
Under review as a conference paper at ICLR 2023

GENERALIZING TO NEW DYNAMICAL SYSTEMS
THROUGH FIRST-ORDER CONTEXT-BASED ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we propose FOCA (First-Order Context-based Adaptation), a learn-
ing framework to model sets of systems governed by common but unknown laws
that differentiate themselves by their context. Inspired by classical modeling-and-
identification approaches, FOCA learns to represent the common law through
shared parameters and relies on online optimization to compute system-specific
context. Due to the online optimization-based context inference, the training of
FOCA involves a bi-level optimization problem. To train FOCA efficiently, we
utilize an exponential moving average (EMA)-based method that allows for fast
training using only first-order derivatives. We test FOCA on polynomial regres-
sion and time-series prediction tasks composed of three ODEs and one PDE, em-
pirically finding it outperforms baselines.

1 INTRODUCTION

Scientists and engineers have made tremendous progress on modeling the behavior of natural and
engineering systems and optimizing model parameters to best describe the target system (Ljung,
2010). This modeling and system identification paradigm has made remarkable advances in modern
science and engineering (Schrödinger, 1926; Black & Scholes, 1973; Hawking, 1975). However,
applying this paradigm to complex systems is difficult because the mathematical modeling of sys-
tems requires a considerable degree of domain expertise, and finding the best system parameters
requires massive experimentation.

The availability of large datasets and advances in deep learning tools have made it possible to model
a target system without specific mathematical models, relying instead on flexible model classes
(Brunton et al., 2016; Gupta et al., 2020; Menda et al., 2020; Jumper et al., 2021; Kochkov et al.,
2021; Degrave et al., 2022). However, when the characteristics of target systems change (e.g.,
system parameters, boundary conditions), the flexibility of data-driven models makes them difficult
to adapt.

Deep learning approaches typically handle the contextual change by collecting data from the new
behavioral mode and re-training the model on the new dataset. However, this approach can be
impractical, especially when the system is complex and context change is frequent. We are interested
in developing a framework that learns a common shared model of the systems and inferring the
context that best describes the target system to predict response. Our study considers a target system
whose input x and response y can be described by y = f(x, c), where f denotes the function class
shared by the target systems and c denotes the system-specific context.

One possible approach for modeling such target systems is meta-learning (Hospedales et al., 2021),
which learns how to adapt to new systems. Meta-learning is typically a combination of an adap-
tive mechanism and training for the adaptation. One typical meta-learning approach is to use an
encoder that takes the adaptation data and returns the learned context (Santoro et al., 2016; Mishra
et al., 2018; Garnelo et al., 2018; Kim et al., 2019). Although encoder-based adaptation schemes
require constant memory usage, their parameterized encoders limit the adaptation capability. Other
approaches (pre) train the parameters on the dataset collected from the various modes and update
all parameters using gradient-descent (Finn et al., 2017; Nagabandi et al., 2018; Rajeswaran et al.,
2019). Despite their effective adaptability, those approaches are often prone to (meta) over-fitting
(Antoniou et al., 2019), especially when the adaptation target is complex and adaptation data is
scarce. Instead of updating all parameters, Raghu et al. (2019); Zintgraf et al. (2019) update a subset

1

Under review as a conference paper at ICLR 2023

Table 1: Comparison of context-based generalization approaches. The memory column specifies
the additional memory requirements for adaptation during the training phase of the algorithms. | · |
denotes the number of elements of · .

Training models
(parameters) Adaptation mechanism Memory

Encoder
(Mishra et al., 2018; Lee et al., 2020a) fθ, gϕ ĉ = gϕ(D) O(|ϕ|)

CAVIA (Zintgraf et al., 2019) fθ
ĉk+1 = ĉk − λ∇ĉkL

∑
(x,y)∈D(fθ(x, ĉk), y),

ĉ0 = 0, ĉ = cK , where K is the adaptation steps. O(|θ| ·K)

CoDA (Kirchmeyer et al., 2022) fθ,W ĉ = argminc
∑

(x,y)∈D L (fθ+W c(x), y) O(|W |)

FOCA fθ
ĉ = argminc

∑
(x,y)∈D L (fθ̄(x, c), y),

where fθ̄ is an EMA copy of fθ. O(1)

of parameters, which we call context ĉ, while fixing the remainder. Although this modeling approach
is effective, the training requires computing higher-order derivatives.

Many training method for meta-learning have been proposed (Finn et al., 2017; Nichol et al., 2018;
Rajeswaran et al., 2019; Deleu et al., 2021). Typically encoder-based meta-learning trains an en-
coder and a prediction model jointly and no online optimization-based adaptation occurs. The train-
ing of gradient-based meta-learning is typically cast as bi-level optimization. Typical gradient-based
meta-learning is often carried out by propagating through the update steps, which requires higher-
order derivative calculations. To avoid such issues, Finn et al. (2017); Nichol et al. (2018) propose a
first-order approximation of derivatives to update the (meta) parameters. Alternatively, the implicit
gradient method can be used to lower the computational burden (Rajeswaran et al., 2019), but gra-
dient computation errors can be significant and result in performance degradation (Liao et al., 2018;
Zhou et al., 2019; Blondel et al., 2021; Chen et al., 2022).

In this paper, we propose FOCA (First-Order Context-based Adaptation), a context-based meta-
learning method that is specialized for complex dynamical systems whose behavior can be charac-
terized by a common mathematical model f and a context c. Specifically, FOCA considers target
systems of the form y = fθ(x, ĉ), where fθ denotes the learned function class shared by the target
systems and ĉ denotes the inferred system-specific context. FOCA learns the function class fθ dur-
ing training and solves the system identification problem through numerical optimization to find the
proper ĉ. The online context optimization bypasses the limitation of encoder-based approaches, but
it entails a higher computational burden. To train FOCA efficiently, we thus propose using an ex-
ponential moving average (EMA) based training method, which operates with first-order derivatives
and no additional memory usage. From our experiments, we also confirm that EMA-based train-
ing decreases the computational burden of training and improves the generalization performance of
FOCA. The contributions of this work are summarized as follows:

• We propose FOCA, a learning framework specialized for modeling complex dynamical system
families that are described by an unknown common law and system-specific context.

• We propose an EMA-based training method for training FOCA that overcomes the burden of
second-order derivative calculations while showing better generalization results compared to
other training methods.

• We empirically demonstrate that FOCA outperforms or is competitive to various meta-learning
baselines in static function regression and time-series prediction tasks evaluated both in-
distribution and out-of-distribution.

