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Abstract

Many important dynamical phenomena emerging in complex systems such as1

storms, stock market crashes, or reactivations of memory engrams in the mam-2

malian brain are transient in nature. We consider the problem of learning accurate3

models of such phenomena based only on data gathered by detecting such tran-4

sient events, and analyzing their peri-event dynamics. This approach is widely5

used to analyze spontaneous activity in brain recording, as it focuses on emerging6

events of particular significance to brain function. We show, however, that such7

an approach may misrepresent the properties of the system under study due to the8

event detection procedure that entails a selection bias. We develop the Debiased9

Snapshot (DeSnap) approach to de-bias the time-varying properties of the system10

estimated from such peri-event data and demonstrate its benefits in recovering11

state-dependent transient dynamics in toy examples and neural time series.12

1 Introduction13

Understanding the emergence and dynamics of transient phenomena in complex systems is a key14

challenge in many fields. While models are broadly used to investigate the underlying mechanisms,15

exploiting observational data to inform such modeling in a principled way remains largely elusive.16

One key challenge to devise such an approach is to formalize mathematically what is meant by17

emergence and what limitations it entails from the perspective of statistical data analysis. Emergence18

reflects the idea that the phenomenon is not triggered by an observable external input but instead19

results from the internal dynamics of the system. For example, in contrast to brain activity evoked by20

a visual stimulus, sharp-wave ripple phenomena are an internally generated transient brain oscillation21

associated with a previously experienced stimulus, which is observable in the hippocampus during22

offline states [Buzsaki et al., 1992].23

Such events are ubiquitous in Neuroscience, and they are believed to be instrumental to brain function24

Friston [1995]. However, the analysis of their dynamics is based on an empirical detection followed25

by reporting “event-triggered” averages (see e.g. Logothetis et al. [2012], Sullivan et al. [2011],26

Lundqvist et al. [2018]). More advanced analyses, such as Granger causality, either focus on stimulus27

triggered activities, or simply apply the stimulus-triggered approaches to spontaneous activity without28

considering its specificity, namely, that the peri-event "trials" accumulated in this way are not from a29

randomized controlled trial, but instead are selected based on a specific signal detection procedure,30

and thus potentially subject to selection biases [Bareinboim et al., 2014].31

In this work, we explicitly model the whole event-triggered analysis procedure to emphasize the32

specific issues to pay attention to when exploiting such data for fitting statistical models. After33

pointing out identifiability issues related to such an approach in a fully non-parametric setting, we34

investigate the linear autoregressive Gaussian case for which classical estimation procedures are35
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Figure 1: Illustration of the event detection procedure (A) and selection bias in a stationary time
series (B).

shown to be biased. We then develop a bias correction procedure whose efficiency is illustrated on36

simulated data and further applied on neural recordings.37

2 Methods38

2.1 Modelling of peri-event snapshot detection procedure39

Assume we want to analyze properties of a dynamical system for which we observe time series that40

repetitively exhibits a characteristic pattern of transient activity that we will call “event”. We may41

assume that this pattern is associated to the system visiting a particular region of its state space.42

Since the true state dynamics is usually not fully observed, we resort to the statistical analysis of the43

observed time series during transient events to learn properties of the system. This requires an event44

detection step for determining the location of putative transient events in the observed signals, which45

is typically performed by applying a filter to the original signal to get a detection signal.46

We first provide a mathematical model of such detection procedure. As shown in Figure 1A, given a47

multivariate observation signal X̃t, the detection is typically based on a continuous-value detection48

signal D̃t ascribed to each (discrete) time point t. To ease notations, we will consider the detector is49

basing its decision on the last ND samples, where X̃D,t = {X̃t−1, · · · , X̃t−ND
}. Event occurrences50

are located based on a deterministic detector function that extracts information from ND past samples51

D̃t = w(X̃D,t)

such that only the time points satisfying Dt ≥ d0 are kept, used as reference points52

T = {tn} = {t|D̃t ≥ d0} ,
where d0 is referred to as a threshold. Samples from the long time series X̃t covering a fixed53

peri-event time window around tn, i.e., I = [−T/2, T/2], are extracted to build a two-way panel54

{X(n)
t′ } that contains #T time-varying instances, of peri-event activity that we call snapshots:55

X
(n)
t′ = X̃t′+tn , t

′ ∈ I, tn ∈ T . (1)

Event-triggered analysis aims at exploiting the empirical distribution of this panel data to infer56

properties of the ground truth dynamical system.57

2.1.1 A motivating example for selection bias in peri-event snapshots58

To illustrate the potential problem caused by the detection procedure, let us consider an example of59

event detection with a Morlet wavelet-like discrete-time template w (exemplifying the detection of60
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some oscillatory event) in a stationary time series:61

wt =

{
3 exp(−|t|/4) cos(t) , |t| ≤ 10 ,

0 , otherwise.

