
QKFormer: Hierarchical Spiking Transformer using
Q-K Attention

Chenlin Zhou1∗, Han Zhang1,2∗, Zhaokun Zhou1,3∗, Liutao Yu1, Liwei Huang1,3,
Xiaopeng Fan1,2, Li Yuan1,3, Zhengyu Ma1†, Huihui Zhou1†, Yonghong Tian1,3

1Pengcheng Laboratory 2Harbin Institute of Technology 3Peking University

Abstract

Spiking Transformers, which integrate Spiking Neural Networks (SNNs) with
Transformer architectures, have attracted significant attention due to their potential
for low energy consumption and high performance. However, there remains a
substantial gap in performance between SNNs and Artificial Neural Networks
(ANNs). To narrow this gap, we have developed QKFormer, a direct training spik-
ing transformer with the following features: i) Linear complexity and high energy
efficiency, the novel spike-form Q-K attention module efficiently models the token
or channel attention through binary vectors and enables the construction of larger
models. ii) Multi-scale spiking representation, achieved by a hierarchical structure
with the different number of tokens across blocks. iii) Spiking Patch Embedding
with Deformed Shortcut (SPEDS), enhances spiking information transmission
and integration, thus improving overall performance. It is shown that QKFormer
achieves significantly superior performance over existing state-of-the-art SNN
models on various mainstream datasets. Notably, with comparable size to Spik-
former (66.34 M, 74.81%), QKFormer (64.96 M) achieves a groundbreaking top-1
accuracy of 85.65% on ImageNet-1k, substantially outperforming Spikformer by
10.84%. To our best knowledge, this is the first time that directly training SNNs
have exceeded 85% accuracy on ImageNet-1K. The code and models are available
at https://github.com/zhouchenlin2096/QKFormer.

1 Introduction

Regarded as the third generation of neural networks [1], the brain-inspired Spiking Neural Networks
(SNNs) are potential competitors to Artificial Neural Networks (ANNs) due to their high biological
plausibility and high energy efficiency attributed to their event-driven properties [2]. Transformer,
originally designed for natural language processing [3], has flourished in various computer vision
tasks, including image classification [4, 5], object detection [6, 7, 8] and semantic segmentation
[9, 10]. Spiking Transformers (Transformer-based SNNs) [11, 12, 13, 14, 15], which integrate spiking
neural networks with transformer architecture, have attracted significant attention. This innovative
combination provides great potential to develop advanced AI algorithms with high performance and
low energy consumption.

As the architecture of the transformers is essential to the model’s performance [4, 5, 16, 8, 10],
designing new architectures for transformer-based SNNs is quite challenging in terms of space
requirements for the following reasons [11, 13, 15]. i). Spiking Self Attention (SSA) [11], the core
module of spiking transformers, encodes Query, Key, and Value with sparse spikes. However, the

∗Equal
†Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/zhouchenlin2096/QKFormer

Spike input

T
ok

e
n
:

N

Channel: D

Linear

Linear 

1 0 0 0

0 0 0

0 0 1

0 1 0

0

1

0

1 0 0 1

0 1 0 0

0 0 0

1 0 1

0 1 0

0

0

0

0 0 0 1

7

1
2
9

4

1
0
0
1

1

0 1 0 0
0 0 0
0 0 0
0 1 0

0
0
0

0 0 0 1

0 1 1 0

0 0 0

0 0 1

1 1 0

1

0

1

0 1 0 1

 Row summation

Token mask

DNQ 

Token Attention Vector

Spike Output



0 1 0 0

0 0 0

1 0 1

0 1 0

0

0

0

0 0 0 1

DNK 

Channel Attention Vector0 1 1 0

2 8 5 3

0 1 0 0

0 0 0

0 0 1

0 1 0

0

0

0

0 0 0 0

 Column summation

Channel mask

Spiking Neuron

Spike Output
DNK 

1NA
1NA

DA 1

DA 1

DNX 

DNX DNX 

(a) Q-K Token Attention (QKTA) (b) Q-K Channel Attention (QKCA)

Figure 1: Illustration of Q-K attention with the two versions of Q-K token attention (QKTA) and
Q-K channel attention (QKCA). The inputs are binary spikes and there are only sparse additions
and mask operations in Q-K attention. As a spike-driven module, Q-K attention efficiently models
the token or channel attention through spike-form binary vectors, performing linear complexity to
#tokens (or #channels) and high energy efficiency. Spiking Neuron (SN) in this work adopts the
Leaky-Integrate-and-Fire (LIF) model, which is shown in Appendix. 7.1.

computational complexity (especially space complexity) of SSA scales quadratically to the number of
tokens (#tokens), and is the main obstacle to explore architecture that incorporate multi-level features.
ii). SNNs process data across the time domain, necessitating a high level of computational and
memory resources. This combination leads to considerable consumption of computational resources,
making the training process highly demanding in terms of both memory and processing power.

To address these issues, we propose QKFormer with three innovations. i) Q-K attention with linear
complexity and high energy efficiency. ii) A hierarchical architecture with decreasing number of
tokens across blocks. iii) A novel patch embedding with deformed shortcut module. The linear
complexity of Q-K attention is originated from the binary spike-form vector attention. This design
lower the energy consumption and the space requirement. The hierarchical architecture starts from
small patches and gradually merges neighboring patches in deeper spiking transformer layers with
gradually decreasing #tokens, which enables multi-level spiking feature representation and benefits
the model performance. The patch embedding with deformed shortcut facilitates spiking information
transmission and integration. These merits make QKFormer achieve state-of-the-art performance in
the SNN domain, in contrast to the previous transformer-based SNNs with spiking feature maps of a
single resolution. Our main contributions are as follows:

1) We develop a novel spike-form Q-K attention mechanism, tailor-made for the spatio-temporal
spiking patterns of SNNs, which can easily model the importance of token or channel dimensions
with binary values. The Q-K attention has linear complexity to #tokens (or #channels) and only
adopts two spike-form components: Query (Q) and Key (K).

2) We design a versatile and powerful Spiking Patch Embedding with Deformed Shortcut (SPEDS)
module, which enhances spiking information transmission and integration thus improving the perfor-
mance of spiking transformers significantly.

3) We build a direct-training hierarchical spiking transformer with different number of tokens
across blocks, incorporating Q-K attention and SPEDS, named QKFormer. This marks the effective
exploration of hierarchical spiking representation in Transformer-based SNNs.

4) Extensive experiments show that the proposed model outperforms the state-of-the-art (SOTA)
SNNs on various static and neuromorphic datasets. Notably, QKFormer has achieved a significant
milestone, surpassing 85% top-1 accuracy on ImageNet with 4 time steps using the direct training
approach for the first time.

2 Related Work

Learning Methods of Spiking Neural Networks. At present, there are mainly two ways to obtain
trained SNNs. One involves converting pre-trained ANNs to SNNs (ANN2SNN) [17, 18, 19, 20,
21, 22, 23], replacing the ReLU activation function in ANN with spiking neurons. However, This
converted SNN suffers from long converting time steps and constraints on the original ANN design.

2

Another method is to directly train SNNs[24], using surrogate gradient[25, 26, 27, 28] to address the
non-differentiability of spike excitation function during backpropagation. The direct training method
has received more attention due to its low latency and supporting flexible architectural exploration.

Direct Trained SNN Models. [28] proposed the Spike-Element-Wise block, which further addressed
gradient explosion and gradient vanishing problems, and prolonged the directly trained SNNs beyond
a depth of 100 layers with 69.26% accuracy on ImageNet-1k. Spikformer [11] designed a novel spike-
form self-attention named Spiking Self Attention (SSA), using sparse spike-form Query, Key, and
Value without softmax operation, which was used to construct the Spikformer. Spikformer achieved
74.81% accuracy on ImageNet-1k with 4 time steps, showing the great potential of transformer-based
SNNs for the first time. Spikingformer [12] modified Spikformer with a pre-activation shortcut,
which can avoid the floating-point multiplications in synaptic computing and has a lower firing rate.
Spikingformer achieved 75.85% accuracy on ImageNet-1k. [13] designed a novel Spike-Driven Self-
Attention (SDSA), which used only masks and addition operations without any multiplication, thus
significantly reducing the computation energy compared to the vanilla self-attention. In addition, the
proposed Spike-driven Transformer based on SDSA has achieved 77.07% on ImageNet-1k. However,
all of these SNN models above remain a large performance gap compared with ANN.

