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ABSTRACT

Diffusion models have recently shown promising results for video super-
resolution (VSR). However, directly adapting generative diffusion models to VSR
can result in redundancy, since low-quality videos already preserve substantial
content information. Such redundancy leads to increased computational overhead
and learning burden, as the model performs superfluous operations and must learn
to filter out irrelevant information. To address this problem, we propose OASIS,
an efficient one-step diffusion model with attention specialization for real-world
video super-resolution. OASIS incorporates an attention specialization routing
that assigns attention heads to different patterns according to their intrinsic behav-
iors. This routing mitigates redundancy while effectively preserving pretrained
knowledge, allowing diffusion models to better adapt to VSR and achieve stronger
performance. Moreover, we propose a simple yet effective progressive training
strategy, where training starts with temporally consistent degradations and then
shifts to inconsistent settings. This strategy facilitates learning under complex
degradations. Extensive experiments demonstrate that OASIS achieves state-of-
the-art performance on both synthetic and real-world datasets. OASIS also pro-
vides superior inference speed, offering a 6.2× speedup over one-step diffusion
baselines such as SeedVR2. The code and models will be publicly available.

1 INTRODUCTION

Video super-resolution (VSR) is a widely studied task that aims to reconstruct high-resolution videos
from low-resolution inputs (Jo et al., 2018). With the explosive growth of social media, enhancing
real-world videos has become increasingly important. In contrast to synthetic degradations, such as
bicubic downsampling, real-world videos often undergo far more diverse and unpredictable degra-
dations, including varying levels of blur, noise, and compression artifacts (Chan et al., 2021; Wang
et al., 2021). These complex conditions substantially increase the difficulty of restoring accurate and
temporally consistent high-resolution content, making real-world VSR a challenging problem.

Recent advancements of diffusion models (Ho et al., 2020; Song et al., 2020), particularly diffusion
transformer (DiT) architectures(Peebles & Xie, 2023; Ma et al., 2024), have achieved remarkable
success in both image and video generation (Rombach et al., 2022; Yang et al., 2024b; Wan et al.,
2025), demonstrating strong spatiotemporal modeling capacity. This progress naturally motivates
the adaptation of pretrained diffusion models to video restoration tasks (Zhou et al., 2024; Li et al.,
2025; Du et al., 2025), especially under the one-step diffusion paradigm (Liu et al., 2025; Wang
et al., 2025a), which accelerates inference while preserving generative power.

However, most diffusion-based VSR methods share a key limitation: they overlook the redundancy
in pretrained diffusion models (Yuan et al., 2024) when adapted to VSR, which arises because low-
quality videos already preserve content information. This potential redundancy complicates adapta-
tion, as VSR models must learn to disentangle it. Rather than mitigating redundancy, existing works
typically improve performance by adding extra modules such as ControlNet (He et al., 2024; Xie
et al., 2025), temporal layers (Zhou et al., 2024; Li et al., 2025), or optical-flow networks (Yang et al.,
2024a). Yet these methods lead to higher complexity but limited benefits. Other methods (Wang
et al., 2025a;b) attempt architectural redesigns to reduce redundancy, but such changes disrupt pre-
trained knowledge, thus requiring expensive retraining (e.g., 256 H100-80G GPUs). These draw-
backs highlight the need for more efficient ways to adapt pretrained diffusion models for VSR.
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Figure 1: Inference speed and performance comparisons. The running time is evaluated on an
A100 GPU using a 33-frame 720×1280 video, while DOVER is reported on the MVSR4x dataset.
Our OASIS demonstrates superior reconstruction quality over existing diffusion-based methods,
producing clearer and more faithful details. At the same time, OASIS also provides higher inference
efficiency. Compared with SeedVR2 (Wang et al., 2025a), it runs approximately 6.2× faster.

To alleviate the aforementioned limitations, we investigate redundancy in existing diffusion-based
video generative models. We find that one major redundancy lies in the attention mechanism in
DiTs. While most diffusion models (Kondratyuk et al., 2023; Yang et al., 2024b; Kong et al., 2024;
Wan et al., 2025) employ global attention uniformly for all attention heads, many heads consis-
tently behave in a localized manner across different videos and scales. Specifically, apart from
global attention, two dominant localized patterns emerge, including intra-frame attention and win-
dow attention, where the former mainly captures dependencies within a single frame, and the latter
restricts interactions to local spatio-temporal windows. This indicates that diffusion transformers
naturally specialize at the head level, with different heads focusing on global or local information.
Thus, applying global attention across all heads inevitably introduces redundancy. This can result
in increased computational overhead and learning burden, as the model spends resources on unused
global dependencies and must learn to filter out irrelevant patterns.