Due to the symmetry of the template, we can implement the template matching procedure by62

computing a detection signal D̃t resulting from the convolution of this template with the observed63

time series D̃t =
(
w ∗ X̃

)
t

and extract peri-event snapshots according to Section 2.1. We applied64

the above Morlet detector to a white noise signal made of i.i.d. normal samples (zero mean, unit65

variance) using a detection threshold of 3 SD (standard deviation). The Morlet template, original66

signal, example events, and resulting peri-event snapshots are provided in Figure 1B. Due to the67

choice of a large selection threshold, all snapshots are very similar to the template. While this is68

expected from a template matching approach, this also demonstrates that the selection of snapshots69

based on such procedure introduces a structure in Xt′+tn that is not related to the properties of the70

completely unstructured (i.i.d.) original time series X̃t. Next, we provide a framework based on the71

theory of dynamical systems to shed light this form of selection bias.72

2.2 Snapshot analysis framework73

2.2.1 Continuous time dynamics perspective74

We first expose informally a continuous time dynamical system framework to justify the discrete75

time snapshot analysis presented above. We assume that a given type of neural event is associated76

to a single specific region of the state space favoring their emergence. The dynamics of hidden77

states in this region is inferred by collecting multiple “trials” that each comprises the sequence of78

measurements recorded from the system during one occurrence of certain events. We assume these79

trials correspond to portions of state trajectories passing through the specific region of the state space80

where events are prone to emerge.81

Assume a deterministic continuous time dynamical system governed by the autonomous differential82

equation83 {
dz
dt (t) = H(z(t)) ,

z(t0) = z0 ,
(2)

where z(t) represents the state of the system at time t. The flow of vector field H is then defined as84

φ(z0, t) = z(t) , z0 ∈ Z, t ∈ R ,

and is such that85

φ(φ(z0, t1), t2) = φ(z0, t1 + t2), t1, t2 ∈ R .

As illustrated in Figure 2A, we assume the vector of observations x̃(t) for a given event instance86

are deterministic functions of the current state (x̃(t) = f̃(z(t))) and an event is detected when87

the state trajectory crosses a set E0 included in an hyperplane of the state space. For each such88

event, the absolute E0-crossing time is called the reference time t = t0 and is mapped to the peri-89

event time t′ = 0, and we sample the time series at regular time intervals around this event. As a90

consequence, states corresponding to a given perievent time sample t′ belong to a corresponding set91

Et′ , t′ ∈ {. . . , −1, 0,+1, . . . }. Given the observation x̃(t) the deterministic mapping between two92

successive sets implies that it is also a deterministic function of the past state z(t− 1). Following93

the principle of the Takens theorem [Takens, 1981], information about z(t− 1) can be gathered94

by collecting values of the observations at multiple lags k in the past {x̃(t − k)}k=1..p. However,95

this information may still remain incomplete especially if the number of lags is small and the96

dimension of Z is large, which is likely the case for complex physical, biological or social systems97

such as the brain. Under ergodicity and mixing assumptions for our dynamical system (see e.g.98

[Lasota and Mackey, 2013]), if the event occurs long enough after the initialization of the dynamics,99

z(t− 1) is approximately distributed according to the invariant measure µ of the system. As a100

consequence, it can be modeled as a random vector Zt−1 ∼ µ, and the knowledge of the vector of101

past observations xp,t up to lag p reduces the uncertainty on the state trough the conditional Zt−1|xp,t.102

The deterministic (and invertible) mapping between Et−1 and Et through φ leads to a stochastic103

model for the state Zt|xp,t as well as current observations Xt|xp,t. We can thus parameterize each104

conditional distribution as105

Xt = f̃(φ(Zt−1|xp,t, 1)) = ft(xp,t, ηt) (3)
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Figure 2: (A) Continuous time dynamical system perspective on transient events. (B) Causal graph
for the VAR model of peri-event snapshots. (C) Detection introduces an additional node into the
causal graph.

where ft is a deterministic function and ηt models the randomness of the prediction of Xt given past106

observations xp,t. This randomness is itself due to the remaining uncertainty of the location in state107

space Zt−1 based on past observations. It is noteworthy that this uncertainty also entails that ft and108

the distribution of ηt depend on t. 1109

2.2.2 Selection bias in a discrete-time snapshot model110

From this previous section, we see the interest of modeling transient events as a state dependent time111

series, where the focus is put on a selected location of the state space. Assuming we sample the112

continuous dynamics with a sufficiently large sampling rate, we can make a linear approximation of113

equation 3, justifying the use of time-inhomogeneous linear VAR type models, for which coefficient114

estimation procedures are established. For a simplified representation of the state dependency of the115

overall dynamics of the system, we use Markov Switching Models (MSM) that combine a discrete116

state dependency with vector VAR dynamics [Hamilton, 1989]. More precisely, the MSM state Zt is117

a discrete Markov chain with m-states and transition matrix M such that118

p(Zt = k|Zt−1 = j) = Mk,j

and this state controls the time varying parameters of the VAR model for X̃t119

X̃t = AZt
X̃p,t + ηk, ηk ∼ N (bZt

,ΣZt
) . (4)

