Self-Evaluating LLMs for Multi-Step Tasks: Stepwise
Confidence Estimation for Failure Detection

Vaibhav Mavi Shubh Jaroria Weiqi Sun
Dyania Health Dyania Health Dyania Health
vaibhav@dyaniahealth.com shubh@dyaniahealth.com weiqi@dyaniahealth.com

Abstract

Reliability and failure detection of large language models (LLMs) is critical for
their deployment in high-stakes, multi-step reasoning tasks. Prior work explores
confidence estimation for self-evaluating LLM-scorer systems, with confidence
scorers estimating the likelihood of errors in LLM responses. However, most
methods focus on single-step outputs and overlook the challenges of multi-step
reasoning. In this work, we extend self-evaluation techniques to multi-step tasks,
testing two intuitive approaches: holistic scoring and step-by-step scoring. Using
two multi-step benchmark datasets, we show that stepwise evaluation generally
outperforms holistic scoring in detecting potential errors, with up to 15% relative
increase in AUC-ROC. Our findings demonstrate that self-evaluating LLM systems
provide meaningful confidence estimates in complex reasoning, improving their
trustworthiness and providing a practical framework for failure detection.

1 Introduction

Large language model (LLM) agents are increasingly deployed in complex applications such as
task-planning [29]], dialog systems [28], collaborative problem-solving [24] and multi-hop question
answering [16] where detecting errors and failures is a critical challenge. A common strategy for
detecting failures is to extend the system with a self-evaluation component, where either the agent
itself or an auxiliary evaluator assigns a confidence score to the response [7]].

Failure detection through confidence estimation has been extensively studied in single-step prediction
tasks [7, 26, |18 2]], but its role in multi-step reasoning remains largely underexplored. Multi-step
interactions pose unique challenges: reasoning chains can be arbitrarily long, errors may occur at any
step, and later steps often depend on earlier ones. Consequently, direct application of existing methods
often fails to identify errors in a multi-step task reliably. For example, self-certainty [12] directly
applied to CoQA (Conversational Question Answering) [19] yields poor performance (AUC-ROC
0.523, FPR@0.9 recall 0.95).

However, a trivial extension of detecting errors after each step improves the performance substantially
(AUC-ROC 0.849, FPR@0.9 recall 0.374). This observation raises a key question: Should confidence
estimation methods in multi-step tasks evaluate responses: i) after each reasoning step, enabling
fine-grained error-detection, or ii) holistically, considering the final answer in full context?

We systematically investigate this question across two representative settings: tool-enhanced reason-
ing and LLM-user dialog. Our experiments reveal that step-level evaluation often provides superior
error detection, though holistic evaluation can still be advantageous in certain contexts.
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2 Related Work

Prior work on confidence estimation for LLMs can be broadly divided into black-box and white-
box approaches. Black-box methods assume no access to the underlying model and often rely on
prompting-based strategies such as self-reflection, self-consistency, or generating multiple candidate
answers [20} 25,14}, 21}[11,30]]. Another line of work employs external evaluators to assess responses
post hoc, using features such as similarity measures or structured scoring models [15} 10} [18} [3].

White-box methods, in contrast, target open-source models where full access to parameters and
activations is possible. These techniques include fine-tuning models to improve self-evaluation
abilities [9} 22]], leveraging log-probabilities for calibrated confidence estimation [23] 16} [12], and
training regression models over hidden states to predict correctness [2} 14} [1]].

Geng et al.|[7] provide a comprehensive survey of these approaches, organizing calibration techniques
across settings and highlighting key limitations. However, the vast majority of existing work studies
single-step tasks, where the model outputs a single response to a single query. Extending these
methods to multi-step reasoning remains largely unaddressed.

3 Problem Definition

We define failure detection as the task of estimating the probability p € [0, 1] that an agent’s (A)
response R to a given input [ is incorrect: p = F(R | I).

Multi-step interactions require a more general formulation: the input is defined as I = (C, Q) where
C denotes the initial context and () is the sequence of queries. The LLM agent produces a sequence
of responses R with interaction length n = |Q)| = | R|. We consider the following two adaptations:

Response-level scoring: Treat the queries and responses in all the steps as a single sequence and
assign one confidence score to the whole solution. This holistic approach captures global coherence.

b= Swhole(R[lzn] | C, Q[l:n]) (H

Step-level scoring: The response R; at a given step ¢ is dependent on the prior queries and responses
and scoring it requires all of the previous context (C, Q[1.q, R[1.i—1]). Accordingly, we assign a
separate score to each response R;, conditioned on the previous queries and responses.

pi = -Fstep(Ri ‘ 07 Q[l:i])R[l:i—l]) (2)



If any individual score exceeds the threshold, the entire response can be flagged as potentially
incorrect. This can be achieved by using p = min({p;}1).

