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Abstract

Current controllable diffusion models typically rely on fixed architectures that
modify intermediate activations to inject guidance conditioned on a new modality.
This approach uses a static conditioning strategy for a dynamic, multi-stage de-
noising process, limiting the model’s ability to adapt its response as the generation
evolves from coarse structure to fine detail. We introduce TC-LoRA (Temporally
Modulated Conditional LoRA), a new paradigm that enables dynamic, context-
aware control by conditioning the model’s weights directly. Our framework uses a
hypernetwork to generate LoRA adapters on-the-fly, tailoring weight modifications
for the frozen backbone at each diffusion step based on time and the user’s condi-
tion. This mechanism enables the model to learn and execute an explicit, adaptive
strategy for applying conditional guidance throughout the entire generation process.
Through experiments on various data domains, we demonstrate that this dynamic,
parametric control significantly enhances generative fidelity and adherence to spa-
tial conditions compared to static, activation-based methods. TC-LoRA establishes
an alternative approach in which the model’s conditioning strategy is modified
through a deeper functional adaptation of its weights, allowing control to align
with the dynamic demands of the task and generative stage.

1 Introduction

The rapid advancement of diffusion models [[1, 2} 3} 4] has unlocked unprecedented capabilities in
image synthesis. A key application is controllable generation for producing synthetic data in critical
domains like robotics and autonomous driving [3} 6], where real data is expensive to gather and a
precise adherence to control signals is crucial. These models invert the traditional data pipeline by
generating photorealistic images from precise labels (e.g., depth maps, poses), aiming for perfect label-
image correspondence. However, current approaches, such as ControlNet [7]], use a fixed network
architecture to process conditioning signals, applying the same conditioning operation throughout the
entire denoising process. This static approach may be suboptimal as the ideal conditioning strategy
varies across the diffusion process; for instance, establishing coarse spatial structure is critical in
early stages, while refining fine-grained details is the focus of later stages [8]. We argue that model
weights themselves should be dynamic functions of both diffusion time and the conditioning input,
allowing the model to adapt its computational mechanism to the specific needs of each step.

To achieve this, we introduce Temporally Modulated Conditional LoRA (TC-LoRA), a framework
based on a hypernetwork that dynamically generates weight adapters conditioned on both time and the
control signal. Instead of using static (frozen) weights, TC-LoRA continuously adapts its parameters
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ControlNet-style [5,/7,9] TC-LoRA (Ours)

Primary Site of Intervention Activation Space Weight Space
Conditioning Strategy Static Dynamic

Table 1: Comparison of Conditioning Mechanisms. Fundamental differences between ControlNet-
style methods [5, (7, 9] and TC-LoRA.

during inference, representing a paradigm shift towards dynamic weight conditioning. In this work,
we take the example of conditioning the diffusion model on depth maps, constraining the generated
image to respect the depth. We compare our method with ControlNet-style baselines [7, 5] and
demonstrate its superior adherence to the control signal.

2 Related Work

Diffusion Models [1} 2| 3]] are generative models that produce high-quality samples by progressively
removing noise from an initial random signal. To sample from a target distribution p(xg|c), a
diffusion model first defines a forward process that incrementally adds Gaussian noise to clean
data x( over a series of timesteps ¢, producing noisy samples x;. It then learns a reverse process
to remove this noise, conditioned on an input c (e.g., text, image). Training involves minimizing
the difference between the predicted noise and the actual noise added at each step, using a noise
prediction network €p: Ex c i1 [|l€0 (%4, t, ¢) — €]|3], where T is the range of timesteps. In modern
architectures (Latent Diffusion Models, LDM), smaller latent representations z; are extracted from a
pre-trained auto-encoder, so the denoising function Dy operating cost is drastically reduced [10} [11].

Conditional Control. ControlNet-style models [5 7, 9] enhance LDMs by incorporating additional
spatial conditioning y (e.g., depth maps, edges) alongside text conditioning c. This is achieved by
injecting spatial features from y into the main denoising network via auxiliary branches, resulting
in a function Dy(z,t,c,y). A key characteristic of all these models is that they employ fixed
network weights 6 throughout the generation process. Timestep ¢ and conditioning signals ¢ and
y are treated as inputs processed through static computational pathways, which do not adapt to the
varying computational demands across different stages of denoising.

