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Abstract

Cyclical step-sizes are becoming increasingly popular in the optimization of deep1

learning problems. Motivated by recent observations on the spectral gaps of2

Hessians in machine learning, we show that these step-size schedules offer a3

simple way to exploit them. More precisely, we develop a convergence rate4

analysis for quadratic objectives that provides optimal parameters and shows that5

cyclical learning rates can improve upon traditional lower complexity bounds.6

We further propose a systematic approach to design optimal first order methods7

for quadratic minimization with a given spectral structure. Finally, we provide a8

local convergence rate analysis beyond quadratic minimization for the proposed9

methods and illustrate our findings through benchmarks on least squares and10

logistic regression problems.11

1 Introduction12

One of the most iconic methods in first order optimization is gradient descent with momentum, also13

known as the heavy ball method [Polyak, 1964]. This method enjoys widespread popularity both in14

its original formulation and in a stochastic variant that replaces the gradient by a stochastic estimate,15

a method that is behind many of the recent breakthroughs in deep learning [Sutskever et al., 2013].16

A variant of the stochastic heavy ball where the step-sizes are chosen in cyclical order has recently17

come to the forefront of machine learning research, showing state-of-the art results on different deep18

learning benchmarks [Loshchilov and Hutter, 2017, Smith, 2017]. Inspired by this empirical success,19

we aim to study the convergence of the heavy ball algorithm where step-sizes h0, h1, . . . are not fixed20

or decreasing but instead chosen in cyclical order:21

Algorithm 1: Cyclical heavy ball HBK(h0, . . . , hK−1;m)

Input: Initialization x0, momentum m ∈ (0, 1), step-sizes {h0, . . . , hK−1}
x1 = x0 −

h0

1 +m
∇f(x0)

for t = 1, 2, . . . do xt+1 = xt − hmod(t,K)∇f(xt) +m(xt − xt−1)

end

The heavy ball method with constant step-sizes enjoys a mature theory, where it is known for example22

to achieve optimal black-box worst-case complexity of quadratic convex optimization [Nemirovsky,23

1992]. In stark contrast, little is known about the the convergence of the above variant with cyclical24

step-sizes. Our main motivating question is25

Do cyclical step-sizes improve convergence of heavy ball?26
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Our main contribution provides a positive answer to this question and, more importantly, quantifies27

the speedup under different assumptions. In particular, we show that for quadratic problems, whenever28

Hessian’s spectrum belongs to two or more disjoint intervals, the heavy ball method with cyclical step-29

sizes achieves a faster worst-case convergence rate. Recent works have shown that this assumption on30

the spectrum is quite natural and occurs in many machine learning problems, including deep neural31

networks [Sagun et al., 2017, Papyan, 2018, Ghorbani et al., 2019, Papyan, 2019]. More precisely,32

we list our main contributions below.33

• In sections 3 and 4, we provide a tight convergence rate analysis of the cyclical heavy ball method34

(Theorems 3.1 and 3.2 for two step-sizes, and Theorem 4.8 for the general case). This analysis35

highlights a regime under which this method achieves a faster worst-case rate than the accelerated36

rate of heavy ball, a phenomenon we refer to as super-acceleration. Theorem 5.1 extends the (local)37

convergence rate analysis results to non-quadratic objectives.38

• As a byproduct of the convergence-rate analysis, we obtain an explicit expression for the optimal39

parameters in in the case of cycles of length two (Algorithm 2) and an implicit expression in terms40

of a system of K equations in the general case.41

• Section 6 presents numerical benchmarks illustrating the improved convergence of the cyclical42

approach on 4 problems involving quadratic and logistic losses on both synthetic and a handwritten43

digits recognition dataset.44

• Finally, we conclude in Section 7 with a discussion of this work’s limitations.45

