid activation functions?

• Can our ATTENTION model avoid the trade-off between approximation error and sample
error practically?

• Can our ATTENTION model achieve good performance on real-world data-set?

Table 2: The comparison of Mean Squared Error for learning fρ,1. Column ATTENTION demon-
strates the MSE achieved by our architecture with 13 free parameters, while Column WIDTH=101 to
Column WIDTH=105 demonstrates the MSE achieved by the fully connected neural networks with
one hidden layer and corresponding width.

ATTENTION WIDTH=101 WIDTH=102 WIDTH=103 WIDTH=104 WIDTH=105

MSETRAIN 1.11 7796.18 285.03 21.34 141.81 1048.91
MSETEST 0.02 6713.48 333.21 49.44 73.21 1099.98

The significance of zero approximation error Table 2 demonstrates the huge gap between
universal approximation and zero approximation error. Even in the simple two-dimensional setting
for learning fρ,1 = x2

1 + x2
2, a traditional neural network can not perfectly approximate fρ,1 given

large numbers of width through training. The performance of the ultra-wide vanilla neural network
with width=105 even drops dramatically.

Table 3: The comparison of Mean Squared Error for learning fρ,3 = (x1 + x2 + x3 + x4 + x5)
5.

Column ATTENTION demonstrates the MSE achieved by our architecture, while Column NNdepth

and NNwidth demonstrates the MSE achieved by the fully connected neural networks with comparable
amount of parameters.

ATTENTION NNdepth NNwidth

MSETRAIN 1.67 177282.67 2440869.38
MSETEST 0.81 196548.68 2246920.0

Moreover, the gap between zero approximation error and universal approximation error can be large
enough in the sense that the former can perfectly fit the target function while the latter can even
diverge. This phenomenon can happen even for the d = 5 and q = 5 case, which is demonstrated in
the Table 3.

Table 4: The comparison of Mean squared error for learning fρ,4 = x3
1 + x3

2. Column ATTEN-
TION demonstrates the MSE achieved by our architecture with 21 free parameters, while Column
WIDTH=103 to Column WIDTH=105 demonstrates the MSE achieved by the fully connected neural
networks with one hidden layer and corresponding width.

ATTENTION WIDTH=102 WIDTH=103 WIDTH=104

MSETRAIN 0.99 13.29 12.97 12.41
MSETEST 0.0002 11.57 11.56 11.29
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Zero approximation cannot be achieved by the quadratic activation function Table 4 shows
the performance of different kinds of fully connected networks with the quadratic activation function.
It is clear that Fully Connected networks with the quadratic activation function can not achieve zero
approximation error, which demonstrates the superiority of the self-attention transformer.

The self-attention transformer can avoid the trade-off between the approximation error and
the sample error Figure 4 shows the mean squared error of our single-head self-attention model
under a different number of samples. The test mean squared error monotone decreases as the number
of samples increases. Also, the training error monotone increases from 0.1349 to 0.9660, which
indicates our model prevents over-fitting the noise.

3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00
Number of Sample (log10)

0

10

20

30

40

50

60
M

SE
train_MSE
test_MSE

Figure 4: A demonstration of the test error of our single-head self-attention model under different
number of samples. The x-axis is the base 10 logarithm of the number of training samples.

Performance on real-world data-set and beyond regression task Theorem 3.5 and Theorem
3.8 show that our proposed model can fit any desired polynomial function with no error. The
aforementioned experiments verify our theorems on fitting polynomial functions. Two questions then
arise naturally. 1) Whether our proposed ATTENTION model works well on real-world data-set?
2) Whether our proposed ATTENTION model works well beyond regression task, for example, on
image classification task? We first conduct experiments on Household Electric Power Consumption
Data-set on Appendix B.3 and achieve better performance than fully connected neural networks with
a comparable number of free parameters. Moreover, we apply our model to the image classification
task and achieve better performance than Vision Transformer on the CIFAR-10 data set with suitable
adaptations. The detailed description can be found on Appendix B.4.

