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Abstract
Recently, deep convolutional neural networks (CNNs) have shown significant advantages in improving the performance 
of single image super-resolution (SISR). To build an efficient network, multi-scale convolution is commonly incorporated 
into CNN-based SISR methods via scale features with different perceptive fields. However, the feature correlations of the 
same sample are not fully utilized by the existing multi-scale SISR approaches, impeding the further improvement of recon-
struction performance. In addition, the correlations between different samples are still left unexplored. To address these 
problems, this paper proposes a deep-connected multi-scale residual attention network (DMRAN) by virtue of the feature 
correlations of the same sample and the correlations between different samples. Specifically, we propose a deep-connected 
multi-scale residual attention block (DMRAB) to take fully advantage of the multi-scale and hierarchical features, which 
can effectively learn the local interdependencies between channels by adjusting the channel features adaptively. Meanwhile, 
a global aware external attention (GAEA) is introduced to boost the performance of SISR by learning the correlations 
between all the samples. Furthermore, we develop a deep feature extraction structure (DFES), which seamlessly combines 
the stacked deep-connected multi-scale residual attention groups (DMRAG) with GAEA to learn deep feature representa-
tions incrementally. Extensive experimental results on the public benchmark datasets show the superiority of our DMRAN 
to the state-of-the-art SISR methods.

Keywords Single image super-resolution · Deep feature extraction structure · Deep-connected multi-scale residual attention 
block · Local aware channel attention · Global aware external attention

1 Introduction

Single Image Super-Resolution (SISR) has attracted consid-
erable attention in the field of computer vision, which aims 
to accurately construct a high-resolution (HR) image from 
the given low-resolution (LR) image. It has been widely 
used in various computer vision tasks, such as public safety 
monitoring [1], medical imaging [2], and satellite imaging 
[3]. However, due to the lack of high-frequency information, 
multiple different versions of HR images could be generated 
for the same LR input, so SISR is a highly ill-posed problem. 
A large amount of SISR methods have been proposed to 
overcome this problem, which can generally be divided into 
three categories: interpolation-based [4, 5], reconstruction-
based [6, 7] and learning-based methods [8–11].

Recently, benefiting from the excellent feature repre-
sentation ability and end-to-end training paradigm, deep 
convolutional neural network (CNN) based SR methods 
[8–10, 12–18] have become the dominant approaches to 
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SISR. The CNN-based SR methods try to capture a non-
linear mapping relationship between LR image and its 
HR counterpart, which have shown remarkable superior-
ity compared with the conventional SR methods. SRCNN 
[10] was a shallow three-layer model for SISR, which is 
the first successful scheme utilizing CNN for the SISR 
reconstruction. Later, FSRCNN [18] improved the recov-
ery speed with higher restoration quality by introducing 
a deconvolution layer in the network. Following these 
pioneer works, most of the SISR methods based on CNN 
framework tend to design deeper or wider networks to 
reconstruct the HR images more accurately. Inspired by 
ResNet [19], Kim et al. introduced the residual learning in 
VDSR [9] and DRCN [17] to further increase the depth of 
the network. DRRN [16] later extended the network depth 
to more layers via a recursive structure. By stacking multi-
ple simplified residual blocks, Lim et al. devised a deeper 
and wider model EDSR [20]. Motivated by DenseNet [21], 
some researchers built more effective SISR models, such 
as MemNet [22], SRDenseNet [23] and RDN [15].

Although considerable progress has been made, the exist-
ing CNN-based SISR methods still have some limitations. 
Firstly, the scale and hierarchical features obtained from 
intermediate layers of networks are not fully utilized by 
most CNN-based SISR approaches, resulting in relatively 
low performance. Secondly, to learn more discriminative 
high-frequency information, the CNN-based SISR methods 
mostly pay more attention to the deeper or wider networks, 
but neglect the inherent feature correlations between chan-
nels for the same sample. Finally, the correlations between 
different samples, which have been shown to be beneficial 
for the deep feature representations in various visual tasks 
[24], are still left unexplored in the existing SISR methods.

To solve these problems, we propose a deep-connected 
multi-scale residual attention network (DMRAN) to learn 
more powerful feature representations. Specifically, we 
present a deep-connected multi-scale residual attention 
block (DMRAB) consisting of the multi-scale and channel 
attention mechanisms. Our DMRAB can leverage both the 
multi-scale and hierarchical features through the multi-scale 
convolution operations. At the same time, our DMRAB can 
rescale the channel features adaptively to capture the local 
interdependencies between channels of the same sample. 
In addition, we devise a deep feature extraction structure 
(DFES) to learn the deep feature representations incremen-
tally. Among them, the deep-connected multi-scale residual 
attention group (DMRAG) is used as the basic component, 
and the long range skip connection (LRSC) is used to per-
form the residual learning. Meanwhile, a global aware exter-
nal attention (GAEA) is introduced into DFES to learn the 
correlations between different samples, which can boost 
the performance of image reconstruction further. Extensive 
experimental evaluations on five public benchmark datasets 

and ablation analysis demonstrate the effectiveness of our 
proposal.

Our contributions can be summarized as follows:

• We build a deep-connected multi-scale residual attention 
network (DMRAN) to improve the performance of SISR. 
To our knowledge, this is the first SISR model that intro-
duces the correlations learning between different samples 
to facilitate the image reconstruction.