Motivated by this observation, we propose OASIS, an efficient one-step diffusion model with
attention specialization for real-world video super-resolution. The key component of OASIS is the
attention specialization routing. Instead of treating all heads as identical global processors, we com-
pute the KL-divergence between the original global attention distributions and localized alternatives.
Attention heads that align more closely with localized patterns are reassigned to the corresponding
modes, while the rest retain global attention. This attention specialization routing reduces unneces-
sary computation, better matches the intrinsic functionality of each head, and facilitates adaptation
of pretrained diffusion transformers to real-world VSR. As shown in Fig. 1, OASIS delivers superior
reconstruction and inference speed over existing methods.

Moreover, real-world degradations are typically highly diverse and can vary across frames, which
further complicates the learning process. To address this, we introduce a simple yet effective pro-
gressive training strategy. Specifically, in the first stage, the model is trained with temporally con-
sistent degradations, where all frames in a video share the same degradation type and severity. This
helps the model learn fundamental restoration capability before handling more complex degrada-
tions. In the second stage, the training shifts to temporally inconsistent degradations, where each
frame undergoes frame-wise varying distortions. This stage better reflects real-world conditions and
encourages the model to handle frame-wise variations, thereby improving robustness.

Our main contributions are summarized as follows:

• We propose a novel and efficient one-step diffusion model, OASIS, for real-world VSR. By
incorporating an attention specialization routing, OASIS mitigates the redundancy of pre-
trained diffusion transformers when adapted to VSR, thereby reducing computational cost
and making the model better leverage diverse attention patterns for high-quality restoration.

• We design a simple yet effective progressive training strategy, where the model is first
trained with temporally consistent degradations and then with temporally inconsistent set-
tings to better reflect real-world scenarios. This strategy reduces the learning burden, en-
abling the model to handle complex degradations more effectively.
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• OASIS achieves state-of-the-art results on multiple benchmarks, excelling in both quantita-
tive metrics and perceptual quality. Moreover, it provides remarkable inference efficiency
compared with existing diffusion-based VSR methods.

2 RELATED WORK

2.1 VIDEO SUPER-RESOLUTION

In recent years, learning-based approaches have driven significant progress in video super-resolution
(VSR) (Isobe et al., 2020; Chan et al., 2021; 2022a; Li et al., 2023; Chen et al., 2024). These methods
exploit diverse architectures, ranging from deformable convolutions (Wang et al., 2019; Tian et al.,
2020) to transformer-based designs (Li et al., 2020; Liang et al., 2022; Shi et al., 2022). Inspired
by the success of GANs in image restoration, several GAN-based methods (Lucas et al., 2019; Xu
et al., 2025) have also been introduced to recover fine-grained details.

Despite these advances, existing methods often struggle under complex real-world degradations. To
enhance robustness, some works (Yang et al., 2021; Wang et al., 2023b) leverage real-world LQ–HQ
paired data to enhance robustness. Others focus on architectural redesigns (Pan et al., 2021; Wu
et al., 2022; Zhang & Yao, 2024) to improve adaptability to challenging degradations. In parallel,
various degradation pipelines have been proposed to better simulate real-world conditions (Wang
et al., 2021; Chan et al., 2022b). Nevertheless, these methods still exhibit limited performance when
faced with diverse and unpredictable real-world degradations.

2.2 DIFFUSION MODELS

Diffusion models are powerful generative frameworks that synthesize structured data from random
noise via iterative denoising (Ho et al., 2020; Song et al., 2020). Recently, they have achieved strong
performance in both image (Rombach et al., 2022; Podell et al., 2023) and video (Ho et al., 2022;
Zheng et al., 2024; Yang et al., 2024b; Wan et al., 2025) generation. However, multi-step diffusion
models are often hindered by slow inference, motivating the development of one-step approaches
for acceleration (Liu et al., 2022; Song et al., 2023; Yin et al., 2024; Lin et al., 2025)

Owing to the strong generative prior, diffusion models have also shown competitive performance
in image and video restoration (Zhou et al., 2024; Guo et al., 2025a;b; Li et al., 2025; Wang et al.,
2025b). For instance, Upscale-A-Video (Zhou et al., 2024) extends image diffusion models with
temporal layers for video sequences, while MGLD-VSR (Yang et al., 2024a) leverages optical flow
to refine latent sampling for better temporal coherence. STAR (Xie et al., 2025) incorporates a local
enhancement module to restore fine details, and SeedVR (Wang et al., 2025b) employs a sliding-
window strategy to handle long sequences. More recently, several works have explored one-step
acceleration for faster inference (e.g., SeedVR2 (Wang et al., 2025a); (Liu et al., 2025; Sun et al.,
2025)). However, most existing approaches overlook the inherent redundancy in pretrained diffusion
models, which limits their effectiveness when directly adapted to VSR.

2.3 REDUNDANCY REDUCTION IN LATENT DIFFUSION MODELS

Recent studies have highlighted that diffusion models, despite their strong generative power, often
suffer from substantial redundancy (Sun et al., 2024b; Zhang et al., 2023; 2025a; Zhao et al., 2024),
which becomes especially pronounced in restoration tasks (Chen et al., 2025a) since low-quality
videos already contain much of the underlying content. To address this, a growing body of work has
focused on reducing redundancy to improve efficiency (Castells et al., 2024; Zhu et al., 2023; Zhang
et al., 2024; Pu et al., 2024; Sun et al., 2024a; Tian et al., 2025; Fang et al., 2025).

