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Abstract

In recent years, score based diffusion models have achieved remarkable empirical perfor-
mance across a wide range of generative modelling tasks. In this paper, we study the use
of conditional score-based diffusion models for Bayesian inference in simulator-based mod-
els. We consider two objectives for training these models, one of which approximates the
score of the diffused likelihood, while the other directly estimates the score of the diffused
posterior. We validate these methods, which we term Neural Posterior Score Estimation
(NPSE) and Neural Likelihood Score Estimation (NLSE), on several numerical examples,
demonstrating comparable or superior performance to existing state-of-the-art methods
such as Neural Posterior Estimation (NPE) and Neural Likelihood Estimation (NLE).

1. Introduction

Many applications in science, engineering, and economics make use of stochastic numerical
simulations to model complex phenomena of interest. Such simulator-based models are
typically designed by domain experts, using knowledge of the underlying principles of the
process of interest. They are thus particularly well suited to domains in which observations
are best understood as the result of mechanistic physical processes. These include, amongst
others, neuroscience (Gonçalves et al., 2020), evolutionary biology (Beaumont et al., 2002;
Ratmann et al., 2007), ecology (Beaumont, 2010; Wood, 2010), epidemiology (Corander
et al., 2017), climate science (Holden et al., 2018), cosmology (Alsing et al., 2018), and
high-energy physics (Brehmer, 2021).

In many cases, simulator-based models depend on parameters θ which cannot be iden-
tified experimentally, and must be inferred from data x. Bayesian inference provides a
principled approach for this task. In particular, given a prior p(θ) and a likelihood p(x|θ),
Bayes’ Theorem gives the posterior distribution over the parameters as p(θ|x) = p(x|θ)p(θ)

p(x) ,

where p(x) =
∫
Rd p(x|θ)p(θ)dθ is known as the evidence, or the marginal likelihood. The

major difficulty associated with simulator-based models is the absence of a tractable likeli-
hood function p(x|θ). This inference problem is often referred to as likelihood-free inference
or simulation-based inference (SBI) (Cranmer et al., 2020; Sisson et al., 2018).

Traditional methods for performing SBI include approximate Bayesian computation
(ABC) (Beaumont et al., 2002; Sisson et al., 2018), whose variants include rejection ABC
(Tavaré et al., 1997; Pritchard et al., 1999), MCMC ABC (Marjoram et al., 2003), and
sequential Monte Carlo ABC (Beaumont et al., 2009; Bonassi and West, 2015). In such
methods, one repeatedly samples parameters, and only accepts parameters for which the
samples from the simulator are similar to the observed data xobs.
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(a) True Posterior.

(b) NLSE (Ours). (c) NPSE (Ours). (d) REJ ABC.

(e) NPE. (f) NLE. (g) NRE.

Figure 1: Plots of the posterior samples for the ‘two moons’ experiment (see Section 3).
We plot samples from the true posterior (left), the samples generated by our methods, and
the samples generated by several existing SBI methods. We train each algorithm with 1000
samples (θ, x) ∼ p(θ)p(x|θ).

In recent years, a range of new SBI methods have been introduced, leveraging advances in
machine learning such as normalising flows (Papamakarios et al., 2017, 2021) and generative
adversarial networks (Goodfellow et al., 2014). Such methods include Neural Posterior
Estimation (NPE) (Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg
et al., 2019), Neural Likelihood Estimation (NLE) (Papamakarios et al., 2019), and Neural
Ratio Estimation (NRE) (Durkan et al., 2020; Hermans et al., 2020; Miller et al., 2021;
Thomas et al., 2022). Another more recent algorithm, specialising in high-dimensional
settings, is Generative Adversarial Training for SBI (Ramesh et al., 2022).

In this paper, inspired by the remarkable success of score-based generative models (Song
and Ermon, 2019; Song et al., 2021b; Ho et al., 2020), we consider the application of con-
ditional score-based diffusion models to likelihood-free inference. While such models have
previously found success across a wide range of generative modelling tasks (e.g., Batzolis
et al., 2021; Dhariwal and Nichol, 2021; Song et al., 2021b; Tashiro et al., 2021), their appli-
cation to problems of interest to the SBI community (e.g., Lueckmann et al., 2021) has not
yet been widely investigated. We note that, in parallel with this work, Geffner et al. (2023)
have also studied the use of conditional score-based diffusion models for likelihood-free
inference. We provide a more detailed comparison with this paper in Appendix C.

In contrast to existing SBI approaches based on normalising flows (e.g., NLE, NPE), this
approach only requires estimates for the gradient of the log density, or score function, of the
intractable likelihood or the posterior, which can be estimated using a neural network via
score matching (Hyvärinen, 2005; Vincent, 2011; Song et al., 2020). Since we do not require a
normalisable model, we avoid the need for any strong restrictions on the model architecture.
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In addition, unlike methods based on generative adversarial networks (e.g., Ramesh et al.
(2022)), we do not require adversarial training objectives, which are notoriously unstable
(Metz et al., 2017; Salimans et al., 2016).

