Super-Acceleration with Cyclical Step-sizes

Anonymous Author(s)
Affiliation
Address
email

Abstract

Cyclical step-sizes are becoming increasingly popular in the optimization of deep learning problems. Motivated by recent observations on the spectral gaps of Hessians in machine learning, we show that these step-size schedules offer a simple way to exploit them. More precisely, we develop a convergence rate analysis for quadratic objectives that provides optimal parameters and shows that cyclical learning rates can improve upon traditional lower complexity bounds. We further propose a systematic approach to design optimal first order methods for quadratic minimization with a given spectral structure. Finally, we provide a local convergence rate analysis beyond quadratic minimization for the proposed methods and illustrate our findings through benchmarks on least squares and logistic regression problems.

1 Introduction

One of the most iconic methods in first order optimization is gradient descent with momentum, also known as the heavy ball method [Polyak, 1964]. This method enjoys widespread popularity both in its original formulation and in a stochastic variant that replaces the gradient by a stochastic estimate, a method that is behind many of the recent breakthroughs in deep learning [Sutskever et al., 2013].

A variant of the stochastic heavy ball where the step-sizes are chosen in cyclical order has recently come to the forefront of machine learning research, showing state-of-the art results on different deep learning benchmarks [Loshchilov and Hutter, 2017, Smith, 2017]. Inspired by this empirical success, we aim to study the convergence of the heavy ball algorithm where step-sizes h_{0}, h_{1}, \ldots are not fixed or decreasing but instead chosen in cyclical order:

```
Algorithm 1: Cyclical heavy ball \(\mathrm{HB}_{K}\left(h_{0}, \ldots, h_{K-1} ; m\right)\)
Input: Initialization \(x_{0}\), momentum \(m \in(0,1)\), step-sizes \(\left\{h_{0}, \ldots, h_{K-1}\right\}\)
\(x_{1}=x_{0}-\frac{h_{0}}{1+m} \nabla f\left(x_{0}\right)\)
for \(t=1,2, \ldots\) do \(\quad x_{t+1}=x_{t}-h_{\bmod (t, K)} \nabla f\left(x_{t}\right)+m\left(x_{t}-x_{t-1}\right)\)
end
```

The heavy ball method with constant step-sizes enjoys a mature theory, where it is known for example to achieve optimal black-box worst-case complexity of quadratic convex optimization [Nemirovsky, 1992]. In stark contrast, little is known about the the convergence of the above variant with cyclical step-sizes. Our main motivating question is
\square Do cyclical step-sizes improve convergence of heavy ball?

Our main contribution provides a positive answer to this question and, more importantly, quantifies the speedup under different assumptions. In particular, we show that for quadratic problems, whenever Hessian's spectrum belongs to two or more disjoint intervals, the heavy ball method with cyclical stepsizes achieves a faster worst-case convergence rate. Recent works have shown that this assumption on the spectrum is quite natural and occurs in many machine learning problems, including deep neural networks [Sagun et al., 2017, Papyan, 2018, Ghorbani et al., 2019, Papyan, 2019]. More precisely, we list our main contributions below.

- In sections 3 and 4, we provide a tight convergence rate analysis of the cyclical heavy ball method (Theorems 3.1 and 3.2 for two step-sizes, and Theorem 4.8 for the general case). This analysis highlights a regime under which this method achieves a faster worst-case rate than the accelerated rate of heavy ball, a phenomenon we refer to as super-acceleration. Theorem 5.1 extends the (local) convergence rate analysis results to non-quadratic objectives.
- As a byproduct of the convergence-rate analysis, we obtain an explicit expression for the optimal parameters in in the case of cycles of length two (Algorithm 2) and an implicit expression in terms of a system of K equations in the general case.
- Section 6 presents numerical benchmarks illustrating the improved convergence of the cyclical approach on 4 problems involving quadratic and logistic losses on both synthetic and a handwritten digits recognition dataset.
- Finally, we conclude in Section 7 with a discussion of this work's limitations.

2 Notation and Problem Setting

Throughout the paper, we consider the problem of minimizing quadratic functions of the form

$$
\min _{x \in \mathbb{R}^{d}} f(x), \text { with } f \in \mathcal{C}_{\Lambda} \triangleq\left\{f: f(x)=\frac{1}{2}\left(x-x_{*}\right)^{T} H\left(x-x_{*}\right)+f_{*}, \operatorname{Sp}(H) \subseteq \Lambda\right\}, \quad \text { (OPT) }
$$

where \mathcal{C}_{Λ} is the class of quadratic functions whose spectrum $\operatorname{Sp}(H)$ is localized in $\Lambda \subseteq[\mu, L] \subseteq \mathbb{R}_{>0}$. We discuss more general settings beyond quadratic minimization in Section 5.
The condition $\Lambda \subseteq[\mu, L]$ implies all quadratic functions under consideration are L-smooth and μ-strongly convex. For this function class, we define κ, the (inverse) condition number, and ρ, the ratio between the center of Λ and its radius, as

$$
\begin{equation*}
\kappa \triangleq \frac{\mu}{L}, \quad \rho \triangleq \frac{L+\mu}{L-\mu}=\left(\frac{1+\kappa}{1-\kappa}\right) . \tag{1}
\end{equation*}
$$

