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Abstract

We introduce Reward-Guided Speculative Decod-
ing (RSD), a novel framework aimed at improv-
ing the efficiency of inference in large language
models (LLMs). RSD synergistically combines
a lightweight draft model with a more powerful
target model, incorporating a controlled bias to
prioritize high-reward outputs, in contrast to ex-
isting speculative decoding methods that enforce
strict unbiasedness. RSD employs a process re-
ward model to evaluate intermediate decoding
steps and dynamically decide whether to invoke
the target model, optimizing the trade-off between
computational cost and output quality. We theo-
retically demonstrate that a threshold-based mix-
ture strategy achieves an optimal balance between
resource utilization and performance. Extensive
evaluations on challenging reasoning benchmarks,
including Olympiad-level tasks, show that RSD
delivers significant efficiency gains against decod-
ing with the target model only (up to 4.4× fewer
FLOPs), while achieving significant better accu-
racy than parallel decoding method on average (up
to +3.5). These results highlight RSD as a robust
and cost-effective approach for deploying LLMs
in resource-intensive scenarios. The code is avail-
able at https://github.com/BaohaoLiao/RSD.

1. Introduction
Scaling laws are widely recognized by the machine learning
community as a foundational principle for the development
of large language models (Hestness et al., 2017; Kaplan
et al., 2020; Hoffmann et al., 2022). They emphasize that in-
creasing both model size and dataset scale leads to improved
loss reduction and, consequently, enhanced generalization
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capabilities. When data and model size are scaled to ex-
traordinary levels, performance can reach unprecedented
heights. Large models demonstrate remarkable capabilities
across diverse tasks, showcasing robust generalization and
advanced reasoning skills (Brown et al., 2020; Hurst et al.,
2024; Anthropic, 2024; Team et al., 2024).

These advancements result in high computational and eco-
nomic costs. While training is resource-intensive, inference
at scale is even costlier, requiring vast computational infras-
tructure and energy to serve billions of queries (Patterson
et al., 2021). The exponential growth in inference costs
makes it a key challenge for large model deployment, high-
lighting the need for efficient techniques (Frantar et al.,
2022; Lin et al., 2024; Xu et al., 2023; Sun et al., 2023;
Zhang et al., 2023b; Li et al., 2024a; Xu et al., 2024; Liao
& Monz, 2024) to reduce energy use and ensure scalability.

Specifically, sequential token generation in large LLMs in-
curs significantly higher computational costs compared to
smaller models. This increased latency can hinder their
deployment in real-time or high-throughput applications.
To address this issue, parallel decoding techniques, such
as speculative decoding, have emerged as effective solu-
tions (Leviathan et al., 2023). Speculative decoding operates
by leveraging a smaller, lightweight model to generate can-
didate outputs, which are then validated and refined by the
larger model. This approach significantly reduces the num-
ber of decoding tokens required by the larger model, thereby
accelerating the overall process. The smaller model serves
as a guide, proposing sequences that the larger model can
confirm or adjust, leading to faster inference without com-
promising quality. Furthermore, speculative decoding en-
sures efficiency by maintaining high-quality outputs through
careful calibration of the smaller model. By aligning the
smaller model’s predictions with the larger model’s capa-
bilities, this method minimizes discrepancies and enhances
reliability during inference.

Despite advancements in parallel decoding, speculative de-
coding remains underutilized for complex reasoning tasks,
particularly multi-step generation. A key limitation is the
strict unbiasedness requirement, which ensures the final
token distribution matches the large model’s but restricts
flexibility in exploring diverse completions (Holtzman et al.,
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Figure 1. Reward-Guided Speculative Decoding (RSD). This diagram illustrates how RSD improves upon standard speculative decoding
(SD) by incorporating reward-guided selection. SD strictly enforces exact token matching between the draft and target model, leading to
unnecessary computations when mismatched tokens are discarded. In contrast, RSD evaluates draft outputs based on reward signals r and
selectively refines them, reducing reliance on exact matching and improving efficiency. The process starts with a small and fast draft
model generating preliminary results, followed by a larger and more reliable target model verifying and refining predictions. Darker
background regions indicate higher computational costs, showing how SD wastes resources on rejected tokens, whereas RSD reduces
unnecessary steps by accepting useful draft outputs even when they do not exactly match, balancing efficiency and accuracy.

2020). While unbiasedness maintains theoretical fidelity, it
often reduces efficiency, especially when the draft model di-
verges from the large model. High-quality tokens (e.g., those
favored by a process reward) may still be rejected if their
probabilities under the large model are too low, leading to
wasted computation and negating potential speedups. This
dependence inflates overhead and limits speculative decod-
ing’s benefits, particularly in long-trajectory reasoning tasks
like math and coding. Allowing controlled bias, where the
final distribution deviates slightly from the large model, can
improve performance. If a draft token is correct but does not
match the large model’s distribution exactly, strict rejection
is counterproductive. Reward-guided acceptance retains
valuable partial solutions, reduces unnecessary queries, and
can even surpass the large model’s performance. Thus, more
adaptive approaches are needed to balance efficiency and
robustness, ensuring broader real-world applicability.

In this work, we introduce Reward-Guided Speculative De-
coding (RSD), a novel framework that balances efficiency
and accuracy by integrating computationally lightweight
“draft” evaluations with reward-driven refinements from a
more capable “target” model. Unlike traditional specula-
tive decoding, which strictly enforces unbiasedness, RSD
leverages reward signals to adaptively select high-value
draft outputs rather than discarding mismatched tokens out-
right. The process begins with the draft model generating
candidate steps, which are then evaluated using a reward
function. Steps with sufficiently high reward scores are
accepted to continue the reasoning trajectory, while lower-
scoring steps trigger speculative corrections using the target
model. As illustrated in Fig. 1, this adaptive mechanism

is robust against the distribution shifts issue between the
draft and target models while optimizing resource allocation.
By dynamically adjusting when to invoke the larger model,
RSD significantly reduces unnecessary computations while
maintaining or even surpassing the quality of traditional
inference approaches. This approach is particularly well-
suited for long-horizon reasoning tasks, where balancing
computational cost and accuracy is critical.

Contributions. We propose Reward-Guided Speculative
Decoding, a novel approach to accelerate LLM inference,
particularly for reasoning tasks. It introduces an adaptive
decoding framework that dynamically mixes outputs from
a draft and target model, guided by a reward function that
evaluates output quality at each step. This enables efficient,
high-quality reasoning by constructing a flexible mixture dis-
tribution, PRSD, balancing efficiency and accuracy through
reward-based weighting. RSD employs rejection sampling
to selectively refine draft outputs, ensuring scalability. Theo-
retically, we derive optimal weighting strategies under com-
putational constraints, maximizing efficiency without perfor-
mance drop. Extensive experiments on GSM8K, MATH500,
Olympiad Bench, GPQA, MMLU STEM, and GaoKao-
2023-En show that RSD not only improves the reasoning
accuracy up to 3.5 than SD on average, but also significantly
reduces the inference computation with up to 4.4× fewer
FLOPs, compared to using the target model alone.

2. Reward-Guided Speculative Decoding
Notations. Let all tokens be embedded in Euclidean space.
The prompt is represented as x ∈ Rl×d, and the response as
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y ∈ RL×d. The response y can be further decomposed into
a sequence of steps [y1, · · · , yn], which we denote as y1:n.

For language models, we consider the iterative process of
generating a sequence of steps y1:n given an input x and
a model m (small/draft model) or M (large/target model).
At each step i, the context zi is constructed by combining
the initial input x with the sequence of previously generated
outputs y1:i−1, such that zi = [x, y1:i−1].

