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Abstract

The computational complexity of inference – required to compute the partition function, Z,
of an Ising model over a graph of N “spins" – is most likely exponential in N . Efficient varia-
tional methods, such as Belief Propagation (BP) and Tree Re-Weighted (TRW) algorithms,
compute Z approximately by minimizing the respective (BP- or TRW-) free energy. We
generalize the variational scheme by building a λ-fractional interpolation, Z(λ), where λ = 0
and λ = 1 correspond to TRW- and BP-approximations, respectively, and Z(λ) decreases
monotonically with λ. Moreover, this fractional scheme guarantees that in the attractive
(ferromagnetic) case Z(TRW ) ≥ Z(λ) ≥ Z(BP ), and there exists a unique (“exact") λ∗ such
that Z = Z(λ∗). Generalizing the re-parametrization approach of (Wainwright et al., 2001)
and the loop series approach of (Chertkov & Chernyak, 2006a), we show how to express
Z as a product, ∀λ : Z = Z(λ)Z̃(λ), where the multiplicative correction, Z̃(λ), is an ex-
pectation over a node-independent probability distribution built from node-wise fractional
marginals. Our theoretical analysis is complemented by extensive experiments with models
from Ising ensembles over planar and random graphs of medium- and large-sizes. The em-
pirical study yields a number of interesting observations, such as (a) the ability to estimate
Z̃(λ) with O(N4) fractional samples; (b) suppression of λ∗ fluctuations with an increase in
N for instances from a particular random Ising ensemble. We also verify and discuss the
applicability of this approach to the problem of image de-noising.

1 Introduction

Graphical Models (GM) are a major tool of Machine Learning that allow expressing complex statistical
correlations via graphs. Ising models are the most widespread GM for expressing correlations between
binary variables associated with nodes of a graph , where the probability is factorized into a product of
terms , each associated with an undirected edge of the graph. Many methods of inference and learning in
GM are, first tested on Ising models and then generalized, e.g., beyond binary and pair-wise assumptions.

In this manuscript, we focus on computing the normalization factor, Z (called the partition function), over
the Ising models. The problem is known to be of sharp-P complexity, likely requiring computational efforts
that are exponential in the size (number of nodes, N) of the graph (Welsh, 1991; Jerrum & Sinclair, 1993;
Goldberg & Jerrum, 2015; Barahona, 1982). There are three general approximate methods to compute Z: (a)
elimination of (summation over) the variables one-by-one (Dechter, 1999; Dechter & Rish, 2003; Liu & Ihler,
2011; Ahn et al., 2018); (b) variational approach (Yedidia et al., 2001; 2005); (c) Monte Carlo (MS) sampling
(Andrieu et al., 2003). (See also reviews (Wainwright & Jordan, 2007; Chertkov, 2023) and references
therein.) In this manuscript, we develop the latter two methods. We also pay special attention to providing
and tightening approximation guarantees. We base our novel theory and algorithm on the provable upper
bound for Z associated with the so-called Tree Re-Weighted (TRW) variational approximation (Wainwright
et al., 2003; 2005) and on the Belief Propagation (BP) variational approximation (Yedidia et al., 2001; 2005),
which is known to provide a lower bound on Z in the case of an attractive (ferromagnetic) Ising model (Ruozzi,
2012). Note that there are also additional upper bounds derived from log-determinant relaxations, wherein
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binary graphical models are relaxed to Gaussian graphical models on the same graph (Wainwright & Jordan,
2006; Ghaoui & Gueye, 2008). However, these bounds are generally considered to be loose, and to the best
of our knowledge, there is no known method to effectively narrow the gap between these upper bounds and
the exact partition function.

1.1 Relation to Prior Work

In addition to the aforementioned relations to foundational work on the variational approaches (Yedidia
et al., 2001; 2005), MCMC approaches (Andrieu et al., 2003), and lower and upper variational bounds
(Ruozzi, 2012; Wainwright et al., 2003), this manuscript also builds on recent results in other related areas,
in particular:

• We extend the ideas of parameterized interpolation between BP (Yedidia et al., 2001; 2005) and
TRW (Wainwright et al., 2003; 2005), in the spirit of fractional BP (Wiegerinck & Heskes, 2002;
Chertkov & Yedidia, 2013), thus introducing a broader family of variational approximations.

