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Abstract

Multimodal models trained on modality-complete data are plagued with severe
performance degradation when encountering modality-missing data. Prevalent
cross-modal knowledge distillation-based methods precisely align the represen-
tation of modality-missing data and that of its modality-complete counterpart to
enhance robustness. However, due to the irreparable information asymmetry, this
determinate alignment is too stringent, easily inducing modality-missing features
to capture spurious factors erroneously. In this paper, a novel multimodal Prob-
abilistic Conformal Distillation (PCD) method is proposed, which considers the
inherent indeterminacy in this alignment. Given a modality-missing input, our
goal is to learn the unknown Probability Density Function (PDF) of the mapped
variables in the modality-complete space, rather than relying on the brute-force
point alignment. Specifically, PCD models the modality-missing feature as a prob-
abilistic distribution, enabling it to satisfy two characteristics of the PDF. One is
the extremes of probabilities of modality-complete feature points on the PDF, and
the other is the geometric consistency between the modeled distributions and the
peak points of different PDFs. Extensive experiments on a range of benchmark
datasets demonstrate the superiority of PCD over state-of-the-art methods. Code is
available at: https://github.com/mxchen-mc/PCD.

1 Introduction

Classical multimodal learning [29, 20, 36, 3] typically pre-supposes that the modalities of all data
are complete throughout both the training and testing. However, due to collection constraints such
as device limitations, budget constraints, and restrained working conditions, it is challenging to
guarantee such a perfect condition [47]. When modalities are partially available, the performance of
models trained on modality-complete data will deteriorate remarkably. This thereby attracts a range
of explorations contributed recently, given that multimodal learning is playing an increasing role.

The existing approaches to address this problem generally fall into two paradigms, i.e., independent
modeling [11, 39, 7] and unified modeling [9, 13, 46] for different modality-missing combinations, of
which the latter is preferred due to the merits of low-storage cost and flexibility. As one prevalent line
of unified modeling, cross-modal knowledge distillation (KD) has achieved persistent advancements
in recent years [40, 51, 47, 46]. It attempts to guide the modality-missing representation to align
with its modality-complete counterpart, facilitating the training under the guidance of privileged
modality-complete information. However, these methods fail to consider that once a modality is
missing, it is impossible to recover its personalized information via a brute-force alignment, which

†The corresponding author is Jiangchao Yao (Sunarker@sjtu.edu.cn).

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/mxchen-mc/PCD


has been revealed theoretically by [18]. Roughly ignoring this inherent information asymmetry in the
alignment can instead lead multimodal models to fit spurious factors erroneously.

Modality 1/2 Represention Modality-Complete Representation

Figure 1: In a two-modality scenario, when both
modalities are present, the modality-complete repre-
sentation is derived through fusion. When one modal-
ity is absent, the mapped representation inferred from
the remaining modality is subject to a certain proba-
bility distribution in the modality-complete space.

We conjecture that when partial modali-
ties are missing, the retaining information
is merely correlated to that of modality-
complete input in a probabilistic sense.
Specifically, given a modality-missing in-
put, the unknown Probability Density Func-
tion (PDF) of its mapped variables in the
modality-complete space peaks at the cor-
responding modality-complete feature and
diminishes when diverging away from this
point, as illustrated in Figure 1 (b). Com-
pared to previous deterministic methods,
learning the PDF is a more reasonable and tol-
erant way to transfer privileged information.
Although the closed form of the oracle PDF
is unknown, we can approximate it by model-
ing a probabilistic distribution with two key
characteristics: (1) In a modeled distribution, the positive points closer to the modality-complete
representation should demonstrate high probabilities and the negative points farther away should
exhibit low probabilities. (2) For different distributions from distinct samples, the relation of their
peak points should be conformal with that of their modality-complete representations. Here, the
former focuses on extreme probability points, while the latter ensures geometric consistency.

With the above intuition, we propose a novel multimodal Probabilistic Conformal Distillation (PCD)
method, which aims to align the modality-missing feature with its modality-complete counterpart
probabilistically. Specifically, PCD parameterizes each modality-missing representation as an inde-
pendent probabilistic distribution and optimizes it to satisfy the two characteristics. To achieve (1),
the log probabilities of the distribution are maximized at positive points and minimized at negative
points. To achieve (2), PCD introduces a contrastive-learning-based approach to align the geometric
structure of the peak points of distributions with that of the modality-complete features. In this
way, the modeled modality-missing distributions can approximate their corresponding PDFs, thereby
facilitating the privileged modality-complete information transfer more efficiently.

In a nutshell, our contributions can be summarized as follows:

• We propose a multimodal Probabilistic Conformal Distillation method to handle the missing
modality problem, which transfers privileged information of modality-complete representa-
tion by considering the indeterminacy in the mapping from incompleteness to completeness.

• We parameterize different modality-missing representations as distinct distributions to
fit their unknown PDFs in the modality-complete space. This is specially realized by
considering the probabilities of extreme points and ensuring the geometric consistency
between peak points of different PDFs and modeled distributions.

• We conduct comprehensive experiments to demonstrate the effectiveness of PCD across a
range of modality-missing scenarios. Extensive comparison on multimodal classification and
segmentation tasks consistently validate the superior performance of our method compared
to the state-of-the-art approaches. Particularly, PCD achieves an average improvement of
about 5% for the seven modality-missing scenarios on the classification dataset CeFA.

2 Related Work

We roughly categorize recent explorations to improve the missing modality robustness into two
paradigms: independent modeling methods and unified modeling methods.

2.1 Independent Modeling for Missing Modality

Many works address the modality-missing problem by training specific models for different modality-
missing combinations [41, 10, 31, 26]. In a certain modality-missing case, some approaches recon-
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struct the original data of the missing modalities from the available ones [2, 22, 28, 28]. However, the
complexity of the data reconstruction usually leads to instability and may introduce noise to affect
the main task [30, 52]. To alleviate this problem, many works try to reconstruct missing modalities at
the representation level [11, 39, 7, 5]. Nevertheless, training specific models for each missing case
tend to be inflexible and storage-consuming for real-world scenarios.