• We propose a deep-connected multi-scale residual atten-
tion block (DMRAB), which exploits the mulit-scale and 
hierarchical features simultaneously, and rescales the 
channel features adaptively to capture the local interde-
pendencies between channels for the same sample. In 
addition, the short range skip connection in DMRAB 
helps to bypass abundant low-frequency information.

• We propose a deep feature extraction structure (DFES) to 
construct a deep trainable network, which further incor-
porates a global aware external attention (GAEA) module 
to learn the correlations between different samples. The 
feature representation ability of our network is further 
enhanced by this GAEA module.

2  Related works

2.1  CNN‑based SISR methods

SRCNN [10] first introduced the convolutional neural net-
work (CNN) into single image SR. It up-scales LR image 
to the HR image of the desired size through the bicubic 
interpolation method, then fits the non-linear mapping by 
utilizing only three convolutional layers to output the HR 
image. SRCNN was built on a lightweight but efficient net-
work and achieved superior performance compared to tradi-
tional methods. Later, FSRCNN [18] accelerated SRCNN by 
embedding a deconvolution layer in the network, which does 
not need any pre-processing operations and even achieves 
better restoration quality. ESPCN [25] incorporated the 
sub-pixel convolutional layer to improve the performance 
of SISR. However, the networks of all the models mentioned 
above are relatively shallow, with a depth of less than 5 lay-
ers, and their learning ability is limited.

After that, most CNN-based SISR approaches began to 
build deeper or wider networks to reconstruct more accu-
rate HR images. For example, inspired by ResNet [19], 
Kim et al. introduced residual learning in VDSR [9] and 
DRCN [17], which extends the depth of network to 20 lay-
ers and enhances the accuracy of SISR. To further improve 
the performance, DRRN [16] built a much deeper network 
with a larger receptive field by adopting a recursive struc-
ture, extending its depth to 52 layers. Combining traditional 
image algorithm Laplacian pyramid with deep learning, 
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LapSRN [26] was proposed to gradually predict the residu-
als from coarse to fine based on a cascade structure of CNNs 
and reconstruct the HR images by progressive up-sampling. 
By stacking simplified residual blocks, Lim et al. then con-
structed a very deep and wide model EDSR [20] to further 
boost the performance of SISR. Some recent methods, such 
as MemNet [22] and RDN [15], paid more attention to tak-
ing full advantage of all hierarchical features based on dense 
blocks [21]. RCAN [14] introduced the channel attention 
into the residual blocks and further increased the network 
depth to more than 400 layers. The significant improve-
ment of performance shows that network depth is crucial 
for SISR. Although increasing network depth can greatly 
improve performance of SISR, it could be extremely diffi-
cult to train due to the large number of parameters and may 
suffer from the problem of gradient vanishing or gradient 
exploding during the training process. In addition, when the 
network depth increases to a certain extent, it is invalid to 
increase the network depth further to improve performance.

2.2  Multi‑scale SR methods

In the feature extraction modules, one of the key problems is 
the size of the receptive fields of convolution kernels. Small 
kernels are beneficial for the extraction of low-frequency 
components, while large kernels are helpful to extract high-
frequency components. Multi-scale features are usually 
defined as the features acquired by multi-scale convolution, 
which is consistent with the concept of capturing more fea-
tures of different receptive fields simultaneously to extract 
more abundant information. Multi-scale feature fusion net-
works can be roughly classified as the serial skip connection 
structure network and the parallel multi-branch network.

On the one hand, hierarchical features [15], i.e., the fea-
tures of different network depths in CNN networks, can be 
considered as the scale features since they have different 
receptive fields. Therefore, the CNN-based networks with 
skip connections, such as DRCN [17], RED [27], DRRN 
[16], SRDenseNet [23], RDN [15], etc., can be regarded 
as the serial skip connection structure networks to some 
extent. On the other hand, multi-scale feature extraction 
mostly chooses the structure of parallel multi-streams, such 
as Inception [28]. A multi-scale residual network named 
MSRN [13] was proposed to fully extract multi-scale spa-
tial features. For the sake of extracting features of different 
scales, MSRN incorporates two convolution kernels of dif-
ferent sizes (3 × 3, 5 × 5) into each block corresponding to 
two branches. Moreover, MSRN is a simple and effective 
SISR model, which makes good use of local multi-scale fea-
tures as well as hierarchical features. Later, plenty of multi-
scale SISR networks have been proposed, such as MSFFRN 
[12], PMRN [29], AAMN [30], etc. However, the meth-
ods mentioned above treat the scale features from parallel 

multi-branches equally, while ignoring their dissimilarities 
and redundancy.

2.3  Attention mechanism

High-frequency information and details play a critical role 
in image super-resolution. Due to the limited information 
processing resources, attention mechanism is introduced 
into computer vision for the purpose of achieving optimal 
performance by allocating available processing resources 
more reasonably. The attention mechanism essentially imi-
tates the activities of the human brain in a simplified way by 
selectively focusing on some of the most important features.