Applying the detection procedure under the snapshot analysis framework when targeting the discrete120

hidden state Zt = 0, we make the following key assumption of “perfect detection”:121

Assumption 1 (Perfect detection) Assume that D̃t being above a certain known threshold d0 entails122

with probability one that the observed system is in target state Zt = 0, i.e., P (Zt = 0|Dt ≥ d0) = 1123

With this assumption, for each reference point tn, P (Ztn = 0|Dtn ≥ d0) = 1. Notably, this124

assumption provides only a sufficient condition to have Zt = 0, but not a necessary one, i.e., we125

can have P (Dt ≥ d0|Zt = 0) < 1. This suggests that such thresholding detection only select a126

subset of all time points satisfying Zt = 0 thus leading to selection bias. As a consequence, collected127

snapshots at peri-event time t′ are distributed according to X̃t′+tn |D̃tn ≥ d0 which typically differs128

from X̃t′+t|Zt = 0. Finding a better approximation of this last distribution based on the snapshot129

panel data is the main goal of this paper.130

2.3 Correction of detection-dependent selection bias131

2.3.1 Recoverability under Structural Causal Models132

The recoverability under sample selection bias has been investigated within the framework of133

Structural Causal Models (SCMs) [Pearl, 2000], by using causal graphical models equipped with134

1if the state would be fully observed, the mapping would be independent of time, due to the autonomous
differential equation (2)
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Figure 3: (A) Non-linear dynamical system [Montbrió et al., 2015] trajectories and typical regions
where local Gaussian approximations are made. (B) Illustration of the support’s regions sampled for
different detection thresholds. (C) Principle of DeSnap for retrieving unconditional mean based on
data for several detection threshold.

a special node representing the sampling process Bareinboim and Pearl [2012], Bareinboim et al.135

[2014]. Here we address the recoverability of detection-dependent selection bias by treating the VAR136

model of snapshots (Section 2.2.2) as an SCM and applying the recoverability theories.137

For state-dependent peri-event data, the unbiased peri-event snapshots X̃t′+t for the state Zt = 0138

can be obtained by gathering observation signals X̃t for peri-event time t′ + t where Zt = 0 and139

t′ = [−T/2, T/2] with the peri-event window T (see Section 2.1). As seen in Figure 2B, the SCM140

formalism for the unbiased peri-event snapshots X̃t+t′ |Zt = 0 can be seen as conditioned on the141

yellow hidden state node for t′ = 0 such that Zt = 0. With the assumption that all peri-event142

X̃t+t′ belong to the state Zt = 0, all paths through the hidden states are blocked such that this SCM143

can be approximated by the 1-layer VAR model of X̃t+t′ |Zt = 0, as shown in Figure 2C, where144

X̃t′+t|Zt = 0 can be assumed only dependent on X̃p,t′+t|Zt = 0 for arbitrary perievent times t′.145

The detection procedure is equivalent to adding a node for detection in the VAR model of146

X̃t′+t|Zt = 0 (Figure 2C). For a Markov-switching VAR model of Eq. 4, we are interested in147

using P (X̃t′+t|X̃p,t′+t, Zt = 0, D̃t ≥ d0) to recover the conditional probability characterizing the148

markovian dynamics P (X̃t′+t|X̃p,t′+t, Zt = 0) for t′ in a peri-event time window.149

Based on d-separation and the non-parametric recoverability theories in [Bareinboim and Pearl, 2012,150

Bareinboim et al., 2014], the conditional probability of two variables P (Y |X) in an SCM can be151

recovered from samples selected using S = 1 if we have the d-separation Y ⊥⊥d S|X , such that152

P (Y |X,S = 1) = P (Y |X) (for an elaboration see Section A.1.2). Thus, P (X̃t′+t|X̃p,t′+t, Zt = 0)153

is identifiable from the snapshot data P (X̃t′+t| X̃p,t′+t, Zt = 0, D̃t ≥ d0) for points after the154

detection time point t′ ≥ 0, but not before (i.e., t′ < 0). This theoretical result provides insights155

about challenges for identifying the peri-event dynamics in a non-parametric setting. However, we156

will show that by enforcing parametric assumptions on the model would lead to identifiability for a157

broader range of time points.158

2.3.2 Bias in Gaussian parametric VAR models for peri-event snapshots159

Following Section 2.2.2, a Gaussian VAR model of the peri-event dynamics takes the form:160