2.2 Unified Modeling for Missing Modality

Recently, there has been a growing interest in improving the robustness of unified multimodal
models against a range of modality-missing combinations [56, 33, 21, 19]. To achieve this goal,
some methods attempt to extract redundant information across modalities by designing different
fusion networks [15, 53, 9, 50]. However, these methods ignore the complementary information,
resulting in suboptimal performance to the specific models. Other methods capture the comprehensive
information through dynamical fusion strategies [13, 14, 12, 6]. To be specific, these methods utilize
uncertainty estimation techniques to learn the dynamical strength relationships among modalities
within different samples, allowing for the adaptive assignment of weights to each available modality.
To harness both redundant and complementary information of available modalities more effectively,
some methods [32, 51, 47, 46] introduce a distillation loss to guide the unified model to imitate
representations or inter-sample relations of the modality-complete model. This distillation process
help the unified model acquire additional privileged information from complete modalities, so as
to improve multimodal robustness [44, 43, 45, 42]. However, previous KD-based methods often
emphasize precisely aligning the modality-missing representation with its complete counterpart,
which probably causes the overfitting on spurious features due to the inherent information asymmetry.

3 Method

3.1 Preliminary

Notations. Suppose that we have a modality-complete training set of {(x⋆i , yi)}Ni=1, where each
input x⋆i comprises M modalities, denoted as x⋆i = {xm

i }Mm=1, and yi represents the corresponding
ground-truth label. N is the dataset size. Our goal is to train a unified model capable of accurately
predicting the label yi for any modality-missing case xi ⊆ x⋆i & xi ̸= ∅. Here, we use an auxiliary
indicator vector δi for xi, where ∀m, δmi ∈ {0, 1} indicates the modality in xi missing or not. During
testing, we construct different modality-missing cases to comprehensively evaluate the robustness.

Motivation. Owing to the inherent information asymmetry, modality-complete and modality-
missing representations cannot be perfectly aligned, even with redundant information. This claim is
experientially supported by the results in Appendix D. Therefore, we try to align the representation
of modality-missing input xi with that of modality-complete input x⋆i in a probabilistic sense. As
shown in the right panel of Figure 1, we conjecture that the representation zi of modality-missing
input xi has a probabilistic peak expectation towards the representation z⋆i of the modality-complete
input x⋆i . In other words, the corresponding PDF p(zi|xi) satisfies the following requirement

z⋆i = argmax
zi∈Z

p(zi|xi), (1)

where Z denotes the representation space. Generally, approximating the unknown PDF p(zi|xi) is a
more relaxed condition compared with the stringent point alignment in previous KD-based methods.

3.2 Probabilistic Conformal Distillation

3.2.1 Objective

Although p(zi|xi) is unknown, even about the function family of the distribution, we can define
an easier distribution q(zi|xi) to approximate its characteristics. Specifically, we can force q(zi|xi)
to follow the two-fold characteristics: 1) extremum property. In a modeled distribution q(zi|xi),
positive points near the modality-complete representation z⋆i should exhibit higher probabilities, and
negative points distant from z⋆i approach far smaller probabilities. (2) conformal property. Given
different samples, the relationship of the peak points of q(z|x) should be conformal with that of their
corresponding modality-complete points z⋆.
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Figure 2: An overview of the proposed method. PCD is a self-KD architecture, where the teacher
and student share the same framework. The teacher provides the modality-complete feature z⋆

and the geometric structure g⋆ to guide the student. In the student, modality-missing features are
parameterized as different normal distributions to fit the corresponding PDF. To achieve this, PCD
maximizes distributions at positive z⋆p and minimizes it at z⋆n, while aligning g with positive g⋆.

To achieve the former property, we first define a positive set Zp which includes all modality-complete
representations z⋆p that are close to z⋆i , and a negative set Zn, consisting of the remaining representa-
tions z⋆n that are far away from z⋆i . For example, in a classification task, Zp contains all z⋆p of the
same class as xi, while Zn consists of z⋆n from other classes. In a segmentation, Zp contains only z⋆i .
Then, the following characteristic should be satisfied

q(z⋆p ∈ Zp|xi) ≫ q(z⋆n ∈ Zn|xi) ≈ 0. (2)

Equation (2) encourages that the probability of any one positive point z⋆p to be greater than the
probabilities of all negative points z⋆n ∈ Zn, which helps to satisfy the extremum property.

Regarding the conformal property, let gi denote the geometric vector for zi. Each element in gi
calculates the distance between the peak points of q(zi|xi) and other modeled distributions q(zj |xj).
Vector g⋆ represents the geometric distance calculated by the modality-complete representations z⋆
in the same manner. Similar to Zp and Zn, we use Gp and Gn to include the positive and negative
geometric vectors respectively. The set Gp contains all the vectors g⋆p corresponding to z⋆p and the
same relation applies to Gn and z⋆n. Then pursue the following characteristic satisfied

s(g⋆p ∈ Gp, gi) ≫ s(g⋆n ∈ Gn, gi), (3)

where s(·, ·) > 0 is one of the metrics for measuring the vector similarity. Equation (3) hopes the
similarity between the geometric vector gi and any positive vector g⋆ to be larger than that between
gi and negative vectors g⋆n ∈ Gn. To meet the characteristics in Equation (2) and Equation (3), we
propose a probabilistic conformal objective to optimize q(z|xi):

max

∏
g⋆
p∈Gp

s(g⋆p, gi)
∏

z⋆
p∈Zp

q(z⋆p |xi)∏
z⋆
n∈Zn

q(z⋆n|xi)
. (4)

Specifically in Equation (4), to satisfy the extremum property, we propose to maximize the proba-
bilities of q(zi|xi) at positive points z⋆p ∈ Zp and minimize them at negative points z⋆n ∈ Zn. To
achieve Equation (3), we introduce a contrastive learning-based approach to maximize the similarities
s(g⋆p , gi). Notice that, here the minimization of s(g⋆n, gi) is not emphasized, since it is implicitly
included in the contrastive-learning-based similarity. By simplifying Equation (4) with the log
function, we can transform the objective function into a more manageable form, expressed as

max

 ∑
z⋆
p∈Zp

log q(z⋆p |xi) −
∑

z⋆
n∈Zn

log q(z⋆p |xi)


︸ ︷︷ ︸

Probability Extremum

+
∑

g⋆
p∈Gp

log s(g⋆p , gi)︸ ︷︷ ︸
Geometric Consistency

. (5)

Equation (5) consists of two parts, where the first term focuses on extreme probability points, while
the second term is for the geometric consistency. In the following, we introduce the implementation
of Equation (5) on how to model the modality-missing distributions (Section 3.2.2) and fit the
corresponding PDFs (Section 3.2.3).
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3.2.2 Multimodal Probabilistic Modeling.