In recent years, plenty of CNN based models have 
achieved satisfactory results by means of attention mecha-
nism. The squeeze-and-excitation network (SENet) designed 
by Hu et al. [31] enhanced the discriminability of CNN by 
explicitly modeling the interdependence between feature 
channels. SENet automatically learns the importance of each 
channel feature, then emphasizes useful features and sup-
presses less useful features according to the importance of 
channels. Zhang et al. [14] combined SENet with simplified 
residual blocks (RB) to construct a very deep residual chan-
nel attention network (RCAN), and achieved the state-of-
the-art performance at the time. Since SENet only exploited 
first-order statistical information (global average pooling), 
Dai et al. [32] proposed a second-order attention network 
(SAN), which introduces higher-order feature statistics for 
better feature selection. The non-local neural network built 
by Wang et al. [33] was originally used to explore seman-
tic relationships in high-level tasks, such as object detec-
tion and image classification. Many other methods, such as 
RNAN [34], SAN [32], CSNLN [35], etc., incorporated the 
non-local attention mechanism into their proposal to fully 
leverage clues in image structures by introducing long-range 
feature correlations. Although non-local attention boosts 
the performance of SISR, this mechanism requires matrix 
multiplication to calculate the affinity between features to 
gain long-term dependencies, which usually leads to large 
memory overhead and high computational complexity.

3  Proposed method

3.1  Network architecture

As shown in Fig. 1, our DMRAN is mainly composed of four 
components: the shallow features extraction part (SFEP), 
the deep feature extraction part (DFEP), the upscale module 
part (UP), and the reconstruction part (REC). Given an LR 
image ILR as input, we denote the output of DMRAN as ISR . 
First, ILR is input into SFEP to extract the shallow feature F0 , 
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where SFEP is actually a convolutional layer here. Formally, 
we have

where fSFEP(.) represents the convolution operation. The 
obtained shallow feature F0 is then fed into the next deep 
feature extraction part (DFEP). We can further have

where fDFES(.) denotes our proposed deep feature extrac-
tion structure, which consists of N deep-connected multi-
scale residual attention groups (DMRAGs), a long range 
skip connection (LRSC) and a global aware external atten-
tion (GAEA). Therefore, our proposed DFES contributes to 
constructing a very deep and trainable network architecture. 
Next, the obtained deep feature FDF is upscaled by virtue of 
an upscale module

where fUP(.) and FUP denote the upscale module and the 
upscaled feature, respectively. The upscale modules can be 
constructed by using the deconvolution layer [18] or ESPCN 
[25]. Compared with the pre-upsampling SR method, such 
post-upsampling SR method with the upscale modules can 
achieve a better balance between the model complexity and 
performance. Therefore, it is widely adopted in the recent 

(1)F0 = fSFEP
(
ILR

)
,

(2)FDF = fDFES
(
F0

)
,

(3)FUP = fUP
(
FDF

)
,

CNN-based SR models [15, 32, 36]. Then one convolutional 
layer is applied to convert the upscaled feature FUP into the 
SR image

where fREC(.) and fDMRAN(.) represent the reconstruction 
layer and the function of DMRAN respectively.

Some loss functions, such as L1 [15, 16, 20, 26, 32, 37, 
38] L2 , perceptual losses [39] and adversarial losses [40], 
have been widely used to train the SISR networks. For fair 
comparison, the commonly used L1 loss function is uti-
lized to optimize our DMRAN. Given a training dataset {
Ii
LR
, Ii

HR

}N

i=1
 , which contains N LR- HR image pairs, the L1 

loss function is formulated as:

where � denotes the learnable parameter set of DMRAN.

3.2  Local aware channel attention (LACA)

LR images contain abundant low-frequency information, but 
limited high-frequency information, such as sharp contrast 
edges, textures, and other details. Therefore, it is critical to 
extract more limited but valuable high-frequency informa-
tion from LR images. However, previous CNN-based SISR 
methods neglect the interdependencies of feature channels for 
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Fig. 1  Architecture of the proposed deep-connected multi-scale residual attention network (DMRAN)



2313International Journal of Machine Learning and Cybernetics (2024) 15:2309–2321 

1 3

the same sample, which is not conducive to the extraction of 
high-frequency information. To this end, we exploit a local 
aware channel attention (LACA) mechanism to capture the 
local cross-channel interaction for the same sample and rescale 
the previously acquired features.

As shown in Fig. 2, suppose that X =
[
x1,… , xC

]
 is the 

set of C feature maps, whose spatial dimension is h × w . We 
first apply the global average pooling along the spatial dimen-
sion to obtain the global statistics, which can be expressed as 
Z =

[
z1,… , zC

]
 . The c-th element of Z is obtained by

where xc(i, j) is the element at the position (i, j) of c-th feature 
map xc and fGAP(.) represents the global average pooling 
(GAP) function. Of note, the global average pooling can 
also be replaced by other more sophisticated aggregation 
techniques. Then a fast 1D convolution is implemented

where C1Ds(.) indicates 1D convolution operation, whose 
kernel size is s, and �(.) is the sigmoid function responsible 
for generating the final channel-wise weights S , which plays 
a key role in the LACA mechanism. As analyzed in [41], 
the LACA model with only s parameters has much lower 
model complexity compare with SENet [31]. Specifically, 
the kernel size s can be adaptively obtained by

where |e|odd represents the nearest odd number of e . Here, 
we set b and � to 1 and 2 respectively. It is obvious from the 
mapping function � that the larger the value of C, the wider 

(6)zc = fGAP
�
xc
�
=

1

h×w

h∑
i=1

w∑
j=1

xc(i, j)

(7)S = �
(
C1Ds(Z)

)
,

(8)s = �(C) =
|||
log2(C)+b

�

|||odd,

the range of local interdependencies between channels cap-
tured by the LACA. Finally, the learned weight set S is used 
to reweight the input X

where ⊗ represents the element-wise product operation, 
and X̂ =

[
x̂1,⋯ , x̂c,⋯ , x̂C

]
 denotes the output of the LACA 

mechanism. With the LACA module, the multi-scale resid-
ual features in the DMRAB can be adaptively rescaled.

