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Abstract

We present To The Point (TTP), a method for reconstructing 3D objects from
a single image using 2D to 3D correspondences learned from weak supervision.
We recover a 3D shape from a 2D image by first regressing the 2D positions
corresponding to the 3D template vertices and then jointly estimating a rigid
camera transform and non-rigid template deformation that optimally explain the 2D
positions through the 3D shape projection. By relying on 3D-2D correspondences
we use a simple per-sample optimization problem to replace CNN-based regression
of camera pose and non-rigid deformation and thereby obtain substantially more
accurate 3D reconstructions. We treat this optimization as a differentiable layer and
train the whole system in an end-to-end manner. We report systematic quantitative
improvements on multiple categories and provide qualitative results comprising
diverse shape, pose and texture prediction examples. Project website: https:
//fkokkinos.github.io/to_the_point/.

1 Introduction

Monocular 3D reconstruction of general categories is a task that humans perform with ease, yet
remains challenging for computer vision due to its inherently ill-posed nature: the observed 2D
image is the result of a confluence of multiple sources of variation, including non-rigid intra-category
shape variation, rigid transforms due to camera pose, as well as appearance variation. CNNs can
easily learn to discard appearance variation, yet the treatment of the geometric sources of variability
remains elusive. Even though strongly-supervised approaches have delivered compelling results e.g.
for human reconstruction [1], for general categories we need to rely on weaker forms of supervision
as well as self-supervision stemming from the know-how of computer vision.

3D vision has traditionally relied on correspondences to recover both rigid scenes from 2D images
for the Structure-from-Motion (SFM) problem [2, 3, 4] as well as the more challenging problem of
recovering Non-Rigid structure from 2D point tracks (NR-SFM) [5, 6, 7, 8]. In all those problems 3D
reconstruction is accomplished by minimizing the reprojection error between the 3D positions of the
inferred 3D scene and their 2D image correspondences. While these solutions have been developed
for the (potentially deformable) single-instance case, the idea of relying on correspondences to
supervise monocular 3D reconstruction has transpired in recent deep learning works.

CNN-driven monocular 3D category reconstruction [9, 10, 11, 12] has largely relied on self-
supervision for 3D recovery expressed in terms of correspondence-based loss terms. For instance
the geometric cycle loss terms of [13, 14, 15] are explicitly phrased in terms of correspondence
established from UV maps while the texture-driven loss terms of [9, 13, 12, 16, 11] are implicitly
relying on pixel correspondence. The common ground of such loss terms is that if the 3D shape
is predicted correctly, it should project to the image in a way that is consistent with the 2D obser-
vations, as measured in a pixel-by-pixel sense. These correspondence terms are typically used in
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tandem with explicit geometric priors such as 3D symmetry [10, 9], predefined camera viewpoint
ranges [14, 15, 10], or predefined object scales [14, 15, 10, 12] in order to tackle the ill-posed nature
of the problem and the presence of multiple local minima in the associated learning problem.

Local minima however emerge even in the simpler single-instance case of NR-SFM, while highly
sophisticated optimization schemes have been introduced to address them, e.g. [17]. Current CNN-
based approaches seem to ignore this problem and further exacerbate it by delegating the solution of
3D reconstruction to back-propagation with SGD: separate network heads are tasked with regressing
the camera pose and non-rigid deformation given an image and are trained in an end-to-end manner,
aiming to minimize the correspondence-driven losses. We argue that this is making optimization
harder: network training aims at simultaneously establishing the association between images and
rigid and non-rigid pose parameters as well as solving the 3D reconstruction problem in terms of
these parameters. Each of these problems is hard enough in isolation and putting them together makes
the optimization even harder.

This challenge is reflected in the complicated numerical schemes currently used to mitigate local
minima; for instance [10, 12] use multiple camera hypotheses during both training and testing. The
number of hypotheses can range from 8 to up to 40 for a single reconstruction and the hypotheses
have to be accompanied with a probabilistic method to select the most accurate pose either predicted
by an MLP [14] or using heuristic loss-based weighting schemes [10]. Another example of brittle
optimization, even when keypoint supervision is available, are the works of [9, 18] where in a first
stage SFM/NR-SFM is used to get the camera pose right based on keypoint supervision, which is
then followed by optimization with image-based losses to recover a mesh. This challenge has been
observed also in the strongly-supervised case of human pose estimation, and the use of per-sample
numerical optimization [19] was shown to improve performance in [20, 21, 22, 23, 24].