Using this context, the next output yi is sampled from a con-
ditional distribution: yi ∼ Pm(yi|zi) or yi ∼ PM (yi|zi),
where Pm corresponds to a small draft model m; PM cor-
responds to a large target model M .

Our goal is to optimize the expected reward at each step
with computation constraints. For each step i, we define a
reward function r(yi|zi) = r(yi|x, y1:i−1), which evalu-
ates the quality of the generated step yi within the sequence
y1:i given prompt x. A higher reward r(yi|zi) indicates
a greater likelihood that the model output aligns with the
desired response given the x and y1:i−1.

We consider the case that the expected reward achieved by
the large model M at each step satisfies:

Eyi∼PM
[r(yi|zi)] ≥ Eyi∼Pm [r(yi|zi)] , (1)

i.e., the target model M should outperform or at least match
the draft model m in terms of the expected reward at every
step. Our analysis is based on the fact that the large model’s
predictions yield higher quality outputs, leveraging its ca-
pacity for complex reasoning and contextual understanding.

We define the distribution PRSD as a dynamic mixture of
Pm and PM , where the combination depends on the quality
of the conditional output yi|zi. Specifically, we have:

PRSD(yi|zi) = w(yi|zi)Pm(yi|zi) + v(yi|zi)PM (yi|zi),

where w(·) and v(·) are weighting functions that dynami-
cally adjust based on the quality of the output yi|zi. Unlike
Pm, we assume PM is sufficiently robust and reliable (also
costs more); therefore, we set v(yi|zi) = ν, where ν is a
constant. This ensures that PM always contributes to the
mixture and is not rejected outright, as it acts as a stable
fallback for handling low-quality outputs. In our approach,
w(yi|zi) is determined by a reward function r, such that:

w(yi|zi) = ωr(yi|zi) = ω(r(yi|zi)),

where r(yi|zi) measures the quality or preference for the
conditional output yi|zi. The function ω(·) maps r(yi|zi)
to a value in [0, 1], reflecting the confidence in Pm. For
example, r(yi|zi) could depend on factors like the accu-
racy or relevance of yi|zi, and ω(r(yi|zi)) controls how
much weight is assigned to Pm relative to PM . Because
w(yi|zi)Pm(yi|zi) is an unnormalized distribution, the con-
stant ν ensures proper normalization of the mixture.

r

Probability Density
Pm
PM
w(·)
wPm
PRSD

Figure 2. Illustration of Reward-Guided Speculative Decoding

When r(yi|zi) is large, indicating a highly preferred or
high-quality output, ω(r(yi|zi)) approaches 1. In this case,
w(yi|zi)Pm dominates the mixture, and PRSD(yi|zi) pri-
marily reflects the predictions of Pm. This shows high
confidence in the smaller model’s ability to produce reliable
results. Conversely, when r(yi|zi) is small, ω(r(yi|zi)) ap-
proaches 0. The mixture weight then shifts toward νPM ,
which allows the larger model PM to dominate. Since
PM is assumed to be sufficiently robust and reliable, it
compensates for the smaller model by effectively handling
low-quality outputs, ensuring overall performance stability.

Fig. 2 depicts the mixture distribution PRSD, which is in-
fluenced by the quality of the output yi|zi. The blue curve
represents the distribution Pm, and the green dashed curve
represents PM . The orange dotted line shows the weighting
function w(yi|zi), which adjusts the mixture between these
two distributions. In regions where yi|zi corresponds to
high-quality outputs, the weighting function w is elevated,
placing more weight on Pm to prioritize efficiency. For
low-quality outputs, w decreases, shifting the emphasis to-
ward PM and thereby penalizing low-quality samples. The
red curve represents the resulting mixture distribution PRSD,
which adapts based on the quality of the output, demon-
strating a more efficient sampling process for higher-quality
outputs and a more penalized approach for low-quality ones.
Regarding the efficiency, a large proportion of samples are
drawn from Pm, with a small part sourced from PM . Ad-
ditionally, we maximize Eyi∼PRSDr(yi|x, y1:i−1) to ensure
that the model performs effectively in reasoning tasks.

2.1. RSD Algorithm

The Reward-Guided Speculative Decoding (RSD) algorithm
operates by dynamically mixing the draft model m and
target model M at each generation step, with the objective
of balancing efficiency and quality. The algorithm leverages
the reward function r to guide this dynamic mixing, ensuring
that necessary higher-quality steps are more likely to be
generated by the target model M , while the draft model m
is used for cost-effective generation when possible. Below,
we describe the key components of the algorithm . At each
decoding step i, the algorithm follows these steps:

1. Generate Draft Step: The draft model generates a
candidate ŷi given the prompt and previous outputs.

2. Compute Reward: The reward function r(yi | zi),
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Algorithm 1 RSD: Reward-Guided Speculative Decoding
Input: Prompt x, draft model m, target model M , process
reward model r, acceptance criterion Aω , EOS token s, max
length N
Assign y1:0 ← “”
for i = 1 to N − 1 do

Generate draft step ŷi ← m(x, y1:i−1)
Compute reward ri ← r(yi|x, y1:i−1)
if Aω(ri) then

Accept the draft step yi ← ŷi
else

Generate a target step yi ←M(x, y1:i−1)
end if
if s ∈ yi then

break
end if

end for
Output: Response y1:i

where zi = [x, y1:i−1], evaluates the step’s quality.

3. Apply Acceptance Criterion: The reward ri is as-
sessed using Aω(ri). If accepted, ŷi is used; otherwise,
the target model M generates a new step.

4. Sample from Mixture Distribution: Accepted steps
come from Pm, rejected ones from PM , dynamically
balancing efficiency and accuracy.

5. Repeat Until Termination: Steps are generated until
the EOS token appears or sequence reaches length N .

Computational Efficiency. The primary advantage of the
RSD algorithm lies in its ability to combine the strengths of
both the draft and target models while minimizing the com-
putational cost. By using the draft model m for most of the
generation process, the algorithm reduces the computational
burden compared to a strategy that always uses the target
model M . The dynamic weighting function w(r) ensures
that the draft model is used when the generated steps are of
sufficient quality, thereby maximizing efficiency.

Moreover, by employing rejection sampling, the algorithm
only resorts to the more expensive target model M when
necessary, ensuring that high-reward steps are generated
while keeping the overall cost low. This balance between
cost and quality is particularly important in large-scale appli-
cations, where both efficiency and performance are critical.

Formal Description of the Algorithm. The RSD algorithm
is formally described in Algorithm 1, and the acceptance
criterion is outlined in Algorithm 2. In the following, we
present the theoretical basis for the mixture distribution used
in the algorithm. We also provide the final distribution of
the proposed algorithm in Proposition 2.1. That means the
expected reward from PRSD lies within the reward bounds
defined by ωrPm(y|z) and PM (y|z).
Proposition 2.1. Given the Algorithm 1 and 2, for each step

Algorithm 2 Acceptance Criterion Aω

Input: value r ∈ R, weighting function ω : R→ [0, 1]
Compute weighting function ω(r)
if ω(r) = 0 or 1 then
Aω(r) = ω(r)

else
Sample u ∼ U(0, 1); Aω(r) = 1(ω(r) ≥ u)

end if
Output: Aω(r)

Table 1. Variants of Weighting Function ω(r) and their definitions

Weighting Function Definition

ω(r) = p Constant p ∈ (0, 1)
ω(r) = 1(r ≥ δ) 1 if r ≥ δ, else 0

ω(r) = min(1,max(0, r)) Clipping r within [0,1]
ω(r) = max(0, r

1+r
) Sigmoidal transformation

ω(r) = 1

1+e−α(r−δ) Logistic function

y|z. Assume that ωr(y|z) = ω(r(y|z)), the

PRSD(y|z) = ωr(y|z)Pm(y|z) + νPM (y|z), (2)

where ωr(y|z) is the weighting function that adjusts the
relative contributions of the draft model Pm, and ν is the
normalizing constant ν = 1−EPmωr.