In particular, attention redundancy in diffusion transformers has attracted considerable attention.
DiTFastAttn (Yuan et al., 2024) reduces redundant computation through attention sharing and lo-
calized attention patterns. SVG (Xi et al., 2025) leverages the inherent sparsity of 3D spatiotempo-
ral attention by profiling head types and applying sparse patterns with kernel optimizations, while
STA (Zhang et al., 2025b) eliminates redundancy from global attention with hardware-aware sliding
window design. Nevertheless, how to reduce redundancy in diffusion-based VSR methods while
simultaneously improving performance remains unexplored.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

...
Value

Query

Key

Pixel
Unshuffle

...

...

� heads

P
re

de
fin

ed
R

ou
tin

g

Global tokens

�H

P
ro

je
ct

io
n

��

�H

��

(a) One-Step Inference

Global
heads

Intra-frame
heads

Attention map

...

Intra-frame tokens
...

�i heads

Window tokens
...

�w heads

C

(b) ASR

ConcatC

Trainable

Frozen

Reference

Masked

AttendedWindow
heads

ASR

   DiT 
  Block

Diffusion Transformer

   VAE 
Decoder

�g heads

Figure 2: Overview of OASIS. Given an input LQ video, a pixel-unshuffle operation maps it into the
latent space, which is then processed by a diffusion transformer with attention specialization routing
(ASR). ASR reduces redundancy by dividing attention heads into global, intra-frame, and window
groups to capture complementary contexts. Their outputs are concatenated into an aggregated fea-
ture, and a VAE decoder reconstructs the HQ video from the restored latent.

3 METHOD

3.1 PRELIMINARIES: ONE-STEP LATENT DIFFUSION MODEL

Latent Diffusion Models (Rombach et al., 2022) are formulated in a low-dimensional latent space,
leading to improved efficiency in training and sampling. In the forward process, a clean latent z0 is
gradually perturbed by Gaussian noise. At timestep t, the corrupted latent can be written as:

zt = αtz0 + σtϵ, ϵ ∼ N (0, I), (1)
where αt and σt are the noise schedule conditioned on the timestep. The reverse process then
reconstructs the clean latent through a learned prediction model (Ho et al., 2020), where transformer-
based architectures (Peebles & Xie, 2023; Ma et al., 2024) have demonstrated strong performance.
In the one-step setting, the network ϵθ directly estimates the clean latent ẑ0 from the noised latent:

ẑ0 = (zt − σtϵθ(zt, t)) /αt. (2)

3.2 OVERVIEW OF OASIS

An overview of OASIS is shown in Fig. 2, which is built upon Wan2.1 (Wan et al., 2025), a powerful
pretrained text-to-video diffusion model. Following prior work (Chen et al., 2025a), we omit the
VAE encoder to avoid redundant encoding and instead apply a pixel-unshuffle operation (Shi et al.,
2016) followed by a linear projection to directly map the input LQ video VL into the latent space:

z̃L = UnShuffle(VL), zL = Wprojz̃L + bproj, (3)
where Wproj and bproj are the parameters of the linear projection layer. Unlike standard diffusion
models that start from Gaussian noise, OASIS views LQ latents zL as intermediate diffusion states
and their high-quality (HQ) counterparts zH as the clean target state. Since Wan2.1 adopts the flow
matching formulation, the reconstruction can thus be formulated as:

ẑH = zL − σTLDN θ(zL, TL), (4)
where ẑH is the estimated high-quality video latents, DN θ is the DiT integrated with our proposed
attention specialization routing (ASR), and TL is the predefined timestep. Finally, the reconstructed
HQ video V̂H is decoded from ẑH using the 3D VAE decoder Dϕ: V̂H = Dϕ (ẑH).

3.3 REDUCING REDUNDANCY IN VIDEO DIFFUSION MODELS

3.3.1 ATTENTION REDUNDANCY IN DIFFUSION TRANSFORMERS

When video generative diffusion models are adapted to VSR, they often introduce redundancy, as
low-quality videos already retain content information. To address this, we investigate redundancy
patterns in video generative diffusion models and find that attention is one common source.

4
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As illustrated in Fig. 3, attention heads in DiTs exhibit distinct specialization patterns, which re-
main consistent for the same head across different videos. Some heads display global patterns (left),
distributing attention across the entire sequence. In contrast, others focus on intra-frame patterns
(middle), where attention mainly concentrates within each frame. Likewise, a subset of heads ex-
hibits window patterns (right), where attention is concentrated in localized spatial neighborhoods.
These visualizations highlight that, although formulated as global attention, not all heads truly ex-
ploit global context, revealing clear redundancy in uniform global attention assignments.