3.3  Global aware external attention (GAEA)

In contrast to the LACA mechanism that reweights each 
feature map by appropriately capturing local cross-channel 
interaction within a single sample, the global aware exter-
nal attention (GAEA) pays more attention to the potential 
correlations between different samples, which contributes 
to the better representation of features. Previous SR algo-
rithms [14, 32, 35] based on attention mechanism mainly 
investigate channel attention, spatial attention and their com-
bination or deformation. Although the non-local attention 
can capture long-range interactions, it is difficult to apply 
the non-local attention directly to the original image due 
to the quadratic complexity of the number of input pixels. 
Therefore, the previous SR method [32] applies the non-
local attention to patches instead of pixels to reduce model 
parameters. Moreover, all of the above attention mechanisms 
concentrate on learning the attention within a single image 
and ignore the correlations learning between different sam-
ples. Therefore, it’s necessary to capture the correlations 
between different samples to further improve the perfor-
mance of SISR.
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Based on the discussion mentioned above, we propose to 
learn the potential correlations between different samples by 
introducing the lightweight global aware external attention 
(GAEA) module, as shown in Fig. 1. Suppose F ∈ RN×d is 
the input feature map, where N = h × w denotes the num-
ber of pixels and d is the feature dimension. Inspired by 
self-attention, we use two external and learnable memory 
units Mk and Mv as the key and value. The purpose of the 
two external memories is to capture the most discriminative 
features of the entire dataset and exclude interference infor-
mation from other samples. The GAEA can be formulated as

Here, (�)i,j in Eq. (10) is the similarity between the i-th 
pixel and the j-th rows of the external memory unit Mk . Mk

,Mv ∈ RS×d are two different and learnable parameters inde-
pendent of individual samples, which serve as two shared 
memories for the entire training dataset. A is an attention 
map learned from the prior knowledge, which is normalized 
in a manner similar to self-attention. Finally, we utilize the 
similarities in A to update the features from Mv . As discussed 
in [24], the two memories are easy to implement in prac-
tice with linear layers, and the computational complexity of 
GAEA is linear with the number of pixels. Combined with 
the lightweight GAEA mechanism, our DMRAN can adap-
tively learn the attention between different samples across 
the whole training dataset.

3.4  Deep feature extraction structure (DFES)

We now elaborate our proposed deep feature extrac-
tion structure (DFES) (see Fig. 1), which consists of N 
deep-connected multi-scale residual attention groups 
(DMRAG), one long range skip connection (LRSC) and 
one global aware external attention (GAEA) module. Each 
DMRAG further contains M deep-connected multi-scale 
residual attention blocks (DMRAB) with short range skip 
connection (SRSC). This DMRAG structure is condu-
cive to training a very deep high-performance network 
for SISR. In addition, the lightweight GAEA module is 
embedded in the end of our DFES to capture the correla-
tions between different samples.

Previous studies [15, 20] have proved the superiority of 
stacked residual blocks in constructing deeper CNNs. How-
ever, very deep SR networks simply constructed in this way 
are prone to cause the problems of training difficulty and 
performance bottleneck. Inspired by the method in [20], we 
utilize the deep-connected multi-scale residual attention 
group (DMRAG) as the basic unit. A DMRAG in the i-th 
group can be denoted as

(10)A = (�)i,j = Norm
(
FMT

k

)
,

(11)Fout = AMv,

where gi(.) represents the function of the i-th DMRAG. Fi−1 
and Fi are the input and output for the i-th DMRAG respec-
tively. Considering the simple stacking of DMRAGs is dif-
ficult to improve the performance, we apply LRSC in DFES 
to facilitate the stable training of deep network and bypass 
abundant low-frequency information. Therefore, the deep 
feature is obtained as

where WLRSC denotes the weights of the convolutional layer 
after DMRAG-N. For simplicity, the bias is omitted here. 
As mentioned in Sect. 3.3, we embed the GAEA module in 
our DFES to adaptively learn the attention between differ-
ent samples across the whole training dataset, which further 
improves the discriminability of our network combined with 
the LACA mechanism. Then, the deep feature obtained by 
DFES can be denoted as

where fGAEA(.) denotes the operation of GAEA mechanism, 
and FDF is the output of GAEA.