Finally, for a method solving (OPT) that generates a sequence of iterates $\left\{x_{t}\right\}$, we define its worst-case rate r_{t} and its asymptotic rate factor τ as

$$
\begin{equation*}
r_{t} \triangleq \sup _{x_{0} \in \mathbb{R}^{d}, f \in \mathcal{C}_{\Lambda}} \frac{\left\|x_{t}-x_{*}\right\|}{\left\|x_{0}-x_{*}\right\|}, \quad 1-\tau \triangleq \limsup _{t \rightarrow \infty} \sqrt[t]{r_{t}} \tag{2}
\end{equation*}
$$

3 Super-acceleration with Cyclical Step-sizes

```
Algorithm 2: Cyclical \((K=2)\) heavy ball with with optimal parameters
Input: Initialization \(x_{0}, \mu_{1}<L_{1}<\mu_{2}<L_{2} \quad\) (where \(L_{1}-\mu_{1}=L_{2}-\mu_{2}\) )
Set: \(\rho=\frac{L_{2}+\mu_{1}}{L_{2}-\mu_{1}}, R=\frac{\mu_{2}-L_{1}}{L_{2}-\mu_{1}}, m=\left(\frac{\sqrt{\rho^{2}-R^{2}}-\sqrt{\rho^{2}-1}}{\sqrt{1-R^{2}}}\right)^{2}\)
\(x_{1}=x_{0}-\frac{1}{L_{1}} \nabla f\left(x_{0}\right)\)
for \(t=1,2, \ldots\) do
    \(h_{t}=\frac{1+m}{L_{1}} \quad\) (if \(t\) is even), \(\quad h_{t}=\frac{1+m}{\mu_{2}} \quad\) (if \(t\) is odd)
    \(x_{t+1}=x_{t}-h_{t} \nabla f\left(x_{t}\right)+m\left(x_{t}-x_{t-1}\right)\)
end
```

$$
\begin{equation*}
\text { with } \quad \sigma_{\text {sup }}=\sup _{\lambda \in\left\{\mu_{1}, L_{1}, \mu_{2}, L_{2}, \frac{h_{0}+h_{1}}{2 h_{0} h_{1}}\right\} \cap \Lambda}\left|2\left(\frac{1+m-\lambda h_{0}}{2 \sqrt{m}}\right)\left(\frac{1+m-\lambda h_{1}}{2 \sqrt{m}}\right)-1\right| \tag{6}
\end{equation*}
$$

This theorem gives the convergence rate for all triplets (m, h_{0}, h_{1}). By evaluating this expression over a grid of step-sizes, Figure 2 shows how the rate changes as a function of both step-sizes:

Figure 2: Asymptotic rate of cyclical $(K=2)$ heavy ball in terms of its step-sizes h_{0}, h_{1} across 3 different values of the relative gap R. In the left plot, the relative gap is zero, and so the step-sizes with smallest rate coincide $\left(h_{0}=h_{1}\right)$. For non-zero values of R (center and right), the optimal method instead alternates between two different step-sizes. In all plots the momentum parameter m is set according to Algorithm 2.

From the asymptotic rate expression of Theorem 3.1 we can optimize over the parameters (h_{0}, h_{1}, m) to obtain the method with smallest convergence rate. This leads to our other main contribution of this section, the asymptotically optimal Algorithm 2. This algorithm enjoys the following rate:
Corollary 3.2. The worst-case (asymptotic) rates $r_{t}^{\text {Alg. } 2}$ and $1-\tau^{\text {Alg. } 2}$ of Algorithm 2 over \mathcal{C}_{Λ} are $r_{t}^{\text {Alg. } 2}=\left(1+t \sqrt{\frac{\rho^{2}-1}{\rho^{2}-R^{2}}}\right)\left(\frac{\sqrt{\rho^{2}-R^{2}}-\sqrt{\rho^{2}-1}}{\sqrt{1-R^{2}}}\right)^{t}, \quad 1-\tau^{\text {Alg. } 2}=\frac{\sqrt{\rho^{2}-R^{2}}-\sqrt{\rho^{2}-1}}{\sqrt{1-R^{2}}} \quad$ for t even.

3.1 Comparison with Polyak Heavy Ball

In the absence of eigenvalue gap ($R=0$ and $\Lambda=[\mu, L]$), Algorithm 2 reduces to Polyak heavy ball (PHB) [Polyak, 1964], whose worst-case rate is detailed in Appendix B. Since the asymptotic rate of Algorithm 2 is monotonically decreasing in R, it is always better or equal than PHB. Furthermore, in the ill-conditioned regime (small κ), the comparison is particularly simple: the optimal 2 -cycle algorithm has a $\sqrt{1-R^{2}}$ relative improvement over PHB, as provided by the next proposition. A more thorough comparison for different support sets Λ is discussed in Table 1.
Proposition 3.3. Let $R \in[0,1)$. The rate factors of respectively Algorithm 2 and PHB verify

$$
\begin{equation*}
1-\tau^{\text {Alg. } 2 \underset{\kappa \rightarrow 0}{=} 1-\frac{2 \sqrt{\kappa}}{\sqrt{1-R^{2}}}+o(\sqrt{\kappa}), \quad 1-\tau^{P H B} \underset{\kappa \rightarrow 0}{=} 1-2 \sqrt{\kappa}+o(\sqrt{\kappa}) . . ~} \tag{7}
\end{equation*}
$$