6 CONCLUSION

In this paper, we introduced a single-head self-attention transformer model and showed that any
polynomial could be generated exactly by an output function of such a model with the number of
transformer encoder blocks equal to the degree of the polynomial. The transformer encoder blocks in
this model do not need to be trained. We also show that if the target is a polynomial function, our
proposed model can avoid the classical trade-off between approximation error and sample error for
the regression task.

In the future, many research directions will be very attractive. First of all, our core idea is different
from the traditional one of approximation, and through the appropriate adjustment of the transformer
model, a completely new theoretical result is presented. Also, in our structure, the transformer
encoder blocks are completely fixed. It is of great interest to check our results in real applications
to see whether these adaptations can indeed bring benefits. Second, we have obtained such exciting
theoretical results by considering only the single-head self-attention structure. We can consider
whether the multi-head structure can lead to more surprising conclusions. Last but not least, it is
of great interest to consider this model under the setting of statistical machine learning. As we can
see in our experiments, as long as the number of free parameters meets the theoretical requirement,
our model can not only learn the objective function well but also has a much stronger generalization
ability than other models. And as far as we are concerned, this is the first deep learning model which
is capable of reaching zero approximation error for certain function classes.
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A APPENDIX: PROOF OF MAIN RESULTS

Proof of Lemma 3.1. We present explicit constructions of matrices and biases in single-head self-
attention transformer encoder block. We let WQ ∈ R(1+n)×(2+n+q) as follows,

WQ =


0 · · · 0 1 0 · · · 0 0
0 2M2 0 0 · · · · · · 0 0

0 0 2M2 0
. . . . . . 0 0

0 0 0
. . . . . . · · · 0 0

0 0 0 0 2M2 0 · · · 0

 ,

where the constant 1 in the first row is in the (n + 2)−th column. And we set WQ
(t,t) = 2M2 for

t = 2, · · · , n+ 1 and all the other elements 0. Since the inputs are in the form of

zi = [ti, ei,

q︷ ︸︸ ︷
xi, yi, 0, · · · , 0, 1]⊤ ∈ R(n+q+2)×1,

where ei denotes the one-hot vector of dimension n with value 1 in the i-th position of ei. Then we
know that qi ∈ R(1+n)×1 is as follows

qi = WQzi = [xi, 0, · · · , 0,

(i + 1)-th entry︷︸︸︷
2M2 , 0, · · · , 0︸ ︷︷ ︸

n

]⊤.

We let WK ∈ R(1+n)×(2+n+q) as follows

WK =


0 · · · 0 1 · · · · · · 0 0
0 1 0 0 · · · · · · 0 0

0 0 1 0
. . . . . . 0

...

0 0 0
. . . . . . · · · 0 0

0 0 0 0 1 0 · · · 0

 .

where the constant 1 in the first row is in the (n + 3)−th column. And we set WK
(t,t) = 1 for

t = 2, · · · , n+ 1 and other elements 0. Then we have ki ∈ R(1+n)×1 as

ki = WQzi = [yi, 0, · · · , 0,
(i + 1)-th entry︷︸︸︷

1 , 0, · · · , 0︸ ︷︷ ︸
n

]⊤.

We can easily find that for each i, if j = i, then ⟨qi, kj⟩ = xiyi + 2M2. And if j ̸= i, then
⟨qi, kj⟩ = xiyj . By the condition |xi| < M and |yi| < M , clearly we have xiyi + 2B2 > xiyj .

Then the attention vector αi is

αi = [⟨qi, k1⟩, · · · , ⟨qi, ki⟩, · · · , ⟨qi, kn⟩]⊤ ∈ Rn×1.

Since we apply the one hot maximum function to α1, then by the construction we have

α̂i = [0, · · · , 0,

i−th entry︷ ︸︸ ︷
xiyi + 2B2, 0, · · · , 0]⊤ ∈ Rn×1.

For the matrix WV ∈ R(n+q+2)×(n+q+2), we set

WV
i,j =

{
1, i = n+ 4, j = n+ q + 2,
0, others.

Then we know that for i = 1, · · · , n,

WV zi = [0, · · · , 0,
(n+4)−th entry︷︸︸︷

1 , 0, · · · , 0]⊤.