We discuss two training objectives for the conditional diffusion model. The first targets
the score of the intractable likelihood, while the second targets the score of the posterior.
We refer to these two methods as Neural Likelihood Score Estimation (NLSE) and Neural
Posterior Score Estimation (NPSE). We focus solely on the amortised setting, in which we
learn a single model to get approximate samples from the posterior p(θ|x) for any observation
x ∈ Rp. We validate the performance of our methods on several benchmark SBI problems,
obtaining comparable or superior performance to other state-of-the-art methods.

2. Likelihood Free Inference with Score-Based Diffusion Models

2.1. Likelihood Free Inference

We focus on the following problem. Suppose a simulator generates x ∈ Rp from parameters
θ ∈ Rd. We assume that the parameters are distributed according to some known prior p(θ),
but that the likelihood p(x|θ) is intractable. Given an observation xobs, we are interested
in sampling from the posterior distribution p(θ|xobs) ∝ p(xobs|θ)p(θ), given a finite number
of i.i.d. samples (θi, xi)

n
i=1 ∼ p(θ)p(x|θ).

2.2. Score-Based Diffusion Models for Likelihood Free Inference

We can tackle this problem using conditional score-based diffusion models (e.g., Song et al.,
2021b). In such models, noise is gradually added to the target distribution using a diffusion
process, resulting in a tractable reference distribution. The time-reversal of this process
is also a diffusion process, whose dynamics we can learn using denoising score matching.
We can thus generate samples from the target by simulating the approximate reverse-time
process, initialised at samples from the reference distribution.

More precisely, we begin by defining a forward noising process (θt)t∈[0,T ] according to

dθt = f(θt, t)dt+ g(t)dwt, (θ0, x) ∼ p(θ, x), (1)

where f : R+ × Rd → Rd is the drift coefficient, g : R+ → R is the diffusion coefficient,
(wt)t≥0 is a standard Rd-valued Brownian motion. We assume that f and g are chosen
such that (1) admits a unique stationary distribution pref , from which it is easy to sample.
Under mild conditions, the time-reversed process (θτ )τ∈[T,0] := (θT−t)t∈[0,T ], conditioned on
x, is also a diffusion process, which satisfies (Anderson, 1982; Föllmer, 1985; Haussmann
and Pardoux, 1986; Song et al., 2021b)

dθτ =
[
f(θτ , τ)− g2(τ)∇θτ log pτ (θτ |x)

]
dτ + g(τ)dwτ , (2)

where pt(·|x) denotes the conditional density of θt given x. We will suppose that T is
sufficiently large such that pT ≈ pref . Then, by sampling θT ∼ pref(θ), and simulating (2),
we can obtain samples from the posterior distribution θ0 ∼ p0(θ|x) := p(θ|x).

In practice, we do not have access to the perturbed posterior scores ∇θt log pt(θt|x), and
thus we cannot simulate (2) directly. However, we can obtain an estimate of these scores
via (denoising) score matching (e.g., Song et al., 2021b). We will consider two possible
approaches to this task.
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2.2.1. Neural Posterior Score Estimation

The first approach is based on training a time-varying score network sψpost(θt, x, t) ≈
∇θt log pt(θt|x) to directly approximate the score of the perturbed posterior (Batzolis et al.,
2021; Dhariwal and Nichol, 2021; Song et al., 2021b). To do so, we would like to minimise
the weighted Fisher divergence

1

2

∫ T

0
λtEpt(θt,x)

[
||sψpost(θt, x, t)−∇θt log p(θt|x)||2

]
dt, (3)

where λt : [0, T ] → R+ is a positive weighting function. The second term in this expres-
sion is intractable, and thus we cannot minimise it directly. However, one can show that
it is equivalent (see Appendix B.1) to minimise the conditional denoising posterior score
matching objective (Batzolis et al., 2021; Tashiro et al., 2021)

Jpost(ψpost) =
1

2

∫ T

0
λtEpt|0(θt|θ0)p(θ0,x)

[
||sψpost(θt, x, t)−∇θt log pt|0(θt|θ0)||2

]
dt, (4)

where pt|0(θt|θ0) denotes the transition kernel from θ0 to θt. The expectation in (4) only
depends on samples θ0 ∼ p(θ) from the prior, x ∼ p(x|θ) from the simulator, and θt ∼
pt|0(θ|θ0), from the forward diffusion (1). Moreover, given a suitable choice for the dynamics
in (1), ∇θt log pt|0(θt|θ0) can be computed analytically. We can thus compute a Monte Carlo
estimate of (4), and minimise this using, e.g., stochastic gradient descent (SGD).

2.2.2. Neural Likelihood Score Estimation

The second approach is based on the following decomposition of the posterior score,

∇θt log pt(θt|x) = ∇θt log pt(x|θt) +∇θt log pt(θt). (5)

This decomposition suggests that, rather than directly targeting the score of the posterior,
we could instead train a score network sψlik

(θt, x, t) ≈ ∇θt log pt(x|θt) for the likelihood, and
then estimate the posterior score using1

sψpost(θt, x, t) = sψlik
(θt, x, t) +∇θt log pt(θt). (6)

In order to learn sψlik
(θt, x, t), we would like to minimise the weighted Fisher divergence

1

2

∫ T

0
λtEpt(θt,x)

[∣∣∣∣sψlik
(θt, x, t)−∇θt log pt(x|θt)

∣∣∣∣2]dt. (7)

Similar to (3), we cannot optimise this objective due to the intractable second term. How-
ever, one can show that it is equivalent (see Appendix B.2) to minimise the corresponding
denoising score matching objective function, which in this case is given by

Jlik(ψlik) =
1

2

∫ T

0
λtEpt|0(θt|θ0)p(θ0,x)

[∣∣∣∣sψlik
(θt, x, t) +∇θt log pt(θt)−∇θt log pt|0(θt|θ0)

∣∣∣∣2]dt.
(8)

Similar to (4), we can compute Monte Carlo estimates of the expectations in (8), thus
minimise this objective using SGD.