3 Method

3.1 Preliminary

Vanilla Self Attention. Vanilla self-attention (VSA) [3] in transformers has three floating-point key
components: query (QF), key (KF), value (VF) which are calculated by learnable linear matrics
and input X. The calculation of VSA can be formulated as follows:

QF ,KF ,VF = X(WQ,WK ,WV), (1)

VSA (QF ,KF ,VF) = Softmax

(
QFK

T
F√

d

)
VF , (2)

where F denotes the floating-point form. Both floating-point matrix multiplication and softmax
operation which contains exponent calculation and division, do not align with the properties of SNNs.

Spiking Self Attention. Spikformer [11] demonstrated a novel spike-form self-attention named
Spiking Self Attention (SSA), using sparse spike-form Q,K,V without softmax operation and
floating-point matrix multiplication. The calculation process of SSA is formulated as follows:

I = SNI (BNI (X(WI))) , I ∈ (Q,K,V), (3)

SSA′(Q,K,V) = SN
(
QKTV ∗ s

)
, (4)

where Q,K,V ∈ RT×N×D, the spike-form Q,K,V are computed by learnable linear layers. s
is a scaling factor. SN means spiking neuron layer. The calculation of SSA avoids floating-point
multiplication, meeting the property of SNNs.

3.2 Q-K Attention

An overview of Q-K attention is shown in Figure 1. Both VSA and SSA use three key components
and have O(N2d) or O(Nd2) computational complexity, while our proposed Q-K Attention which
has linear complexity and only uses two spike-form components: Q and K, which are produced
through learnable linear matrics.

Q = SNQ (BN (XWQ)) ,K = SNK (BN (XWK)) , (5)

where X is the input spiking map. According to the detailed calculation mechanism of Q,K, Q-K
Attention can be divided into Q-K Token Attention (QKTA) and Q-K Channel Attention (QKCA).

Q-K Token Attention. We here assume T = 1 and single head attention for mathematical description.
After obtaining spike-form Q,K ∈ RT×N×D, both Q and K can be formed as a spike matrix N×D
(N is the token number, D is the channel number). QKTA process can be formulated as follows:

At = SN(

D∑
i=0

Qi,j), X′ = At ⊗K, (6)

3

Table 1: Computational complexity comparison. N is the token number, D is the channel number.

Methods VSA [3] SSA [11] SDSA [13] QKTA QKCA

Time complexity O(N2D) O(N2D) O(ND) O(D) O(N)
Space complexity O(N2 +ND) O(N2 +ND) O(ND) O(N) O(D)

where At is the N ∗ 1 token attention vector, which models the binary importance of different tokens.
At is a spike-form vector, which is obtained by addition operations (row summation) of Q spike
matrix and a following spiking neuron. ⊗ is the Hadamard product between spike tensors, which is
equivalent to the mask operation. We apply the spike-form token attention vector At to the K spike
matrix through the column mask operation (token mask), to obtain the output X′ of QKTA.

Q-K Channel Attention. The calculation process of Q-K channel attention is similar to the previous
Q-K token attention, and can be formulated as : Ac = SN(

∑N
j=0 Qi,j), X′ = Ac ⊗K, where

Ac is the 1 ∗D channel attention vector, which models the binary importance of different channels.
At is a spike-form vector, which is obtained by addition operations (column summation) of Q spike
matrix and a following spiking neuron. Then, the output X′ of Q-K Channel Attention is obtained by
the row mask operation (channel mask) between At and K.

X′′ = SN (BN (Linear (X′))) . (7)

As shown in Formula.7, a post-linear layer is also required after obtaining X′ of Q-K Token or
Channel Attention. In addition, the channel dimension is D/h in the multi-head Q-K attention, where
h is the head number. In this work, the spiking neuron uses the LIF model [28]. Same with [11], time
step T is an independent dimension for the spiking neuron layer. In other layers, it is merged with the
batch size. We exploit QKTA in our experiments by default.

Linear Computational Complexity of Q-K Attention. As shown in Table 1, the time complexity of
Q-K attention varies based on the implementation approach. Specifically, when utilizing spike-form
broadcasted element-wise multiplication, ⊗, the time complexity can reach up to O(N ∗D). When
applying mask operation, the time complexity of Q-K attention is only O(N) or O(D). The space
complexity of Q-K attention with the whole process is O(N ∗D) at most, which is caused by the
self-storage consumption Q and K matrix. In terms of the space complexity of attention operation,
Q-K attention only requires an extra 1 ∗ D or N ∗ 1 space to store the attention vector with the
space complexity of O(N) or O(D). The linear complexity of Q-K attention makes it possible to
successfully explore the large-scale hierarchical architecture SNN model.

High Energy Efficiency of Q-K Attention. As a spike-driven attention module, the linear multiplica-
tion is transformed into sparse addition. Mask operation can be implemented on neuromorphic chips
through addressing algorithms [29] or AND logic operations[30] with negligible power consumption.
Compared with SSA, Q-K attention is much more energy-efficient, which comes from the following
reasons: i) Q-K attention only adopts two spike-form components for spike [0, 1] operation without
the V input and thus has less synaptic computing. ii) Q-K attention has much fewer spiking matrix
operations due to its linear complexity of O(N) or O(D). iii) Q-K attention discards the scale
operation of SSA, which leads to reduced power consumption further.

3.3 No Scaling Factors in Q-K Attention

In VSA [3], assume that qi

(
qi ∈ R1×d,Q ∈ Rm×d

)
and ki

(
ki ∈ R1×d,K ∈ Rm×d

)
are indepen-

dent random variables with a mean of 0 and a variance of 1, then each element in the product of QKT

has mean 0 and variance d. The variance magnitude of QKT grows with the embedding dimension
d, which can result in gradient vanishing issues after softmax operation. Therefore, The product of
matrices Q and K in VSA [3] is scaled by a factor 1√

d
in Eq. 2 to normalize the product to variance

1. Though the softmax function is not adopted due to its non-spike operations (division, exponential
operation) in SNNs, SSA-based [11] SNNs will suffer obvious performance degradation even cannot
converge without scaling because the variance of QKTV output is too large (Assuming that all the
spiking elements are independent random variables and subject to Bernoulli Distribution). However,
Q-K attention can discard scaling operations thus reducing power consumption because the variance
of Q-K attention is much smaller than SSA (e.g. the max theoretical variance of Q-K token attention
is only about 1 / 200 of SSA). The detailed analysis can be found in the Appendix.7.2 and Section.4.3.

4

3.4 QKFormer

As the computational complexity (especially space complexity) of SSA is quadratic to #tokens,
previous direct training spiking transformers are all limited to straight-through structures. Combining
SSA with hierarchical architecture directly will lead to memory explosion easily when training
spiking transformers. To overcome these issues, we proposed a hierarchical spiking transformer
based on Q-K attention, named QKFormer, which constructs hierarchical spiking feature maps with
linear computational complexity to #tokens or #channels.

Spike input

T
ok

e
n
:

N

Channel: D

Linear

Linear 

1 0 0 0

0 0 0

0 0 1

0 1 0

0

1

0

1 0 0 1

0 1 0 0

0 0 0

1 0 1

0 1 0

0

0

0

0 0 0 1

7

1
2
9

4

1
0
0
1

1

0 1 0 0
0 0 0
0 0 0
0 1 0

0
0
0

0 0 0 1

0 1 1 0

0 0 0

0 0 1

1 1 0

1

0

1

0 1 0 1

 Row summation

Token mask

DNQ 

Token Attention Vector

Spike Output



0 1 0 0

0 0 0

1 0 1

0 1 0

0

0

0

0 0 0 1

DNK 

Channel Attention Vector0 1 1 0

2 8 5 3

0 1 0 0

0 0 0

0 0 1

0 1 0

0

0

0

0 0 0 0

 Column summation

Channel mask

Spiking Neuron

Spike Output
DNK 

1NA
1NA

DA 1

DA 1

DNX 

DNX DNX 

(a) Q-K Token Attention (QKTA) (b) Q-K Channel Attention (QKCA)

Q
K

Fo
rm

er

SP
ED

S-
1

Q
-K

 A
tte

nt
io

n

SM
LP

Stage 1: 푇 × 퐻
4

× 푊
4

× 퐶

SP
ED

S-
2

Q
-K

 A
tte

nt
io

n

SM
LP

Stage 2: 푇 × 퐻
8

× 푊
8

× 2퐶

SP
ED

S-
3

SS
A

SM
LP

Stage 3: 푇 × 퐻
16

× 푊
16

× 4퐶

×
푁

�

×
푁

�

×
푁

�

QKFormer Blocks QKFormer Blocks Spikformer Blocks

Input:
푇� × 퐻 × 푊 × 푛

Figure 2: The overview of QKFormer, a hierarchi-
cal spiking transformer with Q-K attention.