3.5  Deep‑connected multi‑scale residual attention 
group (DMRAG)

We stack M deep-connected multi-scale residual attention 
blocks (DMRAB) in each DMRAG to go a further step 
towards residual learning. The j-th DMRAB in the i-th 
DMRAG can be denoted as

where Fi,j−1 and Fi,j are the input and output of the j-th 
DMRAB in i-th DMRAG respectively, and the gi,j(.) denotes 
the corresponding function. To enable the network to focus 
more on informative features, SRSC is added to get the block 
output

where WSRSC represents the weight of the convolutional layer 
at the end of the i-th DMRAG. With LRSC and SRSC, it is 
easier to bypass abundant information in the process of train-
ing. In order to obtain a more discriminative representation, 
we rescale the channel features from the local cross-channels 
as mentioned in Sect. 3.2.

(12)Fi = gi
(
Fi−1

)
= gi

(
gi−1

(
⋯ g1

(
F0

)
⋯

))
,

(13)
Fdf = F0 +WLRSCFN = F0 +WLRSCgi

(
gi−1

(
⋯ g1

(
F0

)
⋯

))
,

(14)FDF = fGAEA
(
Fdf

)
,

(15)Fi,j = gi,j
(
Fi,j−1

)
= gi,j

(
gi,j−1

(
⋯ gi,1

(
Fi−1

)
⋯

))
,

(16)
Fi = Fi−1 +WSRSCFi,M = Fi−1 +WSRSCgi,M

(
gi,M−1

(
⋯ gi,1

(
Fi−1

)
⋯

))
,
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3.6  Deep‑connected multi‑scale residual attention 
block (DMRAB)

To fully utilize the image features at different scales and the 
feature correlations for the same sample, we propose deep-
connected multi-scale residual attention block (DMRAB). 
Our DMRAB contains three parts (as shown in Fig. 1): deep-
connected multi-scale features fusion, local aware channel 
attention (LACA) mechanism and local residual connection.

3.6.1  Deep‑connected multi‑scale features fusion

To obtain the rich features of different scales, we devise a 
two-branch network composed of different convolution ker-
nels. Therefore, the information between two branches can 
be shared with each other and the operation can be described 
as

where � and b denote the weights and bias respectively. The 
subscripts denote the size of convolution kernels, while the 
superscripts denote the number of layers in which they are 
reside. �(x) = max(0, x) represents the ReLU function and 
[∙] represents the concatenation operation. The features 
B11,B12,B31 and B32 are concatenated through a deep con-
nection (DC) to obtain the feature B4 , which aims to provide 
more sufficient information to the LACA mechanism and 
further improve the representation capability of our network.

3.6.2  Local aware channel attention (LACA) mechanism

As discussed in Sect. 3.2, we assign different weights to 
each channel feature on the basis of the learned statistics of 
local cross-channel interdependencies, so as to utilize the 
informative features as efficiently as possible.

where LACA(.) represents the operation of LACA mecha-
nism, and WR is the weight of the 1 × 1 convolution layer, 

(17)B11 = �
(
�1

3×3
∗ Hs−1 + b1

)
,

(18)B12 = �
(
�1

5×5
∗ Hs−1 + b1

)
,

(19)B2 = �2

1×1
∗
[
B11,B12

]
+ b2,

(20)B31 = �
(
�3

3×3
∗ B2 + b3

)
,

(21)B32 = �
(
�3

5×5
∗ B2 + b3

)
,

(22)B4 =
[
B11,B12,B31,B32

]
,

(23)R = WR

(
LACA

(
B4

))
,

which serves as the function of reducing the number of the 
feature maps to be the same as the number of input fea-
tures of DMRAB. R denotes the deep-connected multi-scale 
residual.

3.6.3  Local residual learning

The efficiency of the network is improved by performing 
residual learning for each DMRAB. Finally, a deep-con-
nected multi-scale residual attention block (DMRAB) can 
be denoted as

where Hs−1 and Hs represent the input and output of the 
DMRAB respectively. The operation ⊕ denotes the addi-
tion of elements.

3.7  Implementation details

Now we introduce the implementation details of DMRAN. 
In the DFES network, we use N = 5 DMRAGs with single 
GAEA module. In each DMRAG, the number of DMRAB is 
set asM = 10 . The output feature maps of each convolutional 
layer are set as 64 expect for the LACA mechanism and the 
last reconstruction part. We set the kernel size of all convo-
lutional layers except DMRAB and GAEA to 3 × 3 , where 
zero-padding strategy is used to fix the feature size. We use 
ESPCN [25] as our upscale module, followed by the final 
convolutional layer with three filters to output color images.

4  Experiments

4.1  Setup

Following [14, 15, 20, 38], we choose 800 HR images from 
the DIV2K dataset [42] as our training set. Bi-cubic down-
sample is performed on the training set to obtain the LR 
images, and we carry out data augmentation on all training 
images by horizontally flipping and random rotation of 90◦ , 
180

◦ and 270◦ . For each training mini-batch, 16 randomly 
cropped LR color patches with the size of 48 × 48 are used 
as inputs. Our model is optimized by ADAM [43] with 
�1 = 0.9 , �2 = 0.999 , and � = 10

−8.
For testing, five standard benchmark datasets are used: 

Set5 [44], Set14 [45], BSD100 [46], Urban100 [47] and 
Manga109 [48], which differ in contents and styles. Table 1 
shows detailed information about 6 benchmark datasets 
for training and test. All the SR outputs of our proposed 
DMRAN are evaluated by the PSNR and SSIM metrics 
on the luminance channel (also known as Y channel) of 

(24)Hs = R⊕ Hs−1,
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the transformed YCbCr space. The proposed DMRAN are 
conducted on the PyTorch framework with a NVIDIA RTX 
2080Ti GPU.