1. It is worth noting that one can only compute ∇θt log pt(θt) directly for certain choices of the prior (see
Appendix A.1). If this is not possible, one can instead learn an additional score network sψpri(θt, t) ≈
∇θt log pt(θt) for the prior (see Appendix A.2), and then substitute this where required.
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Algorithm 1: Neural Posterior Score Estimation (NPSE) and Neural Likelihood Score
Estimation (NLSE)

Input: Simulator p(x|θ), prior p(θ), simulation budget N
for i = 1 . . . N do sample θ0,i ∼ p(θ), xi ∼ p(x|θ0,i), (θt,i)t∈(0,T ] ∼ pt|0(θ|θi,0).
if ‘NPSE’ then

Train sψpost(θt, x, t) ≈ ∇θ log pt(θt|x) by minimising a Monte Carlo estimate of (4)
else if ‘NLSE’ then

Train sψlik
(θt, x, t) ≈ ∇θ log pt(x|θt) by minimising a Monte Carlo estimate of (8).

Set sψpost(θt, x, t) := sψlik
(θt, x, t) +∇θ log pt(θt).

Simulate the backward diffusion (2), initialised at θT ∼ pref(θ), with sψpost(θt, xobs, t).

2.2.3. The Algorithm

We now have all of the necessary ingredients to generate samples from p(θ|xobs).

(i) Draw samples θ0 ∼ p(θ) from the prior, x ∼ p(x|θ0) from the likelihood, and θt ∼
pt|0(θt|θ0) using the forward diffusion (1).

(ii) Train a score network sψpost(θt, x, t) by minimising the posterior denoising score match-
ing objective (4), or the likelihood denoising score matching objective (8).

(iii) Draw samples θT ∼ pref(θ) from the reference distribution. Simulate the backward
diffusion (2) with x = xobs, substituting ∇θt log p(θt|xobs) ≈ sψpost(θt, xobs, t).

In line with the current SBI taxonomy, we will refer to this approach as Neural Posterior
Score Estimation (NPSE) or Neural Likelihood Score Estimation (NLSE), depending on
which objective function is used to train the score network.

3. Numerical Experiments

In this section, we provide numerical results for four popular SBI benchmarking experiments:
Mixture of Gaussians, Two Moons, Gaussian Linear Uniform, and Simple Likelihood Com-
plex Posterior (Lueckmann et al., 2021). In all experiments, our score network is an MLP
with 3 fully connected layers, each with 256 neurons and SiLU activation functions. We use
Adam (Kingma and Ba, 2015) to train the networks, with a learning rate of 5× 10−4 and
a batch size of 50. We hold back 10% of the data to be used as a validation set for early
stopping. Further experimental details are provided in Appendices D.1 and D.2.

The results for all of these experiments, for simulation budgets of 1000, 10000 and 30000,
are displayed in Figure 2. In all experiments, we report the classification-based two-sample
test (C2ST) score (Lopez-Paz and Oquab, 2017). The C2ST score varies between 0.5 and
1 (lower being better), with a score of 0.5 indicating perfect posterior estimation. For
reference, we compare our methods with Rejection ABC (REJ-ABC) (Tavaré et al., 1997),
NRE (Hermans et al., 2020), NLE (Papamakarios et al., 2019), and NPE (Papamakarios
and Murray, 2016), implemented using the python toolkit sbibm (Lueckmann et al., 2021).
Our results indicate that, for all of the experiments considered, our methods (NPSE and
NLSE) perform at least as well as these existing methods, particularly for small simulation
budgets.
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Figure 2: Performance of NPSE and NLSE on 4 benchmark SBI problems. Each
point represents the mean C2ST score (lower is better), computed over 10 observations.

4. Discussion

A natural question is whether it is preferable to estimate the score of the likelihood or the
score of the posterior (see also the related discussions in Greenberg et al. (2019); Papa-
makarios et al. (2019); Lueckmann et al. (2021)). In general, the best choice of algorithm
will depend on the specific problem at hand. Our numerical results indicate that, in many
cases, estimating the score of the likelihood (NLSE) can lead to slightly more accurate re-
sults than estimating the score of the posterior (NPSE). This being said, it is worth noting
that in all our experiments it was possible to compute the score of perturbed prior ana-
lytically. When this is not possible, NLSE requires us to approximate this term by fitting
an additional score network. In typical SBI problems, it is very cheap to sample from the
prior, particularly compared to the simulator. Thus, in principle, one could use as many
samples as required to obtain a sufficiently accurate estimate for the prior score. Nonethe-
less, in such cases, it may be preferable to use NPSE, which only requires us to estimate
the posterior score.