2 RELATED WORK

Learning to generalize to the new systems. Transfer learning (Zhuang et al., 2020) attempts to
generalize learned models to new systems (or tasks) by fine-tuning a small number of parameters
to the new tasks. As a more direct way of generalization to new systems, meta-learning learns how
to adapt quickly to new systems. In particular, gradient-based meta-learning (GBML) approaches
perform few-step gradient descent updates of the model parameter θ for adaptation (Finn et al.,
2017; Nichol et al., 2018). Focusing on the empirical evidence that the plain GBML is prone to
overfit the training tasks, CAVIA (Zintgraf et al., 2019) performs gradient-based updates for a small

2

Under review as a conference paper at ICLR 2023

dimensional context vector c. On the other hand, encoder-based meta-learning methods jointly train
an encoder network gϕ alongside the prediction model fθ (Santoro et al., 2016; Mishra et al., 2018;
Garnelo et al., 2018; Kim et al., 2019; Gordon et al., 2020).

A few works investigate how to solve our target problem (i.e., learning a common unknown rule f
of static or dynamic systems with the learned adaptation mechanism). Lee et al. (2020b) applies
GBML to generalize over Hamiltonian systems. LEADS (Yin et al., 2021) jointly learns the system
specific networks gϕ and shared network fθ, and predicts the response of the dynamic system with
fθ + gϕ. CoDA (Kirchmeyer et al., 2022) learns the common model parameters θ, a linear basis
W , and context vectors ĉ while defining fθ(·, ĉ) as fθ+W ĉ(·). To adapt to the new system with
the observation dataset D, it solves an optimization, minc

∑
(x,y)∈D L (fθ+W c(x), y). In contrast,

FOCA adapts by solving Eq. (6), which is an effective method to generalize to systems that do not
require any structural assumptions. This approach is different from LEADS, where the adaptation
is sum-decomposable, and from CoDA, where the adaptive parameters are a span of a linear basis.
We summarize the differences between FOCA and baselines in Table 1.

Solving bi-level optimization to learn. Training FOCA involves solving a bi-level optimization.
Differentiable optimization layers (Amos & Kolter, 2017; Agrawal et al., 2019; Meng et al., 2021)
encapsulate an optimization problem as a layer of neural networks. As they employ optimization as
a layer of the network, the training becomes a bi-level optimization problem. The backward path of
differentiable optimization layers is often implemented by backpropagating the optimization steps
or implicit gradient methods. As a special case, Bertinetto et al. (2019) employs inner optimization
problems that can be solved analytically.

In the context of meta-learning, Bertinetto et al. (2019) considers solving the analytically solvable
inner optimization problem. However, such approaches limit the flexibility of network parameteri-
zation or adaptation mechanisms. As a more flexible approach, Implicit MAML (Rajeswaran et al.,
2019) extends MAML to overcome the extensive memory usage of adaptation and allows for more
inner adaptation steps without memory issues. However, implicit gradient methods can calculate
inexact meta-gradients (Deleu et al., 2021), and, as we show in the experiments, such errors can de-
grade performance. Instead, we propose to solve the bi-level optimization training problem with the
EMA method, which also has constant memory usage. We empirically show that the EMA-based
training method outperforms implicit gradient-based methods on test metrics.

3 PRELIMINARIES

This section reviews classical parameter identification and meta-learning as preliminaries for ex-
plaining the proposed method.

System identification. Consider the response y from an input x of a system f with an unknown
(or unobservable) context c,

y = f(x, c). (1)

Classical parameter identification aims at inferring the (optimal) context c∗ with data from a task
D = {(xn, yn)}Nn=1. Under the assumption that (xn, yn) pairs in D are generated from the same
system, the identification process can be formulated as an optimization problem as follows:

c∗ = argmin

N∑

n=1

L(f(xn, c), yn), (2)

where L is a discrepancy metric. By using the optimized context c∗, we can query responses of the
(identified) system f(·, c∗) to inputs.

Meta-learning. Meta-learning is a collection of algorithms that learn to adapt quickly to a new
task by learning from experiences of related tasks. Assuming that tasks (i.e., the systems of dif-
ferent contexts) are drawn from a distribution p(T) and each task includes inference data DT

inf and

3

Under review as a conference paper at ICLR 2023

−1.0 −0.5 0.0 0.5 1.0

0

5

10 fθ
D

(a) Initial fθ(·, ·)

−1.0 −0.5 0.0 0.5 1.0

0

2

4

6

8

ci = min
c

N∑

n=1

L(fθ(x
i
n, c), y

i
n)

fθ(·, c)
Dinf

(b) Task adaptation

−1.0 −0.5 0.0 0.5 1.0

0

2

4

6

8 Train data

Predictions

L(fθ(x
i
n, c

i), yi)

(c) Prediction

−1.0 −0.5 0.0 0.5 1.0

0

5

10 f ∗θ
D

(d) Trained f∗
θ (·, ·)

Figure 1: Training of FOCA: (a) the function class captured by the initial fθ(·, ·) and task distribution ρ(τ),
(b) inference of ci by solving Eq. (6) with context inference data and identification of fθ(·, ci), (c) prediction
of fθ(·, ci) and the outer loss L(fθ(xi

n, c
i), yi

n), (d) the optimized f∗
θ (·, ·). FOCA is trained by repeating (b),

(c), and minimizing L(fθ(xi
n, c

i), yi
n).

Training
i = 1, ..., I

evaluation data DT
ev, the meta-learning objective can be defined as follows:

min
θ,ψ

ET ∼p(T)

[
L
(
DT

ev, fθ′
)]

(3)

s.t. θ′ = gψ
(
DT

inf, θ
)

, (4)

where gψ(·, θ) is a (meta)-learned adaptation algorithm that is parameterized by θ and ψ, fθ′ is the
task-specific model that is parameterized by the adapted parameter θ′, and L is a loss metric. In
summary, meta-learning learns θ and ψ to infer a model from DT

inf that minimizes the error on DT
ev.

Optimized meta-parameters θ∗ and ψ∗ can then be used to “quickly” adapt to new tasks from p(T).

4 METHODOLOGY

In this section, we present First-Order Context-based Adaptation (FOCA) to learn to jointly identify
and predict systems in the same family. We first introduce the training problem of FOCA and then
discuss the EMA-based training method for efficiently solving the training problem. We also provide
our code as supplementary material.

4.1 PROBLEM FORMULATION

We formulate the learning problem of FOCA as a bi-level optimization where the inner optimization
Eq. (6) is for inferring the context, and the outer optimization Eq. (5) is for learning fθ conditioned
on the identified context. The proposed optimization problem is as follows:

min
θ

∑

Di∈Dtr

∑

(xi
n,y

i
n)∈Di

ev

L
(
fθ(x

i
n, ĉ

i), yin
)

(5)

subject to ĉi = argmin
c

∑

(xi
n,y

i
n)∈Di

inf

L
(
fθ(x

i
n, c), y

i
n

)
, (6)

where Diinf and Diev are the context inference and evaluation datasets of the ith system, which satisfy
Diinf∩Diev = ∅ andDiinf∪Diev ⊂ Di, Dtr = {Di}i=1,... is a collection of meta-training datasets from
multiple systems, fθ is a prediction model parameterized by θ, and L is a loss metric.