2.2. Acceptance Criterion Aω and Weighting Function

Proposition 2.2. Given the following assumptions:

• ω(r) is non-decreasing in r;

• EPM
[r(y|z)] ≥ EPm [r(y|z)];

it follows that the expected value of r(y|z) under the RSD in-
duced distribution satisfies: EPRSD [r(y|z)] ≥ EPm [r(y|z)].

The weighting function ω(·) plays a crucial role in adjusting
the mixture distribution. Several variants of the weighting
function are considered. Table 1 provides a summary of
different choices. Each of these variants provides new trade-
off between draft model and target model. Intuitively, a
binary function can maximize expected reward under a strict
sampling budget constraint, a smooth weighting might in
practice handle noisy reward model outputs more gracefully.

2.3. Optimal Weighting

In the following Proposition, we demonstrate that the opti-
mal weighting function for maximizing reward under a con-
strained sampling budget is a binary step function, which
assigns a weight of 1 only to high-reward outputs.

Proposition 2.3. Given a constrained sampling budget ν =
1− Ey∼pmωr(y|z) ≤ γ, γ ∈ (0, 1), the optimal sampling
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Figure 3. Left: A comparison of the reward scores for all questions generated by the draft model and the target model within the RSD
framework. Middle: A focused comparison of the reward scores for correctly answered questions generated by the draft model and the
target model in the RSD framework. Right: The winning rate (in terms of reward) comparison between the draft model and the target
model, highlighting the proportion of cases where each model outperforms the other. RSD is configured with Qwen2.5-Math-1.5B-Instruct
as the draft model, Qwen2.5-Math-7B-Instruct as the target model, and Skywork-o1-Open-PRM-7B as the PRM.

strategy that maximize the reward is

ωr(y|z) =

{
1 if r(y|z) ≥ δγ(z),

0 if r(y|z) < δγ(z),
(3)

where δγ(z) is the largest possible threshold that makes the
function satisfy the constraint.

Note that when a binary function is used, Algorithm 2 al-
most surely degenerates into a deterministic procedure, pro-
ducing a definite acceptance or rejection outcome. In real
implementation, δγ can be a hyper-parameter δ.

2.4. Discussion

Process Reward for Each Model. As stated in Eq. (1),
we expect the target model to have a higher reward. Fig. 3
confirms this on MATH500, showing that for correctly an-
swered questions within RSD, PM consistently outperforms
Pm in reward (Middle figure).

Comparison with the reward of PM . Since PRSD is a
mixture of ωrPm and PM , its reward is a weighted sum
of their expected rewards. Thus, PRSD can exceed PM in
expected reward when we use an aggressive w that only
assigns 1 to high-reward regions. In cases where ωrPm has
a higher expected reward than PM , PRSD also achieves a
higher reward. We also notice this phenomenon empirically.

General Weighting Function and SD. Notably, reward-
based weighting functions ωr are not the only option. An
alternative approach explicitly defines the weighting func-
tion in terms of the likelihood ratio:

w(y | z) = min

(
1, α

PM (y | z)
Pm(y | z)

)
,

where α > 0 is a hyperparameter controlling how quickly
the method transitions from the draft model to the target
model. This formulation is algorithmically similar to spec-
ulative decoding, with α as a tunable parameter and PM

serving as the alternative distribution. In standard spec-
ulative decoding, one often uses PM − Pm to propose
alternative generations, which allows unbiased final distri-
bution with α = 1. Intuitively, if a token (or reasoning
step) is significantly less likely under the large model than
under the draft model (i.e., if PM

Pm
is small), it may indi-

cate a suspicious scenario that the draft model is unable
to handle effectively. More generally, hybrid approaches
can combine both the reward function r and the ratio PM

Pm
,

for example: w(y|z) = min
(
1, β r(y|z) PM (y|z)

Pm(y|z)

)
, or by

normalizing these two quantities in a differentiable man-
ner. These ratio-based or hybrid weighting functions may
help address situations where (i) the reward model is noisily
correlated with true correctness or (ii) the small and large
model distributions diverge substantially.

Hence, the weighting function in Reward-Guided Specula-
tive Decoding can be flexibly designed to incorporate pro-
cess rewards, likelihood ratios, or any combination thereof,
as long as it meets the non-decreasing requirement in r
(when appropriate) and remains bounded within [0, 1]. This
flexibility allows RSD induced algorithm to be adapted to
different practical constraints (e.g., distribution mismatch,
reward model availability/accuracy) while still reaping the
efficiency gains of speculative decoding.

3. Empirical Results
Models. To assess the performance of RSD, we employ
both general-purpose and math-focused LLMs as our target
and draft models, specifically Qwen-2.5 (Yang et al., 2024a),
Llama-3 (Dubey et al., 2024), and Qwen-2.5-Math (Yang
et al., 2024b). Our system utilizes Skywork-o1-Open-
PRM (o1 Team, 2024) as the process reward model (PRM),
as it was the most advanced open-source PRM available
during our experiments (Zheng et al., 2024). The reward
score ranges from 0 to 1, the higher the better.
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Table 2. Accuracy on reasoning benchmarks. In general, δ = 0.7 offers a good trade-off between accuracy and efficiency for all tasks. δ∗

is the optimized threshold for each task, as different tasks have a different complexity of reasoning. Refer to §B.1 for detailed results.

Method Target Draft PRM Setting MATH500 GSM8K GaoKao Olympiad GPQA MMLU Avg.Model Model 2023 En Bench Diamond STEM

Math Model, Target and Draft: Qwen2.5-Math-Instruct, PRM: Skywork- o1-Open-PRM

Single Model 7B - - - 83.2 95.7 66.8 41.2 32.8 71.8 65.3

Majority Voting - 1.5B - maj@16 79.0 88.9 69.9 45.5 27.3 65.9 62.3 (-3.0)
Best-of-N - 1.5B 7B N = 16 82.2 93.3 69.4 44.9 27.3 71.4 64.8 (-0.5)
SD 7B 1.5B - - 83.4 95.6 67.3 40.6 28.8 72.0 64.6 (-0.7)
RSD 7B 1.5B 1.5B δ = 0.7 82.6 94.5 68.8 39.6 38.4 71.4 65.9 (+0.6)
RSD 7B 1.5B 7B δ = 0.7 84.6 95.5 68.3 42.1 33.8 72.3 66.1 (+0.8)
RSD 7B 1.5B 1.5B δ∗ 82.6 95.5 68.8 40.6 38.4 71.7 66.3 (+1.0)
RSD 7B 1.5B 7B δ∗ 84.6 95.8 68.3 43.6 34.3 72.6 66.5 (+1.2)