2 Notation and Problem Setting46

Throughout the paper, we consider the problem of minimizing quadratic functions of the form47

min
x∈Rd

f(x) , with f ∈ CΛ ,
{
f : f(x) = 1

2 (x− x ∗)TH(x− x∗) + f∗, Sp(H) ⊆ Λ
}
, (OPT)

where CΛ is the class of quadratic functions whose spectrum Sp(H) is localized in Λ ⊆ [µ,L] ⊆ R>0.48

We discuss more general settings beyond quadratic minimization in Section 5.49

The condition Λ ⊆ [µ,L] implies all quadratic functions under consideration are L-smooth and50

µ-strongly convex. For this function class, we define κ, the (inverse) condition number, and ρ, the51

ratio between the center of Λ and its radius, as52

κ , µ
L , ρ , L+µ

L−µ =
(

1+κ
1−κ

)
. (1)

Finally, for a method solving (OPT) that generates a sequence of iterates {xt}, we define its worst-case53

rate rt and its asymptotic rate factor τ as54

rt , sup
x0∈Rd, f∈CΛ

‖xt − x∗‖
‖x0 − x∗‖

, 1− τ , lim sup
t→∞

t
√
rt . (2)

3 Super-acceleration with Cyclical Step-sizes55

Algorithm 2: Cyclical (K = 2) heavy ball with with optimal parameters
Input: Initialization x0, µ1 < L1 < µ2 < L2 (where L1 − µ1 = L2 − µ2)

Set: ρ = L2+µ1

L2−µ1
, R = µ2−L1

L2−µ1
, m =

(√
ρ2−R2−

√
ρ2−1√

1−R2

)2

x1 = x0 − 1
L1
∇f(x0)

for t = 1, 2, . . . do
ht = 1+m

L1
(if t is even), ht = 1+m

µ2
(if t is odd)

xt+1 = xt − ht∇f(xt) +m(xt − xt−1)

end
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Figure 1: Hessian eigenvalue histogram for
a quadratic objective on MNIST. The outlier
eigenvalue at L2 generates a non-zero rela-
tive gap R = 0.77. Under these conditions,
the 2-cycle heavy ball method has a faster
asymptotic rate than the single-cycle one (see
Section 3.1).

In this section we develop one of our main contri-56

butions, a convergence rate analysis of the cyclical57

heavy ball method with cycles of length 2. This analy-58

sis crucially depends on the location of the Hessian’s59

eigenvalues; we assume that these are contained in a60

set Λ that is the union of 2 intervals of the same size61

Λ = [µ1, L1]∪[µ2, L2] , L1−µ1 = L2−µ2. (3)

By symmetry, this set is alternatively described by62

µ , µ1, L , L2 and R ,
µ2 −L1

L2 − µ1
, (4)

where R is the relative length of the gap µ2 −L163

with respect to the diameter L2 − µ1 (see Figure 1).64

This parametrization will reveal very convenient as65

the relative gap will play a crucial role in the conver-66

gence rate analysis. Note also that the gap assumption67

comes without loss of generality, as we allow R = 0.68

Through a correspondence between optimization69

methods and polynomials that we expand upon in70

Section 4, we can derive a worst-case analysis for the cyclical heavy ball method. The outcome of71

this analysis is in the following theorem, that provides the asymptotic convergence rate of Algorithm72

1 for cycles of length two. All proofs of results in this section can be found in Appendix D.3.73

Theorem 3.1 (Rate factor of HB2(h0, h1;m)). Let f ∈ CΛ and h0, h1, m ≥ 0. The asymptotic rate74

factor of Algorithm 1 with cycles of length two is75

1− τ =


√
m if σsup ≤ 1,
√
m
(
σsup +

√
σ2

sup − 1
) 1

2

if σsup ∈
(

1, 1+m2

2m

)
,

≥ 1 (no convergence) if 1+m2

2m ≤ σsup,

(5)

76

with σsup = sup
λ∈

{
µ1,L1,µ2,L2,

h0+h1
2h0h1

}
∩Λ

∣∣∣2(1 +m− λh0
2
√
m

)(
1 +m− λh1

2
√
m

)
− 1
∣∣∣ . (6)