In this work we deviate from the current practice of using a CNN to regress camera and mesh
deformation estimates. Instead, during both training and testing we solve a per-sample optimization
problem that explicitly aims at providing a 3D reconstruction that projects “To The Point" (TTP).
We take as input the 2D coordinates corresponding to the 3D vertices of a mesh and recover the
3D vertex positions by optimizing with respect to the rigid and non-rigid pose parameters through
differentiable optimization [25, 26]. We obtain the 2D points required by our layer by only relying
on mask annotations and optionally a small number of 2D semantic keypoint annotations, as well as
self-supervision coming from the 3D reprojection loss. We jointly learn the 2D point regression and
the 3D modes of shape variability through end-to-end optimization, while treating the per-instance
rigid and non-rigid pose parameters as latent variables that are optimized on-the-fly, per sample.

We claim that predicting the correspondences is not only sufficient, but also more appropriate for
driving monocular 3D reconstruction: it spares us from the use of any additional geometric priors
and also yields state-of-the-art results while only relying on a single camera hypothesis. We evaluate
our approach on 3D shape, pose and texture reconstruction on four objects categories using real-
world datasets CUB [27] and PASCAL3D+ [28]. We demonstrate competitive 3D reconstruction
quality to previous state-of-the-art methods and our ablation study confirms the importance of the
self-supervised losses we employ.

2 Related Work

Monocular 3D reconstruction Recent works on this problem [29, 9, 14, 15, 16, 12, 30] have relied
on varying forms of supervision. Earlier approaches [9, 29] treat the problem of 3D reconstruction
from single images using known masks and manually labelled keypoints from single viewpoint
image collections. Recent works [10, 16, 14] have removed the need for keypoints but introduced
multiple viewpoint and deformation hypotheses accompanied with a probabilistic method to select
the most accurate pose. [13, 31, 32] jointly recover cameras and non-rigid 3D meshes with single
hypothesis-based networks, but limit themselves to simpler, almost planar categories like faces, or
exploit symmetry priors, limiting their broader applicability.

Closer to our work is Canonical Surface Mapping (CSM) and Articulated Canonical Surface Mapping
(ACSM) [14, 15] where the 3D representation is produced in the form of a rigid or articulated template
using a 2D-to-3D cycle-consistency loss.
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Figure 1: Overview of our method: Given an image we use a network φθ to regress the 2D positions
u corresponding to the 3D vertices of a template; we then use a differentiable optimization method
to compute the rigid (camera) and non-rigid (mesh) pose: in every iteration we refine our camera
and mesh pose estimate to minimize the reprojection error between u and the reprojected mesh
(visualized on top of the input image). The end result is the monocular 3D reconstruction of the
observed object, comprising the object’s deformed shape, camera pose and texture.

Non-rigid structure from motion (NR-SfM) The aim of NR-SfM is the recovery of the 3D shape
and accompanying camera pose given only 2D landmarks without any explicit 3D supervision [7,
8, 33, 34]. Lately, several deep learning [13, 35, 36] methods have been proposed that surpassed
the performance of traditional methods while being considerably faster. All of the aforementioned
methods employ different priors to tackle the under-constrained problem of NR-SfM. The priors are
embedded into the methods using low-rank subspaces [37, 7, 17], spatio-temporal domains [34, 38],
equivariance constraints [35] or sparse basis coefficients using L1 constraints [36, 39, 40].

Learnable Optimization: Common methods for incorporating optimization as layers in deep neural
networks include implicit function differentiation [25, 26, 41, 42, 43] and optimization unrolling [44,
45, 36]; we refer to [26, 25] for a survey. In 3D reconstruction recent works address the challenge of
incorporating RANSAC in an end-to-end trainable pipeline for camera pose estimation based on the
Perspective-n-Point (PnP) problem, such as differentiable blind PnP [42, 43] or DSAC [46]. Unlike
these works, we do not have to address the combinatorial nature of correspondence, but rather focus
on regressing the 2D image positions of a 3D template with a fixed number of vertices.

3 To-The-Point Monocular 3D Mesh Reconstruction

We start in Sec. 3.1 by introducing the 2D quantities predicted by our network, we then present our
differentiable camera and mesh optimization layer in Sec. 3.2, and finally present the losses driving
our end-to-end training in Sec. 3.4.