4 Data

4.1 Agent Inputs

To test error detection, we focus on tasks where correctness can be objectively defined at each step.
Accordingly, we select the following datasets.

GSMBSK (Grade School Math - 8K) [3] is a collection of grade-school math word problems that
require multi-step reasoning and computation. At each step, the agent generates an intermediate
formula, queries an expression evaluator, and incorporates the tool’s response into subsequent steps
(Figure|[Ta]). Problems in the GSMS8K test set require an average of 5.1 steps.

CoQA (Conversational Question Answering) [19] contains over 127,000 question—answer pairs
spanning 8,000 conversations that are context-grounded, with later questions often depending on
previous queries and answers (Figure[Tb). Conversations have an average of 13.5 steps.

Responses:

For both tasks, we fine-tune Llama-3.2-11B-Instruct [8] for two epochs. Because several confidence
scoring methods require training, we hold out subsets of training and test splits for confidence
estimation, while using the remainder to train the LLM agent. For GSM8K specifically, we use
two sets of labels: Answer labels — assess whether the final answer matches the ground truth, and
Reasoning labels — assess whether each intermediate reasoning step is correct. Further details on
response labels and accuracy are included in Appendix

5 Experiments

5.1 Confidence Estimation Methods

We evaluate several confidence scoring methods, under both formulations response-level (Equation
[I) and step-level (Equation[2)). For methods requiring training, we use the instruction-tuned Llama-
3.2-11B as the base model, replacing its generation head with a regression head for classification
objectives. Details on each algorithm are mentioned in the Appendix [C]

5.2 Evaluation Metrics

We frame error detection as a binary classification task and report the following metrics:

AUC-ROC (Area Under the Receiver Operating Characteristic Curve): Measures how well the model
separates correct from incorrect responses across thresholds. Higher is better.

FPR@0.9 Recall: Since the goal is to reliably flag potentially incorrect responses while minimizing
false alarms, we measure the false positive rate (FPR) of the model at a threshold where it identifies
the incorrect responses with at least 0.9 recall. Some approaches fail to reach the target recall without
trivially classifying all responses as incorrect. In these cases, we report FPR@0.9 recall as 1 and
additionally report the maximum achievable recall.

5.3 Results

Failure detection in multi-step interactions: For both tasks, the best performing methods achieve
an AUC-ROC of 0.9 and a recall of 0.9 with FPR below one-third. Across techniques, regression
model performs the best for both tasks. Interestingly, preference-based reward models perform poorly,
suggesting that PRMs are better suited for ranking responses by quality, rather than tasks that have
objective correctness labels [27].

Performance across granularity and task: For CoQA, step-level scoring significantly outperforms
response-level scoring across all methods. For GSM8K, the difference is smaller and trends are less
consistent. Notably, the step-level performance of self-certainty is significantly worse, likely due
to tool interactions that alter the agent’s responses at each step, thereby distorting the logits. This



Table 1: Evaluation results of different techniques on GSM8K and CoQA. An FPR@0.9 Recall of
1.0 (mr: x) means that the recall does not exceed x without flagging everything as low confidence.

GSMSK CoQA
Technique granularity | AUC (1) FPR@09rec (}) | AUC (1) FPR@0.9 rec ()
response 0.556 1.0 (mr: 0.13) 0.502 1.0 (mr: 0.77)
Self-verbalized  step 0.546 (-0.2%) 1.0 (mr: 0.10) 0.624 (+24%) 0.587
response 0.586 1.0 (mr: 0.52) 0.522 1.0 (mr: 0.73)
Llama-3.2-11B  step 0.676 (+15%) 1.0 (mr: 0.75) 0.613 (+12%) 0.81
response 0.880 1.0 (mr: 0.81) 0.548 0.88
GPT-4.1-mini step 0.670 (-24%) 1.0 (mr: 0.48) 0.665 (+21%) 0.476
response 0.843 0.441 0.689 0.732
Regression step 0.907 (+7%) 0.314 0.952 (+38%) 0.169
response 0.450 0.928 0.381 1.0 (mr: 0.57)
PRM step - - 0.493 (+30%) 0.887
response 0.649 0.812 0.523 0.95
Self-certainty step 0.395 (-40%) 0.945 0.849 (+62%) 0.374
response 0.608 1 (mr: 0.77) 0.792 0.643
Activations query 0.750 (+23%) 0.647 0.919 (+16%) 0.169