We implement the proposed DMRAN with Python 3.8.5 
and Pytorch1.7.0 and update it with Adam optimizer [12]. 
1,000 iterations of back-propagation constitute an epoch. 
The learning rate is initialized to  10−4 for all layers and 
decreases half for every 200 epochs. The training setup con-
sists of an Intel i7-10700 K central processing unit (CPU) 
and an NVIDIA GeForce RTX 2080Ti graphics processing 
unit (GPU).

4.2  Ablation experiment

In this section, we disassemble our DMRAN to validate 
the effectiveness of each component, namely multi-scale 
features fusion (Multi-scale), local aware channel attention 
(LACA), the deep connection (DC), short range skip con-
nection (SRSC), long range skip connection (LRSC) and 
global aware external attention (GAEA). Our base model 
(represented as BASE) is obtained by removing these six 
parts and replacing the two-branch structure with a single 
path. Thus, in the BASE scheme, each DMRAB will become 
a residual block with a kernel size of 3 × 3. The numbers of 
DMRAG and DMRAB are set as 5 and 10 respectively. For 
fair comparison, the scaling factor is set to 2 and the models 
are trained with 200 epochs.

Table 2 lists the best PSNR (dB) results on Set5. We 
can see that the performance of BASE network is poor 
and its PSNR is only 37.84 dB. This shows that simple 
stacking of residual blocks is not reasonable to construct 
an effective deep SR network. Then we gradually add 
each component to the BASE to verify the effectiveness 
of six components corresponding to the A, B, C, D, E, F, 
G and H schemes in Table 2. Compare to the BASE, A 
and B increase PSNR to 37.92 dB and 37.94 dB respec-
tively. The network shows better performance when both 
the SRSC and LRSC are exploited simultaneously, whose 
PSNR = 37.98 dB (Table 2, column 5). This suggests that 
the SRSC and LRSC play a vital role in our DMRAN 
because they are able to bypass the abundant informa-
tion during training and test. This also proves the positive 
effect of our DFES on very deep network.

As shown in Table 2, the effectiveness of our DMRAB 
module is also demonstrated according to the results of D, 
E, F and G. Specifically, D improves the performance of C 
from 37.98 dB to 38.01 dB, this is due to the fact that the 
rich scale features can be captured by the multi-scale struc-
ture, which provide more sufficient clues for the recovery 
of information. Furthermore, the model E with LACA ach-
eves about 0.03 dB improvement on PSNR compared with 
the C model, indicating that adaptive attention to channel-
wise features is very important to improve the performance 
of deep SR network. Performance can be further boosted 
when using both the multi-scale and LACA mechanisms 
(corresponding to the F scheme). The G scheme achieves 
obvious quantitative performance gains (38.11 dB PSNR) 
compare to C. The results of D, E, F and G show that our 
proposed DMRAB has a significant effect on boosting the 

Table 1  Specification of 6 benchmark datasets

Dataset Number 
of sam-
ples

Number 
of classes

Samples per class Number 
of test 
samples

DIV2K 1000 8 ≈ 120 100
Set5 5 5 1 5
Set14 14 14 1 14
BSD100 100 1 100 100
Urban100 100 1 100 100
Manga109 21,142 109 194 109

Table 2  Effects of different 
components

The best PSNR (dB) values on Set5 (2 × ) are marked in bold

Schemes BASE A B C D E F G H

Multi-scale  ×  ×  ×  × √  × √ √ √
LACA  ×  ×  ×  ×  × √ √ √ √
DC  ×  ×  ×  ×  ×  ×  × √ √
SRSC  ×  × √ √ √ √ √ √ √
LRSC  × √  × √ √ √ √ √ √
GAEA  ×  ×  ×  ×  ×  ×  ×  × √
PSNR 37.84 37.92 37.94 37.98 38.01 38.01 38.05 38.11 38.11

Table 3  Effects of GAEA on Set14, BSD100, Urban100 and 
Manga109

The best PSNR (dB) and SSIM values (2 × ) are marked in bold

GAEA Set14 BSD100 Urban100 Manga109

 × 33.75/0.9193 32.25/0.9005 32.54/0.9323 38.88/0.9776
√ 33.80/0.9200 32.25/0.9006 32.59/0.9324 38.92/0.9775
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Table 4  Quantitative results 
with BI degradation model for 
scaling factors × 2, × 3 and × 4