3.1 Predicting 3D to 2D Correspondences

Our method assumes that the template of our object category can be described in 3D in terms of
N points. As shown in Fig. 1, given an image, we use a CNN, φθ, to regress the 2D coordinates
u ∈ R

N×2 corresponding to these N 3D points. We also predict a visibility vector v where every
vi ∈ [0, 1] indicates whether the 2D to 3D correspondence is occluded in the image. Recognition
of occluded points allows for accurate camera pose estimation by eliminating the influence of noisy
predicted points belonging to the non-visible areas of the object.

3.2 Estimation of Pose and Deformation

Our aim is to estimate the camera pose and object deformation using only the predicted 2D points u,
the visibility vector v and the template mesh T. We first introduce our assumptions about the rigid
and non-rigid part of the shape and then turn to the resulting optimization problem.
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Firstly, as in [9, 10, 14, 15, 16, 11], we model the 3D-to-2D projection through weak perspective [2].
This involves a 2× 3 3D-to-2D “scaled orthographic” projection matrix of the following form:

C =

[
s 0 0
0 s 0

]

, (1)

where the scaling factor s accounts for global scaling due to depth variation; given a set of 2D image
points this is set to their standard deviation, yielding invariance of the pose parameters to similarity
transforms of the 2D and 3D coordinate frames. The rigid pose parameters comprise a rotation R and
translation t that account for viewing a 3D object V from a given camera position. The parametric
estimates for the 2D projections of a 3D object can thus be obtained as follows:

û(R, t) = C(RV + t) (2)

where V is 3×N , u is 2×N , and we overload notation for + assuming that t is replicated N times.

Having covered the rigid object case, we now turn to the modeling of non-rigid categories. For this
we rely on the deformable template paradigm [47] commonly used also in the NR-SFM literature
[7, 8], and obtain a shape estimate V by adding offsets ∆V = Bc to a template shape T, yielding
V = ∆V +T. Combined with Eq. 2, we have the following parametric estimate of the 2D positions:

û(C,R, t) = C(R(T+Bc) + t) (3)

which is bilinear in R, t and c.

So far we do not deviate substantially from recent works [9, 10, 16, 11] in terms of modelling: these
also rely on the morphable model paradigm [47] and regress a shape update ∆V and a rotation matrix
through network heads. A minor modelling difference is that we have a low-rank model for Bc,
while their shape update is driven by a high-dimensional latent vector. Our main difference is that
rather than delegating to the network the task of predicting the ‘right’ values of R, t,V, we directly
optimize for them through a lightweight and differentiable optimization scheme by exploiting our
regressed 2D correspondences. This ‘optimizes out’ these parameters and ensures our 3D inference
will project as accurately as possible to the 2D points, rather than delegating the optimization to
backprop and the network heads.

Our “To-The-Point” approach aims at minimizing the following re-projection error between the
predicted 2D points u and the 2D point estimates deliver by the parametric, 3D-based prediction:

l(R, t, c) =

N∑

i=1

vi ‖ui − ûi(C,R, t)‖22 + γ ‖c‖22 , (4)

where we weigh the discrepancy between the two quantities by the regressed visibility, ensuring that
the reconstruction process is robust to occluded points. We also add a regularization weight γ on the
expansion coefficients to avoid instabilities in the first stages of training, when the basis B is still
unknown and can lead to prematurely committing to large arbitrary deformations.

To minimize the loss term in Eq. (4), we use an alternating optimization scheme and perform separate
updates for camera pose estimation and mesh deformation:

R̂t, t̂t = argmin
R,t

l(R, t, ĉt), subject toR ∈ SO(3) (5)

ĉt+1 = argmin
c

l(R̂t, t̂t, c) (6)

where at each step we use some of the previously estimated quantities (denoted by hat) as fixed and
optimize with respect with the remaining ones to update their estimates.

Starting from the optimization in Eq. 5, we satisfy the constraint that R ∈ SO(3) by using the angle-
axis representation r of the rotation Rr such that Rr = exp[r]× where [·]× is the skew symmetric
operator . The underlying non-linear problem is solved using the L-BFGS optimizer [48] and when
t > 1 is initialized with the estimate of the previous iteration. To backpropagate through L-BFGS we
use the implicit function theorem as described in [42, 43].