Overall Hierarchical Architecture. The
overview of QKFormer is presented in Fig-
ure 2. The input form can be formulated as
(T0×H×W×n). In static RGB image datasets,
T0 = 1 and n = 3. In temporal neuromorphic
datasets, the input T0 = T , while n = 2. In our
implementation, we use a patch size of 4 × 4
and thus the input feature dimension (4× 4×n)
of each patch is projected into a spike-form arbi-
trary dimension (denoted as C) in Spiking Patch
Embedding with Deformed Shortcut 1 (SPEDS-1), which together with the following QKFormer
blocks are referred to as "Stage 1". The number of tokens in Satge 1 is (H4 × W

4). To produce a
hierarchical spiking representation, the number of tokens is reduced in SPEDS-2 and SPEDS-3 as
the network goes deeper. Both SPEDS-2 and SPEDS-3 reduce the number of tokens by a patch size
of 2× 2 (2× downsampling of resolution), and the number of channels is transformed into 2C and
4C, respectively. We denote the SPEDS-2 and the following QKFormer blocks as "Stage 2", which
reduces the number of tokens (H8 × W

8). While SPEDS-3 and the following Spikformer or QKormer
blocks are referred to as "Stage 3" with (H16 × W

16) tokens. The number of spiking transformer blocks
(QKFormer or Spikformer) in each stage are N1, N2, and N3, respectively. These stages jointly
produce a hierarchical spike-form representation.

Mixed Spiking Attention Integration. In the former stage of a hierarchical architecture model,
the number of channels is small while the number of tokens is large. In the latter stage, the channel
number is large while the token number is small. Thus it leads to suboptimal performance when we
only use a single type of Q-K attention in a hierarchical architecture model. Therefore, we use mixed
spiking attention integration in QKFormer. QKTA is conducted in the former stage in hierarchical
architecture, and we could choose QKCA or SSA in the latter stage. In the subsequent experiments,
we use SSA in the last stage of QKFormer and QKTA in the former stages by default.

QKFormer Blocks. Similar to the standard transformer encoder block, a QKFormer block contains
a Q-K Attention module (QKTA or QKCA) and a Spiking MLP (SMLP) block, which can be
formulated as follows:

X′
l = QKTA(Xl−1) +Xl−1,X

′
l ∈ RT×N×D, (8)

Xl = SMLP (X′
l) +X′

l,Xl ∈ RT×N×D. (9)

At last, a fully connected layer is used as the classifier behind the last block.

3.5 Spiking Patch Embedding with Deformed Shortcut.

Residual shortcuts in SNNs [28] can implement identity mapping, which reduces information loss
(facilitates information transmission and integration) in spike communication, thus ensuring the
network can be well-behaved in a depth-insensitive way. Previous spiking transformers [11, 12, 13]
use the residual shortcuts to achieve identity mapping, mainly focusing on the spiking attention block
and spiking MLP block, and lacking identity mapping in patch embedding across the downsampling
block. The input and output of a spiking patch embedding block in QKFormer have different channel
and token numbers. To realize residual learning in spiking patch embedding, we can perform a
lightweight linear projection Wd in the shortcut connections to match the channel and token numbers,
thus realizing the identity mapping cross downsampling blocks in spiking patch embedding. Given
the input spiking map X, the process of patch embedding can be formulated as follows:

Y = F (X, {Wi}) + SN(WdX). (10)

5

Table 2: Results on ImageNet-1K. Power is calculated as the average theoretical energy consumption
when predicting an image from ImageNet test set. The power data for QKFormer and ANNs is
evaluated according to Appendix.7.6, and the power data for other works were obtained from related
papers. "A2S" denotes "ANN-to-SNN", "HST-L-D" denotes "Hierarchical Spiking Transformer"
with L encoder blocks and D channels. HST-10-768∗ and HST-10-768∗∗ means HST-10-768 with
2882 and 3842 input size for inference. The top-5 accuracy of QKFormer (HST-10-768∗∗) is 97.74%.

Methods Type Architecture Input
Size

Param
(M)

Power
(mJ)

Time
Step

Top-1
Acc (%)

RMP[21] A2S VGG-16 2242 39.90 - 2048 73.09

QCFS[22] A2S ResNet-18 2242 11.70 - 1024 74.32

MST[23] A2S Swin Transformer-T 2242 28.50 - 512 78.51

SEW ResNet[28]
SNN SEW-ResNet-34 2242 21.79 4.89 4 67.04
SNN SEW-ResNet-101 2242 44.55 8.91 4 68.76
SNN SEW-ResNet-152 2242 60.19 12.89 4 69.26

Spikformer[11]
SNN Spikformer-8-384 2242 16.81 7.73 4 70.24
SNN Spikformer-8-512 2242 29.68 11.58 4 73.38
SNN Spikformer-8-768 2242 66.34 21.48 4 74.81

Spikingformer[12]
SNN Spikingformer-8-384 2242 16.81 4.69 4 72.45
SNN Spikingformer-8-512 2242 29.68 7.46 4 74.79
SNN Spikingformer-8-768 2242 66.34 13.68 4 75.85

S-Transformer[13]

SNN S-Transformer-8-384 2242 16.81 3.90 4 72.28
SNN S-Transformer-8-512 2242 29.68 1.13 1 71.68
SNN S-Transformer-8-512 2242 29.68 4.50 4 74.57
SNN S-Transformer-8-768∗ 2882 66.34 6.09 4 77.07

ViT[4] ANN ViT-B/16 3842 86.59 254.84 1 77.90

DeiT[32] ANN DeiT-B 2242 86.59 80.50 1 81.80
ANN DeiT-B 3842 86.59 254.84 1 83.10

Swin[8] ANN Swin Transformer-B 2242 87.77 70.84 1 83.50
ANN Swin Transformer-B 3842 87.77 216.20 1 84.50

QKFormer

SNN HST-10-384 2242 16.47 15.13 4 78.80
SNN HST-10-512 2242 29.08 21.99 4 82.04
SNN HST-10-768 2242 64.96 8.52 1 81.69
SNN HST-10-768 2242 64.96 38.91 4 84.22
SNN HST-10-768∗ 2882 64.96 64.27 4 85.25
SNN HST-10-768∗∗ 3842 64.96 113.64 4 85.65

In this work, the deformed linear projection Wd is set as a lightweight convolutional layer with
1× 1 kernel and stride > 1, to meet the channel and token numbers of the patch embedding block.
The function F involved in this work is set as {Conv2D-BN-MaxPooling-SN-Conv2D-BN-SN} or
{Conv2D-BN-SN-Conv2D-BN-MaxPooling-SN}, while more layers or more variants are possible.

There are mainly two types of residual shortcuts in deep SNNs. Formula.10 shows the patch
embedding in the way of activation-before-addition [28, 11]. The other way of the patch embedding
with the pre-activation residual shortcut [31, 12, 13] can be formulated as follows:

Y = SN(G (X, {Wj}) +WdX), (11)

where the function G correspondingly could be set as {Conv2D-BN-MaxPooling-SN-Conv2D-BN}
or {Conv2D-BN-SN-Conv2D-BN-MaxPooling}. The intuitive representation of SPEDS is shown in
Appendix 7.4.

In this work, the spiking patch embedding of stage 2 or stage 3 in QKFormer can be formulated as
Formula.10. The spiking patch embedding in stage 1 uses an extra {Conv2D-BN-SN} for spiking
encoding in front of the block (Formula.10) to transform the non-spike input data into spikes.