This theorem gives the convergence rate for all triplets (m,h0, h1). By evaluating this expression77

over a grid of step-sizes, Figure 2 shows how the rate changes as a function of both step-sizes:
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Figure 2: Asymptotic rate of cyclical (K = 2) heavy ball in terms of its step-sizes h0, h1 across 3
different values of the relative gap R. In the left plot, the relative gap is zero, and so the step-sizes
with smallest rate coincide (h0 = h1). For non-zero values of R (center and right), the optimal
method instead alternates between two different step-sizes. In all plots the momentum parameter m
is set according to Algorithm 2.
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From the asymptotic rate expression of Theorem 3.1 we can optimize over the parameters (h0, h1,m)79

to obtain the method with smallest convergence rate. This leads to our other main contribution of this80

section, the asymptotically optimal Algorithm 2. This algorithm enjoys the following rate:81

Corollary 3.2. The worst-case (asymptotic) rates rAlg. 2
t and 1− τAlg. 2 of Algorithm 2 over CΛ are82

rAlg. 2
t =

(
1 + t

√
ρ2−1
ρ2−R2

)(√
ρ2−R2−

√
ρ2−1√

1−R2

)t
, 1− τAlg. 2 =

√
ρ2 −R2 −

√
ρ2 − 1

√
1−R2

for t even.

3.1 Comparison with Polyak Heavy Ball83

In the absence of eigenvalue gap (R = 0 and Λ = [µ,L]), Algorithm 2 reduces to Polyak heavy84

ball (PHB) [Polyak, 1964], whose worst-case rate is detailed in Appendix B. Since the asymptotic rate85

of Algorithm 2 is monotonically decreasing in R, it is always better or equal than PHB. Furthermore,86

in the ill-conditioned regime (small κ), the comparison is particularly simple: the optimal 2-cycle87

algorithm has a
√

1−R2 relative improvement over PHB, as provided by the next proposition.88

A more thorough comparison for different support sets Λ is discussed in Table 1.89

Proposition 3.3. Let R ∈ [0, 1). The rate factors of respectively Algorithm 2 and PHB verify90

1− τAlg. 2 =
κ→0

1− 2
√
κ√

1−R2
+ o(
√
κ) , 1− τPHB =

κ→0
1− 2

√
κ+ o(

√
κ) . (7)

Relative gap R Set Λ Rate factor τ Speedup τ/τPHB

R ∈ [0, 1) [µ, µ+R(L− µ)] ∪ [L−R(L− µ), L] 2
√
κ√

1−R2
(1−R2)−

1
2

R = 1−
√
κ/2 [µ, µ+

√
µL
4 ] ∪ [L−

√
µL
4 , L] 2 4

√
κ κ−

1
4

R = 1− 2γκ [µ, (1 + γ)µ] ∪ [L− γµ, L] indep. of κ O(
√
κ)

Table 1: Case study of the convergence of Algorithm 2 as a function of R, in the regime κ→ 0. The
first line corresponds to the regime where R is independent of κ, and we observe a constant gain
w.r.t. PHB. The second line considers a setting in which R depends on

√
κ, that is, the two intervals

in Λ are relatively small. The asymptotic rate reads (1− 2 4
√
κ)t, beating the classical (1− 2

√
κ)t

lower bound, unimprovable when R = 0. Finally, in the third line, R depends on κ, the two intervals
in Λ are so small that the convergence becomes O(1), i.e., is independent of κ.