Low-Rank Adaptation (LoRA) [12]] is a prominent parameter-efficient fine-tuning technique that
adapts large pre-trained models by representing weight updates as the product of two low-rank
matrices, B and A. The updated weight is given by W = W, + BA, where W, € R%** are
the frozen pre-trained weights, and the trainable matrices B € R?*" and A € R"** have a rank
r < min(d, k). In its standard application, LoRA learns a single, fixed set of matrices, resulting in
a static adaptation. While some works use hypernetworks to generate these static adapters based on
conditioning inputs [[13}[14]], recent efforts have focused on making adaptations dynamic. For instance,
T-LoRA [15] and Time-Varying LoRA [16] introduce a time-dependent scaling factor to modulate
the magnitude of the LoRA update over a process. However, in these approaches, the underlying
low-rank adapters (B and A) remain functionally static, with only their magnitude being scaled.

3 TC-LoRA: Temporally Modulated Conditional LoRA

Motivation for Dynamic Weight Adaptation. Current controllable diffusion models utilize fixed
network weights, treating timestep and conditioning information as inputs. We argue this approach
is inherently less expressive than directly modifying the weights themselves. A model with fixed
weights can only modulate its output through learned nonlinearities within a static computational
structure. We demonstrate in Appendix [D]why adding to the activations of the neural network — i.e.
the case of ControlNet — is not mathematically equivalent to a modification of the weights.

In contrast, a model that dynamically adapts its weights can fundamentally alter its computational
mechanisms, enabling qualitatively different processing strategies for each stage of generation. This
is analogous to the distinction between modulating the inputs to a fixed function, fy(x,t,y), and
changing the function itself, fy(;,,)(z,t,). Research in dynamic networks and neural architecture
search supports the hypothesis that adaptive network structures offer superior performance over
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Figure 1: The TC-LoRA framework for dynamic, context-aware conditional control. (a) Our
method is formulated within a standard conditional diffusion framework, in which a text prompt
together with an input condition (e.g., a depth map or an edge sketch) guides the generation process
from an initial noise image. (b) We introduce a dynamic weight conditioning mechanism where
a hypernetwork—the only trainable component—generates the LoRA adapter weights (B or A)
on-the-fly. This dynamic weight update is then used to modify the behavior of the frozen pretrained
weights (1) of the base model, allowing for a state-aware adaptation at each step.

fixed architectures [17, [18]. We therefore propose to replace the standard fixed denoising function
Dq(z¢,t,c,y) with a dynamic counterpart, Dy, y)(2:,t,¢,y), where the weights 0(t,y) adapt
throughout generation. This raises the central question of how to efficiently parameterize and learn
such dynamic weights while leveraging powerful pre-trained models.

To realize dynamic weight adaptation efficiently, we introduce TC-LoRA (Temporally Modulated
Conditional LoRA), which combines the parameter efficiency of LoRA with the dynamic capabilities
of hypernetworks. Our approach generates time and condition-specific LoORA weights that are injected
into the pre-trained diffusion model, enabling adaptive processing while preserving the base model’s
learned representations.

TC-LoRA Methodology. Given a pre-trained denoising function Dy with weights 6 =
{Wo, ..., W}, our method, TC-LoRA, modifies specific weight groups W; € R** by adding
dynamic low-rank adaptations. During both training and inference, the weights are updated as a
function of the diffusion timestep ¢ and a conditioning signal y:

W, =W, +B(i,t,y)A(i,t,y), M

where B(i,t,y) € R4 and A(i,t,y) € R"*¥ are low-rank matrices (r < min(d, k)) that are not
trained directly. Instead, they are generated on-the-fly by a single hypernetwork H, shared across
layers. This hypernetwork takes the weight group index ¢, timestep ¢, and conditioning y as input to
produce the complete set of adapter parameters {A (i, ¢,y), B(i,¢,y)} for that specific context.

As illustrated in Figure[T] by modifying the processing weights themselves, this approach reshapes
dynamically the function defined by the diffusion model, allowing the model’s generative capacity to
be more effectively constrained by the conditioning input, rather than merely influencing activations
within fixed computational functions. Further details on the hypernetwork structure and training
objective are provided in Appendices[A]and [B] respectively.

4 Experimental Results

We evaluate the conditioning performance of TC-LoRA on the base model Cosmos-Predict1 [6]), and
its ability to align image generation with provided depth maps, while noting that it can be generalized
to other modalities e.g. edge maps, normal maps, bounding boxes. The TC-LoRA adapters are trained
exclusively on the MS-COCO dataset [22] for 3 days using 8 NVIDIA H100 96GB GPUs with a



Openlmages TransferBench

Metric ControlNet [7] TC-LoRA  ControlNet [7] TC-LoRA
NMSE (@) 0.7433 0.7354 0.5130 0.4529
si-MSE [21]] () 1.5633 1.0557 1.7080 1.6499

Table 2: Quantitative comparison on OpenImages benchmark [19] and TransferBench [3]].
Lower values are better. Best results for each benchmark are in bold.