Given the rotation matrix R, we solve Eq 6 in closed form as follows:

ct+1 = (ΩTXΩ+ γI)−1ΩTXΥ. (7)
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Each row of Ω ∈ R
2N×K is defined as Ωi = CRt+1Bi and X ∈ R

2N×2N is a diagonal matrix
containing the visibility vector v. Finally, the vector Υ ∈ R

2N is defined as Υ = ui −CRt+1Ti −
Ctt+1. For clarity we provide the analytic derivation of the closed form solution in the supplementary
material. We also backpropagate through matrix inversion, meaning that the chaining of the update
steps can be treated as a differentiable layer and be used in tandem with end-to-end training.

Even though the only quantities regressed by our CNN are the 2D positions and associated visibilities,
the basis B that represents the shape variability of our category in Eq.3 is a parameter of this layer,
is randomly initialized, and is estimated through back-propagation. As shown in the supplemental
material, the basis elements learned this way can be intuitively understood, while our experimental
results indicate that they suffice for the accurate recovery of intricate mesh deformations.

3.3 Texture

The final part of monocular 3D reconstruction is the estimation of the texture of the reconstructed 3D
shape. The texture of the object is sampled from the input image utilizing the predicted 2D points
u closely resembling the sampling-based texturing method of CMR [9]. Unlike CMR, we do not
predict uv locations to sample pixel values for the image with a dedicated learnable regressor, but
use the predicted 2D points u that drive our whole 3D reconstruction process. For this we use a
sampling-based texture approach where the face color is computed by interpolating the u coordinates
and then sampling from the texture map, i.e the input image in our case. Any losses applied on
the estimated texture back-propagate information to the predicted correspondences allowing us to
use appearance image cues in addition to foreground masks to enable accurate correspondence
predictions.

3.4 Loss terms

To train our approach we incorporate different losses focusing on pose estimation, texture prediction
as well as mesh regularization.

Texture Loss compares the rendered textured image Ĩ and the image appearance in terms of the
perceptual similarity metric of [49] after masking by the silhouette S:

Lpixel = dist
(

Ĩ ⊙ S, I ⊙ S
)

.

We also apply the loss on the symmetric texture predictions by using a bilateral symmetric viewpoint
and average the two viewpoints. The soft symmetry constraint ensures that the texture of the
non-visible side is still inline with the visible side. This constraint has been employed in prior
works [9, 16], however, unlike the proposed method it is commonly applied in a hard-coded manner
by symmetrizing the texture across an axis.

Points Chamfer Distance enforces points to lie inside and cover the silhouette of the depicted
object [29, 15]. In order to formulate our loss term we define Cmask as the Chamfer distance
field of the binary mask of silhouette S. Silhouette consistency simply enforces the predicted 2D
correspondences of an instance to lie inside its silhouette. This can be achieved by penalizing the
points projected outside the instance mask by their distance from the silhouette. Silhouette coverage
enforces the predicted points ui to fully cover the mask of the depicted object and allows us to predict
better camera poses and mesh deformations.

LChamfer =
∑

i

Cmask(ui)

︸ ︷︷ ︸

silhouette consistency

+
∑

p∈S

min
ui

‖ui − p‖2

︸ ︷︷ ︸

silhouette coverage

.

Region similarity loss compares the object support computed from the mesh by a differentiable
renderer [50] to instance segmentations S provided either by manual annotations or pretrained CNNs
using their absolute distance:

Lmask =
∑

i

|Si − frender(Vi, πi)|.

Cycle and Visibility loss Similarly to CSM [14] we use a cycle loss between the regressed 2D
correspondences u and the projected 3D points to ensure that regressed points, that form neigh-
borhoods in the template shape, remain close in the image space. The cycle loss is defined as
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Lcycle =
∑

i ‖ui − π (V)‖22. Furthemore, visibility of correspondences aids the camera pose esti-
mation in weakly supervised cases. The visibility loss encourages the predictor φθ to encode the
visible area of the mesh in an image by enforcing the predicted visibilities to be similar to those of
the rendered z-buffer vgt

Lvis =
∑

i

∥
∥vi − v

gt
i

∥
∥
1
.