4 A constructive Approach: Minimax Polynomials91

This section presents a generic framework (Algorithm 3) that allows designing optimal momentum92

and step-size cycles for given sets Λ and cycle length K.93

Algorithm 3: Optimal momentum method with cyclical step-sizes
Input: Eigenvalue localization Λ, cycle length K, initialization x0.
Preprocessing:

1. Find the polynomial σΛ
K such that it satisfies (16).

2. Set step-sizes {hi}i=0,...,K−1 and momentum m that satisfy resp. equations (21) and (22).

Set x1 = x0 −
h0

1 +m
∇f(x0)

for t = 1, 2, . . . do
xt+1 = xt − hmod(t,K)∇f(xt) +m(xt − xt−1)

end

We first recall classical results that link optimal first order methods on quadratics and Chebyshev94

polynomials. Then, we generalize the approach by showing that optimal methods can be viewed as95

4



combinations of Chebyshev polynomials, and minimax polynomials σΛ
K of degree K over the set Λ.96

Finally, we show how to recover the step-size schedule from σΛ
K .97

4.1 First Order Methods on Quadratics and Polynomials98

A key property that we will use extensively in the analysis is the following link between first order99

methods and polynomials (see [Hestenes and Stiefel, 1952]).100

Proposition 4.1. Let f ∈ CΛ. The iterates xt satisfy101

xt+1 ∈ x0 + span{∇f(x0), . . . ,∇f(xt)} , (8)
where x0 is the initial approximation of x∗, if and only if there exists a sequence of polynomials102

(Pt)t∈N, each of degree at most 1 more than the highest degree of all previous polynomials and P0 of103

degree 0 (hence the degree of Pt is at most t), such that104

∀ t xt − x∗ = Pt(H)(x0 − x∗), Pt(0) = 1 . (9)

Example 4.2 (Gradient descent). Consider the gradient descent algorithm with fixed step-size h,105

applied to problem (OPT). Then, after unrolling the update, we have106

xt+1−x∗ = xt−x∗ − h∇f(xt) = xt−x∗ − hH(xt − x∗) = (I − hH)t+1(x0 − x∗) . (10)
In this case, the polynomial associated to gradient descent is Pt(λ) = (1− hλ)t.107

The above proposition can be used to obtain worst-case rates for first order methods by bounding108

their associated polynomials. Indeed, using the Cauchy-Schwartz inequality in (9) leads to109

‖xt − x∗‖ ≤ sup
λ∈Λ
|Pt(λ)| ‖x0 − x∗‖ =⇒ rt = sup

λ∈Λ
|Pt(λ)|, where P (0) = 1 . (11)

Therefore, finding the algorithm with the fastest worst-case rate can be equivalently framed as the110

problem of finding the polynomial with smallest value on the eigenvalue support Λ, subject to the111

normalization condition Pt(0) = 1. Such polynomials are referred to as minimax. Throughout the112

paper, we use this polynomial-based approach to find methods with optimal rates.113

An important property of minimax polynomials is their equioscillation on Λ (see Theorem C.1 and114

its proof for a formal statement).115

Definition 4.3. (Equioscillation) A polynomial Pt equioscillates on Λ if it verifies Pt(0) = 1 and116

there exist λ0 < λ1 < . . . < λt ∈ Λ such that117

Pt(λi) = (−1)i max
λ∈Λ
|Pt(Λ)| . (12)

Example 4.4 (Λ is an interval). The t-th order Chebyshev polynomials of the first kind Tt satisfy118

the equioscillation property on [−1, 1]. It follows that minimax polynomials on Λ = [µ,L] can be119

obtained by composing the Chebyshev polynomial Tt with the linear transformation σΛ
1 :120

Tt
(
σΛ

1 (λ)
)

Tt
(
σΛ

1 (0)
) = arg min

P∈Rt[X],P (0)=1

sup
λ∈Λ
|P (λ)| , with σΛ

1 (λ) =
L+ µ

L− µ
− 2

L− µ
λ , (13)

where σΛ
1 maps the interval [µ, L] to [−1, 1]. The optimization method associated with this minimax121

polynomial is the Chebyshev semi-terative method [Flanders and Shortley, 1950, Golub and Varga,122

1961] (described also in Appendix B.1). This method achieves the lower complexity bound for123

smooth strongly convex quadratic minimization, see for instance [Nemirovsky, 1995, Chapter 12] or124

[Nemirovsky, 1992, Nesterov, 2003].125

The next proposition provides the main results in this subsection, which is key for obtaining Algo-126

rithm 2. It characterizes the even degree minimax polynomial in the setting of Section 3, that is,127

when Λ is the union of 2 intervals of same size. In this case, the minimax solution is also based on128