In practice, it is not uncommon to be solely interested in generating samples from
p(θ|xobs), i.e., the posterior distribution of the parameters given a specific observation xobs.
In this case, at the expense of additional compute, sequential variants of existing methods
such as SNPE (Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg et al.,
2019), SNLE (Lueckmann et al., 2019; Papamakarios et al., 2019), and SNRE (Durkan
et al., 2020; Hermans et al., 2020; Miller et al., 2021; Thomas et al., 2022) can lead to sig-
nificant performance improvements over their non-sequential (i.e., amortised) counterparts,
by guiding simulations using a sequence of carefully chosen proposal priors. In this context,
an interesting direction for future work is to develop an effective sequential version of NPSE
and NLSE, along the lines of these existing schemes. We refer to Sharrock et al. (2022) for
some ongoing work in this direction.
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Öcal, Giacomo Bassetto, Chaitanya Chintaluri, William F Podlaski, Sara A Haddad,
Tim P Vogels, David S Greenberg, and Jakob H Macke. Training deep neural density
estimators to identify mechanistic models of neural dynamics. eLife, 9:e56261, 2020. ISSN
2050-084X. doi: 10.7554/eLife.56261.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In Proceedings
of the 28th International Conference on Neural Information Processing Systems (NIPS
2014), pages 2672–2680, Montreal, Canada, 2014.

David S. Greenberg, Marcel Nonnenmacher, and Jakob H. Macke. Automatics Posterior
Transformation for Likelihood-Free Inference. In Proceedings of the 36th International
Conference on Machine Learning (ICML 2019), Long Beach, CA, 2019.

U G Haussmann and E Pardoux. Time Reversal of Diffusions. The Annals of Probability,
14(4):1188–1205, oct 1986. doi: 10.1214/aop/1176992362.

Joeri Hermans, Volodimir Begy, and Gilles Louppe. Likelihood-free MCMC with Amortized
Approximate Ratio Estimators. In Proceedings of the 37th International Conference on
Machine Learning (ICML 2020), Online, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models.
In Proceedings of the 34th International Conference on Neural Information Processing
Systems (NeurIPS 2020), Online, 2020.

Philip B. Holden, Neil R. Edwards, James Hensman, and Richard D. Wilkinson. ABC
for Climate: Dealing with Expensive Simulators. In S. A. Sisson, Y. Fan, and M. A.
Beaumont, editors, Handbook of Approximate Bayesian Computation. Chapman and
Hall/CRC, New York, 2018. doi: 10.1201/9781315117195.

8



Neural Score Estimation

Aapo Hyvärinen. Estimation of Non-Normalized Statistical Models by Score Matching.
Journal of Machine Learning Research, 6(24):695–709, 2005.

Diederik P. Kingma and Jimmy Ba. Adam: a method for stochastic optimisation. In
Proceedings of the 3rd International Conference on Learning Representations (ICLR ’15),
pages 1–13, San Diego, CA, 2015.

David Lopez-Paz and Maxime Oquab. Revisiting Classifier Two-Sample Tests. In Pro-
ceedings of the 5th International Conference on Learning Representations (ICLR 2017),
Toulon, France, 2017.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver:
A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps.
In Proceedings of the 36th International Conference on Neural Information Processing
Systems (NeurIPS 2022), New Orleans, LA, 2022.

Jan-Matthis Lueckmann, Pedro J. Goncalves, Giacomo Bassetto, Kaan Öcal, Marcel Non-
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Greenberg, Pedro J. Gonçalves, and Jakob H. Macke. GATSBI: Generative Adversarial
Training for Simulation-Based Inference. In Proceedings of the 10th International Con-
ference on Learning Representations (ICLR 2022), Online, 2022.

Oliver Ratmann, Ole Jørgensen, Trevor Hinkley, Michael Stumpf, Sylvia Richardson, and
Carsten Wiuf. Using Likelihood-Free Inference to Compare Evolutionary Dynamics of
the Protein Networks of H. pylori and P. falciparum. PLOS Computational Biology, 3
(11):e230, nov 2007. doi: 10.1371/journal.pcbi.0030230.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen,
and Xi Chen. Improved Techniques for Training GANs. In Proceedings of the 30th Con-
ference on Neural Information Processings Systems (NIPS 2016), volume 29, Barcelona,
Spain, 2016.

Louis Sharrock, Jack Simons, Song Liu, and Mark Beaumont. Sequential Neural Score
Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models.
arXiv preprint, 2022. doi: 10.48550/arXiv.2210.04872.

S A Sisson, Y Fan, and Mark M Tanaka. Sequential Monte Carlo without likelihoods.
Proceedings of the National Academy of Sciences, 104(6):1760–1765, feb 2007. doi: 10.
1073/pnas.0607208104.

S.A. Sisson, Y. Fan, and M. A. Beaumont. Overview of Approximate Bayesian Computation.
In Handbook of Approximate Bayesian Computation. Chapman and Hall/CRC Press.,
New York, 2018. doi: 10.1201/9781315117195.

Y. Song, C. Durkan, I. Murray, and S. Ermon. Maximum Likelihood Training of Score-
Based Diffusion Models. In Proceedings of the 35th Conference on Neural Information
Processing Systems (NeurIPS 2021), Online, 2021a.

Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-Based
Generative Modeling through Stochastic Differential Equations. In Proceedings of the 9th
International Conference on Learning Representations (ICLR 2021), Online, 2021b.

10



Neural Score Estimation

Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data
Distribution. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems (NeurIPS 2019), Vancouver, Canada, 2019.

Yang Song and Stefano Ermon. Improved Techniques for Training Score-Based Genera-
tive Models. In Proceedings of the 34th International Conference on Neural Information
Processing Systems (NeurIPS 2020), Online, 2020.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced Score Matching: A Scalable
Approach to Density and Score Estimation. In Uncertainty in Artificial Intelligence,
Online, 2020.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Conditional Score-
Based Diffusion Models for Probabilistic Time Series Imputation. In Proceedings of the
35th Conference on Neural Information Processing Systems (NeurIPS 2021), Online,
2021.
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Appendix A. Computing or Estimating the Perturbed Prior Score

NLSE may require us to compute or to estimate the score of the perturbed prior. In this
appendix, we provide further details on how to do so.

A.1. Computing the Perturbed Prior Score

For certain choices of the prior, we can obtain the perturbed prior pt(θt) =
∫
Rd pt|0(θt|θ)p(θ)dθ

in closed form. We can then obtain the score of the perturbed prior ∇θt log pt(θt) using au-
tomatic differentiation. We provide two examples below.

A.1.1. Uniform Prior

Suppose p(θ) = U(θ|a, b) and pt|0(θt|θ) = N (θt|θ, τ2t I). We then have

pt(θt) =

∫
Rd
p(θ)pt|0(θt|θ)dθ

=
1∏d

i=1(bi − ai)

∫
[a1,b1]×···×[ad,bd]

N (θt|θ, τ2t I)dθ

=
1∏d

i=1(bi − ai)

d∏
i=1

(
Φ(bi|θt,i, τ2i,t)− Φ(ai|θt,i, τ2i,t)

)
,

where Φ(·|µ, σ2) is the CDF of a univariate Gaussian with mean µ and variance σ2.

A.1.2. Gaussian Mixture Prior

Suppose that p(θ) =
∑n

i=1 αiN (θ|µi,Σi) and pt|0(θt|θ) = N (θt|θ, τ2t I). Using standard
results (e.g., Equation 2.115 in Bishop, 2006), it follows straightforwardly that

pt(θt) =

∫
Rd
p(θ)pt|0(θt|θ)dθ

=
n∑
i=1

αi

∫
Rd

N (θ|µi,Σi)N (θt|θ, τ2t I)dθ =
n∑
i=1

αiN
(
θt|µi,Σi + τ2t I

)
.

A.2. Estimating the Perturbed Prior Score

In cases where it is not possible to obtain the perturbed prior in closed form (e.g., if the prior
is implicit), we can instead learn an approximation sψpri

(θt, t) ≈ ∇θt log pt(θt) by minimising
the standard score matching objective

1

2

∫ T

0
λtEθt∼pt(θt)

[
||sψpri

(θt, t)−∇θt log pt(θt)||2
]
dt. (9)

This objective is, of course, intractable. However, as is now well known, it is equivalent to
minimise the denoising objective (e.g., Song et al., 2021b)

Jpri(ψpri) =
1

2

∫ T

0
λtEθ0∼p(θ0)θt∼pt|0(θt|θ0)

[
||sψpri

(θt, t)−∇θt log pt|0(θt|θ0)||2
]
dt. (10)
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Algorithm 2: Prior Score Estimation

Input: Prior p(θ), simulation budget M
for i = 1 . . .M do sample θ0,i ∼ p(θ), (θt,i)t∈(0,T ] ∼ pt|0(θ|θi,0).
Train sψpri

(θt, t) ≈ ∇θ log pt(θt) by minimising a Monte Carlo estimate of (10)

Appendix B. Derivations for Neural Posterior Score Estimation (NPSE)
and Neural Likelihood Score Estimation (NLSE)

In this appendix, we derive the denoising objective functions used in NPSE and NLSE. We
provide these derivations for completeness, noting that similar results can also be found in
Batzolis et al. (2021) and Chao et al. (2022), respectively.

B.1. Neural Posterior Score Estimation (NPSE)

In NPSE, the posterior score matching objective function is given by

Jpost(ψpost) =
1

2

∫ T

0
λtE(θt,x)∼pt(θt,x)

[
||sψpost(θt, x, t)−∇θt log pt(θt|x)||2

]
dt

=
1

2

∫ T

0
λt

[
E(θt,x)∼pt(θt,x)

[
||sψpost(θt, x, t)||2

]︸ ︷︷ ︸
Ω1
t

− 2E(θt,x)∼pt(θt,x)[s
T
ψpost

(θt, x, t)∇θt log pt(θt|x)]︸ ︷︷ ︸
Ω2
t

+ E(θt,x)∼pt(θt,x)
[
||∇θt log pt(θt|x)||2

]︸ ︷︷ ︸
Ω3
t

]
dt.