X̃t′+t := At′+tX̃p,t′+t + ηt′+t ,ηt′+t ∼ N (kt′+t,Σt′+t) . (5)

Notably, these quantities are all conditioned on Zt = 0, while we omit this condition to ease notation.161

Modelling peri-event data with this model is essentially finding a local linear map between consecutive162

time point that are assume Gaussian distributed. As Figure 3A illustrates, transient trajectories of a163

stochastic non-linear dynamical systems may be clearly non-Gaussian when looking at the full state164

space. However, approximating local dynamics by Gaussian VAR process in a small region of the165

state space may be reasonable, for example when considering processes whose stochasticity stems166

from a Wiener process. Detection-dependent selection bias of peri-event data can then be modeled as167

sampling from a portion of the support of the joint Gaussian distributions, as illustrated in Figure 3B.168

Determining such a model requires the estimation of time-varying model parameters (autoregressive169

coeffcients, covariance matrices, etc.) from peri-event data, whose estimation can be done following170
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Figure 4: DeSnap recovers ground truth peri-event dynamics and spectrograms in Figure. 1, comparing
the detection-dependent and detection-independent cases.

[Shao et al., 2022a]. Critically, model coefficients At′+t are inferred from the time-resolved empirical171

statistics of the snapshots, making it sensitive to detection (see illustration Figure 3C for the mean):172

Ât′+t = Σ̂X̃t′+tX̃p,t′+t
(Σ̂X̃p,t′+t

)−1 (6)

where Σ̂X̃t′+tX̃p,t′+t
and Σ̂X̃p,t′+t

denote empirical (cross-)covariance matrices. Specifically, as173

snapshots are detected in observed time series X̃t using condition D̃tn > d0, the covariance matrices174

we obtain directly from the detected peri-events snapshots are estimates of the detection-dependent175

covariance matrices Σ̂X̃t′+tn
X̃p,t′+tn

|Ztn=0,D̃tn>d0
and ΣX̃p,t′+tn

|Ztn=0,D̃tn>d0
, may differ from176

the detection-independent ones, i.e. Σ̂X̃t′+tX̃p,t′+t|Zt=0 and ΣX̃p,t′+t|Zt=0.177

2.3.3 Debiasing based on threshold variations: the DeSnap algorithm178

We propose here a novel method, named DeSnap, to correct for the detection-dependent bias in179

peri-event dynamic modelling by setting multiple thresholds during detection.180

By stacking the current and lagged snapshots as Yt =
[
X̃

T

t′+t|Zt = 0, X̃
T

p,t′+t|Zt = 0
]T

and181

assuming joint Gaussianity, we have established the relationship between the detection-dependent182

and detection-independent time-varying state statistics (see Appendix A.2 for derivations):183

µYt|D≥d0
= µYt

+ΣYtDΣ−1
D

(
d− µD

)
, (7)

184

ΣYt|D≥d0
= ΣYt

+ΣYtDΣ−1
D c(d0)Σ

−1
D ΣT

YtD . (8)

where d is the average of Dt over the threshold d0 and c(d0) is a scalar statistic of Dt.185

The left hand sides of Eq. 7 and Eq 8, as well as d can be estimated empirically, while ΣYtDΣ−1
D , µD186

and c(d0) are unknown state-dependent variables. Then it is possible to get different samples for the187

empirically obtainable variables by setting multiple detection thresholds and detect snapshots multiple188

times. Then by performing three linear regressions over the samples with different thresholds and time189

points, detection-independent statistics µYt and ΣYt can be retrieved (for details see Appendix A.2).190

An illustration of the DeSnap method can be found in Figure 3.191

3 Results192

3.1 Univariate stationary process with Morlet-shaped detection193

We first test the DeSnap algorithm on the correction of the motivation example in Section 2.1.1 and
Figure 1, which is simplest uni-state system to test the performance of DeSnap. The dynamics of the
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Figure 5: DeSnap recovers state-dependent dynamics and causality measures in an two-state Markov-
switching VAR(2) model

system is controlled by a constant coefficient matrix At and a non-zero innovations mean ηt:
At = [.8 −0.64 0.512 −0.4096] , ηt = 0.2