3.3.2 ATTENTION SPECIALIZATION ROUTING

Layer 29 Head 7
Intra-Frame Pattern

Layer 6 Head 2
Window Pattern

Layer 13 Head 3
Global Pattern

Figure 3: Head-level specialization in diffusion trans-
formers. Each visualization is the mean attention map
over 50 videos from the training set, revealing global,
intra-frame, and window patterns.

The core idea of this routing strategy is to
selectively replace global attention heads
with localized alternatives, based on the
similarities of their attention heatmaps. To
this end, we first present the detailed for-
mulations of two attention mechanisms,
intra-frame and window attention, which
we identify as the key localized patterns.

Intra-Frame Attention. Let the latents of
the input LQ video be denoted as zL ∈
RC×T×H×W , where C is the latent di-
mension, T is the temporal length (num-
ber of frames), and H , W are the spatial height and width, respectively. In diffusion transformers
(DiTs), the query, key, and value tokens are obtained by applying separate learned linear projections
to zL. For each query token qt,h,w ∈ Rd extracted from spatial position (h,w) in frame t, where d
denotes the feature dimension of each head, the key and value sets are constructed by gathering all
tokens within the same frame t. The intra-frame attention output is thus computed as:

Attnintra(qt,h,w) =

H∑
h′=1

W∑
w′=1

exp
(
q⊤
t,h,wkt,h′,w′/

√
d
)
vt,h′,w′∑

h′′,w′′ exp
(
q⊤
t,h,wkt,h′′,w′′/

√
d
) . (5)

Window Attention. For each query token qt,h,w ∈ Rd at position (t, h, w), the attention is restricted
to a local spatiotemporal neighborhood. Specifically, we define a window of size (Pt, Ph, Pw)
centered at (t, h, w), and gather all tokens whose indices fall within this window:

N (t, h, w) =
{
(t′, h′, w′)

∣∣ |t′ − t| ≤ Pt/2, |h′ − h| ≤ Ph/2, |w′ − w| ≤ Pw/2
}
. (6)

The window attention output is then computed as:

Attnwin(qt,h,w) =

∑
(t′,h′,w′)∈N (t,h,w) exp

(
q⊤
t,h,wkt′,h′,w′/

√
d
)
vt′,h′,w′∑

(t′′,h′′,w′′)∈N (t,h,w) exp
(
q⊤
t,h,wkt′′,h′′,w′′/

√
d
) . (7)

To better exploit head-level specialization, we propose a simple algorithm to perform the routing.
As illustrated in Algorithm 1, given a target ratio ρ that specifies the proportion of attention heads
to be retained as global, we evaluate each head on a set of videos by measuring the KL-divergence
between its global attention heatmap and those from intra-frame and window attention. The smaller
divergence value is taken as the head score sh. Heads are then ranked by sh and sequentially replaced
with the corresponding localized alternative until the remaining global heads meet the ratio ρ.

Algorithm 1 Attention Specialization Routing

1: Input: DiT DN θ, global-head ratio ρ ∈ [0, 1]
2: Output: Assignment map A (head→ {global, intra-frame, window})
3: Initialize A(h)← global for all heads; N ← number of heads in all layers
4: For each head h across all layers:
5: obtain attention map Mg

h , M
i
h, M

w
h with global, intra-frame, and window attention

6: sih ← E
[
KL(Mg

h ∥M i
h)
]
; swh ← E [KL(Mg

h ∥Mw
h )]

7: sh ← min{sih, swh }; mh ← argminm∈{i,w} s
m
h

8: Sort all heads by sh (ascending); K ← ⌈ρN⌉
9: Set A(hj)← mhj

for j = 1, . . . , N −K
10: return A

5
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3.3.3 REDUNDANCY BEYOND ATTENTION

For video super-resolution, diffusion models typically incorporate a VAE encoder to map frames
into the latent space and a prompt extractor for conditioning (Zhou et al., 2024). The VAE encoder
downsamples videos into latent space with a large network, which we consider unnecessarily com-
plex. Therefore, we replace it with an extremely lightweight pixel-unshuffle (Chen et al., 2025a)
operation. Moreover, since the prompt extractor derives features from the LQ video without intro-
ducing additional information, we omit it as well and use an empty prompt for conditioning instead.
Our ablation study confirms that removing these modules has no adverse impact on performance.

3.4 PROGRESSIVE TRAINING

3.4.1 TWO-STAGE CURRICULUM LEARNING

Real-world degradations often exhibit temporal inconsistency across frames. For instance, unstable
camera movement may result in motion blur in specific frames while others remain unaffected. This
temporal inconsistency in degradations undoubtedly increases the difficulty of learning robust super-
resolution models. To address this, we propose a progressive training strategy that guides the model
to learn restoration in a curriculum manner, moving from simpler to more complex degradations.

The progressive training consists of two stages. In the first stage, we employ the second-order
degradation model (Wang et al., 2021) to generate synthetic training data. Specifically, we randomly
apply Gaussian noise, blur, and compression artifacts (image and video) to HQ videos. To control
the difficulty, all frames within a video are assigned the same type and severity of degradation,
ensuring temporal consistency across the sequence.