Single Model 72B - - - 85.6 95.8 73.0 48.4 42.4 85.8 71.8

Majority Voting - 1.5B - maj@64 80.2 89.8 71.2 45.9 30.8 66.1 64.0 (-7.8)
Best-of-N - 1.5B 7B N = 64 82.4 94.5 68.6 44.3 27.8 72.4 65.0 (-6.8)
Majority Voting - 7B - maj@64 88.0 96.5 73.8 47.6 35.9 77.2 69.8 (-2.0)
Best-of-N - 7B 7B N = 64 86.2 97.2 71.4 44.4 36.4 75.4 68.5 (-3.3)
SD 72B 7B - - 84.8 95.8 71.7 47.6 41.4 85.3 71.1 (-0.7)
RSD 72B 7B 1.5B δ = 0.7 86.4 96.4 73.0 49.8 42.9 84.7 72.2 (+0.4)
RSD 72B 7B 7B δ = 0.7 88.0 96.7 74.0 49.9 42.9 84.4 72.7 (+0.9)
RSD 72B 7B 1.5B δ∗ 86.6 97.0 73.2 49.8 43.9 85.2 72.6 (+0.8)
RSD 72B 7B 7B δ∗ 88.0 96.9 74.0 49.9 42.9 85.6 72.9 (+1.1)

General Model, Target and Draft: Qwen2.5-Instruct, PRM: Skywork- o1-Open-PRM

Single Model 7B - - - 77.4 92.0 64.9 38.8 28.8 57.4 59.9

Majority Voting - 1.5B - maj@16 66.4 82.1 56.9 28.7 27.3 67.2 54.8 (-5.1)
Best-of-N - 1.5B 7B N = 16 73.4 89.7 60.5 32.7 23.7 69.4 58.2 (-1.7)
SD 7B 1.5B - - 77.8 91.8 63.1 39.1 26.3 56.2 59.1 (-0.8)
RSD 7B 1.5B 1.5B δ = 0.7 73.6 90.8 64.2 39.0 31.3 71.6 61.8 (+1.9)
RSD 7B 1.5B 7B δ = 0.7 75.0 93.3 66.2 39.9 20.2 61.8 59.4 (-0.5)
RSD 7B 1.5B 1.5B δ∗ 74.8 92.3 65.2 40.0 31.3 71.7 62.6 (+2.7)
RSD 7B 1.5B 7B δ∗ 75.8 93.3 66.2 40.9 29.8 66.3 62.1 (+2.2)

General Model, Target and Draft: Llama-3.1-Instruct, PRM: Skywork- o1-Open-PRM

Single Model 8B - - - 49.4 83.9 41.3 14.5 20.2 39.1 41.4

Majority Voting - 1B - maj@16 38.0 60.2 32.2 9.5 19.7 24.9 30.8 (-10.6)
Best-of-N - 1B 7B N = 16 52.6 74.8 45.7 14.4 14.1 31.0 38.8 (-2.6)
SD 8B 1B - - 47.0 83.4 42.1 16.6 19.2 38.5 41.1 (-0.3)
RSD 8B 1B 1.5B δ = 0.7 50.0 83.9 41.8 15.7 20.2 37.2 41.5 (+0.1)
RSD 8B 1B 7B δ = 0.7 50.4 85.4 41.8 18.1 19.7 36.2 41.9 (+0.5)
RSD 8B 1B 1.5B δ∗ 50.0 84.1 43.4 18.1 20.2 38.8 42.4 (+1.0)
RSD 8B 1B 7B δ∗ 50.6 85.5 42.6 18.1 19.7 38.7 42.5 (+1.1)

Datasets. We evaluate our method on a diverse set
of reasoning tasks, including GSM8K (Cobbe et al.,
2021b), MATH500 (Hendrycks et al., 2021), MMLU
STEM (Hendrycks et al., 2020), OlympiadBench (He et al.,
2024), GaoKao-2023-En (Liao et al., 2024), GPQA (Rein
et al., 2023), and Minerva Math (Lewkowycz et al., 2022).

Baselines. We consider three categories of baselines: (1)
Target model only: This baseline uses the target model
independently, requiring more cost than RSD. (2) Draft
model with or without PRM: This category includes pop-
ular test-time scaling methods that achieve the best possi-
ble performance using the draft model. Specifically, we
consider majority voting, Best-of-N (BoN) (Brown et al.,
2024; Cobbe et al., 2021a) that selects the highest-scoring
response (last step) among N candidates based on a PRM,
beam search (Chen et al., 2024a) that leverages a PRM to
choose the optimal decoding path, process Best-of-N that
samples N candidate steps and selects the one with the high-

est reward. For majotity voting and Best-of-N , we prefer a
large number of samplings (more cost than the target model
only) to show their converged performance. (3) Speculative
decoding (SD): We also include speculative decoding with
a number of speculative tokens as 7, a method designed to
accelerate inference (Leviathan et al., 2023).

Default Setting. All experiments were conducted on
NVIDIA A100 GPUs, using vLLM (Kwon et al., 2023) as
the backend. We use temperature = 0.7 and top p
= 0.8 for majority voting, (process) Best-of-N and beam
search, while setting temperature = 0 and top p =
1 for the remaining methods. For process Best-of-N , beam
search and RSD, we define a generation ended with \n\n
as a reasoning step, and then apply a PRM to rate this step.
We employ the binary step function (the second option in
Table 1) as the weighting function and set δ = 0.7. For
brevity, RSD (7B/72B/7B) denotes RSD with a 7B draft
model, a 72B target model and a 7B PRM. SD (7B/72B)
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Table 3. Comparison with search-based methods. Beam Search
and Process Best-of-N use a 1.5B base model and a 1.5B PRM.

Method Setting MATH GSM8K Minerva
500 Math

Single Model (1.5B) - 73.8 85.0 29.0
Process Best-of-N N = 8 75.8 87.8 32.7
Process Best-of-N N = 16 76.0 87.9 31.2
Beam Search beam size = 4 78.2 88.9 33.5
Beam Search beam size = 8 78.2 88.4 32.4
RSD (1.5B/7B/1.5B) δ=0.7 82.6 94.5 34.6

deotes SD with a 7B draft model and a 72B target model.
BoN (1.5B/1.5B) denotes BoN with a 1.5B base model and
a 1.5B PRM. Without explicitly mentioning, models chosen
from the Qwen-2.5-Math-Instruct family are used.

3.1. Reasoning Benchmarks

We evaluate RSD across a diverse set of reasoning bench-
marks, as summarized in Table 2, and observe: (1) Test-time
scaling methods like majority voting and Best-of-N , which
rely on extensive sampling with a draft model, consistently
underperform a single target model on average. This finding
highlights the importance of a larger model for reasoning
tasks, as its performance cannot be easily matched by a
smaller model with increased computation. (2) While SD
is theoretically unbiased, guaranteeing accuracy equal to
the target model, it often underperforms in practice. This
discrepancy, as also noted by Chen et al. (2023a), arises due
to floating-point errors. Moreover, in cases where a draft
model outperforms the target model (e.g., Table B.1 and
domain-specialized draft models), SD’s strict unbiasedness
leads to worse performance compared to the draft model.
Thus, the decision to use SD must account for such scenar-
ios. In contrast, RSD mitigates this concern by leveraging a
PRM, which evaluates the quality of reasoning steps from
the draft model. (3) Among all evaluated methods, RSD
consistently outperforms the single target model on average
when using an optimized δ. Even with a fixed δ = 0.7, RSD
achieves better results in 7 out of 8 settings. Notably, on the
challenging GPQA benchmark, RSD (1.5B/7B/1.5B) sig-
nificantly surpasses the single target model (38.4 vs. 32.8),
demonstrating the effectiveness of this efficient approach.