The detection procedure is identical to what is described in Section 2.1.1.194

Comparing the ground-truth temporal waveforms, the detection dependent waveforms reflect a195

bias consistent with the template, as already illustrated in Figure 1B. Figure 4B shows the power196

spectrograms computed from the estimated VAR model as a frequency-domain representation of the197

peri-event dynamics. It can be easily seen that in addition to the time-invariant prominent activities198

in the band [50-100]Hz, detection with the Morlet-shaped template introduces a strong transient199

pattern in the lower frequencies. After applying the DeSnap approach, both the ground-truth time-200

varying waveforms and spectrograms are recovered, supporting the ability of DeSnap to correct201

detection-dependent bias.202

3.2 Recovery of state-dependent statistics and causal interactions203

We further demonstrate with another toy model that DeSnap is able to recover the state-dependent204

dynamics when the system undergoes transition. A perfect example of such a condition is a bi-205

variate uni-directionally-coupled Markov-switching VAR model implementing alternations between206

a non-oscillatory regime and the oscillatory regime.207

The dynamics of the two regimes are determined by two sets of VAR parameters, where the parameters
remain time-invariant within each regime:

A =

[
−0.5751 1 −0.9408 1

0 1.7263 0 −0.9737

]
,k =

[
0

0.65

]
,Σ =

[
0.5 0
0 0.5

]
and208

A′ =

[
0.5 1 0.3 1
0 −1.5 0 −0.7

]
,k′ =

[
0
0

]
,Σ =

[
0.5 0
0 0.5

]
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We denote the oscillatory regime “state 0” and the other “state 1”. The parameters are designed such209

that “state 0” show strong oscillations in the 74.6-84.6-Hz band, which can be detected as events.210

The Markov switching model’s hidden state dynamics is determined by the transition probabilities:211

P (state 0|state 1) = P (state 1|state 0) = 0.0001. Example traces of the original signals and the212

detection signal are presented in Figure 5A.213

As the events occur only during the stationary ’state 0’, peri-event dynamics should be time-invariant.214

Similar to Figure 4, detection introduced spurious oscillatory patterns in the average waveform of the215

events and the estimated VAR coefficients, as seen in Figure 5 B,C (middle column), reflecting the216

detection-dependent bias estimated directly from event ensembles. These bias are clearly removed217

after applying DeSnap to the detection-dependent model, as seen in Figure 5B,C (right column),218

supporting DeSnap as a promising tool to uncover state-dependent dynamics.219

As this two-state model incorporates uni-directional coupling between the variables (also seen from220

the coefficients), we compared 3 time-varying causality measures, Transfer entropy(TE), Dynamical221

Causal Strength(DCS), and relative Dynamic Causal Strength (rDCS) (as proposed in Shao et al.222

[2022b]) in the ground truth direction, as seen in Figure 5D. All three measures oscillate around223

the peri-event time t′ = 0 although the ground-truth causal connectivity remain constant within a224

regime. Such time-invariance properties of the causality measures are restored after applying DeSnap.225

These results suggest that combining DeSnap with causality measures provides knowledge of the226

state-dependent causal interaction underlying events.227

3.3 Application to in-vivo hippocampal recordings228

We now applied the methodology to real data. Ramirez-Villegas et al. [2021] has characterized229

transient hippocampal events prominent in 3 frequency bands (i.e. hTheta, high Gamma and Ripples)230

and hypothesized that the first type of events and the later two are associated to two distinct brain231

states. Here we use the DeSnap approach to identify the key transient dynamics underlying these232

three types of events.233

We defined and detected events with 14 distinct frequency bands distributed into 4 classical groups:234

hTheta, Beta, Gamma and Ripple bands, in 16 pairs of local field potential signals recorded in the235

pyramidal layer of CA1 hippocampal subfield in an anesthetized macaque (sampling rate 667Hz).236

The detection is performed with band pass filters with the thresholds suggested by Ramirez-Villegas237

et al. [2021]. The resulting average power spectrograms are shown in Figure 6A,B(upper rows),238

reflecting the detection-dependent and threshold-dependent dynamics underlying each type of events.239

We applied DeSnap to the 14 dataset of extracted event ensembles to estimate the detection-240

independent dynamics, and plotted the reconstructed spectrograms in Figure 6A,B(lower rows).241

Interestingly, we found that after DeSnap, the spectrograms forms two filter-band invariant patterns242

within the hTheta band group and within the high-Gamma/Ripple band group. The similarity be-243

tween spectrograms within each band group and discrepencies between band groups are further244

characterized by concentrated patterns in Similarity Matrix (Figure 6C) and sample distributions in245

a dimension reduced spaces obtained by Multidimensional Scaling (Figure 6D), where clustering246

quality illustrates the formation of two clusters in the sample space (Figure 6E). By comparison,247

the detection-dependent spectrograms do not show obvious clusters. This result suggests that high-248

Gamma and ripple events are manifestations of the same underlying transient phenomenon, while249

hTheta events may be generated by another state-dependent mechanism. On the methodological250

level, this supports the ability of DeSnap to better recover ground truth nonlinear transient dynamics,251

independent of the detection procedure.252

Discussion253

In summary, in this paper we focused on the spontaneity of transient phenomenon observed in254

dynamical systems. We characterized the effect of detection procedure on reconstructing hidden255

transient dynamics from peri-event data in the form of selection bias and proposed a new method256