The framework of PCD is shown in Figure 2. For each modality-missing input xi, we establish an
individual D-dimensional normal distribution q(zi|xi), with its mean and variance directly determined
as by the multimodal encoder follows

q(zi|xi) ∼ N
(
zi;µi, σ

2
i

)
, whereµi = f (xi) , σi = h (µi) . (6)

The features µi ∈ RD, σi ∈ RD represent the mean and variance vectors of the multimodal
distribution N

(
µi, σ

2
i

)
, respectively. f(·) denotes the multimodal encoder, while h(·) is the head

module for computing the variance vectors. We maximize Equation (5) for each modality-missing
distribution q(zi|xi) to fit the corresponding PDF. The probabilistic modeling maps each modality-
missing input xi to a density region in the representation space, rather than a single deterministic
vector point, which enhances the tolerance to lower-quality modality-missing data and prevents the
multimodal encoder from affecting representation capacity by learning some spurious factors.

3.2.3 Probabilistic Conformal Distillation

After modeling the modality-missing input as a Gaussian distribution q(zi|xi), we aim to approxi-
mate q(zi|xi) to the unknown PDF p(zi|xi) to transfer the modality-complete information. This is
accomplished by optimizing two terms in Equation (5), that is, the probability extremum term and
the geometric consistency term.

Probability Extremum. The probability extremum term in Equation (5) enables q(zi|xi) to have
higher probabilities at positive points in Zp and lower probabilities at negative points in Zn. By
inserting the Gaussian function into the probability extremum term and eliminating the constant, the
extremum term can be maximized by minimizing its negative form, namely, the following loss,

Lu =
∑

{p|yp=yi}

∑
d

(
(z⋆p,d − µi,d)

2

2(σi,d)2
+ log σi,d

)
−
∑

{n|yn ̸=yi}

∑
d

(
(z⋆n,d − µi,d)

2

2(σi,d)2
+ log σi,d

)
. (7)

Prior works [4, 35] in high-dimensional latent distribution learning report that the variance collapse is
a commonly encountered issue. This phenomenon typically occurs because the network is encouraged
to predict small σ values to mitigate the unstable gradients that arise while using Stochastic Gradient
Descent. To prevent this problem, we empirically implement a clipping operation on Equation (7),
stopping the optimization when σ becomes too small. For brevity, we focus on analyzing the first
half of Equation (7). Its optimization is carried out in two aspects: (1) minimizing the distance
between the mean µi,d and the positive modality-complete representations z⋆p,d of the teacher, i.e.,
(z⋆p,d − µi,d)

2; (2) correlating this distance with σ2
i,d, where larger distances correspond to higher

variance, and vice versa. This relationship allows us to estimate the element-wise quality of each
mean vector µi, where the closer proximity to z⋆p,d signifies more information contained.

Geometric Consistency. The geometric consistency term aims to align the structure vector gi with its
positive counterparts in Gp. Specifically, we represent the geometric vector g⋆ of PDFs by calculating
the distances of their peak points z⋆, and g is obtained by the distances of mean vectors µ, namely:

g⋆i (b) = α(z⋆i , z
⋆
b ), gi(b) = α(µi, µb),

where gi, g
⋆
i are |B|-dimensional vectors with µi, z

⋆
i as the cores, respectively. |B| is the batch

size. Theoretically, α(·, ·) can be any formula for calculating the distance between vectors. For
classification tasks, α(·, ·) is the Euclidean distance. For segmentation tasks, since the dimension
of the modality-missing and modality-complete features could be very high, we choose the inner
product to mitigate the curse of dimensionality. Notice that gi, g⋆i are computed across all samples in
the batch, without distinguishing between positive and negative samples.

Like Zp, the set Gp contains the positive geometric vectors g⋆p , whose core z⋆p share the same class as
xi, namely Gp = {g⋆p|yp = yi}. For the similarity function s(g⋆p, gi) in the geometric consistency
term, we employ the following contrastive learning-based form:

s(g⋆p , gi) =
exp(β(g⋆p, gi)/τ)

exp(β(g⋆p , gi)/τ) +
∑

{n|yn ̸=yi}
exp(β(g⋆n, gi)/τ)

, (8)
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where β(g, g⋆) calculates the cosine similarity between g and g⋆, τ is the temperature coefficient. It
is worth noting that in the segmentation task, due to the high dimensionality of multimodal features,
only one negative vector is selected to conserve computational resources. Then, PCD aligns gi with
g⋆ ∈ Gp through minimizing:

Lg = −
∑

{p|yp=yi}

log s(g⋆p , gi), (9)

To reiterate, the difference between the contrastive learning-based loss Lg in classification and
segmentation tasks is analogous to that between supervised contrastive learning [23] and contrastive
learning [16, 55, 54, 48]. The former considers all g⋆ sharing the same class as gi as positive samples,
whereas the latter only uses g⋆i from the same instance as the positive sample.

By optimizing Equation (7) and Equation (9), each modality-missing distribution can fit the corre-
sponding p(zi|xm

i ) and capture privileged information from the teacher in a more tolerant way.

3.3 Training Process

The framework of PCD, depicted in Figure 2, adopts a teacher-student architecture. Self-KD [24]
is introduced to build an end-to-end distillation system, where the parameters of the fixed teacher
F (0) are obtained from the warm-up stage. During the training stage, the teacher model handles the
modality-complete data and provides supervision for the student F (1).

Overall Loss. The overall loss function is formulated as:

L = Lt + λ(Lu + Lg), (10)

where λ is the hyperparameter used to balance different losses, and the experiments show that
λ is insensitive in a certain range. Lt represents the task learning loss, which is defined by the
specific primary task. For example, when the primary task is classification, Lt corresponds to the
cross-entropy loss. The training procedure is shown in Algorithm 1 in Appendix A.