The prediction model fθ is trained by solving Eqs. (5) and (6). The trained f∗θ describes the common
structure of the systems inD. Identification of a specific function (i.e., adaptation) is done by solving
Eq. (6) with the data points sampled from the specific system. After finding ci, we can query for
meta-test predictions with fθ(·, ci) as visualized in Fig. 1 (b) and (c).

FOCA can be viewed as a special case of the meta-learning recipe explained in Section 3 by defin-
ing θ′ = [θ, ĉi] and setting Eq. (4) as Eq. (6). Even though FOCA is formulated similarly to
optimization-based meta-learning methods, the optimization variables for the adaptation is ĉi rather
than θ. In terms of implementation, this algorithmic selection allows us to batch-solve inner-level
optimization with standard automatic differentiation tools. FOCA can therefore be trained effi-
ciently. We can also interpret this clear separation of θ and c as capturing function classes and their
coefficients separately. We further inspect this view of FOCA in Section 5.1.

4

Under review as a conference paper at ICLR 2023

Algorithm 1: Training FOCA with exponential moving average (EMA)
Input: Prediction model fθ, training tasks Dtr, inner optimization steps K, inner optimization

step size α, weighting factor τ , context regularization weight λ
1 θ̄ ← θ, fθ̄ ← fθ // Initialize the target model
2 for 1, 2, ... do
3 Sample batch of tasks Db ∼ Dtr

4 for Di ∈ Db do
5 construct Diinf and Diev from Di
6 ĉi ← 0
7 for k = 1, ...,K do
8 L(ci) = ∑

(xi
n,y

i
n)∈Di

inf
L(fθ̄(xin, ci), yin) + λ∥ci∥

9 ĉi ← ĉi − α∇ciL(ci) // Solve Eq. (6)
10 end
11 end
12 Evaluate L(θ) = ∑

Di

∑
(xi

n,y
i
n)∈Di

ev
L(fθ(xin, ĉi), yin)

13 θ ← θ − α∇θL(θ)
14 θ̄ ← τθ + (1− τ)θ̄ // Update the target model
15 end

4.2 TRAINING FOCA

Training FOCA with gradient descent involves computation of the partial derivatives of Lupper =∑
Di∈Dtr

∑
(xi

n,y
i
n)∈Di

ev
L
(
fθ(x

i
n, ĉ

i), yin
)

with respect to θ. We express ∂Lupper
/∂θ using the chain

rule taking ĉi as the intermediate variable,

∂Lupper

∂θ
=
∂Lupper

∂ĉi
∂ĉi

∂θ
. (7)

Here, ∂Lupper
/∂ĉi can be computed via an automatic differentiation package. However, the computa-

tion of ∂ĉi/∂θ is less straightforward because of the implicit relations between ĉi and θ. That is, their
relations are defined through an optimization problem rather than a computational chain.

One possible approach to calculate ∂ĉi/∂θ is to backpropagate through the inner optimization steps,
which calculates the derivatives by unrolling the inner optimization steps through the computational
graph. However, this method is not memory efficient, especially with a large number of model
parameters |θ| or with many inner optimization steps. Another method is to approximate ∂ĉi/∂θ
with first-order methods as similarly done in Finn et al. (2017); Nichol et al. (2018). However, as
reported by others (Zhou et al., 2019; Jayathilaka, 2019; Chen et al., 2022), this approach often
requires techniques to mitigate the approximation errors. Another method calculates ∂ĉi/∂θ using
implicit gradients and can bypass the memory usage of the first approach. However, calculating the
gradient without error requires solving the inner optimization problem optimally (Liao et al., 2018;
Blondel et al., 2021). In practice, this restricts the expressivity of fθ to architectures that can be
solved optimally Eq. (6). We propose an efficient approach to train FOCA that uses no additional
memory and allows for flexible architecture of fθ .

EMA-based training method. Inspired by recent developments in self-supervised learning (Grill
et al., 2020; Caron et al., 2021) and the target-network of reinforcement learning (Lillicrap et al.,
2016), we use a simple method based on the exponential moving average (EMA) to train FOCA.
The core idea is to consider ĉ as an independent input given from outside of the gradient chain.
First, we copy θ to create a delayed target model fθ̄ parameterized by θ̄. We use fθ̄ to infer ĉi with
gradient descent on Eq. (6). We then update θ by using ∇θL(θ) = ∂Lupper

/∂θ evaluated on ĉi. As
the parameters of fθ and fθ̄ are separate, this avoids differentiating the argmin operator to calculate
∇θL(θ). After updating θ, we update θ as θ̄ ← τθ + (1 − τ)θ̄ with 0 ≤ τ ≪ 1. The training
procedure is summarized in Algorithm 1.

The proposed training algorithm utilizes fθ̄ (i.e., the delayed copy of fθ) to infer ĉi by numerically
solving Eq. (6). When we train fθ, it takes ĉi as an input that contains meaningful information that

5

Under review as a conference paper at ICLR 2023

1 0 1
x

0

5
y

MSE: 0.006
FOCA

1 0 1
x

MSE: 0.011
Encoder

1 0 1
x

MSE: 0.261
CAVIA

1 0 1
x

MSE: 0.192
CoDA

ctx. point True Prediction

Figure 2: Polynomial regression results. All models infer the polynomial from the given context points ().
The prediction results and ground truth values are visualized with the blue-solid () and gray-dashed () lines,
respectively.

differentiates the system i from the other systems. At the early training phase, ĉi might have no
meaning (i.e., the different ĉis do not change the prediction results). However, this phenomenon is
resolved during training because fθ is trained as if ĉi is a (learned) system-differentiating context.
Furthermore, disentangling the model for prediction and inference results in a practical advantage:
we can employ any optimization algorithm (even non-differentiable ones) to solve Eq. (6). The
proposed method shows its advantages in memory usage and implementation.

We also observed that EMA-based training can increase the generalization performance over the
other training methods. We discuss this aspect with the experimental results in Section 5.3.

5 EXPERIMENTS

In this section, we discuss experiments that show the properties of FOCA with static regression
problems (Section 5.1), demonstrate its effectiveness in predicting the response of dynamics systems
(Section 5.2), and investigate the proposed EMA-based training method (Section 5.3).

Baselines. We compare FOCA to three baselines that adapt to the tasks by inferring ĉ. The first two
baselines are representative methods that find ĉi via the inference schemes discussed in Section 1.
The last baseline, CoDA (Kirchmeyer et al., 2022), is our closest baseline in terms of application: a
meta-learning method tailored for generalization of physical systems. To make fair comparisons, all
models use the same network architecture fθ(·) for each task. The baselines are as follows:

• Encoder employs an encoder network to extract the context ĉi fromDiinf. That is, ĉi = gϕ(Diinf),
where gϕ is the encoder network. We employ SNAIL (Mishra et al., 2018) and CaDM (Lee et al.,
2020a)-based gϕ for static and time-series tasks, respectively.