In the second stage, degradations are made temporally inconsistent across frames. To avoid exces-
sive discontinuities, degradations are generated sequentially across frames (Chan et al., 2022b), with
the type and severity conditioned on the previous frame and stochastically perturbed with a prede-
fined probability. This setting more faithfully reflects real-world scenarios and further improves the
model’s robustness to diverse frame-wise variations. Our ablation studies demonstrate that progres-
sive training clearly outperforms direct training on temporally inconsistent degradations.

3.4.2 TRAINING OBJECTIVES

In our progressive training, the two stages share the same training objective. Apart from the latent
reconstruction loss for the one-step diffusion model, we further introduce perceptual and temporal
losses in pixel space to enhance both visual fidelity and temporal consistency.

Latent Reconstruction Loss. Unlike standard diffusion models that optimize a noise-prediction
loss (Ho et al., 2020), OASIS employs a latent reconstruction objective, which is defined as an MSE
loss between ẑH and its ground-truth counterpart zH over a mini-batch of size B:

Llatent (ẑH, zH) = L2 (ẑH, zH) =
1

B

B∑
i=1

∥ẑH − zH∥2. (8)

Perceptual Loss. Although the latent reconstruction loss provides direct supervision to the DiT, the
target latent zH obtained from the VAE encoder typically deviates slightly from the true HQ latent
representations. To remedy this, we introduce a perceptual loss in pixel space, combining MSE and
LPIPS (Zhang et al., 2018) to balance accuracy and visual quality:

Lper(V̂H,VH) = L2(V̂H,VH) + LLPIPS(V̂H,VH). (9)
Temporal Loss. Supervision in pixel space is frame-wise and lacks explicit enforcement of temporal
consistency. To strengthen the coherence of the restored HQ video, we extract optical flow (Teed
& Deng, 2020) from the ground-truth video and warp each predicted frame toward its neighboring
frame. The temporal loss is defined as the MAE between the warped frame and its neighbor:

Lwarp =

M∑
i=1

∥Warp(V̂i
H,O

bw,i
GT )− V̂i+1

H ∥1 + ∥Warp(V̂i
H,O

fw,i
GT )− V̂i−1

H ∥1, (10)

where M is the number of frames, Obw,i
GT and Ofw,i

GT are the backward and forward optical flow
derived from the ground-truth video. The overall training objectives can thereby be expressed as:

L = Llatent + Lper + λwarp · Lwarp. (11)

6
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RealBasicVSR Upscale-A-Video MGLD-VSR VEnhancer STAR SeedVR SeedVR2 OASIS (ours)Dataset Metric CVPR 2022 CVPR 2024 ECCV 2024 arXiv 2024 ICCV 2025 ICCV 2025 arXiv 2025 2025

UDM10

PSNR ↑ 24.13 21.72 24.23 21.32 23.47 24.39 25.39 25.63
SSIM ↑ 0.6801 0.5913 0.6957 0.6811 0.6804 0.7083 0.7564 0.7579
LPIPS ↓ 0.3908 0.4116 0.3272 0.4344 0.4242 0.3417 0.2868 0.2452
CLIP-IQA ↑ 0.3494 0.4697 0.4557 0.2852 0.2417 0.2869 0.2906 0.5510
DOVER ↑ 0.7564 0.7291 0.7264 0.4576 0.4830 0.5493 0.5646 0.7863
E∗

warp ↓ 3.10 3.97 3.59 1.03 2.08 3.84 2.59 1.94

SPMCS

PSNR ↑ 22.17 18.81 22.39 18.58 21.24 21.73 22.36 22.75
SSIM ↑ 0.5638 0.4113 0.5896 0.4850 0.5441 0.5803 0.6136 0.5904
LPIPS ↓ 0.3662 0.4468 0.3263 0.5358 0.5257 0.3297 0.2905 0.2634
CLIP-IQA ↑ 0.3513 0.5248 0.4348 0.3188 0.2646 0.3946 0.4086 0.4693
DOVER ↑ 0.6753 0.7171 0.6754 0.4284 0.3204 0.6150 0.6251 0.7242
E∗

warp ↓ 1.88 4.22 1.68 1.19 1.01 1.83 1.24 1.15

YouHQ40

PSNR ↑ 22.39 19.62 23.17 19.78 22.43 21.96 23.61 23.75
SSIM ↑ 0.5895 0.4824 0.6194 0.5911 0.6276 0.5920 0.6771 0.6417
LPIPS ↓ 0.4091 0.4268 0.3608 0.4742 0.4744 0.3466 0.2754 0.2608
CLIP-IQA ↑ 0.3964 0.5258 0.4657 0.3309 0.2805 0.4123 0.3811 0.4817
DOVER ↑ 0.8596 0.8596 0.8446 0.6957 0.5525 0.8618 0.8384 0.8700
E∗