3.4 Discussion

PCD proposes to fit the PDFs of variables in the representation space by utilizing different parameter-
ized Gaussian distributions. Compared to existing KD-based methods, PCD offers a more tolerant
and reasonable way to transfer the privileged information from the modality-complete teacher to
the modality-missing student. Specifically, it optimizes the probabilities of modeled distributions
at extremum points and constrains the alignment between the geometric structures of teacher repre-
sentations and the mean vectors of modeled distributions. Besides, regarding the complexity, PCD
only introduces some head modules in the encoder to estimate the variance, which is lightweight and
efficient and can be easily applied to many existing multimodal fusion methods.

4 Experiments

4.1 Experimental Setup

Datasets. We implement experiments on four multimodal datasets, comprising two classification
datasets CASIA-SURF and CeFA, and two segmentation datasets NYUv2 and Cityscapes.

CASIA-SURF [49] and CeFA [27] are two large face anti-spoofing datasets that include samples
across three modalities: RGB, Depth and infrared (IR). For CASIA-SURF [49], we adhere to
the intra-testing protocol established by the authors, ensuring consistency and reliability in our
experimental results. This dataset comprises 29,000 samples for training, 1,000 for validation, and
57,000 for testing. Similarly, in CeFA [27], we employ a cross-ethnicity and cross-attack protocol as
recommended by the authors, which divides the dataset into training, validation, and testing sets with
35,000, 18,000, and 54,000 samples respectively.

NYUv2 [37] and Cityscapes [8] are both two-modality segmentation datasets, each comprising
RGB and Depth modalities. NYUv2 [37] contains a total of 1,449 indoor RGB-D images, with
795 designated for training and 654 for testing. NYUv2 employs a common 40-class label setting,
facilitating comparative analysis across various segmentation algorithms. Cityscapes [8] is an outdoor
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Table 1: Performance under different multimodal conditions, where "R", "D", and "I" respectively
represent the available RGB, Depth, and IR modality. “Average” is the average performance over all
the possible conditions. ACER ↓ means that the lower the ACER value, the better the performance,
while mIOU ↑ is the opposite. The best results are in bold and the second-best ones are marked with
underline. "∆" means the performance gap between PCD and the best results.

CASIA-SURF (ACER ↓)
Method {R} {D} {I} {R,D} {R,I} {D,I} {R,D,I} Average

Traditional [49] 23.03 17.10 49.53 10.40 41.02 11.26 1.40 22.11

Separate Model [49] 10.01 4.45 11.65 3.41 6.32 3.54 1.23 5.80

Augmentation [1] 11.75 5.87 16.62 4.61 6.68 4.95 2.21 7.52
HeMIS [15] 14.36 4.70 16.21 3.23 6.27 3.68 1.97 7.18

MMFormer [50] 11.15 4.67 13.99 1.93 4.77 3.10 1.94 5.93
MMANET [46] 8.57 2.27 10.04 1.61 3.01 1.18 0.87 3.94

MD [12] 10.84 6.65 19.43 12.64 7.84 3.99 0.96 7.30
ETMC [14] 7.91 4.73 7.54 1.39 4.56 1.46 0.76 4.05
RAML [6] 11.26 3.10 11.65 1.92 5.35 1.76 1.09 5.16

PCD 7.23 2.20 5.66 0.99 2.86 0.89 0.74 2.93
∆ 0.74%↓ 0.07%↓ 1.88%↓ 0.40%↓ 0.15%↓ 0.29%↓ 0.02%↓ 1.01%↓

CeFA (ACER ↓)
Method {R} {D} {I} {R,D} {R,I} {D,I} {R,D,I} Average

Traditional [49] 50.00 50.00 49.96 49.25 47.28 48.95 39.62 47.86

Separate Model [49] 27.44 33.75 36.17 35.62 31.62 36.62 24.15 32.20

Augmentation [1] 27.93 36.90 36.14 32.10 28.47 35.12 31.87 32.65
HeMIS [15] 34.14 37.97 36.94 36.02 33.94 31.92 40.66 35.94

MMFormer [50] 28.51 33.58 39.56 29.47 27.66 32.17 30.72 31.52
MMANET [46] 27.15 32.50 35.62 22.87 23.27 30.45 23.68 27.94

MD [12] 27.13 35.81 37.99 26.25 31.29 34.69 30.49 31.95
ETMC [14] 24.74 34.28 37.62 22.52 24.25 30.63 21.59 27.95
RAML [6] 28.54 33.88 40.01 23.82 28.81 28.85 22.11 29.43

PCD 21.38 28.01 34.79 17.19 20.92 21.68 14.39 22.63
∆ 3.36%↓ 4.49%↓ 0.83%↓ 5.33%↓ 2.35%↓ 5.75%↓ 7.20%↓ 5.31%↓

NYUv2 (mIOU ↑) Cityscapes (mIOU ↑)
Method {R} {D} {R,D} Average {R} {D} {R,D} Average

Traditional [36] 11.15 4.18 48.78 21.41 3.17 4.87 78.73 28.89

Separate Model [36] 44.22 40.55 48.89 44.55 77.60 59.11 78.62 71.77

Augmentation [1] 41.34 39.76 47.23 42.77 76.89 57.42 78.13 70.81
MMFormer [50] 43.22 41.12 48.45 44.26 76.62 58.53 78.01 71.05
MMANET [46] 44.93 42.75 49.62 45.58 77.61 60.12 78.89 72.20

PCD 45.68 44.34 49.44 46.49 78.26 61.30 79.53 73.03
∆ 0.75%↑ 1.59%↑ 0.18%↓ 0.91%↑ 0.65%↑ 1.18%↑ 0.64%↑ 0.83%↑

RGB-D dataset designed for urban scene comprehension. There are 5,000 annotated samples, where
2,975 samples are for training, 500 for validation, and 1,525 for testing.