- DeSnap - to correct for the bias. Consistent results on applying DeSnap to toy models and257

electrophysiological siganls has confirmed its performance of identifying state-dependent dynamic258

properties of systems. Therefore, DeSnap has the capability to deepen the understanding of the259

transient mechanism underlying certain transient events. Koopman-Operator-based theories [Brunton260

et al., 2021] may yield further generalizations of DeSnap for non-Gaussian or deterministic systems.261
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Figure 6: DeSnapped spectrograms identify two groups of filter-band-invariant events reflecting
distinct state-dependent transient mechanisms.
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A Appendix351

A.1 Structural Causal Models and recoverability for selection bias352

A.1.1 Basics of Structural Causal Models353

SCMs are generalizations of Bayesian networks that combine Structural Equation Models (SEM) to354

incorporate directional information for causal analysis [Pearl, 2000]. A structural equations takes the355

form356

Y := f(X1, · · · , Xk, ϵ)

where the right hand side determines the assignment of values on the left-hand side. In the most usual357

case, Y and {Xj}j∈{1,··· ,k} represent observed variables and ϵ a variable accounting for (unobserved)358

exogenous effects.359

Based on this, a SCM is defined for a set of random variables {Vj} associated to vertices in a graph360

as the follows.361

Definition 1 (Structural Causal Model (SCM) (see e.g. Peters et al. [2017])) A d-dimensional362

structural causal model is a triplet (S, PN ,G) consisting of:363

• a directed acyclic graph G with d vertices364

• a set S of structural equations365

Vj := fj(PAj , Nj), j = 1, . . . , d,

where PAj are the variables indexed by the set of parents of vertex j in G366

• a joint distribution PN over the exogenous variables Nj , which are assumed jointly inde-367

pendent.368

One attractive feature of this formalism is that the SCM’s graph entails key properties of the join369

distribution of the nodes {Vj}, like the Markov properties and conditional independences (see e.g.370

Bishop [2006]).371

Proposition 1 (Markov properties) For a given SCM (S, PN ,G), the joint distribution PV is Marko-372

vian with respect to G, i.e. it satisfies the following properties:373

1. (local Markov property) each variable Vj is independent of its non-descendants given its374

parents PAj ,375

2. (Markov factorization property) assume the joint distribution PV has a density, then376

p(v) = p(v1, . . . , vd) =

d∏
j=1

p(vj |paj)

With the conditional independence indicated in the local Markov property, the Bayesian network377

greatly simplifies the calculation of joint probabilities. In addition, the concept of d-separation allows378

assessing systematically the conditional independences between subsets of nodes in G based on379

graphical criteria of d-separation (see e.g. Pearl [2000]).380

Definition 2 (d-separation) A path p in graph G is said to be blocked by a set of nodes Z if either:381

(1) p contains a chain i→ m→ j or a fork i← m→ j such that the middle node m is in Z, or (2) p382

contains a collider i→ m← j such that the middle node m is not in Z and such that no descendant383

of m is in Z.384

Z is said to d-separate X from Y in G if and only if Z blocks every path from a node in X to a node385

in Y . This property is denoted X ⊥⊥G Y |Z.386

Indeed, d-separation allows stating the global Markov property (see e.g. Peters et al. [2017]).387

Proposition 2 (Global Markov property) For a given SCM (S, PN ,G) and subsets of nodes X , Y ,388

Z in G, then389

X ⊥⊥G Y |Z ⇒ X ⊥⊥PV
Y |Z .
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Figure 7: SCM, selection bias and recoverability (adapted from Bareinboim et al. [2014]). (A) SCM
describing sample selection based on X , leading to identifiability of P (Y |X) based on selected
data. (B) SCM describing sample selection based on Y , leading to non-identifiability of P (Y |X)
based on selected data. (C) SCM describing sample selection based on both X and Y , leading to
non-identifiability of P (Y |X) based on selected data.

This proposition indicates that the conditional independences in the graph as defined by d-separation390

rules also hold for the corresponding random variables of the associated SCM.391

The next sections will show how these basic concepts and properties of a SCM would fascilitate the392

understanding of sampling bias.393

A.1.2 Recoverability with Sampling Selection Bias394

In the simplest two-node SCM, the identifiability or recoverability of the effect based on different395

sampling methods has been investigated in [Bareinboim et al., 2014].396

Figure 7A, B, C show three sampling conditions in a two-node SCM consisting of variables X and Y397

(with X causing Y ). Sampling is represented by binary variable S in an additional node designed as398

descendant for either X or Y . S takes the value 1 when a data point is selected and zero otherwise.399