Table 2: Recall for cases with incorrect reasoning steps but correct answer. Higher the better

Self-eval Llama-3.2-11B  GPT-4.1-mini  Regression  Self-certainty =~ Activation

response 0.05 0.133 0.50 0.367 0.133 0.167
step 0 0.40 0.30 0.60 0.217 0.267

degradation is not observed for the activations-based regressor, since it only relies on hidden states
from the final token.

Most techniques perform better on CoQA than GSMSK, suggesting that reasoning-intensive math
problems are more challenging for evaluators than context-grounded QA. Interestingly, GPT-4.1-mini
shows significantly improved performance on GSMS8K, reflecting its superior reasoning ability.

Relation to final answer accuracy: For GSMS8K, the agent reached the correct answer despite flawed
intermediate reasoning in 60/879 test cases (Figure[2). Table [3]shows that step-level performance of
all methods against final answers is slightly lower, while the response-level performance improves.
This is expected since step-level scoring penalizes intermediate mistakes more strongly, while
response-level scoring focuses on the overall outcome.

Identifying cases where the agent reaches the correct answer through flawed reasoning is crucial for
trustworthy deployment. Table 2] shows that for most methods, step-level scoring is more effective at
detecting such cases.

Case study on real world data We also test the effectiveness of this approach on a private dataset
with real clinical notes and questions. Consistent with the analysis on public datasets, a regression
model generating step-level scores achieves the best performance with AUC-ROC of = 0.940 and
FPR@0.9 rec = 0.152. We include further details in Appendix D}

6 Conclusion

We extended confidence estimation to multi-step tasks in dialogue and tool-assisted reasoning, where
maintaining consistency across steps is especially challenging. Through experiments on two multi-
step tasks, we find that step-level scoring, though harder to implement in some cases, generally
improves error detection and reveals when correct answers emerge from faulty reasoning. Our study
highlights the limits of current methods and provides a basis for developing confidence estimators
better suited to multi-step reasoning.
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Question:
Mico and Marco wanted to get to know each other. They realize
that the sum of their ages is 20. What will be the sum of their
ages in 10 years? .

[In 10 years, Mico will be 10 + 5 = <<10+5>> years old. ]

-
In 10 years, Mico will be 10 + 5 = 15 years old. ’

’ In 10 years, Marco will be 10 + 15 = <<10+15>> years old.
.

=
In 10 years, Marco will be 10 + 15 = 25 years old.

In 10 years, the sum of their ages will be 15 + 25 = <<15+25>>
years old.

\

The final answer is 40.

P
‘ In 10 years, the sum of their ages will be 15 + 25 = 40 years old. 1
.

J

Figure 2: Case from GSM8K where the agent gets the answer correct through incorrect reasoning
steps. The agent assumes the current ages of Mico and Marco to be 5 and 15 while the question does
not mention it. The agent ends up getting to the correct answer nonetheless since it only concerns
with the sum of their ages.

A Training details

A.1 Confidence Scorers: Teacher Forcing

For methods requiring supervised training, we adopt teacher forcing [[13]]. During training, the model
receives the gold history (i.e., corrected responses) when evaluating the next response. The learning
objective is:

pi = F(Ri,|C, Qi) Bpuii1) = {R; # R} (3)

where R is the list of ground truth responses and I{.} is the indicator function. During inference, we
do not assume access to the ground truth. At inference time, however, no ground truth is available,
and the evaluator must operate solely on the model’s predictions.

B Data preparation

B.1 Agent: Training and Inference

For both tasks, we fine-tune Llama-3.2-11B-Instruct [8] for two epochs. Because several confidence
scoring methods require training, we hold out subsets of train and test splits for confidence estimation,
while using the remainder to train the LLM agent.