warp ↓ 3.08 6.84 3.45 0.95 3.39 3.44 3.42 2.74

RealVSR

PSNR ↑ 22.00 20.74 22.08 15.75 17.43 20.44 20.20 21.14
SSIM ↑ 0.7166 0.5681 0.6805 0.4002 0.5215 0.6792 0.6977 0.6212
LPIPS ↓ 0.2036 0.4163 0.2241 0.3784 0.2943 0.2416 0.2197 0.2018
CLIP-IQA ↑ 0.3538 0.2134 0.4109 0.3880 0.3641 0.2924 0.2887 0.4357
DOVER ↑ 0.7384 0.3587 0.7354 0.7637 0.7051 0.6747 0.7209 0.7800
E∗

warp ↓ 4.72 1.00 3.03 5.15 9.88 3.62 4.77 2.63

MVSR4x

PSNR ↑ 21.80 22.35 22.58 20.50 22.42 22.16 21.72 22.66
SSIM ↑ 0.7045 0.7327 0.7399 0.7117 0.7421 0.7407 0.7566 0.7428
LPIPS ↓ 0.4235 0.4012 0.3486 0.4471 0.4311 0.4543 0.3667 0.3246
CLIP-IQA ↑ 0.4118 0.3235 0.3738 0.3104 0.2674 0.2271 0.2243 0.5711
DOVER ↑ 0.6846 0.4276 0.6062 0.3164 0.2137 0.1554 0.2219 0.7243
E∗

warp ↓ 1.69 0.66 1.51 0.62 0.61 2.28 1.33 0.87

Table 1: Quantitative comparison on synthetic and real-world datasets. The best and second best
results are colored with red and blue. OASIS excels across multiple datasets and metrics.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Experimental Settings. We train our model on the HQ-VSR dataset (Chen et al., 2025b), which
contains 2,055 videos. To generate paired LQ-HQ data, we adopt the RealBasicVSR (Chan et al.,
2022b) degradation model, but extend it to two stages with temporally consistent and inconsistent
degradations. For evaluation, we follow prior works (Zhou et al., 2024; Yang et al., 2024a) on both
synthetic (UDM10 (Tao et al., 2017), SPMCS (Yi et al., 2019), YouHQ40 (Zhou et al., 2024)) and
real-world (RealVSR (Yang et al., 2021), MVSR4x (Wang et al., 2023b)) datasets. All experiments
use a×4 upscaling factor. The metrics include PSNR, SSIM (Wang et al., 2004), and LPIPS (Zhang
et al., 2018) as reference metrics, and CLIP-IQA (Wang et al., 2023a), DOVER (Wu et al., 2023),
and E∗

warp (i.e., Ewarp (×10−3) (Lai et al., 2018)) as no-reference metrics.

Implementation Details. Our method is built on Wan2.1 (Wan et al., 2025) (1.42B parameters).
We train the DiT with our progressive strategy while freezing all other components. Training
is conducted on 8 NVIDIA A6000 GPUs using AdamW (Loshchilov & Hutter, 2017) (β1=0.9,
β2=0.999). Input videos consist of 17 frames at 320×640 resolution, with a batch size of 8. OASIS
is trained for 25,000 iterations per stage with a learning rate of 1×10−4. We set loss weight λwarp to
0.1, predefined timestep TL to 799. and window attention size to (3, 5, 5). For ASR, the global-head
ratio ρ is 0.4, with attention assignments derived from 50 training videos from the training set.

4.2 MAIN RESULTS

Quantitative Results. As shown in Tab. 1, OASIS achieves superior performance, achieving first
or second place on 27 of 30 reported results. It delivers top scores in pixel-level (PSNR and SSIM)
and perceptual (LPIPS) fidelity, maintains superiority on video quality metrics (CLIP-IQA and
DOVER), and shows competitive temporal consistency (E∗

warp). These results highlight that OASIS
provides the most outstanding and balanced overall performance.

Qualitative Results. Figure 4 compares OASIS with leading baselines on synthetic and real-world
videos. While other methods can preserve coarse structures, they often suffer from oversmoothed
textures, contour artifacts, blurred grids, or color shifts. In contrast, OASIS recovers realistic details
while maintaining fidelity to the original video. We also provide the temporal consistency visual-
ization in Fig. 5, where our method delivers strong temporal coherence, yielding smooth frame-to-
frame transitions while preserving accurate details.
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UDM10: 003

GT Bicubic Upscale-A-Video VEnhancer

STAR SeedVR SeedVR2 OASIS (ours)

MVSR4x: 013

GT Bicubic Upscale-A-Video VEnhancer

STAR SeedVR SeedVR2 OASIS (ours)

Figure 4: Visual comparisons on synthetic and real-world datasets for ×4 VSR. OASIS yields clean
reconstructions while preserving contours and fine-scale surface patterns.