For the first term Ω1
t , we have that

Ω1
t =

∫
Rd

∫
Rn
pt(θt, x)||sψpost(θt, x, t)||2dθtdx (definition of E)

=

∫
Rd

∫
Rn
pt(θt|x)p(x)||sψpost(θt, x, t)||2dθtdx (Bayes’ Theorem for pt(θt, x))

=

∫
Rd

∫
Rn

[∫
Rn
pt|0(θt|x, θ0)p(θ0|x)dθ0

]
p(x)||sψpost(θt, x, t)||2dθtdx

(law of total probability)

=

∫
Rd

∫
Rn

∫
Rn
pt|0(θt|θ0)p(θ0|x)p(x)||sψpost(θt, x, t)||2dθtdθ0dx

(conditional independence of θt, x|θ0)

= E(θ0,x)∼p(θ0,x),θt∼pt|0(θt|θ0)
[
||sψpost(θt, x, t)||2

]
. (definition of E)

For the second term Ω2
t , we have that

Ω2
t =

∫
Rd

∫
Rn
pt(θt, x)s

T
ψpost

(θt, x, t)∇θt log pt(θt|x)dθtdx (definition of E)
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=

∫
Rd

∫
Rn
pt(θt|x)p(x)sTψpost

(θt, x, t)∇θt log pt(θt|x)dθtdx (Bayes’ Theorem for pt(θt, x))

=

∫
Rd

∫
Rn
p(x)sTψpost

(θt, x, t)∇θtpt(θt|x)dθtdx (∇θt log pt(θt|x) =
∇θtpt(θt|x)
pt(θt|x) )

=

∫
Rd

∫
Rn
p(x)sTψpost

(θt, x, t)∇θt

[∫
pt|0(θt|x, θ0)p(θ0|x)dθ0

]
dθtdx

(law of total probability)

=

∫
Rd

∫
Rn

∫
Rn
p(θ0, x)s

T
ψpost

(θt, x, t)∇θtpt|0(θt|θ0)dθtdθ0dx

(conditional independence of θt, x|θ0)

=

∫
Rd

∫
Rn

∫
Rn
p(θ0, x)pt|0(θt|θ0)sTψpost

(θt, x, t)∇θt log pt|0(θt|θ0)dθtdθ0dx

(∇θt log pt|0(θt|θ0) =
∇θtpt|0(θt|θ0)
pt|0(θt|θ0)

)

= E(θ0,x)∼p(θ0,x),θt∼pt|0(θt|θ0)[s
T
ψpost

(θt, x, t)∇θt log pt|0(θt|θ0)]. (definition of E)

The third term Ω3
t is independent of ψpost. We thus have

Jpost(ψpost) ∝
1

2

∫ t

0
λtE(θ0,x)∼p(θ0,x),θt∼pt|0(θt|θ0)

[
||sψpost(θt, x, t)||2

−2sTψpost
(θt, x, t)∇θt log pt|0(θt|θ0)

]
dt

∝ 1

2

∫ t

0
λtE(θ0,x)∼p(θ0,x),θt∼pt|0(θt|θ0)

[
||sψpost(θt, x, t)−∇θt log pt|0(θt|θ0)||2

]
dt.

B.2. Neural Likelihood Score Estimation (NLSE)

In NLSE likelihood score matching objective function is given by

Jlik(ψlik) =
1

2

∫ T

0
λtE(θt,x)∼pt(θt,x)

[
||sψlik

(θt, x, t)−∇θt log pt(x|θt)||2
]
dt

=
1

2

∫ T

0
λt

[
E(θt,x)∼pt(θt,x)[||sψlik

(θt, x, t)||2︸ ︷︷ ︸
Ω1
t

− 2E(θt,x)∼pt(θt,x)[s
T
ψlik

(θt, x, t)∇θt log pt(x|θt)]︸ ︷︷ ︸
Ω2
t

+ E(θt,x)∼pt(θt,x)[||∇θt log pt(x|θt)||2]︸ ︷︷ ︸
Ω3
t

]
dt.

We now proceed in much the same vein as before. On this occasion, leveraging the same
arguments as in Appendix B.1, it is straightforward to obtain

Ω1
t =

∫
Rd

∫
Rn
pt(θt, x)||sψlik

(θt, x, t)||2dθtdx (definition of E)
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= E(θ0,x)∼p(θ0,x),θt∼pt|0(θt|θ0)
[
||sψlik

(θt, x, t)||2
]
, (identically to Ω1

t in Appendix B.1)

Ω2
t =

∫
Rd

∫
Rn
pt(θt, x)s

T
ψlik

(θt, x, t)∇θt log pt(x|θt)dθtdx (definition of E)

=

∫
Rd

∫
Rn
pt(θt, x)s

T
ψlik

(θt, x, t)[∇θt log pt(θt|x)−∇θt log pt(θt)]dθtdx

(Bayes’ Theorem)

= E(θ0,x)∼p(θ0,x),θ∼pt|0(θt|θ0)
[
sTψlik

(θt, x, t)∇θt log pt|0(θt|θ0)− sTψlik
(θt, x, t)∇θt log pt(θt)

]
,

(from Appendix B.1)

and, of course, that Ω3
t is independent of ψlik. Putting everything together, we thus have

Jlik(ψlik) ∝
1

2

∫ T

0
λtE(θ0,x)∼p(θ0,x),θ∼pt|0(θt|θ0)

[
||sψlik

(θt, x, t)||2 − 2sTψlik
(θt, x, t)∇θt log pt|0(θt|θ0)

+ 2sTψlik
(θt, x, t)∇θt log pt(θt)

]
dt

∝ 1

2

∫ T

0
λtE(θ0,x)∼p(θ0,x),θ∼pt|0(θt|θ0)

[
||sψlik

(θt, x, t)

−
(
∇θt log pt|0(θt|θ0)−∇θt log pt(θt)

)
||2
]
dt.