In Figure 7A, sample selection is a function of X only, while Figure 7B describes a sample selection400

based on Y only. Figure 7C presents the condition where sample selection depends on both variables.401

In this model, we are interested in estimating the conditional propability of P (Y |X) from sampled402

data. What is critical is whether P (Y |X) can be recovered from the joint distribution of the selected403

samples (X,Y )|S = 1 given different sampling scenarios. Bareinboim et al. [2014] show that,404

under standard assumptions, a necessary and sufficient condition for recoverability is conditional405

independence between target variable Y and selection variable S, given conditioning variable X406

(Y ⊥⊥ S|X)) such that P (Y |X,S = 1) = P (Y |X). For the scenarios of Figure 7, this implies407

that P (Y |X) can be recovered (X,Y )|S = 1 in the case of Figure 7A, but not in Figure 7B and408

Figure 7C.409

The rationale is simple according to the d-separation rules (see Section A.1.1 for details). In the410

condition of Figure 7A, conditioning on X corresponds to the “fork” case in the d-separation rules,411

indicating that the conditional independence Y ⊥⊥ S|X is satisfied. On the contrary, Figure 7B412

shows the condition where such that P (Y |X) is not recoverable from sample selected data because413

the above conditional independence requirement (Y independent of S given X) is not satisfied. For414

Figure 7B, detailed proof has been provided in Bareinboim et al. [2014]. The case in Figure 7C415

corresponds to the “collider” case of d-separation where a common observed descendant induces416

extra dependency between the ancestors.417

However, it is important to point out that this negative theoretical result corresponds to a non-418

parametric case. In particular, putting further assumptions on the model that generated X and Y may419

help identify P (Y |X).420

A.2 DeSnap: Correction of coefficient estimation bias caused by selection421

The calculation of many time-varying causality measures depends on the accurate estimation of422

autoregressive coefficient matrices. However, estimation with snapshots detected via thresholding423

tend to introduce selection bias into the estimated statistics, thus leading to erroneous estimation of424

causality measures.425
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If we assume that the peri-event snapshots under study can be modelled as a multi-variate autoregres-426

sive process Xt, where the current state is a linear combination of the previous states:427

Xt = AtXp,t + ηt ,ηt ∼ N (kt,Σt) .

Notably, the notations for peri-event snapshots Xt is different from notations for the general time428

series Xt.429

This is a kth-order m-variate vector autoregressive process, with the current state defined as430

Xt =
[
X1

t , X
2
t , · · · , Xm

t

]T
and the past state as Xp,t = [Xt−1,Xt−2, · · · ,Xt−p]

T . Innovations ηt are time-inhomogeneous431

Gaussian random variables, where E[η] = kt,Cov[η] = Σt.432

The estimation of two covariance matrices ΣXtXp
and ΣXp

determines the estimation of VAR433

coefficient matrix as Ât = Σ̂XtXp

(
Σ̂Xp

)−1

. The innovations mean and variances depends on the434

estimation of coefficient (see Shao et al. [2022a]).435

As snapshots are detected in time series X̃t using condition Dt0 > d0, the covariances we obtain436

directly from the panel data estimation procedure are estimates of the conditional covariance matrices437

ΣXtXp|Dt0
>d0

and ΣXp|Dt0
>d0

, may differ from the real (unconditional) ones.438

Therefore our DeSnap procedure introduces a new approach to reduce the selection bias covariance
matrices as follows. If we represent the snapshot values at peri-event time point t as a lagged state
Yt, by concatenating Xt and Xp, where t ∈ [−T/2, T/2]:

Yt =

[
Xt

Xp,t

]
then second-order statistics of panel data approximate the conditional mean of the snapshots and can439

be written as :440

µYt|Dt0
≥d0

=

[
µXt|Dt0

≥d0

µXp|Dt0≥d0

]
,ΣYt|Dt0

≥d0
=

[ ∑
Xt|Dt0

≥d0
ΣXtXp|Dt0

≥d0∑
XpXt|Dt0≥d0

ΣXp|Dt0≥d0

]
(9)

For simplicity, we omit the time indices of Dt0 in the notations and refer to the detection signal,441

denoted by D. We now show how to exploit information in the snapshots to estimate the unconditional442

covariance under a joint Gaussian assumption of Yt and D. For each values of d ∈ D where d ≥ d0,443

the conditional distribution of Yt|D = d is also Gaussian with mean µYt|D=d and variance ΣYt|D=d,444

such that:445

µYt|D=d = µYt
+ΣYtDΣ−1

D (d− µD) (10)
446

ΣYt|D=d = ΣYt
− ΣYtDΣ−1

D ΣT
YtD (11)

The conditional distribution of Yt|D ≥ d0 can then be computed as:

P (Yt | D ≥ d0) =

∫ +∞

d0

P (D = d)