� �

Bicubic

Upscale-A-Video

STAR

SeedVR

OASIS (ours)

GT

Figure 5: Comparison of temporal consis-
tency. The temporal profile is obtained by
stacking the red line across frames. Our
method produces smoother frame transitions
that closely resemble the ground truth.

Method Step Params (B) Time (s) MACs (T)

Upscale-A-Video 30 1.09 283.70 9,084.73
MGLD-VSR 50 1.57 429.48 8,528.70
VEnhancer 15 2.50 122.48 3,056.16
STAR 15 2.49 176.53 4,281.67
SeedVR 50 3.40 207.13 8,243.13
SeedVR2 1 3.40 30.81 86.97
OASIS (ours) 1 1.42 4.97 51.43

Table 2: Comparison of inference steps (Step),
number of parameters (Params), running time
(Time), and multiply accumulate operations
(MACs) of different diffusion-based VSR methods
on a 33-frame 720×1280 video.

Running Time Comparisons. We evaluate efficiency in terms of inference steps, number of pa-
rameters, running time, and multiply accumulate operations (MACs) in Tab. 2. All methods are
evaluated on one NVIDIA A100-80G GPU, generating a 33-frame 720×1280 video. Notably, OA-
SIS achieves a significant reduction in computational cost, benefiting from its one-step diffusion
design that accelerates inference and the attention specialization routine that mitigates redundancy.

4.3 ABLATION STUDY

This section studies the effect of each component in our method. All models are trained on the HQ-
VSR dataset (Chen et al., 2025b) with a batch size of 4. For standard training, where the progressive
strategy is not applied, each model is trained for 30,000 iterations. Under the progressive strategy,
training is split into two stages, with 15,000 iterations performed for each stage.

Attention Specialization Routine (ASR). We compare ASR against models using only global,
intra-frame, or window attention patterns. The global-head ratio ρ is set to 0.4, and all models are
trained using only stage 2 of the standard training configuration. As shown in Fig. 6, the hybrid
design of ASR restores textures and details more faithfully than the single-pattern alternatives. In
Tab. 3a, ASR consistently outperforms other variants across metrics. Moreover, compared with the
original global-only design, ASR also provides higher efficiency. These results demonstrate the
effectiveness of ASR in reducing redundancy while enhancing performance.

Redundancy of VAE Encoder and Prompt Extractor. We further study redundancy beyond at-
tention, as shown in Tab. 3b. Following Upscale-A-Video, we adopt LLaVA (Liu et al., 2023) as
the prompt extractor, with the prompt obtained from the first frame. Removing either module can
improve efficiency. Since only the DiT is trained, the performance gains are less pronounced than
ASR, but these results confirm the redundancy of these modules.
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YouHQ40: 030 GT Bicubic Global Intra-Frame Window ASR (ours)

RealVSR: 317 GT Bicubic Global Intra-Frame Window ASR (ours)

Figure 6: Visual comparisons between ASR and different attention patterns.

Method PSNR↑ LPIPS↓ DOVER↑ E∗
warp↓ Time (s)

Global 22.35 0.3418 0.7098 1.13 10.53
Intra-Frame 22.10 0.3324 0.6730 1.75 2.38
Window 22.28 0.3408 0.6831 1.18 6.60
ASR (ours) 22.77 0.3242 0.7142 0.87 7.50

(a) Ablation study of ASR.

Method PSNR↑ LPIPS↓ DOVER↑ E∗warp↓ Time (s) MACs (T)

w/ VAE+Prompt 22.33 0.3433 0.6994 1.21 57.55 7.76
w/o VAE 22.31 0.3407 0.7007 1.16 55.79 6.03
w/o Prompt 22.41 0.3424 0.6901 1.17 53.09 6.84
w/o VAE+Prompt 22.35 0.3418 0.7098 1.13 51.43 4.97

(b) Ablation study of redundancy beyond attention.

Method PSNR↑ SSIM↑ LPIPS↓ DOVER↑ E∗
warp↓

S1 22.23 0.7369 0.3378 0.6978 1.31
S2 22.35 0.7336 0.3418 0.7098 1.13
S1+S2 (ours) 22.64 0.7432 0.3258 0.7144 0.97

(c) Ablation study of progressive training.

Llatent Lper Lwarp PSNR↑ SSIM↑ LPIPS↓ DOVER↑ E∗
warp↓

✓ 21.84 0.7744 0.4035 0.5871 2.07
✓ ✓ 22.28 0.7351 0.3432 0.6896 1.54
✓ ✓ ✓ 22.35 0.7336 0.3418 0.7098 1.13

(d) Ablation study of training loss functions.

Table 3: Quantitative results of the ablation study on the MVSR4x dataset. Best results are in red.

Global-Head Ratio (ρ). We evaluate ASR under different global-head ratios ρ in Fig. 7. The ratios
of each attention pattern under different values of ρ are provided in the Appendix. At ρ=0.4, the
model achieves the highest fidelity and temporal consistency, corresponding to the most effective
specialization assignment. Notably, most values of ρ outperform the global-only baseline, under-
scoring the soundness of the proposed attention specialization routing.