Equivariance Loss The point regressor should be robust to the pose variations. For each training
image, we draw a random spatial transform Ts(·) from a predefined parameter range. We use
random affine transformations (scale, rotation, and shifting) for spatial transforms as well as vertical
flipping Tv(·). The detailed transform parameters are present in the supplementary material. We pass
both the input image I and transformed image I ′ = Ts (I) through the φθ network and obtain the
corresponding predictions u and u′. For vertical flipping we retrieve two pose estimations R and R′

for I and the flipped image Tv(I). We compute the equivariance loss as follows:

Leqv =
∑

i

‖u′
i − Ts(ui)‖1 + arccos

1

2
(Tr(Tv(R)R′)− 1) .

(Optional) Keypoint reprojection loss While we are primarily interested in training without any
manual annotations, our approach can be extended to leverage an arbitrary number of high-level
semantic keypoints. This is achieved by setting manually the 3D keypoints on the template mesh and
encoding them as a matrix K acting on the mesh. The structure of K entails that each Ki is a fixed
vector that regresses the i−th 3D semantic keypoint from the mesh. Given the 2D annotations for an
image I and a camera π, a keypoint reprojection loss is formed between the groundtruth annotation
and the projected 3D points:

Lkp =
∑

i

‖ki − π (KiV)‖1 .

As-rigid-as-possible (ARAP) constraint Without any mesh deformation regularization, the pre-
dicted mesh deformation will lead to arbitrary deformations exhibiting spikes and other anomalies.
As such, we use the as-rigid-as-possible (ARAP) [51] constraint as a loss function similar to [11].
The predicted shape V is a locally rigid transformation from the predicted base shape T by:

Larap (T,V) =
1

N

N∑

i=1

∑

j∈N (i)

wij

∥
∥
(
Vi −Vj

)
−Ri

(
Ti −Tj

)∥
∥
2

where N (i) represents the neighboring vertices of a vertex i, wij the cotangent weights and Ri the
best approximating rotation matrix, as described in [51]. Beyond mesh regularization, the same loss
is applied on each basis component that leads to smooth and locally rigid components.

Even with ARAP there are cases where the network will squeeze the non-visible side of the recon-
structed object. This erroneous deformation is not penalized by the ARAP loss, as long as it is locally
rigid, and causes the method to predict flattened meshes. We further apply an l2 constraint to the
deformations to penalize the method to retain the original volume of the template.

4 Experiments

Datasets We present extensive ablation results and comparisons on bird reconstruction, as well as
quantitative results on three more object categories (planes, cars, motorbikes). For birds we use the
CUB [27] dataset for training and testing on birds which contains 6000 images. The train/val/test
split we use for training and report is that of [9]. For the rest of the objects we use the Pascal3D+
dataset [28] and the associated pre-defined training and validation sets. Similarly to [9], we use
both PASCAL VOC and Imagenet images to train our models and use Mask-RCNN [52] to obtain
foreground masks for the ImageNet subset. For templates, we use identical to those of CSM [14] for
CUB dataset and for PASCAL3D+ we select one of the available CAD models for each object.

Evaluation Metrics We evaluate our model on the CUB dataset [27] and report both the mean
Intersection over Union (mIoU) and keypoint reprojection accuracy (PCK) following CMR [9].
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Table 1: Evaluation of TTP performance on the CUB [27] dataset. We report mean and standard
deviation (in parantheses, where applicable) of 2D mIoU and keypoint re-projection accuracy (PCK)
along with related supervision signals for recent monocular 3D reconstruction methods.

Rigid Non-Rigid

2D keypoints
Camera
Priors

Camera
Hypotheses

mIoU ↑ PCK ↑ mIoU ↑ PCK ↑

CMR [9] X 1 - - 0.703 81.2
(A)CSM [15] X X 1 0.622 68.5 0.705 72.4
ACMR [11] X 1 - - 0.708 85.5
TTP (ours) X 1 0.656 (0.002) 70.0 (0.53) 0.760 (0.004) 93.4 (0.14)

(A)CSM [15] X 8 0.625 50.9 0.693 46.8
(A)CSM [15] X 1 0.637 (0.004) 39.0 (1.07) 0.684 (0.011) 44.5 (1.21)
TTP (ours) 1 0.652 (0.008) 48.7 (0.66) 0.752 (0.003) 50.9 (0.43)

Table 2: Performance of TTP method through iterations for pose and deformation estimation. We
achieve the best results with more iterations at inference, but even a single iteration suffices for
competitive scores.