Chebyshev polynomials, but composed with a degree-two polynomial σΛ
2 .129

Proposition 4.5. Let Λ = [µ1, L1] ∪ [µ2, L2] be an union of two intervals of the same size130

(L1−µ1 = L2−µ2) and letm be as defined in Algorithm 2. Then the minimax polynomial (solution131

to (12)) is, for all t = 2n, n ∈ N+
0 ,132

Tn
(
σΛ

2 (λ)
)

Tn
(
σΛ

2 (0)
) = arg min

P∈Rt[X],
P (0)=1

sup
λ∈Λ
|P (λ)| , with σΛ

2 (λ) = 2

(
1 +m

2
√
m

)2(
1− λ

L1

)(
1− λ

µ2

)
− 1 .
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4.2 Generalization to Longer Cycles133

The polynomial in Example 4.4 uses a linear link function σΛ
1 to map Λ to [−1, 1]. In Proposition 4.5,134

we see that a degree two link function σΛ
2 can be used to find the minimax polynomial when Λ is the135

union of two intervals. This section generalizes this approach and considers higher-order polynomials136

for σK . We start with the following parametrization, with an arbitrary polynomial σK of degree K,137

Pt(λ;σK) ,
Tn (σK(λ))

Tn (σK(0))
, ∀t = Kn, n ∈ N+

0 . (14)

As we will see in the next subsection, this parametrization allows considering cycles of step-sizes.138

Our goal now is to find the σK that obtains the fastest convergence rate possible. The next proposition139

quantifies its impact on the asymptotic rate and its proof can be found in Appendix D.1.140

Proposition 4.6. For a given σK such that supλ∈Λ|σK(λ)| = 1, the asymptotic rate factor τσK of141

the method associated to the polynomial (14) is142

1− τσK = lim
t→∞

t

√
sup
λ∈Λ
|Pt(λ;σK)| =

(
σ0 −

√
σ2

0 − 1
) 1
K

, with σ0 , σK(0) . (15)

For a fixed K, the asymptotic rate (15) is a decreasing function of σ0. This motivates the introduction143

of the “optimal” degree K polynomial σΛ
K as the one that solves144

σΛ
K , arg max

σ∈RK [X]

σ(0) s.t. sup
λ∈Λ
|σ(λ)| = 1 . (16)

Using the above definition, we recover the σΛ
1 and σΛ

2 from Example 4.4 and Proposition 4.5.145

Finding the polynomial. Finding an exact and explicit solution for the general K and Λ case146

is unfortunately out of reach, as it involves solving a potentially difficult system of K non-linear147

equations. Here we describe an approximate approach. Let σΛ
K(x) =

∑K
i=0 σix

i. We propose to148

discretize Λ into N different points {λj}, then solve the linear problem149

max
σi

σ0 s.t. −1 ≤
∑K
i=0 σiλ

i
j ≤ 1, ∀j = 1, . . . , N . (17)

To check the optimality, it suffices to verify that the polynomial σΛ
K satisfies the equioscillation150

property (Definition 4.3), as depicted in Figure 3.151

Remark 4.7 (Relationship between optimal and minimax polynomials). For later reference, we note152

that the optimal polynomial σΛ
K is equivalent to finding a minimax polynomial on Λ and to rescale it.153

More precisely, σΛ
K is optimal if and only if σΛ

K/σ
Λ
K(0) is minimax.154

4.3 Cyclical Heavy Ball and (Non-)asymptotic Rates of Convergence155

We now describe the link between σΛ
K and Algorithm 3. Using the recurrence for Chebyshev156

polynomials of the first kind in (14), we have ∀t = Kn, n ∈ N+
0 ,157

Tn+1(σΛ
K(λ))

Tn+1(σΛ
K(0))

= 2σΛ
K(λ)

[
Tn(σΛ

K(λ))

Tn(σΛ
K(0))

] [
Tn(σΛ

K(0))

Tn+1(σΛ
K(0))

]
︸ ︷︷ ︸

=an

−
[
Tn−1(σΛ

K(λ))

Tn−1(σΛ
K(0))

] [
Tn−1(σΛ

K(0))

Tn+1(σΛ
K(0))

]
︸ ︷︷ ︸

=bn

.