Best and second best results are bold and underlined, respectively

Methods Scale Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic × 2 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
SRCNN [10] × 2 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663
FSRCNN [18] × 2 37.05/0.9560 32.66/0.9090 31.53/0.8920 29.88/0.9020 36.67/0.9710
VDSR [9] × 2 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 37.22/0.9750
LapSRN [26] × 2 37.52/0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101 37.27/0.9740
MemNet [22] × 2 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740
DRRN [16] × 2 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.60/0.9736
EDSR [20] × 2 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351 39.10/0.9773
DBPN [38] × 2 38.09/0.9600 33.85/0.9190 32.27/0.9000 32.55/0.9324 38.89/0.9775
RDN [15] × 2 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353 39.18/0.9780
SeaNet [49] × 2 38.08/0.9609 33.75/0.9190 32.27/0.9008 32.50/0.9318 38.76/0.9774
DMRAN × 2 38.20/0.9612 33.94/0.9213 32.33/0.9015 32.93/0.9350 39.20/0.9780
DMRAN + × 2 38.24/0.9614 34.08/0.9222 32.38/0.9020 33.13/0.9368 39.39/0.9785
Bicubic × 3 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
SRCNN [10] × 3 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117
FSRCNN [18] × 3 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210
VDSR [9] × 3 33.67/0.9210 29.78/0.8320 28.83/0.7990 27.14/0.8290 32.01/0.9340
LapSRN [26] × 3 33.82/0.9227 29.87/0.8320 28.82/0.7980 27.07/0.8280 32.21/0.9350
MemNet [22] × 3 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
DRRN [16] × 3 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.42/0.9359
EDSR [20] × 3 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653 34.17/0.9476
DBPN [38] × 3 -/- -/- -/- -/- -/-
RDN [15] × 3 34.71/0.9296 30.57/0.8468 29.26/0.8093 28.80/0.8653 34.13/0.9484
SeaNet [49] × 3 34.55/0.9282 30.42/0.8444 29.17/0.8071 28.50/0.8594 33.73/0.9463
DMRAN × 3 34.67/0.9293 30.56/0.8468 29.26/0.8090 28.83/0.8656 34.23/0.9484
DMRAN + × 3 34.73/0.9297 30.66/0.8480 29.31/0.8100 29.02/0.8684 34.50/0.9498
Bicubic × 4 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
SRCNN [10] × 4 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555
FSRCNN [18] × 4 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610
VDSR [9] × 4 31.35/0.8830 28.02/0.7680 27.29/0.0726 25.18/0.7540 28.83/0.8870
LapSRN [26] × 4 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09/0.8900
MemNet [22] × 4 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
DRRN [16] × 4 31.68/0.8888 28.21/0.7721 27.38/0.7284 25.44/0.7638 29.18/0.8914
EDSR [20] × 4 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148
DBPN [38] × 4 32.47/0.8980 28.82/0.7860 27.72/0.7400 26.38/0.7946 30.91/0.9137
RDN [15] × 4 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 31.00/0.9151
SeaNet [49] × 4 32.33/0.8970 28.72/0.7855 27.65/0.7388 26.32/0.7942 30.74/0.9129
DMRAN × 4 32.42/0.8977 28.76/0.7865 27.72/0.7416 26.58/0.8021 30.94/0.9147
DMRAN + × 4 32.58/0.8995 28.87/0.7883 27.77/0.7428 26.81/0.8067 31.31/0.9179

Table 5  Comparison of model 
size and quantitative results ( × 
2, Set5)

Methods DRRN MemNet EDSR DBPN RDN SeaNet DMRAN

Parameters 0.3 M 0.7 M 43 M 10 M 22.3 M 7 M 8.6 M
PSNR/dB 37.74 37.78 38.11 38.09 38.24 38.08 38.20
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performance of deep SR network, which demonstrate the 
effectiveness of our DMRAB module.

From Table 2, we can observe that the PSNR of H and 
G are both 38.11 dB, which seems to indicate that GAEA 
does not boost the performance of our network. However, 
when we increase the number of epochs from 200 to 600, H 
improves the performance of G from 38.18 dB to 38.20 dB, 
which shows that GAEA may lead to slower network con-
vergence speed, but proves the effectiveness of GAEA. In 
addition, we further evaluate the models G and H on Set14, 
BSD100, Urban100 and Manga109 to validate the effective-
ness of GAEA, whose best PSNR (dB) and SSIM values are 
listed in Table 3 (“× ” denotes the model G without GAEA, 
and “√” denotes the model H with GAEA). As can be seen 
from columns 2, 4, and 5 of Table 3, GAEA significantly 
improves the performance of the network. But, as shown in 
column 3 of Table 3, there is little improvement in network 
performance. The reason is that the correlations between dif-
ferent samples in different datasets are variable. This proves 
that GAEA does learn the potential correlations between 
different samples. Consequently, all of the above compari-
sons firmly validate the effectiveness of six components of 
the DMRAN.

4.3  Comparisons with state‑of‑the‑art methods

We quantitatively compare our DMRAN with 11 state-
of-the-art CNN-based SR approaches on five standard 
test datasets. These approaches include Bicubic, SRCNN 
[10], FSRCNN [18], VDSR [9], LapSRN [26], MemNet 
[22], DRRN [16], EDSR [20], DBPN [38], RDN [15] and 
SeaNet [49]. Following [15, 20], the self-ensemble strategy 
is applied to further improve the proposed DMRAN, denoted 
as DMRAN + . The results of other models are obtained 
from the published models or papers. Quantitative compari-
sons for three scaling factors ( × 2, × 3, × 4) are reported in 
Table 4. Our DMRAN + obtains the best results on all data-
sets for three scaling factors compared with other methods. 
Even without using the self-ensemble strategy, our proposed 
DMRAN can still be comparable to EDSR [20], DBPN [38] 
and RDN [15] with much lower model parameters (as shown 
in Table 5), indicating that DMRAN can achieve a good 
balance between the model complexity and the quantitative 
performance. In addition, our model outperforms SeaNet 