• Expanding on the previous point, since our approach can be considered as an interpolation bridging
the TRW and BP approximations for the GM’s partition function, it seems appropriate to cite
(Knoll et al., 2023), where another interpolation approach was unveiled. The interpolation discussed
in (Knoll et al., 2023) is of an annealing type – it starts with the trivial (high-temperature) model
where all components are independent, and then the potentials of the pair-wise model are tuned
gradually, adjusting the scaling parameter from 0 to 1. At every incremental step, a BP algorithm
is employed to track the fixed point, ensuring the method’s precision and reliability. The primary
objective of this approach was to surpass the conventional BP in both accuracy and convergence
rates. In contrast, our approach is designed to ascertain the exact values of the partition function
and marginals, thus setting a new standard for precision in the analysis of complex systems.

• We utilize and generalize re-parametrization (Wainwright et al., 2001), gauge transformation, and
loop calculus (Chertkov & Chernyak, 2006a;b; Chertkov et al., 2020) techniques, as well as the
combination of the two (Willsky et al., 2007).

• Our approach is also related to the development of MCMC techniques with polynomial guarantees,
the so-called Fully Randomized Polynomial Schemes (FPRS), developed specifically for Ising models
of specialized types, e.g., attractive (Jerrum & Sinclair, 1993) and zero-field, planar (Gómez et al.,
2010; Ahn et al., 2016).

1.2 This Manuscript’s Contribution

We introduce a fractional variational approximation that interpolates between the classical Tree Re-Weighted
(TRW) and Belief Propagation (BP) cases. The fractional free energy, F̄ (λ) = − logZ(λ), defined as the
negative logarithm of the fractional approximation to the exact partition function, Z = exp(−F̄ ), requires
solving an optimization problem, which is achieved practically by running a fractional version of one of the
standard message-passing algorithms. The parameter λ ∈ [0, 1] interpolates between the λ = 1 and λ = 0
cases, corresponding to BP and TRW, respectively. The interpolation technique, particularly our focus on
λ∗, which lies somewhere between λ = 0 and λ = 1 and for which Z(λ∗) = Z, is novel – to the best of
our knowledge, this is the first manuscript where the interpolation technique is discussed. Basic definitions,
including problem formulation for the Ising models and variational formulation in terms of the node and
edge beliefs (proxies for the respective exact marginal probabilities), are given in Section 2. Assuming that
the fractional message-passing algorithm converges, we study the dependence of the fractional free energy
on the parameter λ and the relationship between the exact value of the free energy (the negative logarithm
of the exact partition function) and the fractional free energy. We report the following theoretical results:

• We show in Section 3 that F̄ (λ) is a continuous and monotone function of λ (Theorem 3.1 proved in
Appendix B), which is also concave in λ (Theorem 3.2).
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• Our main theoretical result, Theorem 4.1, presented in Section 4 and proven in Appendix C, states
that the exact partition function can be expressed as a product of the variational free energy and
a multiplicative correction, Z = Z(λ)Z̃(λ). The latter multiplicative correction term, Z̃(λ), is stated
as an explicit expectation of an expression over a well-defined “mean-field" probability distribution,
where both the expression and the “mean-field" probability distribution are stated explicitly in
terms of the fractional node and edge beliefs. We note that such a bridge between the exact partition
function and the approximate partition function, known as the Loop Series/Calculus, was introduced
in Chertkov & Chernyak (2006a;b) and elaborated upon in Willsky et al. (2007) for the case of the
Bethe (Belief Propagation), where λ = 1. However, to the best of our knowledge, it has not been
reported in the literature for any other values of λ ∈ [0, 1[ interpolating between BP and TRW,
particularly for λ = 0 corresponding to TRW.

The theory is extended with experiments reported in Section 5. Here we show, in addition to confirming our
theoretical statements (and thus validating our simulation settings), that:

• The dependence of F̄ (λ) and log Z̃(λ) on λ is of a phase transition type when we move from the TRW
regime at λ = 0 to the BP regime at λ > λ̄.

• Evaluating Z(λ)Z̃(λ) at different values of λ and confirming that the result is independent of λ
suggests a novel approach to a reliable and efficient estimate of the exact Z – the Fractional Message
Passing Algorithm 1.

• Analyzing ensembles of the attractive Ising models over graphs of sizeN , we observe that fluctuations
of the value of λ∗ within the ensemble, where Z(λ∗) = Z, decrease dramatically with an increase in
N . This observation suggests that estimating λ∗ for an instance from the ensemble allows efficient
approximate evaluation of Z for any other instance from the ensemble.