6

Table 3: Comparision on CIFAR10, CIFAR100, DVS128, CIFAR10-DVS. "Param" denotes "Parame-
ter (M)", "Acc" denotes "Top-1 Accuracy (%)", "T " denotes "Time Step".

Method
CIFAR10 CIFAR100 DVS128 CIFAR10-DVS

Param T Acc Param T Acc Param T Acc Param T Acc

Spikformer [11] 9.32 4 95.51 9.32 4 78.21 2.57 16 98.3 2.57 16 80.9
Spikingformer [12] 9.32 4 95.81 9.32 4 78.21 2.57 16 98.3 2.57 16 81.3
CML [14] 9.32 4 96.04 9.32 4 80.02 2.57 16 98.6 2.57 16 80.9
S-Transformer[13] 10.28 4 95.60 10.28 4 78.4 2.57 16 99.3 2.57 16 80.0
STSA[15] − − − − − − 1.99 16 98.7 1.99 16 79.93

ResNet-19 (ANN) 12.63 1 94.97 12.63 1 75.35 − − − − − −
Trasnformer (ANN) 9.32 1 96.73 9.32 1 81.02 − − − − − −
QKFormer 6.74 4 96.18 6.74 4 81.15 1.50 16 98.6 1.50 16 84.0

4 Experiments

4.1 Results on ImageNet-1k Classification

Experimental Setup on ImageNet. In this experiment, we use AdamW as the optimizer, which
is adopted with a base learning rate of 6 × 10−4. The actual learning rate was calculated as
BatchSize/256 multiplied by the base learning rate. The batch size is set to 512, which is realized
by accumulated gradient iterations [33] and distributed across 8 Nvidia V100 GPUs. We trained
QKFormer for 200 epochs. In addition, following DeiT [32], data augmentation techniques including
RandAugment [34], random erasing [35], and stochastic depth [36] are employed in this study. The
number of blocks in the three stages is set as {1, 2, 7} respectively.

Main Results on ImageNet. The experimental results demonstrate the superior performance of our
proposed QKFormer, surpassing previous works’ performance by a large margin (Table 2). QKFormer
(64.96 M) achieves 85.65% top-1 accuracy and 97.74% top-5 accuracy on ImageNet. To begin with,
we compare our model with the baseline spiking transformer (i.e., Spikformer [11]). Our QKFormer
models have slightly fewer parameters but much higher performance. For example, our QKFormer
(64.96 M, 85.65%) significantly outperforms Spikformer (66.34 M, 74.81%) by 10.84%. In addition,
compared with SDSA, our Q-K attention has lower computational complexity (shown in Table 1) and
our QKFormer has much higher performance than S-Transformer (built by SDSA) [13]. In detail,
QKFormer outperforms S-Transformer by 7.55%, 7.47%, and 8.58% respectively on three models
with comparable #parameters. Finally, Our QKFormer outperforms the SOTA ANN-to-SNN model
MST [23] by 7.14% and has much fewer time steps meanwhile. To our best knowledge, this is the
first time that a direct training SNN model has achieved an accuracy of over 85% on ImageNet-1k.

Comparing with ANN Models on ImageNet. Our QKFormer is an event-driven SNN model,
whose output is in binary form (either 0 or 1), the multiplications of activations and weights can
be transformed into sparse addition, thus enjoying high energy efficiency. It should be noted that
hierarchical architecture will lead to the power increment of QKFormer. This is still very cost-effective
compared with ANN models. For instance, QKFormer (64.96M, 85.65%, SNN, 113.64mJ) Vs. Swin
Transformer (88M, 84.5%, ANN, 216.20mJ) [8] Vs. DeiT-B (86M, 83.1%, ANN, 254.84mJ) [32]
Vs. ViT (85.59M, 77.9%, ANN, 254.84mJ). [4]. Under the same experiment conditions without pre-
training or extra training data, our QKFormer has surpassed the most well-known Transformer-based
ANNs in performance while maintaining high energy efficiency.

4.2 Results on CIFAR and Neuromorphic Datasets

CIFAR Classification. In this experiment, the QKFormer is trained for 400 epochs with a batch size
of 64 following previous works: Spikformer [11], Spikingformer [12]. Following Spikformer, we use
4 blocks in QKFormer in total, which are distributed {1, 1, 2} in three stages. Due to the hierarchical
architecture design, our QKFormer model has only 6.74 M parameters in this case. The results on
CIFAR datasets are shown in Table 3. For CIFAR10, our model achieved 96.18% accuracy with
6.74 M parameters. Our proposed QKFormer outperforms Spikformer by 0.67% and reduces 2.58 M

7

K

Stage 1 Stage 2

tA

X 

(a)

20 40 60 80 100 120 140 160
N

0

500

1000

1500

2000

2500

GP
U

M
em

or
y

Co
ns

um
pt

io
n

(M
)

QKTA
SSA

(b)

Figure 3: The visualization and memory consumption of QKTA. (a) is the visualization of Q-K token
attention. The white dot means value 1, while the black one means value 0. (b) shows the comparison
of memory costs between QKTA and SSA under different token numbers. N is the token number.

f_Q

0.0
0.2

0.4
0.6

0.8

f_K

0.0

0.2

0.4

0.6

0.8

f_V

0.0

0.2

0.4

0.6

0.8

Variance of SSA

0

500

1000

1500

2000

2500

3000

f_Q

0.0
0.2

0.4
0.6

0.8

f_K

0.0

0.2

0.4

0.6

0.8

f_V

0.0

0.2

0.4

0.6

0.8

Expectation of SSA

0

2000

4000

6000

8000

(a)

0.0 0.2 0.4 0.6 0.8 1.0
f_Q

0

10

20

30

40

50

60
Variance of QKTA
Expectation of QKTA

(b)

Figure 4: (a) shows the variance and expectation of SSA, (b) shows the variance and expectation of
QKTA. Assume that all the spike elements (either 0 or 1) in SSA and QKTA are independent random
variables and subject to Bernoulli distribution.

parameters meanwhile. For CIFAR100, our model achieved 81.15% with 6.74 M parameters. Our
proposed QKFormer outperforms Spikformer by 2.94% and reduces 2.58 M parameters meanwhile.

Neuromorphic Classification. We compare our method with SOTA methods on both CIFAR10-DVS
and DVS-Gesture datasets. In this experiment, We utilize a mini QKFormer model with 1.50 M
parameter, which has {0, 1, 1} blocks in three stages. The max patch embedding dimension is
set to 256. The training process involves 200 epochs for DVS128 Gesture and 106 epochs for
CIFAR10-DVS. The number of time steps of the spiking neuron is 10 or 16. The experimental results
of temporal neuromorphic classification are presented in Table 3. For DVS128-Gesture dataset, our
model with 1.50 M parameters achieves 98.6% accuracy using 16 time steps and 98.3% accuracy
using 10 time steps. For CIFAR10-DVS dataset, our model achieves 84.0% accuracy with only 1.50
M parameters using 16 time steps. Our proposed QKFormer significantly outperforms Spikformer by
3.1% while reducing 1.07 M parameters. In addition, our model with 10 time steps achieves 83.8%
accuracy, which outperforms Spikformer by 4.9% and outperforms the SOTA model (Spikingformer)
by 3.9%.

4.3 Analyses on Q-K Attention

Attention Visualization. In this part, we visualize the Q-K token attention (Stage 1 and Stage 2
of the QKFormer model) on ImageNet. As shown in Figure 3(a), At is the N ∗ 1 token attention
vector, and X′ is the output of the attention process, which is obtained by the mask operation between
matrix K and attention vector At. Specifically, the longitudinal axis denotes the channel index of
one head, while the horizontal axis denotes the token index. The #tokens in stage 1 and stage 2 are
562 and 282, respectively. To facilitate visualization, we choose a continuous segment with a length
of 100 extracted from the whole token vector. The visualization shows Q-K attention can lead to high
sparsity of spikes.