Additionally, a larger PRM (7B) slightly enhances perfor-
mance compared to a smaller PRM (1.5B), especially on
complex datasets like GPQA and MATH500, where the
increased reasoning capacity of a larger PRM proves benefi-
cial. Results with general models, such as Qwen2.5-Instruct
and Llama-3.1-Instruct, are even improved more, validating
RSD’s robustness and generalizability.

3.2. Comparison with Search-Based Methods

We also compare our method with beam search (Chen et al.,
2024a) and process Best-of-N in Table 3. RSD significantly
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Figure 4. Flops vs. accuracy on MATH500.

outperforms both search-based methods over all three bench-
marks. These results highlight a critical insight: for certain
complex or “hard” reasoning steps, search-based methods
struggle to find optimal solutions due to the combinatorial
explosion of potential candidates, leading to suboptimal
performance. On the other hand, our approach leverages a
larger model’s capacity to generate plausible solutions more
directly, bypassing the need for exhaustive search. By utiliz-
ing the PRM as a feedback mechanism, RSD benefits from
step-wise guidance, which helps mitigate the challenges
of reasoning in high-complexity tasks. This suggests that,
rather than relying on a purely search-based strategy, incor-
porating larger models and targeted feedback mechanisms
can lead to more efficient and effective reasoning, especially
in cases where the search space is vast or the reasoning steps
are particularly intricate.

3.3. Computation Analysis

To evaluate the computational efficiency of our method, we
compare RSD with speculative decoding and Best-of-N on
MATH500. Following (Kang et al., 2024; Sardana et al.,
2023), we adopt the standard approximation of FLOPs for
transformers with N parameters, i.e. 2N per inference to-
ken. Note that the inference cost for PRMs is also included
in the calculations. As shown in Fig. 4, RSD (1.5B/7B/7B)
outperforms both SD (1.5B/7B) and Target (7B), achieving
an accuracy improvement of 1.2 and 1.4, respectively, while
using fewer FLOPs. Moreover, RSD (7B/72B/7B) achieves
a notable accuracy of 88.0 on MATH500, compared to 85.6
for Target (72B), with nearly 4.4× fewer FLOPs. When
compared to BoN (7B/7B,N=64), RSD (7B/72B/7B) de-
livers 1.8 points higher accuracy at a significantly lower
computational cost. These results clearly demonstrate both
efficiency and effectiveness of RSD.

3.4. Ablation Studies

Threshold δ. Fig. 5 illustrates the relationship between
the threshold δ, accuracy, and the proportion of questions
solved solely by the draft model within RSD. As δ increases,
accuracy improves, peaking at δ = 0.7, before experiencing
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Figure 5. The impact of threshold δ with RSD (1.5B/7B/7B).

a slight decline. Notably, the accuracy remains consistently
higher than that of using only the target model (δ = 1.0)
once δ surpasses 0.6. A higher δ corresponds to a stricter
rejection of reasoning steps generated by the draft model.
However, even at δ = 0.7, the draft model alone can still
solve 48% of questions, as the rewards for its reasoning steps
on these questions are sufficiently high. This eliminates
the need for the target model to engage with these 48%
of questions, distinguishing RSD from SD, which always
involves both the draft and target models for every question.

This adaptability makes RSD an effective method for au-
tomatic compute allocation, allocating less compute (draft
model only) to simpler questions and more compute (both
draft and target models) to more challenging ones. For a
more detailed discussion of the automatic compute alloca-
tion for questions in different levels, refer to §B.2. Addition-
ally, δ serves as a critical role in balancing the computational
efficiency of the draft model with the precision of the target
model, ultimately optimizing overall performance.

Weighting Function. In Table 1, we present several can-
didate weighting functions. Here we evaluate their perfor-
mance under comparable inference costs, as shown in Fig. 6.
First, all candidates outperform the draft model alone, un-
derscoring the critical role of incorporating a larger model
within the reasoning loop. Second, the constant weighting
function, which does not utilize rewards, performs the worst,
emphasizing the significance of PRM feedback. Lastly, the
binary step function achieves the best performance, even sur-
passing the single target model. Additionally, it introduces
δ as a hyperparameter, allowing for flexible control over
inference costs to accommodate varying budget constraints.
Thus, we use the binary step function in this paper, and
leave the exploration of other rejection schemes to future.

4. Discussion
PRM Overheads and Model Merge. In MATH500, the
average number of reasoning steps per question is 18, sug-
gesting that the PRM is invoked 18 times per question, akin
to generating 18 tokens. Furthermore, even a tiny PRM
(1.5B) outperforms the single target model in RSD accuracy
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Figure 6. Accuracy of weighting functions from Table 1 with RSD
(1.5B/7B/7B). All settings share a similar inference cost.

Table 4. Accuracy of model merge. ∗ denotes that we merge these
two models. Refer to §B.3 for detailed setting and number.

Method Target Draft PRM Setting Avg. Accuracy

Single Model 7B - - - 65.3

SD 7B 1.5B - - 64.6 (-0.7)
RSD 7B 1.5B 1.5B δ = 0.7 65.9 (+0.6)
RSD 7B 1.5B 7B δ = 0.7 66.1 (+0.8)
RSD 7B 1.5B∗ 1.5B∗ δ = 0.7 65.0 (-0.3)
RSD 7B∗ 1.5B 7B∗ δ = 0.7 66.7 (+1.4)

(see Table 2). Therefore, adding an additional PRM for RSD
incurs minimal overhead compared to SD.

Here, we further investigate the possibility of merging mod-
els to enhance the usability of RSD by reducing the number
of served models. As shown in Table 4, merging models
does not necessarily degrade performance and remains supe-
rior to SD. Interestingly, merging larger models even results
in performance improvements, consistent with observations
reported by Yadav et al. (2024).

Robustness to PRMs. To investigate RSD’s robustness to
the choice of PRM, we include two more strong PRMs, i.e.
Qwen2.5-Math-PRM-7B and 72B (Zhang et al., 2025) in
Table 5. RSD equipped with different PRMs consistently
outperforms SD, with more gains from a larger PRM.

General-Domain Task. An important component of RSD is
PRM. To the best of our knowledge, there is not yet a PRM
for general-domain generation. However, there are many
outcome reward models (ORMs) for open-ended generation.
Could we use an ORM instead of PRM in RSD?

Here, we utilize Llama-3.2-1B-Instruct (Grattafiori et al.,
2024) as the draft model, Llama-3.1-8B-Instruct as the tar-
get model, and Skywork-Reward-Llama-3.1-8B-v0.2 (Liu
et al., 2024) as the ORM. The 805 prompts from AlpacaE-
val (Dubois et al., 2023) are used for the generation. And the
model outputs are evaluated with AlpacaEval2.0 (Li et al.,
2023) against the outputs from gpt4 turbo. Similar to the
setting for PRM, we define a generation ended with \n\n as
a reasoning step, and apply the ORM to score this step. The
score of Skywork-Reward-Llama-3.1-8B-v0.2 ranges from
−∞ to ∞. We didn’t extensively tune the reward threshold,
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Table 5. Accuracy on reasoning benchmarks with different PRMs. RSD is robust to the choice of PRM. δ = 0.7 works well universally.