12
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By the equation
ẑi = zi +WV Zα̂i,

we know that the outputs zi ∈ R(n+q+2)×1 of self-attention layer are

ẑi = [ti, ei,

q︷ ︸︸ ︷
xi, yi, xiyi + 2M2, 0, · · · , 0, 1]⊤,

where ei denotes the one-hot vector of dimension n with value 1 in the i-th position of ei.

Now we construct the fully connected layer in the transformer. For W1 ∈ R2×(2+n+q), we let

W1,(i,j) =

{
1, i = 1, j = n+ 4,

−1, i = 2, j = n+ 4,
0, others.

and b1 = [0, 0]⊤. Then we have

σ(W1zi + b1) = [σ(xiyi + 2M2), σ(−xiyi − 2M2)]⊤.

For W2 ∈ R(n+q+2)×2, we let

W2,(i,j) =

{ −2, i = n+ 4, j = 1,
2, i = n+ 4, j = 2,
0, others.

And we let b2 ∈ R(n+q+2)×1 to be

b2,(i) =

{
2M2, i = n+ 4,

0, others.

Then by
z′i = ẑi +W2σ (W1ẑ1 + b1) + b2,

we have

z′i = [ti, ei,

q︷ ︸︸ ︷
xi, yi,−xiyi, 0, · · · , 0, 1]⊤ ∈ R(n+q+2)×1.

Since we assume that M is known, we do not have any free parameter in this construction. It is easy
to see that the number of non-zero entry is 2n+ 8. This finishes the proof.

Now we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. To prove our main result on polynomial generation, we first apply Lemma
3.3. Since the matrix F ∈ Rnq×d can be obtained by training, we set F = [ξ1, · · · , ξnq

]⊤ and let ξi
to be those vectors we need in Lemma 3.3 for i = 1, · · · , nq. Then we know that the inputs for the
transformer encoder blocks are

zi = [ξi · x,
n︷ ︸︸ ︷

0, · · · , 0, 1︸︷︷︸
(i+1)−entry

, 0, · · · , 0,
q︷ ︸︸ ︷

0, · · · , 0, 1]⊤,

for i = 1, · · · , nq. Then we only need to apply Lemma 3.1 q times with suitable adjustments of the
position of non-zero entries to make sure that the product of two elements in vectors are saved in a
right entry.

For the first transformer encoder block, we calculate the product of ξi · x and 1 and place −ξi · x it in
the (nq + 2)−th entry. Since we know that ∥ξi∥ = 1, if we further assume that ∥x∥ < B, then we
have |ξi · x| ≤ B. Then we only need to set M = B in Lemma 3.1 and the output vectors are

zi = [ξi · x, ei,
q︷ ︸︸ ︷

−ξi · x, · · · , 0, 1]⊤,
where ei denotes the one-hot vector of dimension n with value 1 in the i-th position of ei. For the
second transformer encoder block, we calculate the product of ξi · x and −ξi · x to get (ξi · x)2 and
place it in the (nq + 3)−th entry. We set M = B in Lemma 3.1 and the output vectors are

zi = [ξi · x, ei,

q︷ ︸︸ ︷
−ξi · x, (ξi · x)2 , · · · 0, 1]⊤,

13



Under review as a conference paper at ICLR 2023

Without loss of generality, we set q to be odd. For the i-th block with i = 3, · · · , q, we set M = Bi−1.
Then after q transformer encoder blocks, the outputs are

zi = [ti, ei,

q︷ ︸︸ ︷
−ti, t

2
i , · · · ,−tqi , 1]

⊤ ∈ R(n+q+2)×1,

where ti = ξi · x for i = 1, · · · , nq . Now we have different powers of ξi · x for i = 1, · · · , nq . Then
we only need to set elements of β as those βk,s we need in Lemma 3.3 and b = Q(0) to generate the
polynomial Q we want.

Since we assume that B is known, then there is no free parameter in transformer encoder blocks.
The free parameters in our model all come from F , β and b. By nq =

(
d−1+q

q

)
, it is easy to see that

nq ≤ dq. The number of free parameters in F is less then dq+1. Since for each zi, we only need q
non-zero entries in β, the number of free parameters in β is less then qdq . So the total number of free
parameters is less than dq+1 + qdq + 1.