• CAVIA (Zintgraf et al., 2019) performs a few gradient steps on Eq. (6) to extract the context ĉi
from Diinf and train fθ via the backpropagation-through-optimization-step scheme.

• CoDA (Kirchmeyer et al., 2022) learns the common model parameters θ, a linear basis W , and
context vectors ĉi while defining fθ(·, ĉi) as fθ+W ĉi(·). For adaptation to a new system, it
solves the optimization problem minc

∑
(xi

n,y
i
n)∈Di

inf
L
(
fθ+W ci(x

i
n), y

i
n

)
.

5.1 STATIC REGRESSION

FOCA Encoder CAVIA CoDA

10 1

100

R
M

SE

Figure 3: Static regression test RMSE.

We first examine polynomial function regression to under-
stand the properties of FOCA. In this task, the objective
is to identify a polynomial and make predictions from the
identified functions as shown in Fig. 2. We prepare 4th or-
der polynomial datasets by sampling the coefficients from
U(0.1, 2.5), and set |Diinf| and |Diev| as 5 and 15, respec-
tively. Fig. 3 shows the average of the test root mean
squared error (RMSE) values of models. As shown in Fig. 3,
FOCA adapts to the different polynomials better than the baseline models. We provide the details
of the model architectures and training scheme in Appendix A. We then investigate the properties of
FOCA by using the polynomial dataset.

6

Under review as a conference paper at ICLR 2023

0 1 2 3 4

1
0
1

St
at

e

FOCA

0 1 2 3 4

1
0
1

Encoder

0 1 2 3 4
time [s]

1
0
1

St
at

e

CAVIA

0 1 2 3 4
time [s]

1
0
1

CoDA

Figure 5: MS prediction results. All models infer the physical constants from historical (shaded in yellow)
and current (shaded in gray) state observations, and then predict rollouts of future state trajectories (colored in
blue). The gray dashed lines visualize prediction targets. FOCA successfully identifies the target systems and
predicts long-term futures.

1.0 0.5 0.0 0.5 1.0
x

0.5

0.0

0.5

y

(0)
(0.25)

(0.5)
(0.75)

(1)

Figure 4: Role of ĉ within model classes θ(λ)
that interpolate between quadratic and linear.

Do θ and c contain function class and parameter
information, respectively? The roles of θ and c
are to capture a function class and to identify a spe-
cific function from that class, respectively. For ex-
ample, θ should express the fact that functions are
polynomials and c should capture the coefficients of
a specific polynomial. To analyze whether θ and
c fulfill these roles, we train two FOCA models:
one with parameters θ1 meta-trained on linear func-
tions, and one with parameters θ2 meta-trained on
quadratic functions. We then define models that in-
terpolate between these two sets of parameters with
θ(λ) = (1 − λ)θ1 + λθ2 with 0 ≤ λ ≤ 1.
Fig. 4 shows predictions from fθ(λ)(· , c) with dif-
ferent samples of c ∼ U(−0.025, 0.025)32 and dif-

ferent values of λ. We conjecture that fθ(λ)(· , c) represents linear functions when λ = 0, quadratic
functions when λ = 1, and functions that interpolate between linear and quadratic functions when
0 < λ < 1. We verify the conjectures by observing that within a single function class θ(λ), each c
parameterizes a different function from that class (e.g., the red curves are all linear but each of them
is a different linear function).

5.2 TIME-SERIES PREDICTION

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
← Viscosity ν→ ×10−3

0.04

0.06

0.08

0.10

0.12

R
M

SE

FOCA Encoder CAVIA CoDA

Figure 6: RMSE for different models on the
Navier-Stokes equations at different viscosities ν.
The orange area denotes the training region.

We evaluate FOCA on time-series prediction in
three ODE datasets, including mass-spring systems
(MS), Lotka-Volterra equations (LV), glycolytic os-
cillators (GO), and one PDE dataset derived from
the Navier-Stokes equations (NS). In this setting,
the objective is first to identify target systems from
historical and current state observations and then to
predict rollouts of future state trajectories as shown
in Fig. 5. We provide details for dataset genera-
tion, model architectures, and training schemes in
Appendices B to E.

Task generalization. We study the generalization performances of the models on systems whose
context parameters are generated from inside as well as outside the training distribution (i.e., in-
training and out-of-training distribution adaptation tasks). We evaluate the models by measuring the
average and standard deviation of the rollout prediction root mean squared errors (RMSE) over the
test systems. As shown in Table 2, FOCA generally outperforms the baseline algorithms, indicating
that FOCA adapts well to new systems regardless of the parameters of the system. To further analyze
the performance variation of models to the change of system parameters, we visualize the prediction

7

Under review as a conference paper at ICLR 2023

Table 2: In/out-of training distribution generalization results. Smaller is better (↓). We measure the
RMSE values per trajectory. Average RMSEs and their standard deviations are reported. Best in
bold; second underlined.

MS LV GO NS

In-training Out-of training In-training Out-of training In-training Out-of training In-training Out-of training

Encoder 2.272 ± 1.442 2.379 ± 1.506 0.137 ± 0.093 0.326 ± 0.362 0.062 ± 0.092 0.156 ± 0.174 0.057 ± 0.016 0.114 ± 0.026
CAVIA 1.743 ± 0.595 1.793 ± 0.628 0.312 ± 0.316 0.706 ± 0.551 0.046 ± 0.061 0.157 ± 0.161 0.057 ± 0.011 0.114 ± 0.028
CoDA 0.250 ± 0.201 0.545 ± 0.402 0.258 ± 0.199 0.642 ± 0.349 0.072 ± 0.115 0.269 ± 0.258 0.051 ± 0.034 0.095 ± 0.046

FOCA 0.258 ± 0.156 0.478 ± 0.295 0.079 ± 0.061 0.303 ± 0.291 0.043 ± 0.066 0.147 ± 0.168 0.042 ± 0.026 0.070 ± 0.038

Co
nt

ex
t

Ta
rg

et
En

co
de

r
CA

VI
A

Co
D

A
FO

CA

2.5

0.0

2.5

Vo
rt

ic
ity

 w

0.1

0.2

0.3

M
SE

Figure 7: Target solutions and RMSE propagation on the Navier-Stokes equations for different models. FOCA
manages to better contain errors even after long autoregressive rollouts and out-of-distribution context samples.

errors of the models on the Navier-Stokes equations for different viscosity values in Fig. 6, while in
Fig. 7 we show a sample of target predictions and error propagation for out-of-distribution viscosity
ν = 10−4. FOCA shows better prediction results than baselines, not only for new systems with in-
distribution contexts but also for out-of-distribution ones. We provide the additional studies for MS,
LV, and GO in Appendices B to D, including out-of-distribution error comparison visualizations.

5.3 TRAINING ABLATION STUDY

In this section, we perform ablation studies to understand the effect of the proposed training scheme
on the performance of FOCA.