Number of Iterations

1 2 3 4
mIoU PCK mIoU PCK mIoU PCK mIoU PCK

TTP w/ KP 0.732 92.5 0.755 93.3 0.758 93.3 0.758 93.4
TTP w/o KP 0.746 51.4 0.752 51.1 0.752 51.1 0.752 51.1

For Pascal3D+ we report a canonical 3D mean Intersection over Union metric which measures the
3D overlap between the groundtruth and predicted deformed mesh; in order to compute the overlap,
both meshes are voxelized using a 32 grid size before computing the 3D mIoU as in [10, 9, 53, 29].

Network Architecture Following prior work [9], we use a ResNet18 encoder to map an image I to
a latent feature map z ∈ R

4×4×256. The position regressor is a fully connected layer having as input

the flattened feature map z and outputs the regressed 2D positions u ∈ R
|V |×2 and their respective

visibility v ∈ R
|V |×1. The number of basis components is set to K = 16 and the number of iterations

for the camera and deformation estimation is four.

Network Training To train the 3D reconstruction model we first warm up the model without applying
any deformation for 100 epochs. This warm-up process allows the model to find the best pose possible
given the rigid template using available cues like masks, texture and optional keypoints. We then
train the full 3D reconstruction network with deformation enabled and all available cues for another
100 epochs. All training details can be found in the supplementary material. All experiments were
run on a single RTX 2080 Ti GPU.

4.1 Quantitative Results

Evaluation on CUB In Table 1 we evaluate TTP on the CUB dataset and report the average and
standard deviation of 5 experiments with different seeds; the rigid part of the results table indicates
the performance of models that do not use a deformable component, while the non-rigid part amounts
to the more challenging problem of estimating both camera and mesh deformations.

We observe that our method outperforms the baseline models on both reported metrics, i.e. mean
IoU and keypoint re-projection accuracy, while requiring no camera priors. When using 2D keypoint
supervision (upper part of the table) our method achieves the best results, outperforming the closest
baseline by almost 8 accuracy points. For the case where no 2D keypoints are used the only published
result in the literature is the ACSM approach of [15] which relies on 8 camera hypotheses during
both training and testing, while also using manual annotation of part-based rigs to bootstrap the
deformation model. Our work outperforms this baseline while relying on a single camera hypothesis
and without requiring any manual mesh annotation.
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Table 3: Ablation Study We ablate the self-supervised losses used to train TTP for 3D reconstruction
for the case of training both with and without keypoint supervision. We also study the impact of the
number of basis elements.

(a) Ablation on losses.

With KP Without KP

mIoU ↑ PCK ↑ mIoU ↑ PCK ↑

TTP 0.765 93.6 0.749 50.9
TTP - Lpixel 0.752 92.7 0.667 49.2
TTP - Lvis 0.75 92.3 0.74 9.3
TTP - Lequiv 0.751 92.5 0.71 28.2

(b) Ablation on number of basis components.

With KP Without KP

Basis mIoU ↑ PCK ↑ mIoU ↑ PCK ↑

rigid 0.657 70.7 0.646 48.4
4 0.726 88.2 0.72 47.9
8 0.745 90.6 0.733 50.4
16 0.765 93.6 0.749 50.9
32 0.771 93.7 0.748 49.8
64 0.775 94.2 0.752 49.8

Table 4: PASCAL3D+ evaluation. We provide numerical score of TTP with and without keypoint
supervision during training. We observe that even without keypoint supervision TTP is competitive
with the other methods which, except for UCMR, require keypoints.

CSDM [29] DRC [53] UCMR [10] CMR [9] TTP w/ KP TTP w/o KP

aeroplane 0.4 0.42 - 0.468 0.488 0.45
car 0.6 0.67 0.646 0.64 0.67 0.665

We posit that using multiple cameras in [15] aims at mitigating the local minima in network training
and optimization. We have therefore rerun the system of [15] with a single camera and five different
optimization seeds and observed a further gap in performance compared to our work, as well as a
larger variance in the reconstruction accuracy compared to that of our work for the non-rigid case,
suggesting a potentially higher chance of getting stuck in local minima.