Experimental Details. For classification CASIA-SURF and CeFA, the SGD optimizer [34] is used
and the batch size is 64. The dimension of the Gaussian distribution is 512. We report the results
using the metric of Average Classification Error Rate (ACER). Each modality leverages a separate
ResNet-18 [17] as the unimodal encoder. We employ an exponential decay learning rate strategy
in which the learning rate is fixed at 1e-3 during the warm-up stage and then decays exponentially.
Weight decay and momentum are set to 0.0005 and 0.9, respectively. For segmentation experiments
on NYUv2 and Cityscapes, we use the Adam optimizer [25] and set the batch size to 16. The
results are evaluated by the metric of mean IOU (mIOU). The learning rate is initialized with 1e-2
and 1e-4 respectively for two datasets and adapted by the one-cycle scheduler. Following [46], we
use ESANet [36] as the backbone. On all datasets, the variances are obtained through a two-layer
MLP, where the hidden size is 1024. During training, we augment each modality-complete data by
simulating all potential modality-missing scenarios and randomly sample one of the augmented data
as the training sample for the current epoch. For bimodal datasets, three cases are included, that is,
missing RGB, missing depth, and complete. For trimodal datasets, there are seven missing cases.
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4.2 Performance Comparison

To evaluate the robustness of PCD, we choose the following methods in the comparison: 1) Baselines.
Traditional [49, 36]: a benchmark method trained solely on modality-complete data. Separate
Model [49, 36]: separate intermediate-fusion models for each modality combination. 2) Redundancy-
based methods: Augmentation [1], MMFormer [50]. 3) Cross-modal KD-based methods: MMIN [51],
MMANET [46]. 4) Dynamical fusion-based methods: MD [12], ETMC [14], RAML [6].

Classification Task. The results in Table 1 show the performance of PCD and other state-of-the-art
(SOTA) methods across various testing conditions with missing modalities on two classification
datasets CASIA-SURF and CeFA. We can see that the ‘Traditional’ method, which is exclusively
trained on modality-complete samples, exhibits a high sensitivity to the missing modality problem.
Specifically, the error rate surges by 21.63% on CASIA-SURF when only the RGB modality is
available. Comparing the results of various missing modality methods, PCD achieves the best
results in almost all the settings on the two multimodal classification datasets. In comparison to the
second-best method, PCD demonstrates the error rate reductions of 1.01% and 5.31% on CASIA-
SURF and CeFA. These results illustrate the effectiveness of our proposed method in privileged
information transfer. Besides, the performance of some methods declines with an increasing number
of modalities. For example, on CeFA, the error rate of MMANET with complete modalities is 0.81%
higher than when IR is absent. This deterioration may potentially caused by overfitting resulting
from deterministic alignment. In contrast, our method employs a probabilistic distillation, which
introduces a more relaxed framework for aligning representations, mitigating this issue effectively.

Segmentation Task. We conducte experiments on NYUv2 and Cityscapes to verify the effectiveness
of PCD on segmentation tasks. Compared to the second-best method, PCD achieves average accuracy
improvements of 0.91% and 0.83% on NYUv2 and Cityscapes, respectively. Furthermore, in the
Depth-missing scenarios on the NYUv2 and Cityscapes datasets, PCD demonstrates relatively small
improvements. This may be because that the performance of the input RGB is already very close to
that of the modality-complete input. Consequently, it is challenging to obtain additional privileged
information through distillation, limiting the potential enhancement.

4.3 Further Analysis

Table 2: Ablation study on CeFA. × and ✓ in the table indicate
without and with the corresponding loss term respectively.

Lc Lu Lg {R} {D} {I} {R,D} {R,I} {D,I} {R,D,I} Average

✓ × × 26.95 38.06 37.06 24.18 24.75 32.82 25.38 29.89
✓ ✓ × 21.14 33.76 37.22 21.28 23.61 27.56 21.19 26.53
✓ × ✓ 20.62 34.43 35.23 18.18 21.86 32.63 21.72 26.38

✓ ✓ ✓ 21.38 28.01 34.79 17.19 20.92 21.68 14.39 22.63

Ablation on Loss Components.
In this part, we investigate the
impact of each loss component
in Eq. (10) on CeFA. In Table 2,
we conduct the ablation study
and summarize the correspond-
ing performance with or without
different loss components. Ac-
cording to the results in Table 2,
we can observe that the classi-
fication model with the probability extremum loss Lu performs 3.36% better than the sim-
ple model with only Lc, which suggests that constraining probabilities of extreme points in-
deed helps to the privileged information transfer from the modality-complete teacher to the
modality-missing student. Additionally, PCD with all loss components outperforms the model
with Lc and Lu on average, which validates the effectiveness of the geometric consistency loss.

Table 3: The comparison between PCD and its variants on CeFA,
where "Determinate" means the degradation of PCD with deter-
minate distillation, while "Pretrained" is the distillation with a
pretrained teacher.

Configurations {R} {D} {I} {R,D} {R,I} {D,I} {R,D,I} Average

Determinate 23.52 38.96 38.95 25.75 24.52 36.1 28.21 30.99
Pretrained 23.52 31.64 39.86 22.57 24.89 29.43 26.50 28.34

PCD 21.38 28.01 34.79 17.19 20.92 21.68 14.39 22.63

Ablation on Probabilistic Dis-
tillation. To study the effect
of probabilistic distillation, we
conduct experiments to compare
the performance of PCD with its
determinate distillation variant.
Here, the variant is the degrada-
tion method of PCD that trans-
fers knowledge by directly mini-
mizing the Euclidean distance of
the complete-incomplete pairs in
teacher and student networks. The results are shown in Table 3. It can be seen that PCD consistently
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outperforms its "Determinate" variant in all missing modality combinations and decreases the error
rate by 8.36% on average. This demonstrates the effectiveness of transferring privileged information
via probabilistic distillation, which is more tolerant.

Analysis about KD Strategy. To explore the effectiveness of self-KD, we compare PCD with its
pretrained teacher variant. This variant refers to training a modality-complete teacher individually
to guide students in optimizing from scratch. The results are shown in Table 3. As can be seen,
the error rate of PCD is 5.71% lower on average than its pretrained variant. In addition to training
a fixed teacher to offer modality-complete supervision, our self-KD strategy also provides a good
initialization for the student. With the help of the shared predictor, the semantic coherence of modality-
complete and modality-missing representations is indirectly ensured, which narrows information gap
between them at the beginning of KD, thereby facilitating privileged information transfer.

Figure 3: The prediction distributions of both the
teacher and the distilled student of PCD under all mul-
timodal combinations on CeFA. The X-axis represents
the normalized logit output and the Y-axis is the number
of samples after taking the square root.

Classification Boundary of the Teacher
and Student. In order to further validate
the effectiveness of probabilistic distilla-
tion for the transfer of privileged complete-
modality information, we analyze the pre-
dictions of both the fixed teacher obtained
from the warm-up stage and the distilled
student under all multimodal conditions.
The results are shown in Figure 3. It can
be observed that, apart from the reduced
error rate, the logits of the student exhibit a
higher concentration around 0 or 1, demon-
strating a more separable inter-class bound-
ary. The probabilistic distillation process
transfers privileged information to hard
samples around the classification boundary in a more tolerant way, mitigating the erroneous fit
to spurious factors, so as to further refine modality-missing features.