Is the EMA target network scheme effective? To train FOCA, we employ the delayed target
network fθ̂ to infer ĉi, which we consider an independent input when we train fθ (EMA). However,
we can consider employing other training methods as mentioned in Section 4.2. We compare against
training FOCA by calculating gradients by backpropagating through the unrolled inner optimization
steps (BPTO), approximating the inner loop gradient with a first-order approximation (FO), or em-
ploying the implicit method (e.g., Amos & Kolter 2017) for calculating the gradient of the inner
optimization (Implicit). We compare the test set performance of each method on the LV dataset
while applying the same hyperparameters. Fig. 8a visualizes the test performances of each method
over the training steps.

As shown in Fig. 8a, EMA has the lowest test set errors. We conjecture that EMA outperforms
Implicit because the implicit gradient estimator can have error in practice, as the inner optimiza-
tion problem cannot be solved optimally, especially when fθ is parameterized with a general neural
network (Blondel et al., 2021; Liao et al., 2018). This issue might be resolved by employing a spe-
cial structure to fθ such as linearity or convexity. However, such treatment can prevent the use of
arbitrary network architecture as fθ.

8

Under review as a conference paper at ICLR 2023

0 500 1000 1500 2000 2500 3000
Epoch

10 1

1.25 × 10 1

1.5 × 10 1

1.75 × 10 1
2 × 10 1

2.25 × 10 1
2.5 × 10 1

2.75 × 10 1
3 × 10 1

Te
st

 R
M

SE

BPTO
FO
Implicit
EMA(= 0.1)

(a) Training method ablation results

0 500 1000 1500 2000 2500 3000
Epoch

10 1

1.25 × 10 1

1.5 × 10 1

1.75 × 10 1
2 × 10 1

2.25 × 10 1
2.5 × 10 1

2.75 × 10 1
3 × 10 1

Te
st

 R
M

SE

BPTO
EMA(= 1)
EMA(= 0.5)
EMA(= 0.1)

(b) τ ablation results
Figure 8: Training method ablation results. We train each method five times with different random seeds. The
bold lines and shadow region illustrate the averages and standard deviations of the training runs. We smooth
the curves using a moving average.

We also note that EMA outperforms BPTO. Because BPTO calculates the gradient by chained com-
putation on the computational graph (at the cost of memory usage), it is difficult to claim that the
performance degradation is related to the gradient computation. We conjecture this phenomenon is
related to the consistency of ĉ estimation. It is noteworthy that BPTO is equivalent to CAVIA with
a larger inner gradient step. Hence, FOCA is also superior to CAVIA with the same number of
inner optimization steps. The results indicate that EMA trains FOCA effectively while allowing us to
employ arbitrary network architecture and lower memory usage.

How does τ affect the performance? We investigate the effect of the delay parameter τ in our
training scheme. Our training scheme assumes ĉ contains enough information to differentiate a
specific system. As it is considered an input, the consistency of ĉ over the training step becomes
crucial to the stable training of fθ. In this sense, τ controls the degree of consistency of ĉ over
the training steps. Higher τ (∼ 1.0) introduces relatively drastic changes of ĉ during training,
while smaller τ changes ĉ conservatively. Fig. 8b illustrates the test performance of EMA with τ =
{1.0, 0.5, 0.1} against BPTO. It is noteworthy that the forward processes of EMA with τ = 1.0 and
BPTO are identical, while the backward processes (i.e., the gradient calculation) are different. By
comparing EMA (τ = 1.0) and BPTO, we can observe that using a consistent ĉ mechanism is crucial
for successful training FOCA. Furthermore, as we decrease τ to 0.1, FOCA exhibits better predictive
performance.

6 CONCLUSION

Motivated by classical modeling-and-identification approaches, we introduced in this work a new
contextual meta-learning method: FOCA. We separate the role of different parameters into a model,
that captures context-invariant behavioral laws, and context, that specializes in finding instance-
specific parameters. FOCA jointly learns model and context parameters by solving online bi-level
optimization efficiently. Instead of relying on higher-order derivatives, it employs EMA for faster
and more stable training. We empirically demonstrated in both static and dynamic regression tasks
on complex dynamical systems that our approach outperforms or is competitive to baselines when
evaluated on both in- and out-of-distribution contexts. We also performed ablation studies to exam-
ine the efficacy of our proposed training method.

FOCA is limited by modeling assumptions for the target system. Namely, FOCA seeks to model
dynamical system families that share an underlying mathematical model fθ. If the target systems
do not share consistent behavior, it would be hard to characterize a specific model family, and the
performance of FOCA might degrade. Future work could develop a more general algorithm that
allows for the adaptation of the function class at test time by changing θ when the common f is not
identifiable.

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. Advances in Neural Information Processing Systems
(NeurIPS), 32, 2019.

9

Under review as a conference paper at ICLR 2023

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning (ICML), pp. 136–145, 2017.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your MAML. In Interna-
tional Conference on Learning Representations (ICLR), 2019.

Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning with differ-
entiable closed-form solvers. In International Conference on Learning Representations (ICLR),
2019.

Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. Journal of
Political Economy, 81(3):637–654, 1973.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-
López, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation.
arXiv preprint arXiv:2105.15183, 2021.

Johannes Brandstetter, Daniel E Worrall, and Max Welling. Message passing neural PDE solvers.
In International Conference on Learning Representations (ICLR), 2021.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of
Sciences, 113(15):3932–3937, 2016.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In International
Conference on Computer Vision (ICCV), pp. 9650–9660, 2021.

Dong Chen, Lingfei Wu, Siliang Tang, Xiao Yun, Bo Long, and Yueting Zhuang. Robust meta-
learning with sampling noise and label noise via eigen-reptile. In International Conference on
Machine Learning (ICML), pp. 3662–3678, 2022.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder–decoder approaches. In Workshop on Syntax, Semantics
and Structure in Statistical Translation, pp. 103–111, 2014.

Bryan C Daniels and Ilya Nemenman. Efficient inference of parsimonious phenomenological mod-
els of cellular dynamics using s-systems and alternating regression. PloS One, 10(3):e0119821,
2015.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Mag-
netic control of tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414–
419, 2022.

Tristan Deleu, David Kanaa, Leo Feng, Giancarlo Kerg, Yoshua Bengio, Guillaume Lajoie, and
Pierre-Luc Bacon. Continuous-time meta-learning with forward mode differentiation. In Inter-
national Conference on Learning Representations (ICLR), 2021.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning (ICML), pp. 1126–1135,
2017.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
International Conference on Machine Learning (ICML), pp. 1704–1713, 2018.

Jonathan Gordon, Wessel P Bruinsma, Andrew YK Foong, James Requeima, Yann Dubois, and
Richard E Turner. Convolutional conditional neural processes. In International Conference on
Learning Representations (ICLR), 2020.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in Neural
Information Processing Systems (NeurIPS), 33:21271–21284, 2020.