The number of non zero entries in this model is those in F , WK , WQ, WV , W1, W2, b1 b2 in each
block and in β, b. It can be calculated easily to know the number of non zero entries is less than
dq+1 + 3qdq + 8q + 1.

This finishes the proof.

We first present a bound for covering number of our hypothesis space H (2) as stated in the lemma
below. The covering number N (η,H) of a subset H of C(X ) is defined for η > 0 to be the smallest
integer l such that H is contained in the union of l balls in C(X ) of radius η.
Lemma A.1. For q ∈ N and H given in (2), with two constants Cq,d,B̃,B and C ′

q,d,B̃,B
depending

on Sq, d, B̃, B, there holds

log
{
N

(
δ̂,H

)}
≤ (d+ q + 1)nq log

{
1

δ̂

}
+ C ′

q,d,B̃,B
nq log{nq},

where Cq,d,B̃,B = 6B̃2q2dBq and C ′
q,d,B̃,B

= (d+ q + 1)
(
log

(
Cq,d,B̃,B

)
+ 1

)
.

Proof of Lemma A.1. For fixed q, if Ĉq(x) is another function from the hypothesis space induced by
β̂, ξ̂i, , b̂ satisfying the restrictions in (2) and

∥∥∥βi − β̂i

∥∥∥
∞

≤ δ,
∥∥∥ξi − ξ̂i

∥∥∥
∞

≤ δ,
∥∥∥b− b̂

∥∥∥
∞

≤ δ,

then we have

∥∥∥β · concat (T q(x)) + b− β̂ · concat
(
T̂ q(x)

)
− b̂

∥∥∥
∞

≤
∥∥∥β · concat

(
T q(x)− T̂ q(x)

)∥∥∥
∞

+
∥∥∥(β − β̂

)
· concat

(
T̂ q(x)

)∥∥∥
∞

+
∥∥∥b− b̂

∥∥∥
∞

≤qnqB̃dδBqBq−1 + qnqδB
q + δ

≤3B̃q2dBqnqδ := δ̂

Then, by taking an δ-net for each of ξi, β and b, we know that the covering number of the hypothesis
space H with radius δ̂ ∈ (0, 1] can be bounded as

N
(
δ̂,H

)
≤
⌈
2

δ

⌉dnq
⌈
2B̃

δ

⌉qnq+1

≤
(
1

δ

)dnq+qnq+1

(2B̃)dnq+qnq+1

≤
(
1

δ̂

)dnq+qnq+1

(Cq,d,B̃,Bnq)
dnq+qnq+1,
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where Cq,d,B̃,B = 6B̃2q2dBq . Thus we have

log
{
N

(
δ̂,H

)}
≤ (d+ q + 1)nq log

{
1

δ̂

}
+ C ′

q,d,B̃,B
nq log{nq},

where C ′
q,d,B̃,B

= (d+ q + 1)
(
log

(
Cq,d,B̃,B

)
+ 1

)
.

Proof of Theorem 3.8. With suitable scaling transformation, we can directly apply Lemma 4 in
Schmidt-Hieber et al. (2020) or Lemma 5 in Oono & Suzuki (2019) to get

E ∥fD,H − fρ∥2ρX
≤ (1 + ϵ)2

[
inf
f∈H

E[(f(x)− fρ(x))
2]

]
+ F 2 18 logN (δ,H)

Nϵ
+ 32δF

for all ϵ, δ > 0. Here F is the sup-norm of functions in H and we can take F = 2qnqB̃Bq. By
applying Lemma A.1, ϵ = 1, δ = 1

N and N ≥ nq , we have

E ∥fD,H − fρ∥2ρX
≤ 144C ′′

q,d,B̃,B

n3
q logN

N
+ 64qB̃Bq nq

N
,

where C ′′
q,d,B̃,B

= C ′
q,d,B̃,B

q2B̃2B2q . Thus we have

E ∥fD,H − fρ∥2ρX
≤ C̃q,d,B̃,B

n3
q logN

N
,

with C̃q,d,B̃,B = 144C ′′
q,d,B̃,B

+ 64qB̃Bq . This finishes the proof.