Relative gap R	Set Λ	Rate factor τ	Speedup $\tau / \tau^{\mathrm{PHB}}$
$R \in[0,1)$	$[\mu, \mu+R(L-\mu)] \cup[L-R(L-\mu), L]$	$\frac{2 \sqrt{\kappa}}{\sqrt{1-R^{2}}}$	$\left(1-R^{2}\right)^{-\frac{1}{2}}$
$R=1-\sqrt{\kappa} / 2$	$\left[\mu, \mu+\frac{\sqrt{\mu L}}{4}\right] \cup\left[L-\frac{\sqrt{\mu L}}{4}, L\right]$	$2 \sqrt[4]{\kappa}$	$\kappa^{-\frac{1}{4}}$
$R=1-2 \gamma \kappa$	$[\mu,(1+\gamma) \mu] \cup[L-\gamma \mu, L]$	indep. of κ	$O(\sqrt{\kappa})$

Table 1: Case study of the convergence of Algorithm 2 as a function of R, in the regime $\kappa \rightarrow 0$. The first line corresponds to the regime where R is independent of κ, and we observe a constant gain w.r.t. PHB. The second line considers a setting in which R depends on $\sqrt{\kappa}$, that is, the two intervals in Λ are relatively small. The asymptotic rate reads $(1-2 \sqrt[4]{\kappa})^{t}$, beating the classical $(1-2 \sqrt{\kappa})^{t}$ lower bound, unimprovable when $R=0$. Finally, in the third line, R depends on κ, the two intervals in Λ are so small that the convergence becomes $O(1)$, i.e., is independent of κ.

4 A constructive Approach: Minimax Polynomials

This section presents a generic framework (Algorithm 3) that allows designing optimal momentum and step-size cycles for given sets Λ and cycle length K.

```
Algorithm 3: Optimal momentum method with cyclical step-sizes
Input: Eigenvalue localization \(\Lambda\), cycle length \(K\), initialization \(x_{0}\).
Preprocessing:
1. Find the polynomial \(\sigma_{K}^{\Lambda}\) such that it satisfies (16).
2. Set step-sizes \(\left\{h_{i}\right\}_{i=0, \ldots, K-1}\) and momentum \(m\) that satisfy resp. equations (21) and (22).
Set \(x_{1}=x_{0}-\frac{h_{0}}{1+m} \nabla f\left(x_{0}\right)\)
for \(t=1,2, \ldots\) do
\[
x_{t+1}=x_{t}-h_{\bmod (t, K)} \nabla f\left(x_{t}\right)+m\left(x_{t}-x_{t-1}\right)
\]
end
```

We first recall classical results that link optimal first order methods on quadratics and Chebyshev polynomials. Then, we generalize the approach by showing that optimal methods can be viewed as
combinations of Chebyshev polynomials, and minimax polynomials σ_{K}^{Λ} of degree K over the set Λ. Finally, we show how to recover the step-size schedule from σ_{K}^{Λ}.

4.1 First Order Methods on Quadratics and Polynomials

A key property that we will use extensively in the analysis is the following link between first order methods and polynomials (see [Hestenes and Stiefel, 1952]).
Proposition 4.1. Let $f \in \mathcal{C}_{\Lambda}$. The iterates x_{t} satisfy

$$
\begin{equation*}
x_{t+1} \in x_{0}+\operatorname{span}\left\{\nabla f\left(x_{0}\right), \ldots, \nabla f\left(x_{t}\right)\right\} \tag{8}
\end{equation*}
$$

where x_{0} is the initial approximation of x_{*}, if and only if there exists a sequence of polynomials $\left(P_{t}\right)_{t \in \mathbb{N}}$, each of degree at most 1 more than the highest degree of all previous polynomials and P_{0} of degree 0 (hence the degree of P_{t} is at most t), such that

$$
\begin{equation*}
\forall t \quad x_{t}-x_{*}=P_{t}(H)\left(x_{0}-x_{*}\right), \quad P_{t}(0)=1 \tag{9}
\end{equation*}
$$

Example 4.2 (Gradient descent). Consider the gradient descent algorithm with fixed step-size h, applied to problem (OPT). Then, after unrolling the update, we have

$$
\begin{equation*}
x_{t+1}-x_{*}=x_{t}-x_{*}-h \nabla f\left(x_{t}\right)=x_{t}-x_{*}-h H\left(x_{t}-x_{*}\right)=(I-h H)^{t+1}\left(x_{0}-x_{*}\right) . \tag{10}
\end{equation*}
$$

In this case, the polynomial associated to gradient descent is $P_{t}(\lambda)=(1-h \lambda)^{t}$.
The above proposition can be used to obtain worst-case rates for first order methods by bounding their associated polynomials. Indeed, using the Cauchy-Schwartz inequality in (9) leads to

$$
\begin{equation*}
\left\|x_{t}-x_{*}\right\| \leq \sup _{\lambda \in \Lambda}\left|P_{t}(\lambda)\right|\left\|x_{0}-x_{*}\right\| \quad \Longrightarrow \quad r_{t}=\sup _{\lambda \in \Lambda}\left|P_{t}(\lambda)\right|, \quad \text { where } P(0)=1 \tag{11}
\end{equation*}
$$

Therefore, finding the algorithm with the fastest worst-case rate can be equivalently framed as the problem of finding the polynomial with smallest value on the eigenvalue support Λ, subject to the normalization condition $P_{t}(0)=1$. Such polynomials are referred to as minimax. Throughout the paper, we use this polynomial-based approach to find methods with optimal rates.