10

Under review as a conference paper at ICLR 2023

Jayesh K Gupta, Kunal Menda, Zachary Manchester, and Mykel Kochenderfer. Structured mechan-
ical models for robot learning and control. In Learning for Dynamics and Control, pp. 328–337,
2020.

Stephen W Hawking. Particle creation by black holes. In Euclidean Quantum Gravity, pp. 167–188.
World Scientific, 1975.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149–5169, 2021.

Mirantha Jayathilaka. Enhancing generalization of first-order meta-learning. 2019.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive neural processes. In International Conference on Learning
Representations (ICLR), 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Matthieu Kirchmeyer, Yuan Yin, Jeremie Dona, Nicolas Baskiotis, Alain Rakotomamonjy, and
Patrick Gallinari. Generalizing to new physical systems via context-informed dynamics model.
In International Conference on Machine Learning (ICML), pp. 11283–11301, 2022.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

Kimin Lee, Younggyo Seo, Seunghyun Lee, Honglak Lee, and Jinwoo Shin. Context-aware dynam-
ics model for generalization in model-based reinforcement learning. In International Conference
on Machine Learning (ICML), pp. 5757–5766, 2020a.

Seungjun Lee, Haesang Yang, and Woojae Seong. Identifying physical law of hamiltonian systems
via meta-learning. In International Conference on Learning Representations (ICLR), 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. 2021.

Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel Urta-
sun, and Richard Zemel. Reviving and improving recurrent back-propagation. In International
Conference on Machine Learning (ICML), pp. 3082–3091, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Inter-
national Conference on Learning Representations (ICLR), 2016.

Lennart Ljung. Perspectives on system identification. Annual Reviews in Control, 34(1):1–12, 2010.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In Inter-
national Conference on Learning Representations (ICLR), 2017.

Alfred J Lotka. Contribution to the theory of periodic reactions. The Journal of Physical Chemistry,
14:271–274, 1910.

Kunal Menda, Jean De Becdelievre, Jayesh Gupta, Ilan Kroo, Mykel Kochenderfer, and Zachary
Manchester. Scalable identification of partially observed systems with certainty-equivalent em.
In International Conference on Machine Learning (ICML), pp. 6830–6840, 2020.

11

Under review as a conference paper at ICLR 2023

Zihang Meng, Sathya N Ravi, and Vikas Singh. Physarum powered differentiable linear program-
ming layers and applications. In AAAI Conference on Artificial Intelligence (AAAI), pp. 8939–
8949, 2021.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In International Conference on Learning Representations (ICLR), 2018.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. In International Conference on Learning Representations (ICLR), 2018.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Four-
castnet: A global data-driven high-resolution weather model using adaptive fourier neural opera-
tors. arXiv preprint arXiv:2202.11214, 2022.

Michael Poli, Stefano Massaroli, Federico Berto, Jinkyoo Park, Tri Dao, Christopher Re, and Ste-
fano Ermon. Transform once: Efficient operator learning in frequency domain. In International
Conference on Machine Learning (ICML), AI for Science Workshop, 2022.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
towards understanding the effectiveness of maml. In International Conference on Learning Rep-
resentations (ICLR), 2019.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with im-
plicit gradients. Advances in Neural Information Processing Systems (NeurIPS), 32, 2019.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International Conference on Machine
Learning (ICML), pp. 1842–1850, 2016.

Erwin Schrödinger. An undulatory theory of the mechanics of atoms and molecules. Physical
Review, 28(6):1049, 1926.

George Gabriel Stokes. On the effect of the internal friction of fluids on the motion of pendulums.
Transaction of the Cambridge Philosophical Society, 9:8–106, 1851.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 30, 2017.

Yuan Yin, Ibrahim Ayed, Emmanuel de Bézenac, Nicolas Baskiotis, and Patrick Gallinari. Leads:
Learning dynamical systems that generalize across environments. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 34:7561–7573, 2021.

Pan Zhou, Xiaotong Yuan, Huan Xu, Shuicheng Yan, and Jiashi Feng. Efficient meta learning via
minibatch proximal update. Advances in Neural Information Processing Systems (NeurIPS), 32,
2019.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong,
and Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):
43–76, 2020.

Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context
adaptation via meta-learning. In International Conference on Machine Learning (ICML), pp.
7693–7702, 2019.

12

Under review as a conference paper at ICLR 2023

A DETAILS OF STATIC REGRESSION EXPERIMENTS

In this section, we provide the model architectures, training process, and additional experimental
results for the polynomial regression task.

Model architecture We employ Encoder, CAVIA, and CoDA as the baselines. All models use
the same multi-layer perceptron (MLP) for fθ and are trained with the same data batches for fair
comparisons.

For brevity, we refer to a multi-layer perceptron (MLP) with hidden dimensions n1, n2, ... nl for
each layer and hidden activation act, as MLP(n1, n2, ..., nl; act). We refer to a cross multi-head
attention block (Vaswani et al., 2017) with h heads and x hidden dimensions as X.MHA(h× x).

Table A.1: Polynomial regression model architectures

Context encoder /
parameter generator fθ Inner step K Inner step size α τ

Encoder MLP(2,32)/MLP(1,32)-X.MHA(4×32) MLP(1+32, 64, 32, 1;LeakyReLU) − − −
CAVIA − MLP(1+32, 64, 32, 1;LeakyReLU) 5 1 −
CoDA W : R|c| → R|θ| MLP(1, 64, 32, 1;LeakyReLU) 500 0.001 −
FOCA − MLP(1+32, 64, 32, 1;LeakyReLU) 100 0.001 0.1

Table A.1 summarizes the network architectures. The green colored values indicate the dimension
of context ĉ. For CAVIA, we also perform hyperparameter search to optimize K. We found that
CAVIA with K > 5 underperforms, as compared to K = 5. For CoDA, we set the dimension of
context as 2 (i.e., |c| = 2), following the default setting of Kirchmeyer et al. (2022).

Training details We train all models with mini-batches of 256 polynomials for 4,048 epochs using
Adam (Kingma & Ba, 2015) with an initial learning rate of 0.001. The learning rate is scheduled by
the cosine annealing method (Loshchilov & Hutter, 2017).

B DETAILS OF MASS SPRING (MS) EXPERIMENTS

In this section, we provide the model architectures, training process, and additional experimental
results for the mass-spring systems.

k1

m1

k2

m2

k3

Figure A.1: Target mass-spring system. The models require to adapt to the change of spring constants
(k1, k2, k3) and masses (m1,m2).

We consider a frictionless three-spring two-mass system shown in Fig. A.1 with mass positions x1
and x2 governed by the following second-order ODE:

d2x1
dt2

= −k1 + k2
m1

x1 +
k2
m1

x2

d2x2
dt2

= −k2 + k3
m2

x2 +
k2
m2

x1

(A.1)

where K is a coefficient matrix with spring constants (k1, k2, k3) and masses (m1,m2).