Figure 4: The average performance of PCD under dif-
ferent λ and τ values on CeFA. The hyperparameter λ
is used to balance the loss terms, τ is the temperature.

Hyperparameter λ. The hyperparameter
λ controls the balance between distillation
and classification. To validate the stability
of PCD against λ, we conducted several
experiments with different values of λ on
CeFA. The results are shown in the left half
of Figure 4, where values of λ range from
1.4 to 2.4. From the curve, we can see
that setting a relatively large value for λ
enhances the distillation of privileged infor-
mation, thereby enhancing the multimodal
robustness. Specifically, in [1.4, 2.2], λ
appears to be insensitive within a certain range, In our experiments, we set λ = 1.8.

Hyperparameter τ . In the right panel of Figure 4, we conducted several experiments with different
values of τ to assess its impact on our results. The hyperparameters τ is the temperature in Equa-
tion (8), which scales the similarity measures. The results reveal τ is insensitive within a certain
range. In our experiments, we set τ = 0.5.

Table 4: The numbers of parameters (M) and
FLOPs (G) of several methods on CeFA.

Method Backbone Paramters FLOPs

MD [12] ResNet-18 35.88 1.392
ETMC [14] ResNet-18 34.30 1.391
RAML [6] ResNet-18 35.09 1.393

PCD ResNet-18 38.50 1.395

Computational Overhead. Compared to the
multimodal models with the same backbone,
PCD only introduces a few additional head mod-
ules in the encoder to estimate the variance. To
demonstrate the minor change PCD brings, we
estimated the number of parameters and FLOPs
of PCD and the other three late fusion methods
in Table 4. It can be seen that PCD does not
significantly increase the number of parameters
or FLOPs, where the FLOPs are almost equal to
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the second-best method MMANET, while the number of parameters only increased by 4.20M. This
lightweight change of MPCD makes it easily be applied to many existing multimodal fusion methods.

Table 5: Performance under different multimodal conditions when each unimodal data of training
samples is missing with a probability of 30%.

Method {R} {D} {I} {R,D} {R,I} {D,I} {R,D,I} Average

MMANET [46] 28.39 39.61 34.12 34.19 23.39 34.12 27.11 31.56
ETMC [14] 25.96 34.69 38.60 24.15 24.58 31.83 24.03 29.12

PCD 23.42 30.23 34.60 18.34 21.98 24.50 15.07 24.02
∆ 2.54%↓ 4.46%↑ 0.48%↑ 5.81%↓ 1.41%↓ 6.43%↓ 8.96%↓ 5.20%↓

Modality-Missing Training Data. All the experiments above are conducted with the modality-
complete training data. In this part, we extend PCD by considering the scenario where the modality-
complete data of some training samples is also unavailable. PCD is only applied to the data that has
modality-complete counterpart, and for the remaining data, only Lt is optimized. Here, we introduce
a case where 30% of the data is consistently missing from each modality during training. As shown
in Table 5, while some modality-missing cases may underperform compared to the SOTA, PCD still
outperforms the second-best method by 5.20% on average. Although PCD is not specifically designed
for modality-missing training data, these results demonstrate its scalability for such scenarios.

5 Conclusion

In this paper, we propose a multimodal Probabilistic Distillation (PCD) method to mitigate the missing
modality problem, which considers the indeterminacy in the alignment between the modality-complete
and modality-missing representations. Specifically, PCD aims to parameterize the modality-missing
representations as different Gaussian distributions and fit PDFs of their mapped variables in the
modality-complete space. This is achieved by ensuring the characteristics of probabilities at extreme
points and maintaining geometric consistency with that of the modality-complete features. Extensive
experiments validate the superiority of PCD in increasing multimodal robustness.
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Appendix / Supplemental Material

A Algorithm

The whole training procedure of PCD is shown in Algorithm 1.

Algorithm 1 Training procedure of PCD

Input: Training data X , target set Y , missing modality indicator δ, hyperparameters λ, τ , warm-up
epoch E, training epoch P and batch size B
// The warm-up stage
for an epoch e = 1, · · · , E do

for a sampled batch X = {xi}Bi=1, Y = {yi}Bi=1 do
Optimize Lc // Initialize the teacher and student models

end for
end for
// The training stage
Load and fix parameters in warm-up stage for the teacher
for a epoch p = 1, · · · , P do

for a sampled batch X = {xi}Bi=1, Y = {yi}Bi=1 do
Calculate z⋆ and g⋆

Model Gaussian distributions in Equation (6)
Calculate the probability extremum loss Lu and the geometric consistency loss Lg

Optimize Equation (10) to update parameters of the student
end for

end for

B Implement Details

B.1 Classification

Network Architecture. For a fair comparison, we follow the basic implementation of the traditional
multimodal model in [49] for all the comparison methods. This backbone is a late fusion network
with separate ResNet18 encoders for each modality. Here, for PCD, we parameterize the unimodal
features from unimodal encoders and the fused multimodal features from the fusion module as
independent Gaussian distributions, and make them fit their PDFs by optimizing corresponding Lu

and Lg. The variance is obtained for a two-layer MLP, where the hidden size is 1024. In addition,
like [6], by analyzing the variance in unimodal distributions, a weighting mechanism is employed,
which can adaptively aggregate the information of each available unimodality.

Setup. We augment modality-complete samples by simulating all potential missing modality sce-
narios equally. In other words, in one epoch, each sample has an equal probability of randomly
encountering one of seven missing modality scenarios. Besides, random flipping, rotation, and
cropping are also used for data augmentation. All models are optimized by an SGD for 110 epochs
with a mini-batch of 64. Weight decay and momentum are set to 0.0005 and 0.9, respectively. The
learning rate is initialized to 0.001. After the warm-up stage, an exponential decay learning rate
strategy is employed, in which the decay coefficient is 0.9. The dimension of the Gaussian distribution
is 512. The hyper-parameters λ, τ are 1.8 and 0.5, respectively.