It still remains to find an algorithm associated with this polynomial. To obtain one in the form of158

Algorithm 1, one can use the stationary behavior of the recurrence. From [Scieur and Pedregosa,159

2020], the coefficients an and bn converge as n→∞ to their fixed-points a∞ and b∞. We therefore160

consider here an asymptotic polynomial P̄t(λ;σΛ
K), whose recurrence satisfies161

P̄t(λ;σΛ
K) = 2a∞σ

Λ
K(λ)P̄t−K(λ;σΛ

K)− b∞P̄t−2K(λ;σΛ
K) . (18)

Similarly to K = 1, where this limit recursion corresponds to PHB, this recursion corresponds to162

an instance of Algorithm 3 (see Proposition 4.9 below), further motivating the cyclical heavy ball163

algorithm.164

The following theorem is the main result of this section and characterizes the convergence rate of165

Algorithm 1 for arbitrary momentum and step-size sequences {hi}i∈J1,KK. By optimizing over these166

parameters, we obtain a method associated to (18), whose rate is described in Proposition 4.9. All167

proofs can be found in Appendix D.2.168
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Figure 3: Examples of optimal polynomials σΛ
K from (16), all of them verifying the equioscillation

property (Definition 4.3). The “?” symbol highlights the degree of σΛ
K that achieves the best

asymptotic rate τσ
Λ
K in (15) amongst all K (see Section 4.4). (Left) When Λ is an unique interval,

all 3 polynomials are equivalently optimal τσ
Λ
1 =τσ

Λ
2 =τσ

Λ
3 . (Center) When Λ is the union of two

intervals of the same size, the degree 2 polynomial is optimal τσ
Λ
2 >τσ

Λ
3 >τσ

Λ
1 . This is expected

given the result in Proposition 4.5. (Right) When Λ is the union of two unbalanced intervals, the
degree 3 polynomial instead achieves the best asymptotic rate τσ

Λ
3 >τσ

Λ
2 >τσ

Λ
1 (see Section 4.4).

Theorem 4.8. The worst-case rate of convergence of Algorithm 1 on CΛ with an arbitrary momentum169

m and an arbitrary sequence of step-sizes {hi} is170

1− τ =



√
m, if σsup ≤ 1

√
m
(
σsup +

√
σ2

sup − 1
)1/K

, if σsup ∈

(
1,

1 +mK

2 (
√
m)

K

)
≥ 1 (no convergence) if σsup ≥

1 +mK

2 (
√
m)

K

, (19)

where σsup , sup
λ∈Λ
|σ(λ; {hi},m)|, and σ(λ; {hi},m) is the K-degree polynomial171

σ(λ; {hi},m) ,
1

2
Tr

([ 1+m−hK−1λ√
m

−1

1 0

] [ 1+m−hK−2λ√
m

−1

1 0

]
. . .

[
1+m−h0λ√

m
−1

1 0

])
. (20)

Proposition 4.9. Let σ(λ; {hi},m) be the polynomial defined by (20), and σΛ
K be the optimal link172

function of degree K defined by (16). If the momentum m and the sequence of step-sizes {hi} satisfy173

σ(λ; {hi},m) = σΛ
K(λ) , (21)

then 1) the parameters are optimal, in the sense that they minimize the asymptotic rate factor from174

Theorem 4.8, 2) the optimal momentum parameter is175

m =
(
σ0 −

√
σ2

0 − 1
)2/K

, where σ0 = σΛ
K(0) , (22)