Method PRM Setting MATH500 GSM8K GaoKao Olympiad GPQA MMLU Avg.2023 En Bench Diamond STEM

Draft: Qwen2.5-Math-Instruct-1.5B, Target: Qwen2.5-Math-Instruct-7B

Single Target Model - - 83.2 95.7 66.8 41.2 32.8 71.8 65.3

SD - - 83.4 95.6 67.3 40.6 28.8 72.0 64.6 (-0.7)
RSD Skywork-o1-Open-PRM-1.5B δ = 0.7 82.6 94.5 68.8 39.6 38.4 71.4 65.9 (+0.6)
RSD Skywork-o1-Open-PRM-7B δ = 0.7 84.6 95.5 68.3 42.1 33.8 72.3 66.1 (+0.8)
RSD Qwen2.5-Math-PRM-7B δ = 0.7 83.2 95.5 67.3 41.3 35.3 72.5 65.9 (+0.6)
RSD Qwen2.5-Math-PRM-72B δ = 0.7 84.0 95.7 68.1 42.0 33.3 75.6 66.5 (+1.2)

Table 6. Results on a general-domain benchmark, AlpacaEval. The
PRM used here is an outcome reward model, Skywork-Reward-
Llama-3.1-8B-v0.2.

Method Win Rate (%)

Draft Model only (Llama-3.2-1B-Instruct) 7.09
Target Model only (Llama-3.1-8B-Instruct) 24.47
RSD 18.85

and empirically chose δ = 0.

As shown in the In Table 6, even with an ORM instead of
a PRM, RSD achieves a significantly better win rate than
the draft model, showing RSD’s robustness across different
tasks. Among all generated tokens, 65% tokens are gener-
ated by the draft model only without any intervention of the
target model. We believe that a general-domain PRM and
dedicated tuning of δ could further boost the performance.

Combine RSD with SD. RSD is not inherently opposed
to SD; in fact, they can be seamlessly combined to en-
hance efficiency. For instance, during a rejected step, SD
(draft+target) can be utilized to regenerate the step. This ap-
proach allows for further optimization of RSD’s efficiency
without incurring additional costs.

Specialized PRM. In our experiments, we rely on an open-
source general PRM. However, training or fine-tuning a
specialized PRM that is closely aligned with the draft model
could further enhance performance. Such a PRM would bet-
ter recognize high-quality reasoning steps generated by the
draft model, thereby increasing the acceptance rate. Future
work could explore specialized PRM training or fine-tuning.

5. Related Work
Speculative Decoding. Speculative decoding (Stern et al.,
2018; Leviathan et al., 2023; Xia et al., 2024; Chen et al.,
2023a; Zhang et al., 2023a; Sun et al., 2024a; Chen et al.,
2023b; Li et al., 2024b) achieves lossless acceleration by
employing a draft model to predict subsequent tokens and
verify them in parallel. Tree-based speculation (Miao et al.,
2024; Fu et al., 2024; Sun et al., 2024b; Chen et al., 2024b)
extends this approach by generating multiple candidates
to increase the acceptance rate. Self-speculative decod-

ing (Elhoushi et al., 2024; Zhang et al., 2023a) leverages
parts of the large language model (LLM) parameters as
the draft model while using the original base model as the
verifier. Parallel decoding (Stern et al., 2018; Cai et al.,
2024) further enhances efficiency by introducing draft mod-
els to streamline the process. Unlike previous speculative
decoding methods, our approach utilizes process rewards to
perform stepwise speculative reasoning.

Reward Models on Reasoning. Reward models play a
crucial role in selecting correct reasoning trajectories dur-
ing training (Chen et al., 2024a; Wang et al., 2024; Zhou
et al., 2025) and inference (Brown et al., 2024). Outcome
Reward Models (ORMs) (Yu et al., 2023; Dong et al., 2024)
are trained exclusively on the model’s final output, whereas
process reward models (PRMs) (Lightman et al., 2023) rely
on step-level annotations, providing dense and granular
reward signals at each reasoning step. Scaling test-time
compute (Snell et al., 2024; OpenAI, 2024) has gained sig-
nificant traction with the advancement of reward models.
Techniques like Best-of-N (Brown et al., 2024; Cobbe et al.,
2021a; Dong et al., 2023) leverage ORMs to select the sam-
ple with the highest reward from N candidates. Building
on this, tree search methods have been introduced, enabling
per-step predictions rather than relying solely on the final
answer (Chen et al., 2024a; Qi et al., 2024; Yao et al., 2024).
These methods are enhanced by process feedback, such as
process reward models (PRMs). We propose a novel appli-
cation of PRMs to accelerate reasoning during inference.

6. Conclusion.
We propose Reward-Guided Speculative Decoding (RSD),
a novel framework that enhances LLM inference efficiency,
particularly for reasoning-intensive tasks. RSD dynamically
combines a lightweight draft model with a more capable tar-
get model, using a reward function to guide output selection
at each step. This approach balances computational cost
and quality by selectively refining outputs based on process
rewards. RSD achieves significant efficiency gains over
SD and BoN while maintaining accuracy benchmarks. Ex-
tensive evaluations across reasoning tasks highlight RSD’s
robustness, adaptability, and effectiveness, making it a prac-
tical solution for LLM deployment.
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A. Proof
A.1. Proof of Proposition 2.1

Proof. For simplicity, we assume that ỹ = y|z.

The final distribution PRSD(ỹ) combines contributions from two sampling paths:

• Accepted samples from Pm.

• Fallback samples from PM after rejection.

According to Law of Total Probability,

PRSD(ỹ) = P(accept ỹ from Pm)︸ ︷︷ ︸
Term 1

+P(reject Pm and draw ỹ from PM )︸ ︷︷ ︸
Term 2

.

For accepted samples from Pm, the acceptance probability for ỹ ∼ Pm is ω(r(ỹ)):

Term 1 = Pm(y) · ω(r(ỹ)).

For samples from PM , the rejection probability from Pm is ν, where:

ν = 1−Eỹ∼Pm
[ω(r(ỹ))]

After rejection, ỹ is drawn from PM :
Term 2 = ν · PM (y).

By combining two terms
PRSD(ỹ) = Pm(y)ω(r(ỹ)) + νPM (ỹ),

where ν +Eỹ∼Pm
[ω(r(ỹ))] = 1.

A.2. Proof of Proposition 2.2

Proof. We aim to prove that under the conditions:

1. ω(r) is non-decreasing in r,

2. EPM
[r(y|z)] ≥ EPm

[r(y|z)],

the expectation of r(y|z) under PRSD satisfies:

EPRSD
[r(y|z)] ≥ EPm

[r(y|z)].

By definition:

EPRSD
[r(y|z)] =

∫
(ω(r(y|z))Pm(y|z) + νPM (y|z)) r(y|z)dy

where ν = 1−EPm
[ω(r(y|z))]. Substituting ν:

EPRSD
[r(y|z)] = EPm

[ω(r(y|z))r(y|z)]︸ ︷︷ ︸
Term 1

+(1−EPm
[ω(r(y|z))])EPM

[r(y|z)]︸ ︷︷ ︸
Term 2

.

The condition of EPRSD [r(y|z)]−EPm [r(y|z)] ≥ 0 can be rewritten as

EPm [ω(r)r] + (1−EPm [ω(r)])EPM
[r]−EPm [r] ≥ 0.
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Note that:
EPm [ω(r)r] = CovPm(ω(r), r) +EPm [ω(r)] ·EPm [r].

Substitute this into the inequality:

CovPm
(ω(r), r) +EPm

[ω(r)]EPm
[r] + (1−EPm

[ω(r)])EPM
[r]−EPm

[r] ≥ 0.

Simplify the terms involving EPm
[r]:

CovPm
(ω(r), r) + (1−EPm

[ω(r)]) (EPM
[r]−EPm

[r]) ≥ 0.

1. Covariance Term (CovPm
(ω(r), r)): Since ω(r) is non-decreasing in r, higher values of r correspond to higher

values of ω(r). This implies CovPm
(ω(r), r) ≥ 0.