Appendix C. Likelihood-Free Inference with Multiple Observations

In this appendix, we discuss how to adapt NPSE and NLSE to the task of generating
samples from p(θt|x1obs, . . . , xnobs) for any set of observations {x1obs, . . . , xnobs} (Geffner et al.,
2023).

C.1. Neural Posterior Score Estimation

In Geffner et al. (2023), the authors observe that it is not possible to factorise the multiple-
observation posterior score ∇θ log pt(θ|x1obs, . . . , xnobs) in terms of the single-observation pos-
terior scores ∇θ log pt(θ|xiobs), and the prior score ∇θ log p(θ). Thus, a naive implementation
of NPSE would require training a network sψpost(θ, x

1, . . . , xn, t) ≈ ∇θ log pt(θ|x1, . . . , xn)
using samples (θ, x1, . . . , xn) ∼ p(θ)

∏n
j=1 p(x

i|θ). This requires calling the simulator n
times for every parameter sample θ, and is thus highly sample inefficient.

To circumvent this issue, Geffner et al. (2023) introduce a new method based on the
observation that p(θ|x1, . . . , xn) ∝ p(θ)1−n

∏n
i=1 p(θ|xi). In particular, they propose to use

the sequence of densities

p
(bridge)
t (θ|x1, . . . , xn) ∝ (p(θ)1−n)

T−t
T

n∏
i=1

pt(θ|xi). (11)

Importantly, the density at t = 0 coincides with the target distribution p(θ|x1, . . . , xn), while
the density at t = T is is a tractable Gaussian. In addition, the score of these densities can
be decomposed into the single-observation posterior scores ∇θ log pt(θ|xi), and the (known)
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prior score ∇θ log p(θ), as

∇θ log p
(bridge)
t (θ|x1, . . . , xn) = (1− n)(T − t)

T
∇θ log p(θ) +

n∑
i=1

∇θ log pt(θ|xi). (12)

Thus, in particular, it is only necessary to learn a single score network sψpost(θ, x, t) ≈
∇θ log pt(θ|x), which can be trained using samples (θ, x) ∼ p(θ)p(x|θ). After learning this
score network, one can then generate samples from the posterior by running the reverse
diffusion with

∇θt log p
(bridge)
t (θ|x1obs, . . . , xnobs) ≈

(1− n)(T − t)

T
∇θ log p(θ) +

n∑
i=1

sψpost(θ, x
i
obs, t).

It is worth emphasising that, other than at time t = 0, the sequence of bridging densities

p
(bridge)
t (θ|x1, . . . , xn) do not coincide with the true perturbed multi-observation posterior

densities pt(θ|x1, . . . , xn). Thus, directly solving the reverse-time SDE using a ‘predictor-
only’ method (e.g., Euler-Maruyama) would not result in samples from the posterior, even if
one could perfectly estimate the scores of these densities. Instead, we must use a corrector-
only method (e.g., annealed Langevin dynamics as in Algorithm 1, Geffner et al., 2023) or
a predictor-corrector method (Song et al., 2021a) to solve the reverse-time SDE.

We now provide details of an alternative approach, based on a very similar idea to the
one in Geffner et al. (2023). In particular, in place of (11), one could instead use the
sequence of densities

p
(bridge)
t (θ|x1, . . . , xn) ∝ (pt(θ))

1−n
n∏
i=1

pt(θ|xi). (13)

This sequence of densities has all of the desirable properties of (11). Once again, the
density at t = 0 coincides with the target distribution p(θ|x1, . . . , xn), and the density at
t = T corresponds to a tractable Gaussian. Moreover, we can factorise these densities
in terms of the single-observation posterior scores ∇θ log pt(θ|xi), and the perturbed prior
score ∇θ log pt(θ), as

∇θ log p
(bridge)
t (θ|x1, . . . , xn) = (1− n)∇θ log pt(θ) +

n∑
i=1

∇θ log pt(θ|xi). (14)

Similar to above, it is then only necessary to learn a single score network sψpost(θ, x, t) ≈
∇θ log pt(θ|x), which we can train using samples (θ, x) ∼ p(θ)p(x|θ). Clearly, the expressions
in (13) - (14) are very similar to the ones given in (11) - (12), with the only difference
appearing in the first term. These quantities coincide at time zero, but will otherwise differ.
The advantage of (12), i.e., the scheme proposed in Geffner et al. (2023), is that it only
requires access to the score of the prior, ∇θ log p(θ), and is thus very straightforward to
implement.
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C.2. Neural Likelihood Score Estimation

Using the sequence of densities introduced above, we can also extend NLSE to the multi-
observation setting. Observe that we can rewrite the sequence of densities in (13) as

p
(bridge)
t (θ|x1, . . . , xn) ∝ pt(θ)

n∏
i=1

pt(x
i|θ).