B.2 Segmentation

Network Architecture. We use the ESANet [36] as the backbone, which is an early fusion network.
The modality encoder is the ResNet50 with NBt1 used in ESANet. For PCD, we parameterize the
fused multimodal features from the last three resolution stages as independent Gaussian distributions.
Notice that, since the dimensionality of multimodal features is very high, only one negative vector
in Equation (8) is selected to conserve computational resources, and this formulation degenerates to
the triplet loss. Besides, Lu is applied to the fused features after average pooling.

Setup. Random flipping, rotation, cropping and missing modality simulation are used for data
augmentation. All models are optimized by an Adam for 450 epochs with a mini-batch of 16. The

15



Table 6: Stability experiments on NYUv2, Cityscapes, CASIA-SURF and CeFA.
CASIA-SURF

{R} {D} {I} {R,D} {R,I} {D,I} {R,D,I} Average

PCD 7.23 2.20 5.66 0.99 2.86 0.89 0.74 2.93
±0.13 ±0.26 ±0.90 ±0.10 ±0.31 ±0.19 ±0.23 ±0.25

CeFA
{R} {D} {I} {R,D} {R,I} {D,I} {R,D,I} Average

PCD 21.38 28.01 34.79 17.19 20.92 21.68 14.39 22.63
±1.85 ±2.06 ±2.46 ±0.65 ±2.41 ±3.61 ±3.54 ±2.18

NYUv2 Cityscapes
{R} {T} {R,T} Average {R} {T} {R,T} Average

PCD 45.68 44.34 49.44 46.49 78.26 61.30 79.53 73.03
±0.11 ± 0.08 ± 0.08 ±0.04 ±0.21 ±0.26 ±0.29 ±0.11

Table 7: Ablation study of loss components on CASIA-SURF, CeFA, NYUv2 and Cityscapes.

CASIA-SURF
Lc Lu Lg {R} {D} {I} {R,D} {R,I} {D,I} {R,D,I} Average

✓ × × 12.31 2.89 19.24 1.31 8.16 2.19 1.35 6.78
✓ × ✓ 13.55 2.01 18.02 0.86 5.81 2.53 0.85 6.24
✓ ✓ × 7.59 4.10 7.97 1.83 3.86 2.04 0.97 4.05
✓ ✓ ✓ 7.23 2.20 5.66 0.99 2.86 0.89 0.74 2.93

CeFA
Lc Lu Lg {R} {D} {I} {R,D} {R,I} {D,I} {R,D,I} Average

✓ × × 26.95 38.06 37.06 24.18 24.75 32.82 25.38 29.89
✓ ✓ × 21.14 33.76 37.22 21.28 23.61 27.56 21.19 26.53
✓ × ✓ 20.62 34.43 35.23 18.18 21.86 32.63 21.72 26.38

✓ ✓ ✓ 21.38 28.01 34.79 17.19 20.92 21.68 14.39 22.63

NYUv2 Cityscapes
Lc Lu Lg {R} {T} {R,T} Average {R} {T} {R,T} Average

✓ × × 44.24 41.17 47.89 44.43 77.54 59.64 78.46 71.89
✓ × ✓ 45.96 42.95 48.54 45.82 78.11 60.62 79.07 72.60
✓ ✓ × 44.48 42.02 48.86 45.12 77.52 59.94 78.91 72.17
✓ ✓ ✓ 45.68 44.34 49.44 46.49 78.26 61.30 79.53 73.03

learning rate is initialized to 0.01 and the warm-up epoch is set as 150. After the warm-up stage, a
cosine annealing learning rate strategy is employed.

C Stability Experiments

In Table 6, we detail the stability experiments for PCD across all datasets. Each experiment is
repeated for three times to ensure reliability, allowing to calculate the average score along with the
standard deviation. The results reveal that, even in its worst-case scenario, PCD outperforms the best
competing methods, registering average improvements of 0.87% on NYUv2, 0.72% on Cityscapes,
0.76% on CASIA-SURF, and a significant 3.13% on CeFA. These outcomes not only underscore
PCD’s superior performance but also attest to its stability and consistency across a wide range of
testing conditions. This consistent reliability highlights the robustness and adaptability of PCD,
making it an effective solution in varied scenarios.

D The Visualization of Feature distribution

We use t-SNE to visualize the distribution of the modality-complete, RGB, Depth, and IR represen-
tations of the unified model without PCD distillation on CASIA-SURF. The results are shown in
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Figure 5. It can be observed that each unimodal distribution is similar but different to the modality-
complete distribution, which provides empirical evidence for PCD to consider the indeterminacy in
the mapping from incompleteness to completeness.

Figure 5: The visualization of the distributions of the modality-complete, RGB, Depth, and IR
representations from the unified model without distillation.

E Ablation Study

E.1 Ablation Study on Loss Components

We further conduct ablation studies to evaluate the effects of different loss components on the NYUv2,
Cityscapes, CASIA-SURF, and CeFA datasets, as presented in Table 7. Notably, incorporating any
of the loss components yields substantial improvements, particularly with the CeFA dataset. When
applied separately, Lu and Lg each contributed to an average accuracy improvement of 3.36% and
3.51% respectively. These results underscore the significance of constraining probabilities of extreme
points for enhancing the transfer of privileged information. Overall, the PCD model achieves optimal
performance when it incorporates all proposed loss components.

E.2 Analysis of Hyperparameter λ

Figure 6: The average performance of PCD under
different λ and τ values on CASIA-SURF and CeFA.

To further assess the stability of the PCD
model in response to various λ parameters,
we report its average performance across
the CASIA-SURF and CeFA datasets, as
illustrated in the left panel of Figure 6.
The performance curve demonstrates that
PCD maintains considerable stability across
a range of λ values, where the performance
variance is kept within 0.8. Notably, PCD
consistently outperforms SOTA models on
all datasets when the λ value is between
1.6 and 2. Based on these observations, we
have set λ to 1.8 throughout our classifica-
tion experiments to ensure optimal perfor-
mance and stability. This consistent outper-
formance underscores the robustness of the
PCD model under varying conditions.