Prompt: The video is a continuous drive-through of a suburban Prompt: The image shows a fluffy, light-colored dog walking on
neighborhood on a clear, sunny day. The camera is mounted on a paved path in a grassy area. The dog is carrying a red frisbee
a vehicle, providing a first-person perspective as it travels down in its mouth. Its tail is curled up and fluffy, and the setting

a wide, two-lane street. appears to be a park or outdoor recreational area.

Prompt: The video is a nighttime driving scene along a multi-

lane road, likely captured from a dashcam perspective. The road Prompt: Pedestrians walking down a sidewalk next to a small
is well-lit with streetlights and features multiple vehicles traveling street.

in the same direction.

Figure 2: Qualitative Comparison: Each example set comprises a text prompt (top), a depth
condition (left image), and the corresponding generation results obtained using ControlNet (middle
image) and TC-LoRA conditioning (right image). Specifically, we compare Cosmos-Transfer] [5]
against Cosmos-Predict]l + TC-LoRA. Overall, TC-LoRA exhibits improved fidelity in adhering to
the spatial condition.

batch size of 4. We then evaluate on two distinct benchmarks to test generalization: a custom-curated
Openlmages Benchmark [19] with diverse natural, urban, and indoor scenes, and TransferBench [3],
which contains various scenes from robotics [23]], driving [24]], and egocentric domains [25]].

For a fair comparison, our method is benchmarked against Cosmos-Transfer1 [3], which augments
the same frozen base model with a ControlNet-style architecture for activation-based conditioning.
Alignment fidelity is measured using scale-invariant MSE (si-MSE) [21] and Normalized MSE
(NMSE) [20], where lower values indicate better performance. Notably, TC-LoRA achieves this
control with significantly fewer trainable parameters than the baseline (251M vs. 900M). Further
details on the benchmarks, metrics, and baseline are available in Appendix@

Results and Analysis. Our results validate that TC-LoRA’s dynamic, weight-based adaptation
significantly enhances the model’s adherence to spatial conditions. On the Openlmages Benchmark,
this is demonstrated by a markedly lower si-MSE, indicating a high degree of fidelity to the depth
condition (Table[2). This effective generalization, despite being trained only on MS-COCO, continues
on TransferBench, where TC-LoRA shows consistent improvement, reducing the NMSE by 11.7%
and the si-MSE by 3.4% compared to the baseline.

These quantitative improvements are visually reflected in our qualitative analysis (Figure 2)), where
TC-LoRA shows a strong capability for preserving fine-grained details—such as a dog’s specific pose
or the silhouettes of pedestrians—that the baseline struggles to capture. Furthermore, we illustrate the
learning progression in Appendix Figure d] which shows the model’s generation output evolving from
an unconditioned state to a high-fidelity, structurally consistent image after 150k training iterations.
Together, these results underscore the effectiveness of our dynamic weight conditioning approach for



achieving a more precise and robust alignment with user-provided guidance, with further analysis
provided in Appendix [C.4]

Conclusion and Future Work. In this work, we introduced TC-LoRA, a new framework that
provides dynamic spatial control in diffusion models by regenerating LoRA weights at each denoising
step. This method allows the model to learn an adaptive strategy, tailoring its parameters to the
evolving needs of the generation process—from establishing coarse structures to refining fine details.
By enabling a deeper form of functional adaptation, TC-LoRA significantly enhances the steerability
and efficiency of generative foundation models.

A promising future direction is extending this framework to text-to-video generation. The key chal-
lenge is to maintain temporal consistency across frames while adhering to per-frame spatial conditions.
We propose adapting the hypernetwork to process features from previous frames, enabling TC-LoRA
to learn a balance between conditional accuracy and smooth temporal transitions, representing a
significant step towards more coherent and controllable video synthesis.
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Appendix

A Hypernetwork Architecture

Our architecture employs a single, parameter-efficient hyper-
network, Hy, to generate the low-rank adaptation matrices, B [~ Context )
and A, for all targeted layers within the foundation model. To
produce specialized parameters for different contexts, the hy-
pernetwork is conditioned on a context vector that encapsulates
four distinct types of information: the diffusion timestep, the
user’s input condition, the target layer’s identity, and the layer’s
type as shown in Figure 3]

| time |condition| layer id| layer type |

Multi-Scale Multi-Range Path
| Res Block 1 | | Res Block 2 |

The input condition is first processed into the model’s na-
tive latent space using the pre-trained autoencoder from the
base model [6} 26]. This latent representation is then passed Res Block 3
through a dedicated 3-layer MLP to produce a fixed-size 1024-
dimensional condition embedding. The diffusion timestep is
handled by a standard sinusoidal embedding [6} 27], which

yields a 64-dimensional time embedding. Finally, a specialized
Layer ID encoder with residual connections maps the target
layer’s structural properties—a concatenated vector of its depth A or B

(ID) and type (e.g., self-attention vs. cross-attention, and query AN J
vs. key vs. value)—to a dense 128-dimensional embedding. Figure 3: Hypernetwork Design
These three embeddings are concatenated to form the final

context vector that is fed into the hypernetwork.