An important property of minimax polynomials is their equioscillation on Λ (see Theorem C. 1 and its proof for a formal statement).
Definition 4.3. (Equioscillation) A polynomial P_{t} equioscillates on Λ if it verifies $P_{t}(0)=1$ and there exist $\lambda_{0}<\lambda_{1}<\ldots<\lambda_{t} \in \Lambda$ such that

$$
\begin{equation*}
P_{t}\left(\lambda_{i}\right)=(-1)^{i} \max _{\lambda \in \Lambda}\left|P_{t}(\Lambda)\right| . \tag{12}
\end{equation*}
$$

Example 4.4 (Λ is an interval). The t-th order Chebyshev polynomials of the first kind T_{t} satisfy the equioscillation property on $[-1,1]$. It follows that minimax polynomials on $\Lambda=[\mu, L]$ can be obtained by composing the Chebyshev polynomial T_{t} with the linear transformation σ_{1}^{Λ} :

$$
\begin{equation*}
\frac{T_{t}\left(\sigma_{1}^{\Lambda}(\lambda)\right)}{T_{t}\left(\sigma_{1}^{\Lambda}(0)\right)}=\underset{P \in \mathbb{R}_{t}[X], P(0)=1}{\arg \min } \sup _{\lambda \in \Lambda}|P(\lambda)|, \text { with } \sigma_{1}^{\Lambda}(\lambda)=\frac{L+\mu}{L-\mu}-\frac{2}{L-\mu} \lambda \tag{13}
\end{equation*}
$$

where σ_{1}^{Λ} maps the interval $[\mu, L]$ to $[-1,1]$. The optimization method associated with this minimax polynomial is the Chebyshev semi-terative method [Flanders and Shortley, 1950, Golub and Varga, 1961] (described also in Appendix B.1). This method achieves the lower complexity bound for smooth strongly convex quadratic minimization, see for instance [Nemirovsky, 1995, Chapter 12] or [Nemirovsky, 1992, Nesterov, 2003].

The next proposition provides the main results in this subsection, which is key for obtaining Algorithm 2. It characterizes the even degree minimax polynomial in the setting of Section 3, that is, when Λ is the union of 2 intervals of same size. In this case, the minimax solution is also based on Chebyshev polynomials, but composed with a degree-two polynomial σ_{2}^{Λ}.
Proposition 4.5. Let $\Lambda=\left[\mu_{1}, L_{1}\right] \cup\left[\mu_{2}, L_{2}\right]$ be an union of two intervals of the same size ($L_{1}-\mu_{1}=L_{2}-\mu_{2}$) and let m be as defined in Algorithm 2. Then the minimax polynomial (solution to (12)) is, for all $t=2 n, n \in \mathbb{N}_{0}^{+}$,

$$
\frac{T_{n}\left(\sigma_{2}^{\Lambda}(\lambda)\right)}{T_{n}\left(\sigma_{2}^{\Lambda}(0)\right)}=\underset{\substack{P \in \mathbb{R}_{t}[X], P(0)=1}}{\arg \min } \sup _{\lambda \in \Lambda}|P(\lambda)|, \text { with } \sigma_{2}^{\Lambda}(\lambda)=2\left(\frac{1+m}{2 \sqrt{m}}\right)^{2}\left(1-\frac{\lambda}{L_{1}}\right)\left(1-\frac{\lambda}{\mu_{2}}\right)-1
$$

4.2 Generalization to Longer Cycles

The polynomial in Example 4.4 uses a linear link function σ_{1}^{Λ} to map Λ to $[-1,1]$. In Proposition 4.5, we see that a degree two link function σ_{2}^{Λ} can be used to find the minimax polynomial when Λ is the union of two intervals. This section generalizes this approach and considers higher-order polynomials for σ_{K}. We start with the following parametrization, with an arbitrary polynomial σ_{K} of degree K,

$$
\begin{equation*}
P_{t}\left(\lambda ; \sigma_{K}\right) \triangleq \frac{T_{n}\left(\sigma_{K}(\lambda)\right)}{T_{n}\left(\sigma_{K}(0)\right)}, \quad \forall t=K n, n \in \mathbb{N}_{0}^{+} \tag{14}
\end{equation*}
$$

As we will see in the next subsection, this parametrization allows considering cycles of step-sizes. Our goal now is to find the σ_{K} that obtains the fastest convergence rate possible. The next proposition quantifies its impact on the asymptotic rate and its proof can be found in Appendix D.1.
Proposition 4.6. For a given σ_{K} such that $\sup _{\lambda \in \Lambda}\left|\sigma_{K}(\lambda)\right|=1$, the asymptotic rate factor $\tau^{\sigma_{K}}$ of the method associated to the polynomial (14) is

$$
\begin{equation*}
1-\tau^{\sigma_{K}}=\lim _{t \rightarrow \infty} \sqrt[t]{\sup _{\lambda \in \Lambda}\left|P_{t}\left(\lambda ; \sigma_{K}\right)\right|}=\left(\sigma_{0}-\sqrt{\sigma_{0}^{2}-1}\right)^{\frac{1}{K}}, \quad \text { with } \sigma_{0} \triangleq \sigma_{K}(0) \tag{15}
\end{equation*}
$$