B EXPERIMENTAL DETAILS

In this section, we describe the additional details of our experiments.

B.1 EXPERIMENTAL SETTING

Data generating process For the target function fρ,1, we generate 10000 i.i.d. sample x from a
multivariate Gaussian distribution N (0,Σ1) with Σ1 = diag(100, 100). We randomly choose 9000
of them for training and 1000 data for testing.

For the target function fρ,2, we generate 50000 i.i.d. sample x from a multivariate Gaussian distribu-
tion N (0,Σ2) with Σ2 = diag(1, · · · , 1) ∈ R10×10. We randomly choose 45000 of them for training
and 5000 data for testing.

Training Hyper-parameter In all the experiments, we use SGD optimizer with one cycle learning
rate Smith & Topin (2019), with an initial learning rate 0.0001 and maximum learning rate 0.001. For
the polynomial fρ,1, we train three models 600 epochs with batch size 5000, and for the polynomial
fρ,2, we train three models 2000 epochs with batch size 25000. The gradient clipping is used for all
three models to avoid gradients exploding at the beginning of training.

Model architectures Table 5 and 6 illustrate the architecture of two types of ReLU fully connected
neural networks with a comparable number of free parameters used in Section 5. The NNwidth has
the same kind of linear transformation from Rd → Rnq as our single-head self-attention transformer,
while the NNdepth has the same hidden layer q + 1 as our single-head self-attention transformer.

B.2 SENSITIVITY OF THE DEPTH OF OUR ATTENTION MODEL

For real applications, we do not know the order of the oracle polynomial q in advance. Therefore,
we give a sensitive analysis of the depth of our ATTENTION model in this subsection. Table 7
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Table 5: The architecture of NNwidth and NNdepth for the target polynomial f∗
1 .

LAYER NN WIDTH NN DEPTH

1 LINEAR(IN=2,OUT=10) LINEAR(IN=2,OUT=4)

2 RELU RELU

3 LINEAR(IN=10,OUT=1) LINEAR(IN=4,OUT=4)
}
× 2

4 RELU

· · ·
7 LINEAR(IN=4,OUT=1)

Table 6: The architecture of NNwidth and NNdepth for the target polynomial f∗
2 .

LAYER NN WIDTH NN DEPTH

1 LINEAR(IN=10,OUT=4368) LINEAR(IN=10,OUT=120)

2 RELU RELU

3 LINEAR(IN=4368,OUT=1) LINEAR(IN=120,OUT=120)
}
× 5

4 RELU

· · ·
13 LINEAR(IN=120,OUT=1)

demonstrates that when the number of layers is smaller than the order of the polynomial, we cannot
get the zero approximation error, while when the number of layers is larger than or equal to the
underlying order, our ATTENTION model consistently gives good approximation results. This
experiment demonstrates our ATTENTION model is not sensitive to the choice of the depth. For real
applications, we can increase the depth of our ATTENTION model when the training error is not
small enough.

Table 7: The comparison of Mean squared error for learning fρ,4 = x3
1+x3

2 by using our ATTENTION
model with different number of layers.

ORACLE(DEPTH=3) DEPTH=2 DEPTH=4 DEPTH=5

MSETRAIN 0.9906 13.20 0.9986 0.9899
MSETEST 0.0002 11.42 0.00037 0.00036

B.3 EXPERIMENT RESULT ON THE REAL-WORLD DATA-SET

Table 8 demonstrates the effectiveness of our ATTENTION model on Household Electric Power
Consumption data-set Hou. This data-set contains 2,075,260 samples gathered between 16/12/2006
and 26/11/2010. We use several properties (global reactive power, voltage, global intensity, and
three substrings) to predict global active power and construct train/test sets with a ratio of 7 : 3 after
removing all the null data.

B.4 EXTENSION ON THE IMAGE CLASSIFICATION TASK

The architecture illustrated in Figure 1 is designed for regression tasks. And our experiments on
synthetic data and real-world data-set verify our theoretical results. In this subsection, we aim to
demonstrate the potential of our proposed model on the image classification task.