8

Memory Consumption. In this experiment, we compare the memory consumption between QKTA
(Formula.6) and SSA (Formula.4) under different token numbers. We calculate the memory consump-
tion of a QKTA and an SSA on a GPU by forwarding the input tensor (T,B,C,N). To facilitate
the statistics of the impact of #tokens N on memory consumption, the #channels C is set to 256,
and the time step T and batch size B are set to 1. The experiment result is shown in Figure 3(b).
With the increment of #Tokens, SSA consumes much more GPU memory than QKTA, of which the
complexity is linear to #Tokens. For example, SSA consumes about 10× GPU memory than QKTA
when

√
N = 50.

Table 4: Spike firing rates in QKFormer blocks.
QKFormer Block Stage1 (fr) Stage2 (fr)

QKTA

Q 0.0432 0.0231
K 0.1784 0.0847
At 0.3477 0.2655
X′ 0.0832 0.0350
X′′ 0.1478 0.0577

SMLP
Layer1 0.0518 0.0246
Layer2 0.2733 0.1869

Spike Firing Rates in QKFormer Blocks. In
this experiment, we calculate the spike firing
rates of QKFormer blocks of the trained QK-
Former (64.9M) on the ImageNet-1K test set
with the 224 × 224 input resolution. The aver-
age spike firing rates of the QKFormer blocks in
Stage1 and Stage2 are shown in Table 4. Note
that the spike-form X′ is obtained by column
mask operation (token mask) between At and
K. In fact, the summation operation in the Q-
K attention causes Q to become significantly
sparser compared to K when the network converges. Specifically, Q in stage 1 has a fire rate of
0.0432, while K has 0.1784. After the accumulation operation along D/h of the multi-head QKTA
version, the LIF neuron (At) exhibits a typical averaged fire rate of 0.3477.

The Variance and Expectation of QKTA. Figure.4 visualize the variance and expectation of QKTA
(Formula.15 and 16 in Appendix.7.2) and SSA (Formula.19 and 20 in Appendix.7.2). N is set as
196 and d is set as 64, respectively. We can find SSA has a much larger variance and expectation
than QKTA on the whole. For example, the maximum theoretical variance of QKTA is 16, but the
maximum theoretical variance of SSA is over 3000. This is the main reason that Q-K attention can
discard scaling operations thus reducing power consumption, but SSA can not.

4.4 Ablation Study

SPEDS Module. In this experiment, We replaced the Spiking Patch Splitting (SPS) module in
Spikformer with Spiking Patch Embedding with Deformed Shortcut (SPEDS) module, while other
conditions remain unchanged. The results (Table 5) show that the SPEDS module is essential
to QKFormer on both static and neuromorphic datasets. In addition, the addition of SPEDS to
Spikformer leads to great gains in CIFAR100 (+2.05%) and CIFAR10-DVS (+1.30%), which further
verified the effectiveness of SPEDS.

Table 5: Ablation studies of SPEDS module.

Model CIFAR100 (Acc) CIFAR10-DVS (Acc)

QKFormer (QKTA + SSA, baseline) 81.15% 84.00%

QKFormer (QKTA + SSA, w/o SPEDS) 80.08% 83.40%
Spikformer (SSA, w/o scaling) 76.95% 79.30%
Spikformer (SSA) 78.21% 80.90%
Spikformer (SSA) + SPEDS 80.26% 82.20%

Table 6: Ablation studies of Q-K Attention.

Model CIFAR100 (Acc, Param) CIFAR10-DVS (Acc, Param)

QKFormer (QKTA + SSA, baseline) 81.15%, 6.74M 84.00%, 1.50M

QKFormer (QKCA + SSA) 81.07%, 6.74M 84.30%, 1.50M
QKFormer (QKTA + QKCA) 81.04%, 6.44M 83.10%, 1.44M
QKFormer (SSA) 81.23%, 6.79M 84.10%, 1.52M
QKFormer (QKCA) 81.00%, 6.44M 80.70%, 1.44M
QKFormer (QKTA) 79.09%, 6.44M 80.70%, 1.44M

9

Mixed Spiking Attention Integration with Q-K Attention. In this part, we show different in-
tegration strategies of QKCA, QKTA, and SSA. The baseline is our QKFormer (QKTA + SSA,
6.70M). The experimental results (Table 6) show that using a single type of Q-K attention (QKTA
or QKCA only) in a hierarchical architecture model leads to suboptimal performance. In particular,
the performance decline in QKTA is more obvious. While the mixed spiking attention solutions,
such as QKFormer(QKTA + QKCA), QKFormer(QKTA + SSA), and QKFormer(QKCA + SSA) can
achieve comparable performance to QKFormer(SSA) while requiring fewer parameters and much
fewer memory resources (Figure 3(b)). Consequently, the mixed spiking attention solutions are well-
suited for larger architectures and more challenging scenarios when considering both computational
efficiency and performance.

Table 7: Ablation studies of RC, SN, TS.
Model CIFAR100 (Acc)

QKFormer (baseline) 81.15%

QKFormer (ABA->PA) 81.18%

QKFormer (LIF->IF) 80.95%
QKFormer (LIF->PLIF) 81.12%

QKFormer (T=1) 78.51%
QKFormer (T=2) 80.08%
QKFormer (T=4) 81.15%
QKFormer (T=6) 81.30%

Residual Connection (RC) & Spiking Neuron
(SN) & Time Step (TS). The experimental re-
sults are shown in Table 7. In this block, we
replaced the Activation-Before-Addition (ABA)
[28, 11] residual connection of QKFormer with
the Pre-activation (PA) [31, 37] way, and the
performance slightly improved. In addition, we
replaced the LIF spiking neuron with Integrate-
and-Fire (IF) and Parametric-Leaky-Integrate-
and-Fire (PLIF) [38], which led to slight per-
formance degradation. The accuracy regarding
different simulation time steps of QKFormer is
shown in the last column. When we increase
the simulation time steps, the performance of QKFormer can be further improved. Specifically,
QKFormer achieves 81.30 % accuracy on CIFAR 100 when T=6.

5 Conclusion

In this work, we design a novel spike-form Q-K attention considering the properties of SNNs, which
can easily model the importance of token or channel dimensions through binary vectors. Q-K attention
has linear complexity to #tokens (or #channels) and only adopts two spike-form components: Query
(Q) and Key (K). We design a versatile and powerful Spiking Patch Embedding with Deformed
Shortcut (SPEDS), which enhances spiking information transmission and integration, thus improving
the performance of spiking transformers. In addition, we develop a hierarchical spiking transformer
based on the proposed Q-K attention and SPEDS in a direct training way, named QKFormer, which
marks the effective exploration of hierarchical spiking representation in Transformer-based SNNs.
Extensive experiments show that the proposed model achieves SOTA performance on both static and
neuromorphic datasets. Note that QKFormer achieved top-1 accuracy beyond 85% on ImageNet-1k
with 4 time steps using the direct training way for the first time. With its powerful performance, we
aim for our investigations to instill optimism in the application of SNNs.

Limitation. Currently, our model is limited to image / DVS classification tasks. We will extend this
work to more tasks, such as segmentation, detection, and language tasks, to test the generalizability
in the further. In addition, we will explore efficient and high-performance network architectures with
fewer time steps based on Q-K attention and other efficient modules, to further reduce the training
consumption.

6 Acknowledgments and Disclosure of Funding

This work is supported by grants from the National Natural Science Foundation of China (62236009,
62206141, 62027804, and 62425101), and the major key project of the Pengcheng Laboratory
(PCL2021A13). Computing support was provided by Pengcheng Cloudbrain.

References
[1] Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.

Neural networks, 10(9):1659–1671, 1997.

10

[2] Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine
intelligence with neuromorphic computing. Nature, 575(7784):607–617, 2019.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the Interna-
tional Conference on Neural Information Processing Systems (NeurIPS), volume 30, 2017.

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representa- tions (ICLR), 2020.

[5] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay,
Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch
on imagenet. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 558–567, 2021.

[6] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 213–229. Springer, 2020.

[7] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159,
2020.

[8] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 10012–10022,
2021.

[9] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping
Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction
without convolutions. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 568–578, 2021.

[10] Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, and Shuicheng Yan. Volo: Vision outlooker for
visual recognition. arXiv preprint arXiv:2106.13112, 2021.

[11] Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng YAN, Yonghong Tian,
and Li Yuan. Spikformer: When spiking neural network meets transformer. In The Eleventh
International Conference on Learning Representations, 2023.