2. Expectation Difference Term ((1−EPm
[ω(r)]) (EPM

[r]−EPm
[r])):

• 1−EPm
[ω(r)] = ν ≥ 0 (since ν is a normalizing constant for a valid probability distribution).

• By the second condition, EPM
[r]−EPm [r] ≥ 0.

Thus, this term is non-negative.

Both terms in the inequality:

CovPm
(ω(r), r) ≥ 0 and (1−EPm

[ω(r)]) (EPM
[r]−EPm

[r]) ≥ 0

are non-negative under the given conditions. Therefore:

EPRSD
[r(y|z)] ≥ EPm

[r(y|z)].

The conditions ω(r) is non-decreasing in r and EPM
[r(y|z)] ≥ EPm

[r(y|z)] are sufficient to guarantee EPRSD
[r(y|z)] ≥

EPm
[r(y|z)].

A.3. Proof of Proposition 2.3

Proof. For simplicity, we assume that ỹ = y|z. Our optimization problem is

L(ωr) = Eỹ∼Pm
ωr(ỹ)r(ỹ) +Eỹ∼PM

νr(ỹ)

subject to the inequality constraint:

ν = 1−Eỹ∼Pm
[ωr(ỹ)] ≤ γ, 0 ≤ ω(ỹ) ≤ 1.

Equivalently,
L(ωr) = EPm

[ωr(ỹ) r(ỹ)] +
(
1−EPM

[ωr(ỹ)]
)
EPM

[r(ỹ)]

The Lagrangian1 is given by

L(ωr, λ) =

∫ [
(Pm(ỹ)r(ỹ))ωr(ỹ) + (PM (ỹ)r(ỹ))(1−Eỹ[ωr(ỹ)])

]
dỹ + λ

[
(1− γ)−

∫
Pm(ỹ)ωr(ỹ)dỹ

]
.

The Lagrangian derivative yields:
∂L

∂ωr(ỹ)
= Pm(ỹ) [r(ỹ)− (λ+R)] ,

where R = Eỹ∼PM
r(ỹ).

Setting this to zero gives the threshold rule: the optimal ω∗
r (ỹ) is:

ω∗
r (ỹ) =

{
1, if r(ỹ)− (λ+R) ≥ 0,

0, if r(ỹ)− (λ+R) < 0.

KKT Conditions.
1Here, the integral can also be defined for a counting measure space, allowing it to be applied to the discrete case.

15



Reward-Guided Speculative Decoding for Efficient LLM Reasoning

• Primal feasibility: Eỹ∼Pm
[ωr(ỹ)] ≥ 1− γ.

• Dual feasibility: λ ≥ 0.

• Stationarity: The first-order condition holds.

• Complementary slackness: λ
(
(1− γ)−

∫
Pm(ỹ)ωr(ỹ)dỹ

)
= 0.

Conclusion.

• If Eỹ∼Pm
[ω∗

r (ỹ)] = 1− γ, then λ ≥ 0 and the solution is tight, as in the equality case.

• If Eỹ∼Pm [ω∗
r (ỹ)] > 1− γ, then λ = 0, and the constraint is satisfied with slack.

• The solution is a threshold-based function on r(ỹ), where ω∗
r (ỹ) = 1 for larger r(ỹ) and ω∗

r (ỹ) = 0 for smaller r(ỹ),
adjusted to ensure that the constraint Eỹ∼Pm

[ω∗
r (ỹ)] ≥ 1− γ is satisfied.

Thus, The optimal sampling strategy involves “using Pm” (i.e., ωr(ỹ) = 1) for the higher values of r(ỹ) and “using PM” (i.e.,
ωr(ỹ) = 0) for the lower values of r(ỹ). The threshold t on r(ỹ) is selected such that the constraint Eỹ∼Pm [ωr(ỹ)] ≥ 1− γ
is met.

Threshold-based strategy: ω∗
r (ỹ) = 1{r(ỹ)≤t}, where t is chosen to satisfy the constraint Eỹ∼Pm [ωr(ỹ)] ≥ 1− γ.

B. Additional Empirical Results

Table B.1. Accuracy on CN Middle School 24 (Yang et al., 2024b) and College Math (Tang et al., 2024). Due to SD’s strict unbiasedness,
it achieves worse accuracy than the draft model if the draft model outperforms the target model, while RSD doesn’t have this issue.

Method Target Draft PRM Setting CN Middle School 24 College Math

Single Model - 1.5B - - 75.2 48.0
Single Model 7B - - - 72.3 46.8
SD 7B 1.5B - - 73.3 46.9
RSD 7B 1.5B 7B δ = 0.7 78.2 48.2

B.1. Tuning of δ

RSD employs a threshold, δ, to decide whether to accept a reasoning step generated by the draft model. If the reward
score of a reasoning step exceeds δ, it is accepted. However, reasoning tasks vary in complexity, leading to diverse reward
distributions. Using a fixed δ may not yield optimal accuracy across different tasks.

The results for varying δ values are presented in Table B.2. Overall, δ = 0.7 emerges as a reliable choice across various
settings. Slight adjustments within the range [0.6, 0.7, 0.8, 0.9] can further improve performance.

B.2. Different Reasoning Complexity

Thanks to the human annotated complexity levels in MATH500 (5 levels, the higher the harder), here we investigate how
RSD works for questions in different complexity. As shown in Fig. B.1, the involvement of the target model (δ ̸= 0)
consistently improves the accuracy compared with the draft model only (δ = 0). The improvement varies for different levels,
at most +4.7 for level 1, +5.6 for level 2, +6.7 for level 3, +16.4 for level 4 and +15.7 for level 5, showing the importance of
the target model for harder questions.

For the same δ, one can also observe that the proportion of questions solved by the draft model alone decreases with an
increasing level. For example at δ = 0.7, draft model alone solves 84% questions in level 1, 67% questions in level 2,
58% questions in level 3, 44% questions in level 4 and 19% questions in level 5. It shows that harder questions need more
involvement of the target model. In this way, RSD can be considered as a method for automatic compute allocation, less
compute for easy questions and more compute for hard questions, which is different from SD that always needs both target
and draft models for every question.
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Table B.2. Accuracy with different δs. Overall, δ = 0.7 works well for different models and tasks. However, since the complexity of
different tasks varies, a slight tuning of δ offers better accuracy.

Method Target Draft PRM Setting MATH500 GSM8K GaoKao Olympiad GPQA MMLU Avg.Model Model 2023 En Bench Diamond STEM

Math Model, Target and Draft: Qwen2.5-Math-Instruct, PRM: Skywork- o1-Open-PRM

RSD 7B 1.5B 1.5B δ = 0.6 80.4 93.3 67.8 40.6 32.3 69.1 63.9
RSD 7B 1.5B 1.5B δ = 0.7 82.6 94.5 68.8 39.6 38.4 71.4 65.9
RSD 7B 1.5B 1.5B δ = 0.8 82.6 95.3 68.1 39.4 37.4 71.7 65.8
RSD 7B 1.5B 1.5B δ = 0.9 81.2 95.5 68.3 39.4 32.3 71.6 64.7

RSD 7B 1.5B 7B δ = 0.6 83.6 95.4 68.3 43.6 30.3 71.6 65.5
RSD 7B 1.5B 7B δ = 0.7 84.6 95.5 68.3 42.1 33.8 72.3 66.1
RSD 7B 1.5B 7B δ = 0.8 83.6 95.8 67.8 40.9 34.3 72.6 65.8
RSD 7B 1.5B 7B δ = 0.9 83.4 95.7 68.1 40.1 32.8 72.5 65.4