As detailed in Figure 3| the internal architecture of the hypernetwork processes this fused context
vector through an input stage followed by a series of multi-scale residual blocks. A key feature of our
design is the use of multi-range skip connections, which project features from early and intermediate
stages and add them to the final output projection. This allows the hypernetwork to effectively
combine low-level and high-level contextual information when generating the adapter parameters. To
ensure training stability and mirror standard LoRA initialization, the final layer of the hypernetwork
that generates the B matrix is explicitly zero-initialized. This ensures that our adaptation has no
initial effect at the start of training, making the model’s output identical to that of the base model.
Within the DiT-based foundation model, these dynamic adapters are attached to the linear projection
layers in all self-attention and cross-attention blocks, as illustrated in Figures

B Training Objective

TC-LoRA is trained end-to-end with the standard diffusion objective, where the hypernetwork learns
to predict appropriate adaptations for each timestep-condition pair:

L= Ezo,c,y,t,e [HE - D9+H¢(t,}') (Zt’ i,c, Y)Hﬂ 2

Here, the loss L is the expected squared error between the sampled noise € and the prediction from the
denoising model D, which operates on the noisy latent z; (derived from clean latent z); the model’s
frozen base weights ¢ are dynamically adapted by our trainable hypernetwork Hg, which itself is
conditioned on the diffusion timestep ¢ alongside text conditioning ¢ and spatial conditioning y (e.g.,



depth maps, edges). This formulation allows the hypernetwork to learn optimal weight adaptations
that minimize reconstruction error across all timestep-condition combinations, naturally discovering
adaptive processing strategies that improve controllable generation.

C Additional Experimental Details and Results

C.1 Benchmark and Dataset Details

Training Dataset. All TC-LoRA adapters were trained on the MS-COCO dataset [22]], which
contains 120k images of natural and urban scenes. No training was performed on the evaluation
benchmark datasets.

Openlmages Benchmark. We constructed this benchmark with 600 samples for topical balance and
visual diversity. Using captions, we first classified samples from the OpenImages dataset [19] into
three topics: nature, urban, and indoor, using a zero-shot classifier. Within each topic, we used CLIP
embeddings [28] and a greedy max-min algorithm for diversity sampling to select visually dissimilar
images. This resulted in 200 diverse samples per topic. Text prompts were generated for each image
using Florence 2-L [29].

TransferBench. We use the TransferBench benchmark introduced in Cosmos-Transferl [5]. It
consists of 600 examples, which have been slightly modified for our target task of single-frame
generation, although the benchmark was originally for text-to-video generation. For this study,
we focus on generating the first frame of each example video. The topics are distributed across
three challenging, out-of-distribution domains: robotic arm operations (AgiBot World [23]]), driving
(OpenDV [24]]), and everyday life scenes (Ego-Exo-4D [235]).

C.2 Evaluation Metric Details

To quantify the alignment between the input depth map and the generated image, we first extract a
depth map from the generated image using Marigold [30]. We then compute two metrics:

* si-MSE (scale-invariant Mean Squared Error) [21]: Measures structural and shape-related
errors between the two depth maps, invariant to global scale shifts.

* NMSE (Normalized Mean Squared Error) [20]: Quantifies the relative prediction error,
complementing si-MSE for a comprehensive evaluation.

For both metrics, lower values signify better alignment with the conditioning depth map.

C.3 Baseline Details

Our baseline is Cosmos-Transfer] [5]], which enhances a base diffusion model (Cosmos-Predict1 [6])
with ControlNet [7] for conditioning. For a fair comparison, we use the same base model and
attach our TC-LoRA adapters. The primary architectural difference lies in the number of trainable
parameters: the publicly released Cosmos-Transfer] checkpoint includes a trainable copy of the first
three transformer blocks, totaling 900M trainable parameters. In contrast, our TC-LoRA introduces
only 251M trainable parameters, all contained within the shared hypernetwork, which demonstrates
its memory efficiency during both the post-training process and deployment.

C.4 Detailed Qualitative Analysis
Our qualitative comparisons visually substantiate the quantitative metrics.