[12] Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Han Zhang, Zhengyu Ma, Huihui Zhou, and Yonghong
Tian. Spikingformer: Spike-driven residual learning for transformer-based spiking neural
network, 2023.

[13] Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-
driven transformer, 2023.

[14] Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Zhengyu Ma, Huihui Zhou, Xiaopeng
Fan, and Yonghong Tian. Enhancing the performance of transformer-based spiking neural
networks by improved downsampling with precise gradient backpropagation, 2023.

[15] Yuchen Wang, Kexin Shi, Chengzhuo Lu, Yuguo Liu, Malu Zhang, and Hong Qu. Spatial-
temporal self-attention for asynchronous spiking neural networks. In Edith Elkind, editor,
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence,
IJCAI-23, pages 3085–3093. International Joint Conferences on Artificial Intelligence Organi-
zation, 8 2023. Main Track.

[16] Rong Wang, Mianxin Liu, Xinhong Cheng, Ying Wu, Andrea Hildebrandt, and Changsong Zhou.
Segregation, integration, and balance of large-scale resting brain networks configure different
cognitive abilities. Proceedings of the National Academy of Sciences, 118(23):e2022288118,
2021.

11

[17] Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks
for energy-efficient object recognition. International Journal of Computer Vision, 113(1):54–66,
2015.

[18] Eric Hunsberger and Chris Eliasmith. Spiking deep networks with lif neurons. arXiv preprint
arXiv:1510.08829, 2015.

[19] Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-
snn conversion for high-accuracy and ultra-low-latency spiking neural networks. In International
Conference on Learning Representations (ICLR), 2021.

[20] Yuhang Li, Shi-Wee Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ann:
Towards efficient, accurate spiking neural networks calibration. ArXiv, abs/2106.06984, 2021.

[21] Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. Rmp-snn: Residual membrane
potential neuron for enabling deeper high-accuracy and low-latency spiking neural network. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
13558–13567, 2020.

[22] Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal
ann-snn conversion for high-accuracy and ultra-low-latency spiking neural networks. arXiv
preprint arXiv:2303.04347, 2023.

[23] Ziqing Wang, Yuetong Fang, Jiahang Cao, Qiang Zhang, Zhongrui Wang, and Renjing Xu.
Masked spiking transformer. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1761–1771, 2023.

[24] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

[25] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

[26] Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Yisen Wang, and Zhouchen Lin. Training
feedback spiking neural networks by implicit differentiation on the equilibrium state. In Pro-
ceedings of the International Conference on Neural Information Processing Systems (NeurIPS),
volume 34, pages 14516–14528, 2021.

[27] Sumit B Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. In Pro-
ceedings of the International Conference on Neural Information Processing Systems (NeurIPS),
volume 31, 2018.

[28] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian.
Deep Residual Learning in Spiking Neural Networks. In Proceedings of the International
Conference on Neural Information Processing Systems (NeurIPS), volume 34, pages 21056–
21069, 2021.

[29] Ole Juri Richter, QIAO Ning, Qian Liu, and Sadique Ul Ameen Sheik. Event-driven spiking
convolutional neural network, June 16 2022. US Patent App. 17/601,939.

[30] Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip
architecture. Nature, 572(7767):106–111, 2019.

[31] Yifan Hu, Yujie Wu, Lei Deng, and Guoqi Li. Advancing residual learning towards powerful
deep spiking neural networks. arXiv preprint arXiv:2112.08954, 2021.

[32] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pages 10347–10357. PMLR, 2021.

[33] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16000–16009, 2022.

12

[34] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical
automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops, pages 702–703, 2020.

[35] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data
augmentation. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 13001–13008, 2020.

[36] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pages 646–661. Springer, 2016.

[37] Chenlin Zhou, Han Zhang, Liutao Yu, Yumin Ye, Zhaokun Zhou, Liwei Huang, Zhengyu
Ma, Xiaopeng Fan, Huihui Zhou, and Yonghong Tian. Direct training high-performance deep
spiking neural networks: A review of theories and methods. arXiv preprint arXiv:2405.04289,
2024.

[38] Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian.
Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages
2661–2671, 2021.

[39] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 248–255, 2009.

[40] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[41] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-
stream dataset for object classification. Frontiers in neuroscience, 11:309, 2017.

[42] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo,
Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, Jeff Kusnitz,
Michael Debole, Steve Esser, Tobi Delbruck, Myron Flickner, and Dharmendra Modha. A
low power, fully event-based gesture recognition system. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 7243–7252, 2017.

[43] Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going Deeper With Directly-
Trained Larger Spiking Neural Networks. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pages 11062–11070, 2021.

[44] Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal Efficient Training of
Spiking Neural Network via Gradient Re-weighting. In International Conference on Learning
Representations (ICLR), 2021.

[45] Xiaohan Ding, Yuchen Guo, Guiguang Ding, and Jungong Han. Acnet: Strengthening the
kernel skeletons for powerful cnn via asymmetric convolution blocks. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 1911–1920, 2019.

[46] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun.
Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 13733–13742, 2021.

[47] Yangfan Hu, Huajin Tang, and Gang Pan. Spiking deep residual networks. IEEE Transactions
on Neural Networks and Learning Systems, 2021.

[48] Guangyao Chen, Peixi Peng, Guoqi Li, and Yonghong Tian. Training full spike neural networks
via auxiliary accumulation pathway. arXiv preprint arXiv:2301.11929, 2023.

[49] Souvik Kundu, Massoud Pedram, and Peter A Beerel. Hire-snn: Harnessing the inherent
robustness of energy-efficient deep spiking neural networks by training with crafted input noise.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages
5209–5218, 2021.

13

[50] Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pages 10–14.
IEEE, 2014.

[51] Priyadarshini Panda, Sai Aparna Aketi, and Kaushik Roy. Toward scalable, efficient, and
accurate deep spiking neural networks with backward residual connections, stochastic softmax,
and hybridization. Frontiers in Neuroscience, 14:653, 2020.

[52] Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and
Guoqi Li. Attention spiking neural networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2023.

[53] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Proceedings of the International Conference
on Neural Information Processing Systems (NeurIPS), volume 32, 2019.

[54] Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei
Huang, Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine
learning infrastructure platform for spike-based intelligence. Science Advances, 9(40):eadi1480,
2023.

[55] Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

14

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

7 Appendix

7.1 Spiking Neuron Model

Spiking neuron is the fundamental unit of SNNs, we choose the Leaky Integrate-and-Fire (LIF) model
as the spiking neuron in our work. The dynamics of a LIF neuron can be formulated as follows:

H[t] = V [t− 1] +
1

τ
(X[t]− (V [t− 1]− Vreset)) , (12)

S[t] = Θ (H[t]− Vth) , (13)
V [t] = H[t](1− S[t]) + Vreset S[t], (14)

where τ is the membrane time constant, and X[t] is the input current at time step t. When the
membrane potential H[t] exceeds the firing threshold Vth, the spiking neuron will trigger a spike S[t].
Θ(v) is the Heaviside step function, which equals to 1 when v ≥ 0 and 0 otherwise. V [t] represents
the membrane potential after the triggered event, which equals to H[t] if no spike is generated and
otherwise equals to the reset potential Vreset.

7.2 Q-K Attention Vs. SSA in Scaling Factors

Mathematical Characteristics of Q-K Attention. All the elements in Q-K attention are spike-
form, thus we assume that each Qi,j [t] are independent random variables and subject to Bernoulli
distribution B(fQ). fQ is the average firing rate of Q. The expectation and variance of Q-K attention
can be formulated as:

E (QKTA) = E

(
d∑

i=0

Qi,j [t]

)
=

d∑
i=0

E (Qi,j [t]) = dfQ, (15)

Var (QKTA) = Var

(
d∑

i=0

Qi,j [t]

)
=

d∑
i=0

Var (Qi,j [t]) = dfQ (1− fQ) , (16)

E (QKCA) = E

 N∑
j=0

Qi,j [t]

 =

N∑
j=0

E (Qi,j [t]) = NfQ, (17)

Var (QKCA) = Var

 N∑
j=0

Qi,j [t]

 =

N∑
j=0

Var (Qi,j [t]) = NfQ (1− fQ) , (18)

where d = D/h is the feature dimension of a head in the multi-head Q-K attention and N is the
token number.