Ablation study We ablate various terms in our learning objective and report the mIoU and the
semantic keypoint reprojection (PCK) metrics. In particular we examine the impact of removing any
of the utilized losses in Table 3a. When using keypoint supervision the differences in performance
are small. However in the absence of keypoints, the method struggles to align the template with the
depicted object when we remove the visibility loss. While mIoU remains high, PCK score decreases
substantially meaning that the pose and deformation of the template cover the foreground mask when
rendered but not from a proper viewpoint of the object. Similar performance drop occurs without the
equivariance loss since the method produces pose estimates biased towards one vertical direction.
Finally, removing the texture loss causes mIoU performance to drop significantly.

In Table 3b we study how performance changes as a function of the number of basis elements.
Increasing the number of components tends to increase performance but up to 16 elements for
both set of experiments. When training with semantic keypoints increasing the number of basis
components further improves performance, however since the same does not apply to the mask-only
case we have set K = 16 for all of our experiments.

Finally, a key aspect of TTP is the iterative pose and deformation estimation process. In Table 2, we
provide the mIoU and PCK scores for every iteration for two experiments trained with and without
keypoint supervision. Multiple iterations have to be executed to get the best performance, however
TTP’s performance with a single iteration still outperforms prior work for both metrics.

We are complementing these quantitative results with qualitative results in Figure 2 where we show
that we can correctly deform the template mesh to produce highly accurate 3D reconstructions.

Evaluation on Pascal3D+ While our primary evaluation is on the CUB dataset, we run supplementary
experiments on the cars, airplanes and motorcycle categories of PASCAL3D+ dataset. For cars
and aeroplanes we provide comparisons against CMR [9], UCMR [10], a volumetric prediction
network [53] and a fitting based method [29]. Three of the methods use segmentation masks, cameras
and keypoints for supervision except UCMR that does not require keypoints.

We train our method with and without keypoint supervision and provide our 3D mIoU results in
Table 4. We observe that our method performs considerably better than competing methods even when
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Figure 4: Failure Cases: We visualize some failure modes of our method. The columns present the
input image, the predicted 2D points, and 3D reconstruction with and without texture.

Table 5: Run-time analysis in milliseconds of various self-supervised 3D methods. All benchmarks
were run 20 times using images of size 256x256 and we report the average run times.

Device Iters CNN (msec) Optimization (msec) Total (msec)

CMR GPU - 5.11 N/A 5.11
CSM GPU - 150.73 N/A 150.73
ACSM GPU - 191.46 N/A 191.46

1 4.02 33.44 37.46
TTP GPU

4 4.02 125.14 129.16

1 18.52 33.44 51.96
TTP CPU

4 18.52 125.14 143.67

4.3 Run-time Analysis

In Table 5 we provide a run time analysis of our and prior methods on the task of self-supervised
3D reconstruction. The analysis was performed on a machine with a NVidia RTX 2080Ti, an Intel
Xeon W-2255 and 32 GBs of RAM. We report the average of 20 runs for the reconstruction of a
256x256 image. To ensure that the benchmark is fair for all methods, we compute the execution time
between the moment an image is given as input to a network up to the moment where the network
predicts the mesh, the camera pose and the texture; the implementations of the methods used for
comparison are the publicly available ones from the original authors. As reported in Table 5, TTP
is faster than ACSM by a considerable margin even on the CPU. CMR is the fastest method of all
due to its simplicity, however, it requires keypoint supervision and has substantially lower results as
indicate in Table 1.

We note that our implementation relies on PyTorch and we have used PyTorch’s python-based
LBFGS optimizer for convenience and autograd for Jacobian computation; understandably for AR
applications the LBFGS timing can become substantially faster in C or custom CUDA kernels and
with explicitly coded Jacobian matrix computation.

5 Discussion

We have proposed a method to reconstruct 3D meshes, poses and textures of generic objects in the
wild without any direct supervision. We learn unsupervised correspondences between 2D image
locations and 3D template vertices and use them to compute the camera pose and deformation of
the object. Even though our CNN architecture predicts substantially fewer outputs - compared e.g.
to [9] where all of the 3D vertices and the camera are directly regressed by the network, we deliver
substantially better results. We attribute this to the use of a direct optimization scheme to optimize
the 3D reconstruction problem both during training and testing. The resulting optimization problem
is particularly lightweight, meaning that it can be used for interactive applications, e.g. in Augmented
Reality, while our results indicate that even a single step of the optimization suffices for accurate mesh
recover. In future work we aim to extend our approach to cover categories with diverse topologies
(e.g. chairs) as well as exploit video-based supervision [12] to further improve accuracy.
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