3) the iterates from Algo. 3 with parameters {hi} and m form a polynomial with recurrence (18),176

and 4) Algorithm 3 achieves the worst-case rate rAlg. 3
t and the asymptotic rate factor 1− τAlg. 3177

rAlg. 3
t = O

(
t
(
σ0 −

√
σ2

0 − 1
)t/K)

, 1− τAlg. 3 =
(
σ0 −

√
σ2

0 − 1
)1/K

. (23)

Solving the system (21) The system is constructed by identification of the coefficients in both178

polynomials σΛ
K and σ(λ; {hi},m), which can be solved using a naive grid-search for instance. We179

are not aware of any efficient algorithm to solve this system exactly, although it is possible to use180

iterative methods such as steepest descent or Newton’s method.181

7



4.4 Best Achievables Worst-case Guarantees on CΛ182

This section discusses the (asymptotic) optimality of Algorithm 3. In Section 4.2, the polynomial183

Pt( · ;σΛ
K) was written as a composition of Chebyshev polynomials with σΛ

K , defined in (16). The184

best K is chosen as follows: we solve (16) for several values of K, then pick the smallest K among185

the minimizers of (15). However, following such steps does not guarantee that the polynomial PΛ
t,K186

is minimax, as it is not guaranteed to minimize the worst-case rate supλ∈Λ |Pt(λ)| (see (11)).187

We give here an optimality certificate, linked to a generalized version of equioscillation. In short, if188

we can find K non overlapping intervals (more formally, whose interiors are disjoint) Λi in Λ such189

that σΛ
K(Λi) = [−1, 1] then PΛ

t,K is minimax for all t = nK, n ∈ N+
0 . The detailed result is provided190

by Theorem C.2. A direct consequence of this result is the asymptotic optimality of Algorithm 3, i.e.,191

there exists no first order algorithm with a better asymptotic rate 1− τ for the function class CΛ.192

It is possible that such σΛ
K does not exist for a given Λ. A complete characterization of the set Λ for193

which there exists such σΛ
K is out of the scope of this paper. A partial answer is given in [Fischer,194

2011] when Λ is the union of two intervals. However, the problem remains open in the general case.195

5 Local Convergence for Non-Quadratic Functions196

When f is twice-differentiable, it is possible to show local convergence rates when x0 is close197

enough to x∗ [Polyak, 1964]. We give here a similar result that applies to Algorithm 1 (see proof in198

Appendix E). Those results are only local, as it is possible to find pathological counter-examples for199

which even PHB does not converge globally, for some specific initialization [Lessard et al., 2016].200

Theorem 5.1 (Local convergence). Let f : Rd 7→ R be a (potentially non-quadratic) twice continu-201

ously differentiable function, x∗ a local minimizer, and H be the Hessian of f at x∗ with Sp(H) ⊆ Λ.202

Let xt denote the result of running Algorithm 1 with parameters h1, h2, · · · , hK ,m, and let 1− τ be203

the linear convergence rate on the quadratic objective (OPT). Then we have204

∀ε > 0,∃ open set Vε : x0, x∗ ∈ Vε =⇒ ‖xt − x∗‖ = O((1− τ + ε)t)‖x0 − x∗‖. (24)

In short, when Algorithm 1 is guaranteed to converge at rate 1− τ on (OPT), then the convergence205

rate on a nonlinear functions can be arbitrary close to 1− τ when x0 is sufficiently close to x∗.206

6 Experiments207

In this section we present an empirical comparison of the cyclical heavy ball method for different208

length cycles across 4 different problems. We consider two different problems, quadratic and logistic209

regression, each applied on two datasets, the MNIST handwritten digits [Le Cun et al., 2010] and210

a synthetic dataset. The results of these experiments, together with a histogram of the Hessian’s211

eigenvalues are presented in Figure 4 (see caption for a discussion).212

Dataset description. The MNIST dataset consists of a data matrix A with 60000 images of hand-213

written digits each one with 28× 28 = 784 pixels. The synthetic dataset is generated according to214

a spiked covariance model [Johnstone, 2001], which has been shown to be an accurate model of215

covariance matrices arising for instance in spectral clustering [Couillet and Benaych-Georges, 2016]216

and deep networks [Pennington and Worah, 2017, Granziol et al., 2020]. In this model, the data217

matrix A = XZ is generated from a m× n random Gaussian matrix X and an m×m deterministic218

matrix Z. In our case, we take n = 1000,m = 1200 and Z is the identity where the first three entries219

are multiplied by 100 (this will lead to three outlier eigenvalues). We also generate an n-dimensional220

target vector b as b = Ax or b = sign(Ax) for the quadratic and logistic problem respectively.221