[49] in terms of PSNR and SSIM on all datasets. The aver-
age PSNR of the five test datasets is improved by 0.25 dB, 
0.78 dB and 0.13 dB for three upscaling factors, respectively. 
Of note, compared with other methods, the DMRAN can 
achieve significantly enhanced results on five datasets for 
three scaling factors. The reasons are as follows. First, the 
deep-connected multi-scale feature fusion structure enables 
DMRAB to explore more texture dependencies and diverse 
structure within a single sample, which can provide more 
sufficient scale features and hierarchical features to guide 
information recovery. Second, the local aware channel atten-
tion (LACA) structure can adaptively rescale the channel 
features, so that the DMRAB network can focus on more 
informative features. Third, the global aware external atten-
tion (GAEA) structure is able to capture the potential cor-
relations between different samples, which is functionally 
complementary to DMRAB. Finally, the LRSC and SRSC 
structures enable our DMRAN to bypass the abundant infor-
mation, leading to the feature extraction of more effective 
information.

4.4  Model complexity and running time

Table 5 reports the model size and quantitative performance 
of some mainstream SR methods with the scaling factor × 2 
on Set5. Among these methods, DRRN and MemNet have 
much less parameters at the expense of performance degra-
dation. However, our DMRAN with much fewer parameters 
can obtain comparable performance to EDSR [20], DBPN 
[38] and RDN [15]. Compared with SeaNet, our DMRAN 
achieves much better performance with a little more param-
eters. As a result, the proposed DMRAN can obtain a good 
balance between the model complexity and SR performance.

In Table 6, we compare the running time and PSNR 
scores of DMRAN with those of some strong baselines for 
the scaling factor × 2 on Urban100. We can see that our 
model runs slower than FSRCNN and MSRN, but DMRAN 
can generate the images of higher quality than FSRCNN 
and MSRN. DMRAN also runs slower than EDSR due to 
the long range skip connection and the global aware exter-
nal attention applied in DFES. However, DMRAN has 
less parameters than EDSR. The PSNR score of DMRAN 
is slightly lower than that of RCAN, while DMRAN runs 
faster than it.

4.5  Qualitative analysis

To further verify the effectiveness of DMRAN, we conduct 
a qualitative analysis of the results. In Fig. 3, we visualize 
the SISR results on three test datasets for the scaling factor 
× 4. For the image “monarch”, it can be seen that the earlier 
Bicubic method suffers from the serious blurring artifacts 
and most other methods cannot recover the texture details 

Table 6  Comparison of running time and quantitative results ( × 2, 
Urban100)

Methods FSRCNN  
[18]

EDSR 
[20]

MSRN 
[13]

RCAN 
[14]

DMRAN

Time(s) 0.69 0.72 1.65 8.69 6.1
PSNR/dB 29.88 32.93 32.22 33.13 32.93
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HR Bicubic SRCNN FSRCNN VDSR

LapSRN EDSR SeaNet DMRAN DMRAN+monarch from Set14

HR Bicubic SRCNN FSRCNN VDSR

LapSRN EDSR SeaNet DMRAN DMRAN+3096 from BSD100 

HR Bicubic SRCNN FSRCNN VDSR

LapSRN EDSR SeaNet DMRAN DMRAN+img055 from Urban100 

HR Bicubic SRCNN FSRCNN VDSR

LapSRN EDSR SeaNet DMRAN DMRAN+img081 from Urban100 

Fig. 3  Visual comparisons on the test datasets for the scaling factor × 4
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well. In contrast, our DMRAN and DMRAN + can gener-
ate sharper images with more fine details. For the image 
“3096” from the BSD100 dataset, the competing methods 
mostly produce the images with blurring artifacts. Particu-
larly, Bicubic, SRCNN and FSRCNN even fail to recover 
the “A” and “star” markings on the plane. The “img055” 
and “img081” are from Urban100, a challenging dataset that 
contains the abundant contexts of the urban environment. 
Obviously, compared with other SISR methods, the HR 
images produced by our methods are more visually comfort-
able with much clearer grids and lines. Take the “img055” 
as an example, SRCNN, FSRCNN and LapSRN can recover 
blurring lines at least, while Bicubic and VDSR even cannot 
reconstruct lines. However, our DMRAN and DMRAN + not 
only recover the clear lines, but also clearly reconstruct the 
lights inside the building, and thus output more faithful 
results. Therefore, these qualitative comparisons further 
verify the effectiveness of our proposed DMRAN on SISR.

5  Conclusion

In this paper, a deep-connected multi-scale residual atten-
tion network (DMRAN) is proposed for accurate SISR. Spe-
cifically, the proposed deep-connected multi-scale residual 
attention block (DMRAB) encourages DMRAN to fully uti-
lize the multi-scale and hierarchical features. Meanwhile, 
DMRAB enables DMRAN to rescale the channel features 
adaptively to learn the inherent local interdependencies 
between channels. In addition to mining the inherent feature 
correlations of the same sample through local aware channel 
attention (LACA), we devise a deep feature extraction struc-
ture (DFES) to capture the correlations between different 
samples by incorporating the global aware external attention 
(GAEA) in the network. The quantitative and qualitative 
experiments on the benchmark datasets demonstrate that our 
model has superior performance of SISR to the state-of-the-
art approaches.
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