Model Architecture Since our model is designed for the regression setting, we try to modify our
model to fit the classification task. There are two major modifications for generalizing our model
to image classification task. First, we borrow the idea of Vision Transformer Dosovitskiy et al.
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Table 8: The comparison of Mean Squared Error for real-world data-set, Household electric power
consumption data-set. Column ATTENTION demonstrates the MSE achieved by our architecture,
while Column NNdepth and NNwidth demonstrates the MSE achieved by the fully connected neural
networks with comparable amount of parameters.

ATTENTION NNdepth NNwidth

MSETRAIN 0.0044 0.9038 0.0051
MSETEST 0.0094 0.9017 0.0097

(2021) to adjust our architecture. We split an image into several non-overlapped patches and adopt
a linear transformation to these patches. After the concatenation, we feed the resulting sequence
of embedding to our ATTENTION model. Similar to Dosovitskiy et al. (2021), we also adopt the
position encoding and extra learnable classification token. Second, like standard classification model,
we use a classification head to transform the representation to Rc, where c denotes the class number.

Experiment setting To demonstrate the advantage of our self-head ATTENTION model, we
compare the classification results with the original Vision Transformer Dosovitskiy et al. (2021) on
CIFAR-10 data-set. CIFAR-10 data-set Krizhevsky (2009) contains 32x32 color training images in
10 classes. There are 50k training images and 10k testing images.
We try different model setting for a comprehensive comparison. For VIT, we set the layer as 12,
the number of patch as 4, 8, or 16, and the number of attention head as 12. For our single-head
ATTENTION model, we set the layer as 2 and the number of patch as 4, 8, or 16. Moreover, we also
try to adopt the hybrid architecture proposed in Section 3.1 in Krizhevsky (2009), i.e., instead of
using the raw image patches, we use the feature map encoded by the CNN model.

Training Hyper-parameter In all the experiments, we use SGD optimizer with one cycle learning
rate Smith & Topin (2019), with an initial learning rate 0.001 and maximum learning rate 0.01. We
train each model for 200 epochs with batch size 512.

Experimental results Table 9 demonstrates the effectiveness of our single-head ATTENTION
model on CIFAR-10 data-set. Our model consistently gives better results on different patch size even
though the weights in our ATTENTION block do not need to train. These experimental results further
confirms the potential of our proposed ATTENTION model.

Table 9: The comparison of testing accuracy on CIFAR-10 data-set. VIT denotes the vision trans-
former and ATTENTION denotes our model.

TEST ACC(%)

VIT LAYER=8 PATCH=16 65.36
VIT LAYER=12 PATCH=8 74.92
VIT LAYER=12 PATCH=4 81.08
VIT HYBRID 81.26

ATTENTION PATCH=16 73.34
ATTENTION PATCH=8 73.02
ATTENTION PATCH=4 71.44
ATTENTION HYBRID 85.43

Further discussion There are some interesting studies of our proposed single-head ATTENTION
model.

1. Why the performance of the Vision Transformer is much lower than that reported in
Krizhevsky (2009)?
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2. Whether a smaller patch size can improve the performance of the results of our ATTENTION
model?

3. Whether the hybrid architecture can further improve performances of the model?

We give detailed discussion of the above questions.

1. The accuracy of VIT is different from the Table 2 in Krizhevsky (2009) because we train
the model on CIFAR-10 from sketch, while the author in Krizhevsky (2009) pretrain the
VIT on huge vison data-set, i.e., ImageNet, ImageNet-21k, and JFT-300M, and finetune
it on CIFAR-10. The performance of VIT drops dramatically when the number of sample
becomes smaller. Our ATTENTION model can achieve better results than VIT without
training the attention weights and with much smaller attention heads might give some
inspirations for further design of the Transformer model on the small data regime.

2. The larger patch size gives a better performance for our ATTENTION model, which is
different from the case of VIT. This phenomena matches the design of the data-preprocessing
process in our ATTENTION model well since it encourages us to use linear transformation
on the full input data to capture some global information.

3. Using a hybrid architecture can improve the performance of our ATTENTION model
dramatically (+12.41%). This illustrates the superiority of the convolution architecture
to capture local information of image data than linear transformation, which gives some
insights to further improve the ATTENTION architecture.
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