P (D ≥ d0)
P (Yt | D = d) dd

The mean and covariance of this Gaussian mixture is a function of the mean and covariance of each447

element. For the mean we get448

µYt|D≥d0

=
∫ +∞
d0

P (D=d)
P (D≥d0)

µY|D=ddd ,

=
∫ +∞
d0

P (D=d)
P (D≥d0)

(
µYt +ΣYtDΣ−1

D (d− µD)
)
dd ,

= µYt
+ΣYtDΣ−1

D

∫ +∞
d0

P (D=d)
P (D≥d0)

(d− µD) dd ,

= µYt
+ΣYtDΣ−1

D

(
d− µD

)
,
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where d is the average of D = d ≥ d0449

For the covariance, we use the law of total covariance (for two random variables X and Y )450

Cov(X,Y ) = E [Cov(X,Y,D)] + Cov (E [X|D] ,E [Y |D])

to obtain451

ΣYt|D≥d ,

=
∫ +∞
d0

P (D=d)
P (D≥d0)

(
ΣYt − ΣYtDΣ−1

D ΣT
YtD

)
dd ,

+
∫ +∞
d0

P (D=d)
P (D≥d0)

(
µY|D=d − µY|D≥d0

) (
µY|D=d − µY|D≥d0

)T
dd ,

= ΣYt
+ΣYtDΣ−1

D cΣ−1
D ΣT

YtD
,

where c =
∫ +∞
d0

P (D=d)
P (D≥d0)

(d− µD)
2
dd−

(
d̄− µD

)2 − ΣD.452

As a result, we have453

µYt|D≥d0
= µYt +ΣYtDΣ−1

D

(
d− µD

)
, (12)

454

ΣYt|D≥d = ΣYt
+ΣYtDΣ−1

D cΣ−1
D ΣT

YtD . (13)

What can be estimated from peri-event panels in Eq. 10, 12 and 13 are the conditional statistics455

µYt|D≥d0
, ΣYt|D≥d (which we can estimate from Eq. 9, and the binned conditions d (which456

we can specify on our need). What we are interested in recovering, are the unconditional mean457

µYt
and covariance matrix ΣYt

. Some intermediate unknown variables that help us estimated the458

unconditional statistics are ΣYtDΣ−1
D , µD and c. For a uni-state signals, µD and c can be easily459

obtained by exploiting the distribution of D; however, if the signal is a mixture of multiple states,460

these statistics are largely unobserved. Actually, these intermediate variables and the unconditional461

statistics can all be retrieved by performing three linear regressions. First, with the snapshot and a462

given set of binned d (which must satisfy d ≥ d0 but should not be too large to limit the sample size463

of P (Yt|D = d)), we can regress d over µYt|D=d in Eq. 12 to get the coefficient at and the intercept464

bt corresponding to:465

pt = ΣYtDΣ−1
D , (14)

466

qt = µYt
− ΣYtDΣ−1

D µD . (15)

Secondly, bt is a linear function of at as qt = µYt −ptµD. Thus we can regress pt over qt to estimate467

the mean of D (µD) as the coefficient and µYt as the intercept.468

Finally, Eq. 13 can be reorganized as:469

ΣYt|D≥d = ΣYt
+ cptp

T
t , (16)

For a given threshold d0, c(d0) is a constant for all elements of the covariance matrix at all time470

points of the snapshots. Regressing ptp
T
t over ΣYt|D≥d for any single element across time, we471

can estimate c(d0), by which we are able to retrieve ΣYt
from Eq. 16. Sometimes, as event472

extraction induces temporal correlations, we can also apply a first order difference in the panel473

such that ∆t(ΣYt|D≥d) = ∆t(ΣYt
) + c∆t(pta

T
t ) = c∆t(ptp

T
t ). Then, regressing ∆t(ptp

T
t ) over474

∆t(ΣYt|D≥d), we can similarly calculate c and retrieve ΣYt
from Eq. 16.475

15


	Introduction
	Methods
	Modelling of peri-event snapshot detection procedure
	A motivating example for selection bias in peri-event snapshots

	Snapshot analysis framework
	Continuous time dynamics perspective
	Selection bias in a discrete-time snapshot model

	Correction of detection-dependent selection bias
	 Recoverability under Structural Causal Models
	Bias in Gaussian parametric VAR models for peri-event snapshots
	Debiasing based on threshold variations: the DeSnap algorithm


	Results
	Univariate stationary process with Morlet-shaped detection
	Recovery of state-dependent statistics and causal interactions
	Application to in-vivo hippocampal recordings

	Appendix
	Structural Causal Models and recoverability for selection bias
	Basics of Structural Causal Models
	Recoverability with Sampling Selection Bias

	DeSnap: Correction of coefficient estimation bias caused by selection