For a fixed K, the asymptotic rate (15) is a decreasing function of σ_{0}. This motivates the introduction of the "optimal" degree K polynomial σ_{K}^{Λ} as the one that solves

$$
\begin{equation*}
\sigma_{K}^{\Lambda} \triangleq \underset{\sigma \in \mathbb{R}_{K}[X]}{\arg \max } \sigma(0) \quad \text { s.t. } \sup _{\lambda \in \Lambda}|\sigma(\lambda)|=1 \tag{16}
\end{equation*}
$$

Using the above definition, we recover the σ_{1}^{Λ} and σ_{2}^{Λ} from Example 4.4 and Proposition 4.5.
Finding the polynomial. Finding an exact and explicit solution for the general K and Λ case is unfortunately out of reach, as it involves solving a potentially difficult system of K non-linear equations. Here we describe an approximate approach. Let $\sigma_{K}^{\Lambda}(x)=\sum_{i=0}^{K} \sigma_{i} x^{i}$. We propose to discretize Λ into N different points $\left\{\lambda_{j}\right\}$, then solve the linear problem

$$
\begin{equation*}
\max _{\sigma_{i}} \sigma_{0} \quad \text { s.t. } \quad-1 \leq \sum_{i=0}^{K} \sigma_{i} \lambda_{j}^{i} \leq 1, \quad \forall j=1, \ldots, N . \tag{17}
\end{equation*}
$$

To check the optimality, it suffices to verify that the polynomial σ_{K}^{Λ} satisfies the equioscillation property (Definition 4.3), as depicted in Figure 3.
Remark 4.7 (Relationship between optimal and minimax polynomials). For later reference, we note that the optimal polynomial σ_{K}^{Λ} is equivalent to finding a minimax polynomial on Λ and to rescale it. More precisely, σ_{K}^{Λ} is optimal if and only if $\sigma_{K}^{\Lambda} / \sigma_{K}^{\Lambda}(0)$ is minimax.

4.3 Cyclical Heavy Ball and (Non-)asymptotic Rates of Convergence

We now describe the link between σ_{K}^{Λ} and Algorithm 3. Using the recurrence for Chebyshev polynomials of the first kind in (14), we have $\forall t=K n, n \in \mathbb{N}_{0}^{+}$,

$$
\frac{T_{n+1}\left(\sigma_{K}^{\Lambda}(\lambda)\right)}{T_{n+1}\left(\sigma_{K}^{\Lambda}(0)\right)}=2 \sigma_{K}^{\Lambda}(\lambda)\left[\frac{T_{n}\left(\sigma_{K}^{\Lambda}(\lambda)\right)}{T_{n}\left(\sigma_{K}^{\Lambda}(0)\right)}\right] \underbrace{\left[\frac{T_{n}\left(\sigma_{K}^{\Lambda}(0)\right)}{T_{n+1}\left(\sigma_{K}^{\Lambda}(0)\right)}\right]}_{=a_{n}}-\left[\frac{T_{n-1}\left(\sigma_{K}^{\Lambda}(\lambda)\right)}{T_{n-1}\left(\sigma_{K}^{\Lambda}(0)\right)}\right] \underbrace{\left[\frac{T_{n-1}\left(\sigma_{K}^{\Lambda}(0)\right)}{T_{n+1}\left(\sigma_{K}^{\Lambda}(0)\right)}\right]}_{=b_{n}} .
$$

It still remains to find an algorithm associated with this polynomial. To obtain one in the form of Algorithm 1, one can use the stationary behavior of the recurrence. From [Scieur and Pedregosa, 2020], the coefficients a_{n} and b_{n} converge as $n \rightarrow \infty$ to their fixed-points a_{∞} and b_{∞}. We therefore consider here an asymptotic polynomial $\bar{P}_{t}\left(\lambda ; \sigma_{K}^{\Lambda}\right)$, whose recurrence satisfies

$$
\begin{equation*}
\bar{P}_{t}\left(\lambda ; \sigma_{K}^{\Lambda}\right)=2 a_{\infty} \sigma_{K}^{\Lambda}(\lambda) \bar{P}_{t-K}\left(\lambda ; \sigma_{K}^{\Lambda}\right)-b_{\infty} \bar{P}_{t-2 K}\left(\lambda ; \sigma_{K}^{\Lambda}\right) \tag{18}
\end{equation*}
$$

Similarly to $K=1$, where this limit recursion corresponds to PHB, this recursion corresponds to an instance of Algorithm 3 (see Proposition 4.9 below), further motivating the cyclical heavy ball algorithm.

The following theorem is the main result of this section and characterizes the convergence rate of Algorithm 1 for arbitrary momentum and step-size sequences $\left\{h_{i}\right\}_{i \in \llbracket 1, K \rrbracket}$. By optimizing over these parameters, we obtain a method associated to (18), whose rate is described in Proposition 4.9. All proofs can be found in Appendix D.2.