• Studying the sampling procedure to estimate Z̃(λ), we observe that the number of samples required
for the estimate is either independent of the system size, N , or possibly grows relatively weakly with
N . This observation confirms that our approach to the estimation of Z, consisting of evaluating
Z(λ) via message-passing, then drawing a small number of samples to estimate the correction, Z̃(λ),
is sound.

• Analysis of the mixed Ising ensembles (where attractive and repulsive edges alternate) suggests that
for instances with sufficiently many repulsive edges, finding λ∗ ∈ [0, 1] may not be feasible.

We have a brief discussion of conclusions and paths forward in Section 6.

2 Technical Preliminaries

2.1 Ising Models: the formulation

Graphical Models (GM) are the result of a marriage between probability theory and graph theory designed
to express a class of high-dimensional probability distributions that factorize in terms of products of lower-
dimensional factors. The Ising model is an exemplary GM defined over an undirected graph, G = (V, E).
The Ising Model is stated in terms of binary variables, xa = ±1, and singleton factors, ha ∈ R, associated
with nodes of the graph, a ∈ V, and pair-wise factors, Jab ∈ R, associated with edges of the graph, (a, b) ∈ E .
The probability distribution of the Ising model observing a state, x = (xa|a ∈ V) is

p(x|J ,h) = exp (−E (x;J ,h))
Z(J ,h) , Z(J ,h) :=

∑
x∈{±1}|V|

exp (−E (x;J ,h)) , (1)

E (x;J ,h) :=
∑

(a,b)∈E

Eab(xa, xb), ∀(a, b) ∈ E : Eab = −Jabxaxb − (haxa + hbxb)/2, (2)

where J := (Jab|(a, b) ∈ E), h = (ha|a ∈ V) are the pair-wise and singleton vectors, assumed given.
E(x;J ,h) is the energy function and Z(J ,h) is the partition function. Solving the Ising model inference
problem means computing Z – which generally requires efforts that are exponential in N = |V|.
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2.2 Exact Variational Formulation

Exact variational approach to computing Z consists in restating Eq. (1) in terms of the following Kullback-
Leibler distance between exp(−E(x;J ,h)) and a probability distribution, B(x) ∈ {−1, 1}|V|,

∑
x B(x) = 1,

called belief:

F̄ = − logZ = min
B(x)

∑
x

(E(x)B(x)− B(x) logB(x)) , (3)

where F̄ is also called the free energy (following widely accepted physics terminology).

The exact variational formulation (3) is the starting point for approximate variational formulations, such as
BP (Yedidia et al., 2005) and TRW (Wainwright & Jordan, 2007), stated solely in terms of the marginal
beliefs associated with nodes and edges, respectively:

∀a ∈ V, ∀xa : Ba(xa) :=
∑
x\xa

B(x), ∀(a, b) ∈ E , ∀xa, xb : Bab(xa, xb) :=
∑

x\(xa,xb)

B(x). (4)

Moreover, the fractional approach developed in this manuscript provides a variational formulation in terms
of the marginal probabilities, generalizing (and, in fact, interpolating between) the respective BP and TRW
approaches. Therefore, we now turn to stating the fractional variational formulation.

2.3 Fractional Variation Formulation

Let us introduce a fractional-, or λ- reparametrization of the belief (proxy for the probability distribution of
x)

B(λ)(x) =
∏
{a,b}∈E (Bab(xa, xb))ρ

(λ)
ab∏

a∈V (Ba(xa))
∑

b∼a
ρ

(λ)
ab
−1
, (5)

where b ∼ a is a shortcut notation for b ∈ V such that, given a ∈ V, (a, b) ∈ E . Here in Eq. (5), ρ(λ)
ab is the

λ-parameterized edge appearance probability

ρ
(λ)
ab = ρab + λ(1− ρab), λ ∈ [0, 1]. (6)

which is expressed via the λ = 0 edge appearance probability, ρab, dependent on the weighted set of spanning
trees, T := {T}, of the graph according to the following TRW rules (Wainwright & Jordan, 2007):

∀(a, b) ∈ V : ρab =
∑

T∈T , s.t. (a,b)∈T

ρT ,
∑
T∈T

ρT = 1. (7)

Several remarks are in order. First, λ = 1 corresponds to the case of BP. Then Eq. (5) is exact in the case
of a tree graph, but it can also be considered as a (loopy) BP approximation in general. Second, and as
mentioned above, λ = 0, corresponds to the case of TRW. Third, the newly introduced (joint) beliefs are
not globally consistent, i.e.