E.3 Analysis of Hyperparameter τ

In the right panel of Figure 6, we conducted a series of experiments to evaluate the impact of
different values of the hyperparameter τ on the performance of PCD on the multimodal classification
datasets CASIA-SURF and CeFA. This hyperparameter, which acts as the temperature coefficient in
Equation (8), is used to scale the similarity measures. The experimental findings indicate that the
performance of the model is relatively insensitive to variations in τ within a certain range. Based
on our results, we chose to set τ to 0.5 for all subsequent experiments to ensure an optimal balance
between performance and parameter sensitivity.
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Table 8: Analysis of warm-up epoch on CeFA.
Epoch {R} {D} {I} {R,D} {R,I} {D,I} {R,D,I} Avg

30 19.28 32.35 36.41 17.15 20.26 26.26 16.18 23.98
40 19.29 28.20 36.40 15.30 20.58 24.08 17.71 23.08
50 21.38 28.01 34.79 17.19 20.92 21.68 14.39 22.63
60 21.46 27.16 35.17 16.75 22.97 22.35 15.21 23.01
70 21.64 29.22 35.86 17.90 21.69 23.51 17.16 23.86
80 23.35 26.38 33.83 16.40 25.25 21.14 19.83 23.74

E.4 Analysis of Warm-up

Warm-up stage learns to provide complete modality supervision and a good initialization for the
subsequent training process. In this part, we investigate the impact of varying warm-up epochs on
probabilistic distillation. The experimental results in Table 8 emphasize the importance of judiciously
setting the warm-up epoch. The experimental results show that PCD is not sensitive to the number
of warm-up epochs. Within the range of 30 to 80, the average result is around 23%, consistently
outperforming the SOTA. We set the number of warm-up epochs to 50 for the classification tasks.

F Results on SUN RGB-D Dataset

To further confirm the effectiveness of PCD on segmentation tasks, we conduct experiments on
a larger dataset, SUN RGB-D [38]. This dataset has 37 categories of objects and contains 5,285
RGB-Depth pairs for training and 5050 pairs for testing. The results are shown in Table 9. We can
see that PCD is effective even on a larger segmented dataset.

Table 9: The mIOU(↑) of PCD and other methods on SUN RGB-D.

Methods {R} {D} {R,T} Average
Separate Model 43.94 39.81 47.84 43.86

MMANET 44.73 39.94 47.54 44.07
PCD 45.63±0.16 41.43±0.07 47.24±0.17 44.75±0.02

G Exploration on Modality-Missing Training Data

In Table 10, we conduct experiments on PCD against multiple SOTAs on the scenarios of training
data with missing modalities. Specifically, we evaluated the performance on both the CASIA-SURF
and CeFA datasets, where each modality of the training data has either 30% or 40% of its data
missing. The results clearly indicate that PCD outperforms all other methods at both rates. Notably,
PCD shows a significant performance improvement on CeFA, with a gap of 5.39% under the 30%
missing modality condition and 5.10% under the 40% missing modality condition. These results
indicate that although PCD is not specifically designed for modality-missing training data, it is still
scalable for this scenario.

H Limitations and Future Explorations

This paper introduces a probabilistic alignment approach between modality-complete and modality-
missing representations to enhance the effective transfer of privileged information. The proposed
method is primarily designed for scenarios where all training samples are modality-complete, and
modality-missing occurs exclusively during testing. If modality-missing data is present during train-
ing, knowledge distillation cannot be applied to the modality-missing subset of the data. Therefore, in
the future, scenarios with missing data during training will be further the focus of our consideration.
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Table 10: Performance under different training data missing modality rates. The best results are in
bold and the second-best ones are marked with underline. "∆" means the performance gap between
PCD and the second-best results.

CASIA-SURF (ACER ↓)
Missing Method {R} {D} {I} {R,D} {R,I} {D,I} {R,D,I} Average

30%

MMANET [46] 13.50 3.38 6.57 6.57 3.72 1.83 1.31 4.67
ETMC [14] 7.63 3.62 10.18 1.12 5.21 1.43 0.96 4.31

PCD 8.28 2.13 6.66 1.24 2.66 2.66 0.60 3.18
∆ 0.65%↑ 1.25%↓ 0.09%↑ 0.12%↑ 1.06%↓ 1.23%↑ 0.36%↓ 1.13%↓

40%

MMANET [46] 14.96 5.22 9.03 3.24 5.14 2.31 2.10 6.00
ETMC [14] 9.38 7.42 7.44 1.41 3.98 3.16 0.58 4.77

PCD 7.14 1.77 10.88 1.08 3.70 1.10 0.88 3.79
∆ 2.24%↓ 3.45%↓ 3.44%↑ 0.33%↓ 0.28%↓ 1.21%↓ 0.30%↑ 0.98%↓

CeFA (ACER ↓)
Missing Method {R} {D} {I} {R,D} {R,I} {D,I} {R,D,I} Average

30%

MMANET [46] 28.39 39.61 34.12 34.19 23.39 34.12 27.11 31.56
ETMC [14] 25.96 34.69 38.60 24.15 24.58 31.83 24.03 29.12

PCD 23.42 30.23 34.60 18.34 21.98 24.50 15.07 23.73
∆ 2.54%↓ 4.46%↓ 0.48%↑ 5.81%↓ 1.41%↓ 7.33%↓ 8.96%↓ 5.39%↓

40%

MMANET [46] 29.94 43.40 37.29 31.60 28.62 44.97 31.80 35.38
ETMC [14] 24.38 37.82 38.33 25.04 24.39 36.96 24.03 30.13

PCD 24.91 31.23 34.40 21.09 23.98 23.31 16.30 25.03
∆ 0.53%↑ 6.58%↓ 2.89%↓ 3.95%↓ 0.40%↓ 13.65%↓ 7.73%↓ 5.10%↓

I Impact Statements

The method proposed in this paper can effectively improve the robustness of the multimodal model.
This exploration is of great significance to the real-world inference scenarios that can not always
obtain modality-complete data, such as healthcare and automatic driving. Compared to previous
methods, PCD does not add a lot of parameters and effectively saves computational costs. So far, we
have not discovered any negative impacts of this method.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction part clearly reflect the main contribution.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitation is discussed in Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: There are no included theoretical results in this work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides a detailed description of the experimental settings in
Section 4 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]

Justification: The code will be released once the paper is published.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details are provided in Section 4 and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: For the overall presentation of the paper, we do not provide the numerical
experiment’s statistical significance, which is also consistent with concurrent works.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and strictly followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such safeguard risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This paper appropriately cites the original paper that produced the code
package and considered the dataset in Section 4 and Appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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