Mathematical Characteristics of SSA. Similar to the above analysis process, assume that all
elements Qi,j [t],Kj,i[t], Vi,j [t] in SSA are independent random variables and subject to Bernoulli
distribution B(fQ), B(fK), B(fV), respectively. fQ, fK and fV are the average firing rate of Q,K
and V, respectively. We can calculate the expectation and variance of SSA as follows.

E(SSA) = E

 N∑
i=1

d∑
j=1

Qi,j [t]Kj,i[t]Vi,j [t]

 =

N∑
i=1

d∑
j=1

E (Qi,j [t]Kj,i[t]Vi,j [t]) = NdfQfKfV ,

(19)

Var(SSA) = Var

 N∑
i=1

d∑
j=1

Qi,j [t]Kj,i[t]Vi,j [t]

 =

N∑
i=1

d∑
j=1

Var (Qi,j [t]Kj,i[t]Vi,j [t])

= Nd (fQfKfV (1− fQ) (1− fK) (1− fV)

+fQfKf2
V (1− fQ) (1− fK) + fQf

2
KfV (1− fQ) (1− fV) + f2

QfKfV (1− fK) (1− fV)

+fQf
2
Kf2

V (1− fQ) + f2
QfKf2

V (1− fK) + f2
Qf

2
KfV (1− fV)

)
,

(20)

15

Figure.4 visualize the variance and expectation of QKTA (Formula.15 and 16) and SSA (Formula.19
and 20). N is set as 196 and d is set as 64, respectively. We can find SSA has a much larger variance
and expectation than QKTA on the whole. For example, the maximum theoretical variance of QKTA
is 16, but the maximum theoretical variance of SSA is over 3000. This is the main reason that Q-K
attention can discard scaling operations thus reducing power consumption, but SSA can not.

7.3 Futher Discussion on Q-K Attention

The Complexity of Attention Mechanisms. The computational complexity of SSA: Q,K ∈
[0, 1]N×D. The attention map (Q ×KT ∈ ZN×N) is obtained by matrix multiplication of matrix
[0, 1]N×D and matrix [0, 1]D×N , which thus need O(N2D) computation. The computational com-
plexity of SDSA: Q,K ∈ [0, 1]N×D. The attention map (Q⊗K ∈ [0, 1]N×D) is obtained by the
Hadamard product of matrix [0, 1]N×D and matrix [0, 1]N×D, which thus need O(ND) computation.
The computational complexity of Q-K Attention: Our attention vector (At ∈ [0, 1]N×1) is computed
by At = SN(

∑D
i=0 Qi,j), which depends on the row or column accumulation of the Q matrix

(Q ∈ [0, 1]N×D), thus only needs O(N) or O(D) computation.

PLIF for Scaling. Q-K attention can discard scaling operations to reduce power consumption On
these datasets used in this article’s experiments because the variance of Q-K attention is much smaller
than SSA (e.g. the max theoretical variance of Q-K token attention is only about 1 / 200 of SSA).
For generality, we can also replace the LIF after attention calculation with PLIF (LIF with trainable
parameters) allowing for adaptively controlling the fire rate of that spiking neuron, which can be seen
as a learnable scaling. It can be expressed as At = PLIF(

∑D
i=0 Qi,j). The results show that this

modification brings a 0.2% performance improvement on CIFAR 100 (Acc = 81.17%, the firing rate
of At is 0.2952 in stage1 and 0.4008 in stage 2), while increasing the training time to 1.3 times.

7.4 Supplementary for Method 3.5

MultiStep LIF

Conv + BN

MaxPooling

MultiStep LIF

Conv + BN

⊕

M
ul

tiS
te

p
LI

F

Co
nv

 +
 B

N

M
ax

Po
ol

in
g

MultiStep LIF

Conv + BN

MaxPooling

MultiStep LIF

Conv + BN

dW
MultiStep LIF

Spike encoder

⊕

MultiStep LIF

Conv + BN

MaxPooling

Conv + BN

dW

⊕

MultiStep LIF

SPEDS-1 SPEDS-2 & SPEDS-3 SPEDS-2 & SPEDS-3 in
Pre-activation

dW
MultiStep LIFMultiStep LIF

Conv + BN

MaxPooling

MultiStep LIF

Conv + BN

MultiStep LIF

Conv + BN

MaxPooling

SPS in Spikformer

(a) (b)

...

Figure 5: (a) Spiking Patch Splitting (SPS) module in Spikformer. (b) Spiking Patch Embedding with
Deformed Shortcut (SPEDS) module in QKFormer.

7.5 Experimental Details

Datasets. We evaluate QKFormer on static image classification and neuromorphic classification. The
former includes ImageNet-1K [39], CIFAR10/100 [40]. The latter contains CIFAR10-DVS [41] and
DVS128 Gesture [42].

ImageNet-1K is the most typical static image dataset for classification. It contains 1.28 million images
for training and 50k images for validation, with a total of 1,000 categories. CIFAR10/CIFAR100
provides 50, 000 train and 10, 000 test images with 32 × 32 resolution. The difference is that
CIFAR10 contains 10 categories for classification. While CIFAR100 contains 100 categories, owning
better distinguishing ability for the classification algorithm.

CIFAR10-DVS is an event-based neuromorphic dataset converted from the static image dataset
by capturing shifting image samples through the Dynamic Vision Sensor (DVS) camera, which
provides 9,000 training samples and 1,000 test samples. DVS128 Gesture is an event-based gesture

16

recognition dataset that contains 1342 samples of 11 hand gesture categories from 29 individuals
under 3 illumination conditions, each gesture has an average duration of 6 seconds.

Training Details. In our experiments, we use 8 NVIDIA Tesla V100 SXM2 32GB GPUs when
training models on ImageNet, while 1 GPU is used to train other datasets (CIFAR10, CIFAR100,
DVS128 Gesture, CIFAR10-DVS). In direct training SNN models with surrogate function,

σ(x) =
1

1 + exp(−αx)
, (21)

we select the Sigmoid function σ(x) as the surrogate function with α = 4 during the backpropagation
of direct training in all experiments.

Experimental Details on CIFAR and Neuromorphic Classification. We evaluate our QKFormer
on small-scale datasets, including CIFAR10, CIFAR100 [40] and temporal neuromorphic datasets
(CIFAR10-DVS and DVS128 Gesture [42]). The detailed results on the four small-scale datasets are
presented in Table 8.

Table 8: Comparision on CIFAR10, CIFAR100, DVS128, CIFAR10-DVS.
Dataset Methods Architecture Param

(M)
Time
Step

Top-1 Acc
(%)

CIFAR10

STBP-tdBN[43] ResNet-19 12.63 4 92.92

TET[44] ResNet-19 12.63 4 94.44

Spikformer[11] Spikformer-4-384 9.32 4 95.51

Spikingformer[12] Spikingformer-4-384 9.32 4 95.81

CML[14] Spikformer-4-384 9.32 4 96.04

S-Transformer[13] S-Transformer-2-512 10.28 4 95.60

QKFormer HST-4-384 6.74 4 96.18

CIFAR100

STBP-tdBN[43] ResNet-19 12.63 4 70.86

TET[44] ResNet-19 12.63 4 74.47

Spikformer[11] Spikformer-4-384 9.32 4 78.21

Spikingformer[12] Spikingformer-4-384 9.32 4 78.21

CML[14] Spikformer-4-384 9.32 4 80.02

S-Transformer[13] S-Transformer-2-512 10.28 4 78.4

QKFormer HST-4-384 6.74 4 81.15

DVS128

Spikformer[11] Spikformer-2-256 2.57 10 , 16 96.9 , 98.3

Spikingformer[12] Spikingformer-2-256 2.57 10 , 16 96.2 , 98.3

CML[14] Spikformer-2-256 2.57 10 , 16 97.6 , 98.6

S-Transformer[13] S-Transformer-2-256 2.57 16 99.3
STSA[15] STSFormer-2-256 1.99 10 , 16 97.3 , 98.7

QKFormer HST-2-256 1.50 10 , 16 98.3 , 98.6

CIFAR10-DVS

Spikformer[11] Spikformer-2-256 2.57 10 , 16 78.9 , 80.9

Spikingformer[12] Spikingformer-2-256 2.57 10 , 16 79.9 , 81.3

CML[14] Spikformer-2-256 2.57 10 , 16 79.2 , 80.9

S-Transformer[13] S-Transformer-2-256 2.57 16 80.0

STSA[15] STSFormer-2-256 1.99 10 , 16 78.96 , 79.93

QKFormer HST-2-256 1.50 10 , 16 83.8 , 84.0

17

Training and Testing Curve on ImageNet. We show the training loss, test loss, top-1, and top-5 test
accuracy of QKFormer (64.96M, 29.08M, 16.47M) on ImageNet-1K in Figure 6.