∑
x B(λ)(x) 6= 1 for any λ, including the λ = 0 (TRW) and λ = 1 (BP) cases.

Substituting Eq. (5) into Eq. (3) we arrive at the following fractional approximation to the exact free energy
stated as an optimization over all the node and edge marginal beliefs, B := (Bab(xa, xb)|∀{a, b} ∈ E , xa, xb =
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±1) ∪ (Ba(xa)|∀a ∈ V, xa = ±1):

F̄ (λ) := min
B∈D

F (λ)(B), F (λ)(B) := E(B)−H(λ)(B), E(B) :=
∑

(a,b)∈E

∑
xa,xb=±1

Eab(xa, xb)Bab(xa, xb), (8)

H(λ)(B) := −
∑

(a,b)∈E

ρ
(λ)
ab

∑
xa,xb=±1

Bab(xa, xb) logBab(xa, xb) +
∑
a∈V

(∑
b∼a

ρ
(λ)
ab − 1

) ∑
xa=±1

Ba(xa) logBa(xa),

D :=

B
∣∣∣∣∣∣∣∣∣∣∣∣

Ba(xa) =
∑
xb=±1 Bab(xa, xb),

∀a ∈ V, ∀b ∼ a, ∀xa = ±1; (a)∑
xa,xb=±1 Bab(xa, xb) = 1,
∀(a, b) ∈ E ; (b)
Bab(xa, xb) ≥ 0,
∀(a, b) ∈ E , ∀xa, xb = ±1. (c)

 . (9)

As discussed in Section 3 in detail, λ = 0 results in Z(λ) which upper bounds the exact Z, and λ = 1 results
in the lower bound if the model is attractive.

The optimization over beliefs in Eq. (8) can be restated in the Lagrangian form (see Appendix A.1). Fixed
points of the Lagrangian (potentially many) satisfy the so-called message-passing equations (see Appendix
A.2). We will refer to the iterative algorithm that finds marginal probabilities B and respective message
variables µ by solving these equations as the basic Fractional Belief Propagation (FBP) algorithm. Consistent
with the equations from Appendices A.1 and A.2, the resulting messages can then be used to find the FBP
approximation, Z(λ), for the partition function Z as follows:

Z(λ) = exp
(
−F̄ (λ)

)
= exp

(
−F (λ)(B(λ))

)
=

∏
{a,b}∈E

( ∑
xa,xb

exp
(
−Eab(xa, xb)

ρ
(λ)
ab

)
× (10)

(
µ

(λ)
b→a(xa)

)∑c∼a ρ(λ)
ac −1

ρ
(λ)
ab

(
µ

(λ)
a→b(xb)

)∑c∼b ρ(λ)
bc
−1

ρ
(λ)
ab

)ρ(λ)
ab ∏

a∈V

(∑
xa

∏
b∼a

µ
(λ)
b→a(xa)

)1−
∑
c∼a

ρ(λ)
ac

.

3 Properties of the Fractional Free Energy

Given the construction of the fractional free energy, described above in Section 2.3 and also detailed in
Appendix A, we are ready to make the following statements.
Theorem 3.1. [Monotonicity of the Fractional Free Energy] Assuming ρ := (ρab|(a, b) ∈ E) is fixed, F̄ (λ) is
a continuous, monotone function of λ.

Proof. See Appendix B.

Theorem 3.2. [Concavity of the Fractional Free Energy] Assuming ρ := (ρab|(a, b) ∈ E) is fixed, F̄ (λ) is a
concave function of λ.

Proof. According to Eq. (8), F̄ (λ) is a minimum (over beliefs) of functions that are linear in λ, therefore the
result is concave in λ. (The authors are grateful to an anonymous online reviewer for correcting what was
an erroneous statement originally).