* Baseline Comparison (Figure2]in the main text): In a direct comparison across various
data domains, TC-LoRA shows a superior ability to preserve details from the depth condition.
For example, in the image of a dog, TC-LoRA accurately reconstructs the pose, curled
tail, and the texture of the surrounding path and grass, whereas the baseline produces a
structurally different dog. Similarly, in a street scene, TC-LoRA more faithfully reproduces
the placement and silhouettes of pedestrians as defined by the depth map.

* Learning Progression (Figure [d): This figure highlights the effectiveness of the post-
training process. The unconditioned base model generates plausible but random images



Prompt: The image shows a fluffy, light-colored dog walking on a paved path in a grassy area. The dog is carrying a
red frisbee in its mouth. Its tail is curled up and fluffy, and the setting appears to be a park or outdoor recreational area.

(a) No Post-Training (b) LoORA (c) Condition (d) TC-LoRA (10k iter) ~ (e) TC-LoRA (80k iter)  (f) TC-LoRA (150k iter)

Figure 4: Effect of TC-LoRA: (a) and (b) show images generated from the given text prompt without
conditioning. With the condition input shown in (c), the generation process can be conditioned
accordingly, demonstrating TC-LoRA’s role in enabling spatial correction through LoRA. Panels (d),
(e), and (f) present visualization results at different TC-LoRA post-training durations. After 150k
iterations, the generated image is well aligned with the condition in (c).

(a, b). When guided by the condition map (c), the model’s ability to follow the structure
progressively improves. At 10k iterations (d), the general composition emerges, and by
150k iterations (f), the model produces a high-fidelity image that is both semantically rich
and structurally consistent with the spatial condition.

D On the Distinction Between Activation Conditioning and Weight
Conditioning

In this section, we demonstrate why ControlNet [[7] cannot be seen as an update of the weights,
opposite to TC-LoRA. We remind the reader that in practice, ControlNet also takes as input the input
of the diffusion model, i.e. the input noise of the diffusion process z. Therefore in our proof, the
output of ControlNet ¢ depends on x.

Proposition: The addition of a non-constant, input-dependent vector ¢(x) to a hidden layer activation
a; cannot be expressed as a modification of a static subsequent weight matrix Ws.

Proof. Let the activation of the first hidden layer be a; = f(Wix), where f is a non-linear activation
function. The pre-activation of the second layer is modified by an input-dependent vector ¢(x),
resulting in 25 = Wa(ay + c(z)).

Assume, for the sake of contradiction, that there exists a single, constant weight matrix W that is
equivalent to this operation for the entire input domain of . This implies the following equality must
hold for all x:

Wiyay = Wa(ay + c(x)) = Waaq + Wac(z) 3)
By rearranging, we can isolate the effect of the modification:
(WQI - Wz)al = WQC(Z’) (4)

Let AW = W — W5 be the constant matrix representing the static weight update. Substituting this
and the definition of a; into Equation [] yields:

AW f(Whzx) = Wae(z) Q)]

This equation must hold for all . Let us denote the function on the left as L(z) = AW f(W;) and
the function on the right as R(z) = Wac(z). Our assumption that a static W3 exists is equivalent to
assuming that L(z) = R(z) holds for all 2 with a constant matrix AW

However, the functional form of L(x) is strictly determined by the architecture of the first layer
(the matrix W, and the activation function f). In contrast, ¢(z) can be an arbitrary function of the



input, making the functional form of R(z) equally arbitrary. For a general choice of ¢(z), there is no
constant matrix AW that can transform the function f (1) into the function Wac(x) across the
entire input space. The constraint that L(x) = R(x) cannot be satisfied, as the space of functions
representable by L(x) for a fixed W7 and f is a specific subset of all possible functions of x, while
R(z) can be chosen to be outside this space.

This leads to a contradiction. Therefore, the initial assumption is false, and the operation cannot be
represented by a static weight update. [

D.1 TC-LoRA as a True Parametric Adaptation

In contrast, TC-LoRA performs a true parametric adaptation. The weight update is generated by a
hypernetwork as a direct function of time ¢ and condition y, but it is input-agnostic. The adapted
weight for the second layer is:

W(t,y) = Wa + AWy (t,y) = Wa + B(t, y)A(t,y) (6)
The output yeigns is then:
Yweight = f((W2 + B(tv y)A(ta y)) : f(WlX)) (7)

Here, the weight modification is computed based on context before it operates on the input. This is a
fundamentally different mechanism: it reconfigures the layer’s processing function itself. This allows
TC-LoRA to learn an explicitly time-varying strategy, enabling a deeper functional adaptation that is
not achievable through input biasing alone.
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