Figure 3: Examples of optimal polynomials σ_{K}^{Λ} from (16), all of them verifying the equioscillation property (Definition 4.3). The " \star " symbol highlights the degree of σ_{K}^{Λ} that achieves the best asymptotic rate $\tau^{\sigma_{K}^{\Lambda}}$ in (15) amongst all K (see Section 4.4). (Left) When Λ is an unique interval, all 3 polynomials are equivalently optimal $\tau^{\sigma_{1}^{\Lambda}}=\tau^{\sigma_{2}^{\Lambda}}=\tau^{\sigma_{3}^{\Lambda}}$. (Center) When Λ is the union of two intervals of the same size, the degree 2 polynomial is optimal $\tau^{\sigma_{2}^{\Lambda}}>\tau^{\sigma_{3}^{\Lambda}}>\tau^{\sigma_{1}^{\Lambda}}$. This is expected given the result in Proposition 4.5. (Right) When Λ is the union of two unbalanced intervals, the degree 3 polynomial instead achieves the best asymptotic rate $\tau^{\sigma_{3}^{\Lambda}>\tau^{\sigma_{2}^{\Lambda}}>\tau_{1}^{\sigma_{1}^{\Lambda}} \text { (see Section 4.4). } . \text {. } \text {. }}$

Theorem 4.8. The worst-case rate of convergence of Algorithm 1 on \mathcal{C}_{Λ} with an arbitrary momentum m and an arbitrary sequence of step-sizes $\left\{h_{i}\right\}$ is

$$
1-\tau= \begin{cases}\sqrt{m}, & \text { if } \sigma_{\text {sup }} \leq 1 \tag{19}\\ \sqrt{m}\left(\sigma_{\text {sup }}+\sqrt{\sigma_{\text {sup }}^{2}-1}\right)^{1 / K}, & \text { if } \sigma_{\text {sup }} \in\left(1, \frac{1+m^{K}}{2(\sqrt{m})^{K}}\right), \\ \geq 1 \text { (no convergence) } & \text { if } \sigma_{\text {sup }} \geq \frac{1+m^{K}}{2(\sqrt{m})^{K}}\end{cases}
$$

where $\sigma_{\text {sup }} \triangleq \sup _{\lambda \in \Lambda}\left|\sigma\left(\lambda ;\left\{h_{i}\right\}, m\right)\right|$, and $\sigma\left(\lambda ;\left\{h_{i}\right\}, m\right)$ is the K-degree polynomial

$$
\sigma\left(\lambda ;\left\{h_{i}\right\}, m\right) \triangleq \frac{1}{2} \operatorname{Tr}\left(\left[\begin{array}{cc}
\frac{1+m-h_{K-1} \lambda}{\sqrt{m}} & -1 \tag{20}\\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1+m-h_{K-2} \lambda}{\sqrt{m}} & -1 \\
1 & 0
\end{array}\right] \cdots\left[\begin{array}{cc}
\frac{1+m-h_{0} \lambda}{\sqrt{m}} & -1 \\
1 & 0
\end{array}\right]\right) .
$$

Proposition 4.9. Let $\sigma\left(\lambda ;\left\{h_{i}\right\}, m\right)$ be the polynomial defined by (20), and σ_{K}^{Λ} be the optimal link function of degree K defined by (16). If the momentum m and the sequence of step-sizes $\left\{h_{i}\right\}$ satisfy

$$
\begin{equation*}
\sigma\left(\lambda ;\left\{h_{i}\right\}, m\right)=\sigma_{K}^{\Lambda}(\lambda), \tag{21}
\end{equation*}
$$

then 1) the parameters are optimal, in the sense that they minimize the asymptotic rate factor from Theorem 4.8, 2) the optimal momentum parameter is

$$
\begin{equation*}
m=\left(\sigma_{0}-\sqrt{\sigma_{0}^{2}-1}\right)^{2 / K}, \quad \text { where } \sigma_{0}=\sigma_{K}^{\Lambda}(0) \tag{22}
\end{equation*}
$$

3) the iterates from Algo. 3 with parameters $\left\{h_{i}\right\}$ and m form a polynomial with recurrence (18), and 4) Algorithm 3 achieves the worst-case rate $r_{t}^{\text {Alg. } 3}$ and the asymptotic rate factor $1-\tau^{\text {Alg. } 3}$

$$
\begin{equation*}
r_{t}^{A l g .3}=O\left(t\left(\sigma_{0}-\sqrt{\sigma_{0}^{2}-1}\right)^{t / K}\right), \quad 1-\tau^{\text {Alg. } 3}=\left(\sigma_{0}-\sqrt{\sigma_{0}^{2}-1}\right)^{1 / K} . \tag{23}
\end{equation*}
$$

Solving the system (21) The system is constructed by identification of the coefficients in both polynomials σ_{K}^{Λ} and $\sigma\left(\lambda ;\left\{h_{i}\right\}, m\right)$, which can be solved using a naive grid-search for instance. We are not aware of any efficient algorithm to solve this system exactly, although it is possible to use iterative methods such as steepest descent or Newton's method.

4.4 Best Achievables Worst-case Guarantees on \mathcal{C}_{Λ}

This section discusses the (asymptotic) optimality of Algorithm 3. In Section 4.2, the polynomial $P_{t}\left(\cdot ; \sigma_{K}^{\Lambda}\right)$ was written as a composition of Chebyshev polynomials with σ_{K}^{Λ}, defined in (16). The best K is chosen as follows: we solve (16) for several values of K, then pick the smallest K among the minimizers of (15). However, following such steps does not guarantee that the polynomial $P_{t, K}^{\Lambda}$ is minimax, as it is not guaranteed to minimize the worst-case rate $\sup _{\lambda \in \Lambda}\left|P_{t}(\lambda)\right|$ (see (11)).