Data generation For training data generation, we generate 128 mass-spring systems whose pa-
rameters (k1, k2, k3,m1,m2) are sampled from U(0.75, 1.25)5 and numerically solve the mass-
spring systems with Runge–Kutta 45 for T = 10 seconds with ∆t = 0.15 second time intervals.

13

Under review as a conference paper at ICLR 2023

Model architecture For fθ, we employ the 1D-CNN model from Brandstetter et al. (2021), which
stacks an MLP, 1D-CNN, and consistency decoder (Brandstetter et al., 2021) with the bundling
parameter N = 25. For brevity, we refer to a 1D-CNN layer with x input channels, y output
channels, and filter size w as Conv(x, y, w), a consistency decoder as C.Dec, and the bi-directional
GRU (Cho et al., 2014) with hidden dimension x as GRU(x).

Table A.2: Mass-spring prediction model architectures

Context encoder /
parameter generator fθ

Encoder GRU(64)-MLP(64, 64) MLP(4×25+64, 64, 32, 4×25;LeakyReLU)-Conv(4, 4, 8)-LeakyReLU-Conv(4,4,1)-C.Dec
CAVIA − MLP(4×25+64, 64, 32, 4×25;LeakyReLU)-Conv(4, 4, 8)-LeakyReLU-Conv(4,4,1)-C.Dec
CoDA W : R|c| → R|θ| MLP(4×25, 64, 32, 4×25;LeakyReLU)-Conv(4, 4, 8)-LeakyReLU-Conv(4,4,1)-C.Dec

FOCA − MLP(4×25+64, 64, 32, 4×25;LeakyReLU)-Conv(4, 4, 8)-LeakyReLU-Conv(4,4,1)-C.Dec

Table A.2 summarizes the network architectures. The green colored values indicate the dimension
of context ĉ. We set the inner step K and step size α as 100/1 and 0.001/1 for FOCA and CAVIA,
respectively, and τ as 0.1. For CoDA, we set the dimension of context as 2 (i.e., |c| = 2), following
the default setting of Kirchmeyer et al. (2022).

Training details We train all models with mini-batches of size 512 for 1,000 epochs using Adam
(Kingma & Ba, 2015) with the initial learning rate of 0.001 and the pushforward regularization
(Brandstetter et al., 2021). We use the past observations from the previous 2N to N steps as the
input of the adaptation process. For CoDA, we performed a hyperparameter search and found that
L1 regularization on the norm of c as 1e-3 and W as 1e-7 performs well.

Evaluation setting For in-training evaluations, we generate 2,048 mass-spring systems whose
parameters (k1, k2, k3,m1,m2) are sampled from U(0.75, 1.25)5 and numerically solve the mass-
spring system with Runge–Kutta 45 with T = 5.0 and ∆t = 0.01. For out-of-training evaluations,
we generate 2,048 mass-spring systems whose parameters (k1, k2, k3,m1,m2) are sampled from
U(0.60, 0.75)5 ∪ U(1.25, 1.35)5 for T = 5.0 with ∆t = 0.01. All models take the first and second
0.25 seconds of observation for the task adaptation and predict 4.5 seconds of future states via the
model rollout.

Additional results We provide the visualization of the model generalization errors to the change
of m1,m2 on the mass-spring systems, as shown in Fig. A.2.

0.25 0.50 0.75 1.00 1.25
m1

0.25

0.50

0.75

1.00

1.25

m
2

FOCA

0.25 0.50 0.75 1.00 1.25
m1

Encoder

0.25 0.50 0.75 1.00 1.25
m1

CAVIA

0.25 0.50 0.75 1.00 1.25
m1

CoDA

0.0
0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8

R
M

SE

Figure A.2: In/out-of-distribution losses (in RMSE) on MS. Two parameters of MS (m1,m2) are generated
from [0.25, 1.25]2 while the other two parameters are fixed to 0.75. The orange box indicates the boundaries
of the training parameter distribution.

C DETAILS OF LOTKA-VOLTERRA (LV) EXPERIMENTS

In this section, we provide the model architectures, training process, and additional experimental
results for the Lokta-Volterra systems (Lotka, 1910).

14

Under review as a conference paper at ICLR 2023

0.25 0.50 0.75 1.00 1.25
0.25

0.50

0.75

1.00

1.25
FOCA

0.25 0.50 0.75 1.00 1.25

Encoder

0.25 0.50 0.75 1.00 1.25

CAVIA

0.25 0.50 0.75 1.00 1.25

CoDA

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8

R
M

SE

Figure A.3: In/out-of-distribution losses (in RMSE) on LV. Two parameters of LV (β, γ) are generated from
[0.25, 1.25]2 while the other two parameters are fixed to 0.5. The orange box indicates the boundaries of the
training parameter distribution.

The Lokta-Volterra system describes the interaction between a prey-predator pair in an ecosystem,
formalized into the following ODE:

dx

dt
= αx− βxy,

dy

dt
= δxy − γy,

(A.2)

where x, y are respectively the quantity of the prey and the predator and α, β, γ, δ define how two
species interact.

Data generation For training data generation, we generate 128 Lokta-Volterra systems whose
parameters (α, δ) = (0.5, 0.5) and (β, γ) ∼ U(0.5, 1.0)2 following Kirchmeyer et al. (2022). We
then numerically solve the systems with Runge–Kutta 45 for T = 50.0 seconds with ∆t = 0.5
second time intervals.

Model architecture We employ the same network architectures of the MS experiments except
with a different input dimensions of 2 and bundling parameter N = 20.

Training details We train all models with mini-batches of size 128 for 5,000 epochs. Other details
are kept the same as mass-spring experiments.

Evaluation setting For in-training evaluations, we generate 2,048 Lokta-Volterra systems sim-
ilarly to the training data generation. For out-of-training evaluations, we generate 2,048 Lokta-
Volterra systems whose parameters (α, δ) = (0.5, 0.5) and (β, γ) ∼ U(0.25, 0.5)2 ∪ U(1.0, 1.25)2
for T = 50.0 with ∆t = 0.5. All models take the first and second 10.0 seconds of observation for
the task adaptation and predict 30.0 seconds future states via the model rollout.

D DETAILS OF GLYCOLYTIC OSCILLATOR (GO) EXPERIMENTS

In this section, we provide the model architectures, training process, and additional experimental
results for the glycolytic oscillators (Daniels & Nemenman, 2015).