Note that all the statements in this manuscript so far are made for arbitrary Ising models, i.e., without
any restrictions on the graph and vectors of the pair-wise interactions, J , and singleton biases, h. If the
discussion is limited to attractive (ferromagnetic) Ising models, ∀(a, b) ∈ E : Jab ≥ 0, the following statement
becomes a corollary of Theorem 3.1:
Lemma 3.3. [Exact Fractional] In the case of an attractive Ising model and any fixed ρ, there exists
λ∗ ∈ [0, 1] such that Z(λ∗) = Z.
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Proof. Recall that by construction, Z(λ=1) ≤ Z, as proven in (Ruozzi, 2012). In words, the partition function
computed within the Bethe (BP) approximation results in a lower bound to the exact partition function.
On the other hand, we know from (Wainwright & Jordan, 2007), and also by construction, that Z(λ=0) ≥ Z,
i.e., the TRW estimate of the partition function provides an upper bound to the exact partition function.
These lower and upper bounds, combined with the monotonicity of Z(λ) stated in Theorem 3.1, result in the
desired statement.

4 Fractional Re-Parametrization for Exact Inference

Theorem 4.1. [Exact Relation Between Z and Z(λ)]

Z = Z(λ)Z̃(λ), (11)

Z̃(λ) :=
∑
x

∏
{a,b}∈E

(
B(λ)
ab (xa, xb)

)ρ(λ)
ab

∏
a∈V

(
B(λ)
a (xa)

)∑
c∼a

ρ
(λ)
ac −1

= E
x∼p(λ)

0 (·)


∏

{a,b}∈E

(
B(λ)
ab (xa, xb)

)ρ(λ)
ab

∏
a∈V

(
B(λ)
a (xa)

)∑
c∼a

ρ
(λ)
ac

 , (12)

where p(λ)
0 (x) :=

∏
a B

(λ)
a (xa) is the component-independent distribution devised from the FBP-optimal

node-marginal probabilities.

Proof. See Appendix C.

Notice that Z̃(λ), defined in Eq. (12), is the exact multiplicative correction term expressed in terms of the
FBP solution. It should be equal to 1 at the optimal value of λ∗(J,H). According to Lemma 3.3, this
optimal value is achievable in the case of the attractive Ising model.

Theorem 4.1 suggests using Algorithm 1, presented as a pseudo-algorithm (omitting iterative details) and
which we call λ-optimal (or simply optimal) Fractional Belief Propagation Algorithm, (O-FBP) to approxi-
mate the exact partition function Z.

Algorithm 1 λ-optimal Fractional Belief Propagation Algorithm
Input: G = (V, E), graph.
Initialize: ρab = (|V| − 1)/|E|
For: λ = 0.01 : 0.05 : 1,

1. Compute ρ(λ)
ab = ρab + λ(1− ρab).

2. Use Eq. (10) and equations from Appendix A.2 to find Z(λ),B(λ)
a (xa),B(λ)

ab (xa, xb)

3. Compute Z̃(λ) utilizing Eq. (12)

End

1. Find λ∗ where Z̃(λ) = 1

2. Return Z = Z(λ∗)

5 Numerical Experiments

5.1 Setting, Use Cases and Methodology

In this Section, we present the results of our numerical experiments, supporting and also further developing
the theoretical results of the preceding Sections. Specifically, we will describe the details of our experiments
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with the Ising model in the following "use cases:" (1) Over an exemplary planar graph – N ×N square grid,
where N = [3 :: 25]; (2) Over a fully connected graph, KN , where N = [3 :: 82]. The notation [a :: b]
indicates a range from a to b.

In both cases, we consider attractive models and mixed models – that is, models with some interactions being
attractive (ferromagnetic), Jab > 0, and some repulsive (antiferromagnetic), Jab < 0. We experiment with
the zero-field case, h = 0, and also with the general (non-zero field) case. All of our models are "disordered"
in the sense that we have generated samples of random J and h. Specifically, in the attractive (mixed)
case, components of J are i.i.d. from the uniform distribution, U(0, 1) (U(−1, 1)), and components of h are
i.i.d. from U(−1, 1). In some of our experiments, we draw a single instance of J and h from the respective
ensemble. However, in other experiments – aimed at analyzing the variability within the respective ensemble
– we show results for a number of instances.

We acknowledge that there is significant flexibility in selecting a set of spanning trees and then re-weighting
respective contributions to ρ := (ρab|(a, b) ∈ E) according to Eq. (7). (See some discussion of the experiments
with possible ρ in (Wainwright et al., 2005).) However, we decided not to test this flexibility, and instead,
in all of our experiments, ρ is chosen unambiguously for a given graph uniformly. As shown in (Wainwright,
2002), the edge-uniform re-weighting is optimal, i.e., it provides the lowest TRW upper-bound, in the case of
highly symmetric graphs, such as fully connected or double-periodic square grid. It was also assumed in the
TRW literature (but to the best of our knowledge never proven) that edge-uniform re-weighting is (almost
always) possible. We clarify this point in the following statement.
Lemma 5.1. ([Edge-uniform Weights]) For any graph with all nodes of degree two or higher, there exists a
subset of spanning trees such that each edge contributes to at least one spanning tree, and the edge weight
is calculated according to the edge-uniform rule: ∀(a, b) ∈ E : ρab = (|V| − 1)/|E|, where |V| is the number
of vertices and |E| is the number of edges 1.