We give here an optimality certificate, linked to a generalized version of equioscillation. In short, if we can find K non overlapping intervals (more formally, whose interiors are disjoint) Λ_{i} in Λ such that $\sigma_{K}^{\Lambda}\left(\Lambda_{i}\right)=[-1,1]$ then $P_{t, K}^{\Lambda}$ is minimax for all $t=n K, n \in \mathbb{N}_{0}^{+}$. The detailed result is provided by Theorem C.2. A direct consequence of this result is the asymptotic optimality of Algorithm 3, i.e., there exists no first order algorithm with a better asymptotic rate $1-\tau$ for the function class \mathcal{C}_{Λ}.
It is possible that such σ_{K}^{Λ} does not exist for a given Λ. A complete characterization of the set Λ for which there exists such σ_{K}^{Λ} is out of the scope of this paper. A partial answer is given in [Fischer, 2011] when Λ is the union of two intervals. However, the problem remains open in the general case.

5 Local Convergence for Non-Quadratic Functions

When f is twice-differentiable, it is possible to show local convergence rates when x_{0} is close enough to x_{*} [Polyak, 1964]. We give here a similar result that applies to Algorithm 1 (see proof in Appendix E). Those results are only local, as it is possible to find pathological counter-examples for which even PHB does not converge globally, for some specific initialization [Lessard et al., 2016].
Theorem 5.1 (Local convergence). Let $f: \mathbb{R}^{d} \mapsto \mathbb{R}$ be a (potentially non-quadratic) twice continuously differentiable function, x_{*} a local minimizer, and H be the Hessian of f at x_{*} with $\operatorname{Sp}(H) \subseteq \Lambda$. Let x_{t} denote the result of running Algorithm 1 with parameters $h_{1}, h_{2}, \cdots, h_{K}, m$, and let $1-\tau$ be the linear convergence rate on the quadratic objective (OPT). Then we have

$$
\begin{equation*}
\forall \varepsilon>0, \exists \text { open set } V_{\varepsilon}: x_{0}, x_{*} \in V_{\varepsilon} \Longrightarrow\left\|x_{t}-x_{*}\right\|=O\left((1-\tau+\varepsilon)^{t}\right)\left\|x_{0}-x_{*}\right\| . \tag{24}
\end{equation*}
$$

In short, when Algorithm 1 is guaranteed to converge at rate $1-\tau$ on (OPT), then the convergence rate on a nonlinear functions can be arbitrary close to $1-\tau$ when x_{0} is sufficiently close to x_{*}.

6 Experiments

In this section we present an empirical comparison of the cyclical heavy ball method for different length cycles across 4 different problems. We consider two different problems, quadratic and logistic regression, each applied on two datasets, the MNIST handwritten digits [Le Cun et al., 2010] and a synthetic dataset. The results of these experiments, together with a histogram of the Hessian's eigenvalues are presented in Figure 4 (see caption for a discussion).

Dataset description. The MNIST dataset consists of a data matrix A with 60000 images of handwritten digits each one with $28 \times 28=784$ pixels. The synthetic dataset is generated according to a spiked covariance model [Johnstone, 2001], which has been shown to be an accurate model of covariance matrices arising for instance in spectral clustering [Couillet and Benaych-Georges, 2016] and deep networks [Pennington and Worah, 2017, Granziol et al., 2020]. In this model, the data matrix $A=X Z$ is generated from a $m \times n$ random Gaussian matrix X and an $m \times m$ deterministic matrix Z. In our case, we take $n=1000, m=1200$ and Z is the identity where the first three entries are multiplied by 100 (this will lead to three outlier eigenvalues). We also generate an n-dimensional target vector b as $b=A x$ or $b=\operatorname{sign}(A x)$ for the quadratic and logistic problem respectively.

Objective function For each dataset, we consider a quadratic and a logistic regression problem, leading to 4 different problems. All problems are of the form $\min _{x \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(A_{i}^{\top} x, b_{i}\right)+\lambda\|x\|^{2}$, where ℓ is a quadratic or logistic loss, A is the data matrix and b are the target values. We set the regularization parameter to $\lambda=10^{-3}\|A\|^{2}$. For logistic regression, since guarantees only hold at a neighborhood of the solution (even for the 1-cycle algorithm), we initialize the first iterate as the result of 100 iteration of gradient descent. In the case of logistic regression, the Hessian eigenvalues are computed at the optimum.

Figure 4: Hessian Eigenvalue histogram (top row) and Benchmarks (bottom row). The top row shows the Hessian eigenvalue histogram at optimum for the 4 problems consider, together with the interval boundaries $\mu_{1}<L_{1}<\mu_{2}<L_{2}$ for the two-interval split of the eigenvalue support described in Section 3. In all cases, there's a non-zero gap radius R. This is shown in the bottom row, where we compare the suboptimality in terms of gradient norm as a function of the number of iterations. As predicted by the theory, the non-zero gap radius translates into a faster convergence of the cyclical approach, compared to PHB in all cases. The improvement is observed on both quadratic and logistic regression problems, even through the theory for the latter is limited to local convergence.