Objective function For each dataset, we consider a quadratic and a logistic regression problem,222

leading to 4 different problems. All problems are of the form minx∈Rp
1
n

∑n
i=1 `(A

>
i x, bi) + λ‖x‖2,223

where ` is a quadratic or logistic loss, A is the data matrix and b are the target values. We set the224

regularization parameter to λ = 10−3‖A‖2. For logistic regression, since guarantees only hold at225

a neighborhood of the solution (even for the 1-cycle algorithm), we initialize the first iterate as the226

result of 100 iteration of gradient descent. In the case of logistic regression, the Hessian eigenvalues227

are computed at the optimum.228
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Figure 4: Hessian Eigenvalue histogram (top row) and Benchmarks (bottom row). The top row shows
the Hessian eigenvalue histogram at optimum for the 4 problems consider, together with the interval
boundaries µ1 < L1 < µ2 < L2 for the two-interval split of the eigenvalue support described in
Section 3. In all cases, there’s a non-zero gap radius R. This is shown in the bottom row, where we
compare the suboptimality in terms of gradient norm as a function of the number of iterations. As
predicted by the theory, the non-zero gap radius translates into a faster convergence of the cyclical
approach, compared to PHB in all cases. The improvement is observed on both quadratic and logistic
regression problems, even through the theory for the latter is limited to local convergence.

7 Conclusion229

This work is motivated by two recent observations from the optimization practice of machine learning.230

First, cyclical step-sizes have been shown to enjoy excellent empirical convergence [Loshchilov and231

Hutter, 2017, Smith, 2017]. Second, spectral gaps are pervasive in the Hessian spectrum of deep232

learning models [Sagun et al., 2017, Papyan, 2018, Ghorbani et al., 2019, Papyan, 2019]. Based on233

the simpler context of quadratic convex minimization, we develop a convergence-rate analysis and234

optimal parameters for the heavy ball method with cyclical step-sizes. This analysis highlights the235

regimes under which cyclical step-sizes have faster rates than classical accelerated methods. Finally,236

we illustrate these findings through numerical benchmarks.237

Main Limitations. In Section 3 we gave explicit formulas for the optimal parameters in the case238

of the 2-cycle heavy ball algorithm. These formulas depend not only on extremal eigenvalues—as is239

usual for accelerated methods—but also on the spectral gap R. The gap can sometimes be computed240

after computed the top eigenvalues (e.g. top-2 eigenvalue for MNIST). However, in general, there241

is no guarantee on how many eigenvalues are needed to estimate it. Moreover, global convergence242

result rely heavily on the quadratic assumption.243

Another limitation regards long cycles. For cycles longer than 2, we have only given an implicit244

formula to set the optimal parameters (Proposition 4.9). This involves solving a set of non-linear245

equations whose complexity increases with the cycle length. That being said, cyclical step-sizes246

might significantly enhance convergence speeds both in terms of worst-case rates and empirically,247

and this work advocates that new tuning practices involving different cycle lengths might be relevant.248

Broader Impact. This work is mostly theoretical, and as such we believe it does not present direct249

societal consequences. However, the methods described in this paper can be used to train machine250

learning models which could themselves have societal consequences. For example, the deployment251

of machine learning models in decision-making has been shown to suffer from gender and racial bias252

and to amplify existing inequalities, see for instance [Hutchinson and Mitchell, 2019, Barocas et al.,253

2017, Obermeyer et al., 2019].254
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