0.0 0.2 0.4 0.6 0.8 1.0
Global-Head Ratio 

22.3

22.4

22.5

22.6

22.7

PS
NR

ASR
Global Attn

0.0 0.2 0.4 0.6 0.8 1.0
Global-Head Ratio 

0.9

1.0

1.1

E
* w
ar

p

ASR
Global Attn

(a) PSNR vs. ρ (b) E∗
warp vs. ρ

Figure 7: Effect of global-head ratio ρ on PSNR
and E∗

warp metrics. The results are evaluated on
the MVSR4x dataset. Global Attn refers to the
baseline using the global attention only.

Progressive Training Strategy. We compare
standard training against our progressive train-
ing in Tab. 3c. Training with stage 1 (S1) alone
results in poor temporal consistency, while
training with stage 2 (S2) alone also leads to
suboptimal performance. In contrast, the pro-
gressive strategy (S1+S2) delivers clear im-
provements under the same number of training
iterations. This highlights the effectiveness of
progressive training in guiding the model from
simple to complex degradations and enhancing
robustness in real-world scenarios.

OASIS Training Loss Functions. As shown in Tab. 3d, using only the latent reconstruction loss
results in poor performance across all metrics, indicating that latent supervision alone is insufficient.
In contrast, introducing the perceptual loss yields substantial improvements on all metrics, demon-
strating the critical role of pixel-level supervision. Finally, adding the temporal loss further improves
the E∗

warp score, highlighting its importance in enhancing temporal consistency.

5 CONCLUSION

We propose OASIS, an efficient one-step diffusion model for real-world VSR. OASIS incorporates
an attention specialization routine, which assigns DiT attention heads to global or localized patterns
according to their attention distributions. This routine effectively reduces redundancy while improv-
ing performance. Moreover, we design a progressive strategy that trains the model from simple to
complex degradations, enabling better adaptation to complex real-world scenarios. Extensive exper-
iments highlight the superiority of OASIS over state-of-the-art methods with remarkable efficiency.
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Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In CVPR, 2024.

Zhihang Yuan, Hanling Zhang, Lu Pu, Xuefei Ning, Linfeng Zhang, Tianchen Zhao, Shengen Yan,
Guohao Dai, and Yu Wang. Ditfastattn: Attention compression for diffusion transformer models.
NeurIPS, 2024.

Han Zhang, Ruili Feng, Zhantao Yang, Lianghua Huang, Yu Liu, Yifei Zhang, Yujun Shen, Deli
Zhao, Jingren Zhou, and Fan Cheng. Dimensionality-varying diffusion process. In CVPR, 2023.

Hui Zhang, Tingwei Gao, Jie Shao, and Zuxuan Wu. Blockdance: Reuse structurally similar spatio-
temporal features to accelerate diffusion transformers. In CVPR, 2025a.

Peiyuan Zhang, Yongqi Chen, Runlong Su, Hangliang Ding, Ion Stoica, Zhengzhong Liu, and Hao
Zhang. Fast video generation with sliding tile attention. arXiv preprint arXiv:2502.04507, 2025b.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Yang Zhang, Er Jin, Yanfei Dong, Ashkan Khakzar, Philip Torr, Johannes Stegmaier, and Kenji
Kawaguchi. Effortless efficiency: Low-cost pruning of diffusion models. arXiv preprint
arXiv:2412.02852, 2024.

Yuehan Zhang and Angela Yao. Realviformer: Investigating attention for real-world video super-
resolution. In ECCV, 2024.

Wangbo Zhao, Yizeng Han, Jiasheng Tang, Kai Wang, Yibing Song, Gao Huang, Fan Wang, and
Yang You. Dynamic diffusion transformer. arXiv preprint arXiv:2410.03456, 2024.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all.
arXiv preprint arXiv:2412.20404, 2024.

Shangchen Zhou, Peiqing Yang, Jianyi Wang, Yihang Luo, and Chen Change Loy. Upscale-a-video:
Temporal-consistent diffusion model for real-world video super-resolution. In CVPR, 2024.

Jinchao Zhu, Yuxuan Wang, Xiaobing Tu, Siyuan Pan, Pengfei Wan, and Gao Huang. A-sdm:
Accelerating stable diffusion through redundancy removal and performance optimization. arXiv
preprint arXiv:2312.15516, 2023.

13


	Introduction
	Related Work
	Video Super-Resolution
	Diffusion Models
	Redundancy Reduction in Latent Diffusion Models

	Method
	Preliminaries: One-Step Latent Diffusion Model
	Overview of OASIS
	Reducing Redundancy in Video Diffusion Models
	Attention Redundancy in Diffusion Transformers
	Attention Specialization Routing
	Redundancy Beyond Attention

	Progressive Training
	Two-Stage Curriculum Learning
	Training Objectives


	Experiments
	Experimental Settings
	Main Results
	Ablation Study

	Conclusion