15

Under review as a conference paper at ICLR 2023

The glycolytic oscillators describe yeast glycolysis dynamics with the following ODE:

dS1

dt
= J0 −

k1S1S6

1 + (1/Kq
1)S

q
6

dS2

dt
= 2

k1S1S6

1 + (1/Kq
1)S

q
6

− k2S2(N − S5)− k6S2S5

dS3

dt
= k2S2(N − S5)− k3S3(A− S6)

dS4

dt
= k3S3(A− S6)− k4S4S5 − κ(S4 − S7)

dS5

dt
= k2S2(N − S5)− k4S4S5 − k6S2S5

dS6

dt
= −2 k1S1S6

1 + (1/Kq
1)S

q
6

+ 2k3S3(A− S6)− k5S6

dS7

dt
= ψκ(S4 − S7)− kS7,

(A.3)

where S1, S2, S3, S4, S5, S6, S7 (states) represent the concentrations of 7 biochemical species and
J0, k1, k2, k3, k4, k5, k6,K1, q,N,A, κ, ψ and k are the parameters of the glycolytic oscillators.

Data generation For training data generation, we generate 128 glycolytic oscillators with the fixed
parameters J0 = 2.5, k2 = 6, k3 = 16, k4 = 100, k5 = 1.28, k6 = 12, q = 4, N = 1, A = 4, κ =
13, ψ = 0.1 and k = 1.8 by sampling integer k1 ∼ U(80, 100) and K1 ∼ U(0.5, 1.0). We adopt
the values or ranges of the parameters from Kirchmeyer et al. (2022). We then numerically solve the
systems with Runge–Kutta 45 for T = 5.0 seconds with ∆t = 0.05 second time intervals.

Model architecture We employ the same network architectures of the MS experiments except
with a different input dimensions of 7 and bundling parameter N = 10. For CoDA, we set the
context dimension as 3.

Training details We train all models with mini-batches of size 512 for 5,000 epochs. Other details
are kept the same as mass-spring experiments.

Evaluation setting For in-training evaluations, we generate 2,048 glycolytic oscillators similarly
to the training data generation. For out-of-training evaluations, we generate 2,048 glycolytic oscil-
lators whose parameters k1 ∼ U(75, 80) ∪ U(100, 105) and K1 ∼ U(0.45, 0.5) ∪ U(1.00, 1.05)
and (J0, k2, k3, k4, k5, k5, k6, q,N,A, κ, ψ, k) = (2.5, 6, 16, 100, 1.28, 12, 4, 1, 4, 13, 0.1, 1.8) for
T = 5.0 with ∆t = 0.05. All models take the first and second 0.5 seconds of observation for the
task adaptation and predict 4.5 seconds future states via the model rollout.

Additional results We provide the visualization of the model generalization errors to the change
of k1,K1 on the glycolytic oscillators, as shown in Fig. A.4.

75 80 85 90 95 100 105
k1

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05

K 1

FOCA

75 80 85 90 95 100 105
k1

Encoder

75 80 85 90 95 100 105
k1

CAVIA

75 80 85 90 95 100 105
k1

CoDA

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

SE

Figure A.4: In/out-of-distribution losses (in RMSE) on GO. The orange box indicates the boundaries of the
training parameter distribution.

16

Under review as a conference paper at ICLR 2023

C
on

te
xt

Ta
rg

et

t = 5 s t = 10 s t = 15 s t = 20 s t = 25 s t = 30 s

Pr
ed

ic
ti

on

Figure A.5: Out-of-distribution generalization on the Navier-Stokes equations: FOCA is trained with viscosity
ν ∈ [8 × 10−4, 1.2 × 10−3] and tested with ν = 6 × 10−4. The model can reconstruct states even after long
autoregressive rollouts in unseen conditions.

E DETAILS OF NAVIER-STOKES (NS) EXPERIMENTS

In this section, we provide the model architectures, training process, and additional experimental
results for modeling the 2D Navier-Stokes equations (Stokes, 1851).

The Navier-Stokes equations describe the dynamics of incompressible flows with a two-dimensional
PDE. In vorticity form they can be written as:

∂w

∂t
= −v∇w + ν∆w + f

∇v = 0

w = ∇× v
(A.4)

where v is the velocity field and w is the vorticity, ν is the viscosity, and f is a forcing term. The
domain is subject to periodic boundary conditions.

Data generation We generate trajectories with a temporal resolution of ∆t = 1 and a time horizon
of t = 10. The space is discretized on a 32 × 32 grid and we set f(x, y) = 0.1(sin(2π(x +
y)) + cos(2π(x + y))), where x, y are coordinates on the discretized domain (Yin et al., 2021).
For training data, similarly to Kirchmeyer et al. (2022), we consider 5 training environments with
ν ∈ {8 · 10−4, 9 · 10−4, 1.0 · 10−3, 1.1 · 10−3, 1.2 · 10−3} respectively. Each environment contains
a total of 100 different initial conditions for a total of 500 training sequences.

Model architecture For this experiment, we employ the Fourier Neural Operator (FNO) (Li et al.,
2021). Thanks to their layers in the spectral domain and frequency mode pruning, frequency domain
models have been proven to be well suited to model complex dynamical systems characterized by a
multitude of natural frequencies (Pathak et al., 2022; Poli et al., 2022). We employ an FNO model
with 4 spectral convolution layers, hidden layers with width 10, and frequency mode pruning set to
the 12 highest frequencies. Temporal bundling is set to N = 1. We set the context dimension of
CoDA to 3. For models whose input includes the context, i.e. Encoder, CAVIA and FOCA, we keep
the same context dimension |ĉ| = 64 as in the previous experiments; the inferred context passes
through a linear layer and resized to the grid size of 32 × 32 as an additional input channel of the
FNO.

Training details We train all models with mini-batches of size 16 for 100 epochs. Other details
are kept the same as in the mass-spring experiments.

Evaluation setting For in-training adaptation, we consider 4 environments with viscosity ν ∈
{8.5 ·10−4, 9.5 ·10−4, 1.05 ·10−3, 1.15 ·10−3} while for out-of-distribution adaptation we generate
data from 4 environments with unseen ranges of viscosity, i.e. ν ∈ {7.0 · 10−4, 7.5 · 10−4, 1.25 ·
10−3, 1.30 · 10−3}. Each adaptation environment is generated out of 30 different initial conditions.
All the models take as input the first two steps (i.e. the first 2 seconds) and predict the rest of the
sequence with autoregressive rollouts.

17

Under review as a conference paper at ICLR 2023

Additional results We provide in Fig. A.5 an additional qualitative visualization showing the
out-of-distribution generalization on the Navier-Stokes equations. FOCA is trained with viscosity
ν ∈ [8 × 10−4, 1.2 × 10−3] and tested with ν = 6 × 10−4, demonstrating its adaptation capability
in challenging and unseen settings.

18

	Introduction
	Related work
	Preliminaries
	Methodology
	Problem formulation
	Training FOCA

	Experiments
	Static regression
	Time-series prediction
	Training ablation study

	Conclusion
	Details of static regression experiments
	Details of mass spring (MS) experiments
	Details of Lotka-Volterra (LV) experiments
	Details of Glycolytic oscillator (GO) experiments
	Details of Navier-Stokes (NS) experiments