RSD 72B 1.5B 1.5B δ = 0.6 83.0 93.5 71.9 48.4 36.9 78.1 68.6
RSD 72B 1.5B 1.5B δ = 0.7 83.6 94.7 72.7 47.7 40.4 82.5 70.3
RSD 72B 1.5B 1.5B δ = 0.8 86.6 95.6 71.4 48.0 40.9 85.1 71.3
RSD 72B 1.5B 1.5B δ = 0.9 85.4 95.6 72.2 47.7 44.4 85.5 71.8

RSD 72B 1.5B 7B δ = 0.6 85.8 96.0 72.5 49.0 41.9 82.5 71.3
RSD 72B 1.5B 7B δ = 0.7 86.8 96.3 72.7 49.0 41.9 84.6 71.9
RSD 72B 1.5B 7B δ = 0.8 87.4 96.3 73.0 48.3 40.9 85.4 71.9
RSD 72B 1.5B 7B δ = 0.9 86.2 96.0 72.7 48.9 41.4 85.6 71.8

RSD 72B 7B 1.5B δ = 0.6 85.0 97.0 72.2 48.4 43.9 82.2 71.5
RSD 72B 7B 1.5B δ = 0.7 86.4 96.4 73.0 49.8 42.9 84.7 72.2
RSD 72B 7B 1.5B δ = 0.8 86.6 96.6 73.2 48.7 43.9 85.2 72.4
RSD 72B 7B 1.5B δ = 0.9 86.4 95.7 71.4 48.1 41.4 85.1 71.4

RSD 72B 7B 7B δ = 0.6 88.0 96.6 72.5 49.6 40.4 82.5 71.6
RSD 72B 7B 7B δ = 0.7 88.0 96.7 74.0 49.9 42.9 84.4 72.7
RSD 72B 7B 7B δ = 0.8 87.4 96.9 73.5 48.3 41.9 85.6 72.3
RSD 72B 7B 7B δ = 0.9 86.0 96.2 73.5 48.3 42.4 85.4 72.0

General Model, Target and Draft: Qwen2.5-Instruct, PRM: Skywork- o1-Open-PRM

RSD 7B 1.5B 1.5B δ = 0.6 72.8 89.7 63.6 38.5 22.2 71.7 59.8
RSD 7B 1.5B 1.5B δ = 0.7 73.6 90.8 64.2 39.0 31.3 71.6 61.8
RSD 7B 1.5B 1.5B δ = 0.8 74.8 91.6 64.4 38.8 23.7 67.1 60.1
RSD 7B 1.5B 1.5B δ = 0.9 74.6 92.3 65.2 40.0 28.3 59.3 60.0

RSD 7B 1.5B 7B δ = 0.6 75.4 92.6 64.9 37.3 29.8 66.3 61.1
RSD 7B 1.5B 7B δ = 0.7 75.0 93.3 66.2 39.9 20.2 61.8 59.4
RSD 7B 1.5B 7B δ = 0.8 74.2 92.4 62.9 40.6 21.7 58.2 58.3
RSD 7B 1.5B 7B δ = 0.9 75.8 92.1 65.2 40.9 26.8 56.1 59.5

General Model, Target and Draft: Llama-3.1-Instruct, PRM: Skywork- o1-Open-PRM

RSD 8B 1B 1.5B δ = 0.6 49.0 82.6 40.8 18.1 19.2 34.5 40.7
RSD 8B 1B 1.5B δ = 0.7 50.0 83.9 41.8 15.7 20.2 37.2 41.5
RSD 8B 1B 1.5B δ = 0.8 48.6 84.1 41.8 16.3 18.7 38.8 41.4
RSD 8B 1B 1.5B δ = 0.9 50.0 84.0 43.4 15.3 17.7 38.6 41.5

RSD 8B 1B 7B δ = 0.6 50.4 85.5 42.6 16.9 18.2 34.9 41.4
RSD 8B 1B 7B δ = 0.7 50.4 85.4 41.8 18.1 19.7 36.2 41.9
RSD 8B 1B 7B δ = 0.8 50.6 84.2 41.3 16.4 18.2 37.9 41.4
RSD 8B 1B 7B δ = 0.9 50.0 83.5 42.3 16.1 18.2 38.7 41.5

Table B.3. Accuracy of model merge. ∗ denotes that we merge these two models.

Method Target Draft PRM Setting MATH500 GSM8K GaoKao Olympiad GPQA MMLU Avg.Model Model 2023 En Bench Diamond STEM

Math Model, Target and Draft: Qwen2.5-Math-Instruct, PRM: Skywork- o1-Open-PRM

Single Model 7B - - - 83.2 95.7 66.8 41.2 32.8 71.8 65.3

SD 7B 1.5B - - 83.4 95.6 67.3 40.6 28.8 72.0 64.6 (-0.7)
RSD 7B 1.5B 1.5B δ = 0.7 82.6 94.5 68.8 39.6 38.4 71.4 65.9 (+0.6)
RSD 7B 1.5B 7B δ = 0.7 84.6 95.5 68.3 42.1 33.8 72.3 66.1 (+0.8)
RSD 7B 1.5B∗ 1.5B∗ δ = 0.7 83.4 95.1 67.3 39.3 33.3 71.6 65.0 (-0.3)
RSD 7B∗ 1.5B 7B∗ δ = 0.7 84.0 95.6 69.4 43.0 35.4 72.6 66.7 (+1.4)

B.3. Model Merge

To reduce the number of models required for facilitating RSD’s usage, we consider merging either the target model with
the PRM or the draft model with the PRM. Here, we focus on the simplest merging strategy—linear merging—using
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Figure B.1. The behaviour of RSD (1.5B/7B/7B) for different δs and questions in different complexity levels (the higher the level, the
harder the question.). δ = 0 and δ = 1 denotes all questions are solved by the draft model alone and the target model only, respectively.
Overall, the involvement of the target model improves the accuracy. The improvement is more obvious for harder question, +16 for level 4
and 5. In addition, with an increasing level, the questions solved by the draft model only decrease for the same δ, demonstrating harder
questions need more involvement of the target model.

MergeKit (Goddard et al., 2024), leaving the exploration of more advanced merging methods for future work.

The PRM and the policy model have different architectures. Specifically, the PRM includes a projection layer atop the
final transformer layer (Vaswani et al., 2017), which projects the hidden dimension to a scalar output, whereas the policy
model employs an lm head. We merge only the shared layers, retaining the PRM’s projection layer and the policy model’s
lm head. For interpolation weights in the linear merging process, we tested only [0.6, 0.4] and [0.5, 0.5], with the target or
draft model receiving 0.6 and the PRM 0.4. The [0.6, 0.4] configuration performed slightly better.

As shown in Table B.3, the results indicate the following: (1) Overall, the merged model outperforms SD; (2) Merging
improves performance more substantially in larger models (+1.4 vs. +0.8). This observation aligns with the findings
of Yadav et al. (2024).
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Figure B.2. Left: A comparison of the reward scores for all questions generated by the draft model and the target model within the RSD
framework. Middle: A focused comparison of the reward scores for correctly answered questions generated by the draft model and the
target model in the RSD framework. Right: The winning rate comparison between the draft model and the target model, highlighting the
proportion of cases where each model outperforms the other in the RSD framework. RSD is configured with Qwen2.5-Math-1.5B-Instruct
as the draft model, Qwen2.5-Math-72B-Instruct as the target model, and Skywork-o1-Open-PRM-7B as the PRM.
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