0 25 50 75 100 125 150 175 200
epoch

2

3

4

5

6

tra
in

in
g

lo
ss

QKFormer (64.96M)
QKFormer (29.08M)
QKFormer (16.47M)

(a) Training loss
0 25 50 75 100 125 150 175 200

epoch

1

2

3

4

5

te
st

 lo
ss

QKFormer (64.96M)
QKFormer (29.08M)
QKFormer (16.47M)

(b) Testing loss
0 25 50 75 100 125 150 175 200

epoch

0

10

20

30

40

50

60

70

80

to
p-

1
ac

cu
ra

cy
 (%

)

QKFormer (64.96M)
QKFormer (29.08M)
QKFormer (16.47M)

(c) Top-1 accuracy
0 25 50 75 100 125 150 175 200

epoch

20

40

60

80

100

to
p-

5
ac

cu
ra

cy
 (%

)

QKFormer (64.96M)
QKFormer (29.08M)
QKFormer (16.47M)

(d) Top-5 accuracy

Figure 6: Training loss, test loss, top-1 and top-5 test accuracy of QKFormer on ImageNet-1K. The
input resolution of training and testing are 224 × 224.

7.6 Energy Consumption Calculation of QKFormer and ANNs

The homogeneity of convolution allows the following BN and linear scaling transformation to be
equivalently fused into the convolutional layer with an added bias when deployment [45, 46, 47, 48].
Therefore, when calculating the theoretical energy consumption, the consumption of BN layers could
be ignored. We calculate the number of Synaptic Operations (SOPs) of spike before calculating
theoretical energy consumption for QKFormer.

SOPl = fr × T × FLOPsl (22)

where l is a block/layer in QKFormer, fr is the firing rate of the block/layer and T is the simulation
time step of spiking neuron. FLOPsl refers to floating point operations of block/layer l, which is
the number of multiply-and-accumulate (MAC) operations. And SOPl is the number of spike-based
accumulate (AC) operations. Refer to previous works[49, 31, 50, 11, 12, 51, 52]. we assume that the
MAC and AC operations are implemented on the 45nm hardware [50], where EMAC = 4.6pJ and
EAC = 0.9pJ . The theoretical energy consumption of QKFormer can be calculated as follows:

EQKFormer = EAC ×

 N∑
i=2

SOPi
Conv +

M∑
j=1

SOPj
QKTA +

Z∑
k=1

SOPk
SSA

+ EMAC ×
(
FLOP1

Conv

)
(23)

Eq.23 shows the energy consumption of QKFormer. FLOP1
Conv is the first layer encoding the

non-spike input into spike-form. Then the SOPs of N SNN Conv layers, M QKTA layers, and Z SSA
layers are added together and multiplied by EAC . For ANNs, the theoretical energy consumption can
be calculated:

EANN = EMAC × FLOPs (24)

7.7 Supplementary for Memory Consumption in Experiment 4.3

Table 9 shows the detailed values of Figure 4 in the main body of this paper (Experiment 4.3). We
compare the memory consumption between QKTA (Formula.6) and SSA (Formula.4) under different
token numbers, which is calculated on a GPU by forwarding the input tensor (T,B,C,N). To
facilitate the statistics of the impact of #tokens N on memory consumption, the #channels C are set
to 256, and the time step T and batch size B are set to 1. The experiment result is shown in Figure
3(b). With the increment of #Tokens, SSA consumes much more GPU memory than QKTA, of which
the complexity is linear to #Tokens. For example, SSA consumes about 10× GPU memory than
QKTA when

√
N = 50.

7.8 The Training and Inference Time Comparison.

We organized the experiment to test the training and inference time of QKFormer compared with
Spikformer. We carried out this experiment on ImageNet with an input size of 224*224. This

18

Table 9: Detailed values of memory consumption of Figure 4.
√
N QKTA (M) SSA (M) SSA / QKTA

10 0.10 0.14 1.37
20 0.40 1.00 2.53
30 0.89 3.97 4.46
40 1.58 12.19 7.71
50 2.47 26.44 10.70
60 3.56 53.52 15.04
70 4.84 97.64 20.17
80 6.32 162.50 25.70
90 8.18 258.19 31.55

100 10.35 391.77 37.85
110 12.14 570.69 47.01
120 14.23 806.06 56.66
130 16.70 1107.50 66.33
140 20.22 1485.14 73.43
150 22.26 1954.03 87.79
160 26.29 2525.00 96.03
170 28.55 3214.30 112.57
180 32.37 4036.88 124.71
190 36.41 5007.25 137.51
200 40.46 6143.06 151.84

experiment is carried out on a Ubuntu 18.04.6 LTS server with the Intel(R) Xeon(R) W-2125 CPU @
4.00GHz, and the GeForce RTX 2080 (8G) GPU. "BS" means Batch Size. The experimental results
are as follows:

Table 10: The training and inference time comparison between QKFormer and Spikformer.

Model Inference time (1 batch) Training time (1 batch)

Spikformer(29.68M, T=4) , BS=6 1.63s 2.65s
QKFormer(29.08M,T=4) , BS=6 1.82s 3.62s
Spikformer(29.68M, T=4) , BS=1 1.46s 2.08s
QKFormer(29.08M, T=4) , BS=1 1.33s 2.72s

In terms of inference time, QKFormer and Spikformer are very close. In terms of training time,
QKFormer is about 1.35 times the training time of Spikformer in one batch, caused by hierarchical
architecture. The training epochs of QKFormer on ImageNet are 200, while the training epochs of
Spikformer are 300 [11], thus, the total training time cost of QKFormer on ImageNet is close to
Spikformer’s.

7.9 Discussion

Prospect. The human brain has powerful intelligence that runs with low power consumption, so how
to develop novel artificial intelligence algorithms to achieve high performance with the low power
consumption of the human brain level is one of the AI’s ultimate goals. SNN is an attractive potential
way to achieve it. QKFormer directly trained on ImageNet-1K has a groundbreaking leap forward
with 10.84% accuracy improvement compared to the previous SNN model while maintaining the
energy-efficient feature, which marks an important step towards this goal. Combined with pre-training
in the future, the performance of QKFormer is expected to be further improved.

Reproducibility. The experimental results in this paper are reproducible. All experiments are
implemented based on Pytorch [53], SpikingJelly [54] and Timm [55]. We explain the details of
model training and configuration in the main text and Appendix. Our codes and models of QKFormer
will be available on GitHub after review.

19

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See the Abstract and Section.1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See the Appendix. 7.9.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

20

Justification: See Section. 3 and Appendix. 7.2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section. 4 and Appendix. 7.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

21

Answer: [No]
Justification: Our codes and models of QKFormer will be available on GitHub after review.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section. 4 and Appendix. 7.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix. 7.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research is in every respect with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This research belongs to foundational research and is not tied to particular
applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

23

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Appendix. 7.5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

24

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Related Work
	Method
	Preliminary
	Q-K Attention
	 No Scaling Factors in Q-K Attention
	QKFormer
	Spiking Patch Embedding with Deformed Shortcut.

	Experiments
	Results on ImageNet-1k Classification
	Results on CIFAR and Neuromorphic Datasets
	Analyses on Q-K Attention
	Ablation Study

	Conclusion
	Acknowledgments and Disclosure of Funding
	Appendix
	Spiking Neuron Model
	Q-K Attention Vs. SSA in Scaling Factors
	Futher Discussion on Q-K Attention
	Supplementary for Method 3.5
	Experimental Details
	Energy Consumption Calculation of QKFormer and ANNs
	Supplementary for Memory Consumption in Experiment 4.3
	The Training and Inference Time Comparison.
	Discussion