Performance varies across datasets and granularity: - On CoQA, the agent achieves81.2% step-level
accuracy but only 16.1% response-level accuracy. The large gap is expected, since even a single
incorrect step can propagate errors downstream. - On GSMS8K, the agent achieves 65.6% answer
accuracy and 47.6% step-level accuracy. Here, answer accuracy is higher because the agent may
arrive at correct final answers even if some intermediate steps are flawed (see Figure [2)).

B.2 Labeling responses

We use GPT-5 to evaluate agent’s responses against ground truth answers and intermediate steps,
producing labels at both the step-level and response-level. To verify the label quality, we manually
reviewed 100 samples from each dataset. We found labeling accuracy above 96% in both settings.



Table 3: Answer label performance on GSM8K. An FPR@0.9 Recall of 1.0 (mr: x) means that the
recall does not exceed x without flagging everything as low confidence.

Technique granularity \ AUC-ROC (1) ECE({) FPR@0.9Recall (})
response 0.560 0.317 1.0 (mr: 0.15)
Self-eval step 0.559 (-0.2%) 0.3125 1.0 (mr: 0.12)
response 0.590 0.291 1.0 (mr: 0.52)
Llama-3.2-11B  step 0.669 (+13%) 0.159 1.0 (mr: 0.76)
response 0.895 0.088 1.0 (mr: 0.88)
GPT-4.1-mini step 0.662 (-26%) 0.280 1.0 (mr: 0.49)
response 0.869 0.075 0.4385
Regression step 0.872 (+1%) 0.144 0.369
response 0.460 0.629 0.915
PRM step - - -
response 0.658 0.219 0.773
Self-certainty step 0.342 (-48%) 0.320 0.958
response 0.605 0.339 1 (mr: 0.77)
Activations query 0.738 (+21%) 0.279 0.655

C Evaluated Confidence Estimation Methods

C.1 Black-box methods

C.1.1 Self-verbalized confidence

The LLM agent is prompted to verbalize its confidence in its own response. For step-level scoring,
the agent outputs the confidence score at the end of each step.

C.1.2 Auxiliary evaluators

External models assess the agent’s responses.

Pre-trained LLMs: Instruction-tuned LLMs are prompted to evaluate the agent’s responses. We
consider two evaluators: (a) Llama-3.2-11B (aligned with the agent’s base model), and (b) OpenAI’s
GPT-4.1-mini [17]] (independent of the agent).

Regression model: We fine-tune a sequence classification model to regress confidence scores in the
range [0, 1].

Preference-based reward model (PRM): We train a reward model on preference data, treating
completions with correct answers as “chosen” and incorrect agent outputs as “rejected.” For GSM8K,
multiple valid reasoning paths to solve the same problem make generating step-level preference data
infeasible, since each incorrect step in the interaction would require a corrected version. Hence, we
evaluate PRMs only at the response-level.

C.2 White-box methods

Logits: Following Self-certainty [12], we compute the KL divergence of the agent’s output logits
from the uniform distribution as a measure of certainty. Since this approach consistently outperforms
other logit-based methods, we use it as the representative logit-based white-box baseline. Self-
certainty scores are normalized to fall within [0, 1].

Activations: Prior work [22 4] [T]] suggests that hidden states of the model’s final LLM layer contain
information on model’s behavior and can be used to extract its confidence in its response. Following
this, we train a 5-layer MLP classifier on the model’s final hidden states to predict a correctness score.



( )

Clinical Note
<redacted> .

[ Has the patient been diagnosed with hypenension} .

® -

{ Is the hypertension resistant or uncontrolled? } .

‘{ No relevant information is mentioned in the note }

[ When was the diagnosis first established? } [ ]

‘ May, 2022

[ Is there a diagnosis of congestive heart failure?} .

o~

{ What is the most recent NYHA score? } .

\. J/

Figure 3: An example from the private clinical data.

D Evaluating on private dataset

To evaluate the applicability of confidence estimation methods in real-world settings, we tested some
of the approaches on a private dataset consisting of conversational question-answering interactions
over real patient clinical notes. A redacted example from this dataset is provided in Figure|3] We
do not publicly release the data due to conflict of interest as well as HIPAA compliance, and the
results are therefore not reproducible. Nevertheless, it provides a valuable demonstration in a domain
where trustworthiness is critical. Consistent with the analysis on public datasets, a regression model
generating step-level scores achieves the best performance with AUC-ROC = 0.940 and FPR@0.9
rec = 0.152. These results indicate that step-level confidence scoring with a regression model
remains effective in complex, real-world interactions.
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