Thus, in particular, we can express the score of these densities in terms of the single-
observation likelihood scores ∇θ log pt(x

i|θ) as

∇θ log p
(bridge)
t (θ|x1, . . . , xn) = ∇θ log pt(θ) +

n∑
i=1

∇θ log pt(x
i|θ),

Once again, following this decomposition, it is clear that we are only required to train a
single score network, this time for the likelihood score sψlik

(θ, x, t) ≈ ∇θ log pt(x|θ), which
we can do using samples (θ, x) ∼ p(θ)p(x|θ).

Appendix D. Additional Details for Numerical Experiments

D.1. Experiment details

“Gaussian Mixture”. This task, introduced by Sisson et al. (2007), appears frequently
in the SBI literature (Beaumont et al., 2009; Lueckmann et al., 2021). It consists of
a uniform prior p(θ) = U(−10, 10), and a simulator given by p(x|θ) = 0.5N (x|θ, I) +
0.5N (x|θ, 0.01I), where θ, x ∈ R2.

“Two Moons”. This two-dimensional experiment consists of a uniform prior given by
p(θ) = U(−1, 1), θ ∈ R2, and a simulator defined by

x|θ =
(
r cos(α) + 0.25

r sin(α)

)
+

(
−|θ1 + θ2|/

√
2

(−θ1 + θ2)/
√
2

)
, (15)

where α ∼ U(−π/2, π/2) and r ∼ N (0.1, 0.012) (Greenberg et al., 2019). It defines a
posterior distribution over the parameters which exhibits both local (crescent shaped) and
global (bimodal) features, and is frequently used to analyse how SBI algorithms deal with
multimodality (Greenberg et al., 2019; Wiqvist et al., 2021; Ramesh et al., 2022; Glockler
et al., 2022).

“Gaussian Linear Uniform”. This task consists of a uniform prior p(θ) = U(−1, 1),
and a Gaussian simulator p(x|θ) = N (x|θ, 0.1I), where θ, x ∈ R10 (Lueckmann et al., 2021).
This example allows us to determine how algorithms scale with increased dimensionality,
as well as with truncated support.

“Simple Likelihood, Complex Posterior”. This challenging task, introduced by Pa-
pamakarios et al. (2019), is designed to have a simple likelihood and a complex posterior.
The prior is a five-dimensional uniform distribution p(θ) = U(−3, 3), while the likelihood
for the eight-dimensional data is Gaussian, but with mean and covariance which are highly
non-linear functions of the parameters. This defines a complex posterior distribution over
the parameters, with four symmetrical modes and vertical cut-offs. For full details, we refer
to Appendix A in Papamakarios et al. (2019), or Appendix T in Lueckmann et al. (2021).
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D.2. Algorithmic details

In all of our experiments, we perturb samples using the variance exploding SDE (Song et al.,
2021b)

dθt = σmin

(
σmin

σmax

)t√
2 log

σmax

σmin
dwt , t ∈ (0, 1]. (16)

We set σmin = 0.01 for the Gaussian Mixture, Two Moons, and Gaussian Linear Uniform
experiments, and σmin = 0.05 for SLCP. Meanwhile, σmax is chosen according to Technique
1 in Song and Ermon (2020). The variance exploding SDE defines the transition density

pt|0(θt|θ0) = N

(
θt

∣∣∣∣∣θ0, σ2min

(
σmax

σmin

)2t
)
, (17)

with the corresponding score function given by

∇θt log pt|0(θt|θ0) = −(θt − θ0)

σ2min

(
σmin

σmax

)2t

. (18)

We solve the forward SDE using an Euler-Maruyama (EM) discretisation, defined over
equally spaced points {ti}Ni=1. This results in a geometric sequence of noise perturbations
{σi}Ni=1, where σi = σmin (σmax/σmin)

i−1
N−1 . In our numerics, we fix γ = σi

σi−1
= 0.6, the ratio

between noise perturbations. This, together with our previous specification of σmin and
σmax, fully determines the number of noise levels N . We solve the corresponding backward
SDE using a corrector only method (i.e., annealed Langevin dynamics); see also Algorithm
1 in Song and Ermon (2019). In all experiments, we use 1000 corrector steps, and set the
step size for the final round of annealed Langevin dynamics as ϵ = 5× 10−6.

D.3. Sampling Time

One of the well known disadvantages of score-based diffusion models is that sampling is slow
compared to other generative models, such as generative adversarial networks (Goodfellow
et al., 2014). In comparison to other SBI methods, the sampling time of our methods
(NPSE and NLSE) is similar to that of other methods which require MCMC to get samples
from the posterior, namely NLE (Lueckmann et al., 2019; Papamakarios et al., 2019) and
NRE (Durkan et al., 2020; Hermans et al., 2020; Miller et al., 2021; Thomas et al., 2022);
but compares unfavourably to methods which only require a single forward pass, e.g. NPE
(Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019). This
being said, it is worth noting that there has been some recent work to address the slow
sampling time of diffusion models (e.g., Lu et al., 2022; Zhang and Chen, 2023), which
could be used to alleviate this problem in our setting.
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