7 Conclusion

This work is motivated by two recent observations from the optimization practice of machine learning. First, cyclical step-sizes have been shown to enjoy excellent empirical convergence [Loshchilov and Hutter, 2017, Smith, 2017]. Second, spectral gaps are pervasive in the Hessian spectrum of deep learning models [Sagun et al., 2017, Papyan, 2018, Ghorbani et al., 2019, Papyan, 2019]. Based on the simpler context of quadratic convex minimization, we develop a convergence-rate analysis and optimal parameters for the heavy ball method with cyclical step-sizes. This analysis highlights the regimes under which cyclical step-sizes have faster rates than classical accelerated methods. Finally, we illustrate these findings through numerical benchmarks.

Main Limitations. In Section 3 we gave explicit formulas for the optimal parameters in the case of the 2-cycle heavy ball algorithm. These formulas depend not only on extremal eigenvalues-as is usual for accelerated methods-but also on the spectral gap R. The gap can sometimes be computed after computed the top eigenvalues (e.g. top-2 eigenvalue for MNIST). However, in general, there is no guarantee on how many eigenvalues are needed to estimate it. Moreover, global convergence result rely heavily on the quadratic assumption.
Another limitation regards long cycles. For cycles longer than 2, we have only given an implicit formula to set the optimal parameters (Proposition 4.9). This involves solving a set of non-linear equations whose complexity increases with the cycle length. That being said, cyclical step-sizes might significantly enhance convergence speeds both in terms of worst-case rates and empirically, and this work advocates that new tuning practices involving different cycle lengths might be relevant.

Broader Impact. This work is mostly theoretical, and as such we believe it does not present direct societal consequences. However, the methods described in this paper can be used to train machine learning models which could themselves have societal consequences. For example, the deployment of machine learning models in decision-making has been shown to suffer from gender and racial bias and to amplify existing inequalities, see for instance [Hutchinson and Mitchell, 2019, Barocas et al., 2017, Obermeyer et al., 2019].

References

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness in machine learning. Nips tutorial, 2017.

Dimitri P. Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 1997.
Romain Couillet and Florent Benaych-Georges. Kernel spectral clustering of large dimensional data. Electronic Journal of Statistics, 2016.
Bernd Fischer. Polynomial based iteration methods for symmetric linear systems. SIAM, 2011.
Donald A. Flanders and George Shortley. Numerical determination of fundamental modes. Journal of Applied Physics, 1950.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization via hessian eigenvalue density. In International Conference on Machine Learning (ICML), 2019.

Gene H. Golub and Richard S. Varga. Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods. Numerische Mathematik, 1961.

Diego Granziol, Xingchen Wan, Samuel Albanie, and Stephen Roberts. Explaining the Adaptive Generalisation Gap. arXiv preprint arXiv:2011.08181, 2020.
Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear systems, volume 49. NBS Washington, DC, 1952.
Ben Hutchinson and Margaret Mitchell. 50 years of test (un) fairness: Lessons for machine learning. In Proceedings of the Conference on Fairness, Accountability, and Transparency, 2019.
Iain M. Johnstone. On the distribution of the largest eigenvalue in principal components analysis. Annals of statistics, 2001.
Yann Le Cun, Corinna Cortes, and Chris Burges. MNIST handwritten digit database. ATT Labs [Online], 2010.

Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of optimization algorithms via integral quadratic constraints. SIAM Journal on Optimization, 2016.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In International Conference on Learning Representations (ICLR), 2017.
Arkadi S. Nemirovsky. Information-based complexity of linear operator equations. Journal of Complexity, 1992.
Arkadi S. Nemirovsky. Information-based complexity of convex programming. Lecture Notes, 1995.
Yurii Nesterov. Introductory Lectures on Convex Optimization. Springer, 2003.
Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. Dissecting racial bias in an algorithm used to manage the health of populations. Science, 2019.
Vardan Papyan. The full spectrum of deepnet hessians at scale: Dynamics with SGD training and sample size. arXiv preprint arXiv:1811.07062, 2018.
Vardan Papyan. Measurements of Three-Level Hierarchical Structure in the Outliers in the Spectrum of Deepnet Hessians. In International Conference on Machine Learning (ICML), 2019.
Jeffrey Pennington and Pratik Worah. Nonlinear random matrix theory for deep learning. In Advances on Neural Information Processing Systems (NIPS), 2017.
Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR computational mathematics and mathematical physics, 1964.
Levent Sagun, Utku Evci, V. Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of the Hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.
Damien Scieur and Fabian Pedregosa. Universal Asymptotic Optimality of Polyak Momentum. In International Conference on Machine Learning (ICML), 2020.

Leslie N. Smith. Cyclical learning rates for training neural networks. In 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2017.
Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and momentum in deep learning. In International Conference on Machine Learning (ICML), 2013.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? [Yes] The Introduction (Section 1) details where all results can be found.
(b) Did you describe the limitations of your work? [Yes] There is a paragraph "Main Limitations" in the Conclusion (Section 7).
(c) Did you discuss any potential negative societal impacts of your work? [N/A] As stated in the "Broader Impact" section, this work is mostly theoretical and as such we believe it doesn't present a direct societal impact.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] In each and every statement we make.
(b) Did you include complete proofs of all theoretical results? [Yes] All proofs are available in the supplementary material.
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] URLs are provided in the supplementary material.
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes] In the experiments section (Section 6).
(c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [No] .
(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] , in Appendix F
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] In the "Dataset description" paragraph of the Experiments section 6.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A] There is no new asset. We used MNIST existing Dataset as well as a synthetic dataset whose construction is described in papers cited in the Experiments section 6.
(d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]