Proof. See Appendix D for a constructive proof.

We introduce the λ-optimal FBP algorithm, delineated as Algorithm 1, which calculates approximately the
exact partition function for a specified Ising model on a graph G = (V, E). This algorithm generalizes tradi-
tional message-passing methods by interpolating between the Tree-Reweighted case (λ = 0) and the Belief
Propagation case (λ = 1) for any λ ∈]0, 1[. Utilizing Theorem 4.1, the algorithm identifies a particular value,
denoted as λ∗, where the fractional partition function Z(λ∗) is approximately equal to the exact partition
function Z. The algorithm employs Eq. (12) to determine the correction factor Z̃(λ) utilizing fractional
node and edge beliefs. Additionally, it uses Lemma 5.1 to initialize the edge appearance probabilities ρab
uniformly.

To compute the fractional free energy, F̄ (λ) (minus the log of the fractional estimate for the partition
function), we generalize the approach of (Bixler & Huang, 2018), which allows efficient, sparse-matrix-based
implementation. Our code will be made available on GitHub upon acceptance of the paper.

To compare the fractional estimate F̄ (λ) = − logZ(λ) with the exact free energy, F̄ = − logZ, we either use
direct computations (feasible for the 8 × 8 grid or smaller and for the fully connected graph over 64 nodes
or smaller) or, in the case of the planar grid and zero-field, when computation of the partition function is
reduced to computing a determinant, we use the code from (Likhosherstov et al., 2019) (see also references
therein). Our computations are done for the values of λ equally spaced with the increment 0.05, between
0.01 and 1, λ ∈ [0.01 :: 0.05 :: 1], λ starting from 0.01 instead of 0, due to poor convergence issues near 0.
We use Eq. (23) to estimate dF̄ (λ)/dλ, and then use finite difference approximation to estimate d2F̄ (λ)/dλ2.

The log-correction term, log Z̃(λ) = logZ − logZ(λ), is estimated by direct sampling according to Eq. (12).
(See Fig. (10) and the respective discussion below for empirical analysis of the number of samples required
to guarantee sufficient accuracy.)

1The "degree two or higher" constraint on nodes is not restrictive because we can either eliminate nodes with degree one
(and also tree-like branches associated with them) by direct summation, or alternatively include the tree-like branches in the
appropriate number of spanning trees constructed for the graph ignoring the tree-like branches.
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Figure 1: The case of the Ising Model (a) with non-zero field and random interaction, h, J ∼ U(0, 1) over 3×3
planar grid; and (b) with non-zero field and random interaction, h, J ∼ U(0, 1) over K9 complete graph.
We show fractional log-partition function (minus fractional free energy) - on the left- and the respective
correction factor Z̃(λ) – on the right vs the fractional parameter, λ. We observe monotonicity and concavity
of F̄ (λ) on λ and dependence of F̄ (λ) and log Z̃(λ) on λ is relatively sharp (phase transition).

It is important to stress that, even though the λ-optimal FBP Algorithm 1 is a direct extension of what was
discussed in the literature in the past for the TRW λ = 0 and BP λ = 1 cases, extending the algorithm to
the interpolating λ ∈]0, 1[ values is novel. In this regard, the λ = 0 and λ = 1 versions of the λ-optimal FBP
Algorithm should be considered as providing baselines/benchmarks for its performance at the interpolating
values of λ.

5.2 Properties of the Fractional Free Energy

We use Algorithm 1 for the fractional estimate of the log-partition function (minus fractional free energy),
logZ(λ) = −F̄ (λ), and the log of the correction term, log Z̃(λ) = logZ− logZ(λ) = F̄ (λ)− F̄ . The results are
shown as functions of λ in Fig. (1) for the use cases described above. See also an extended set of Figs. (5, 6,
7, 8) in Appendix E, including the dependence of dF̄ (λ)/dλ, d2F̄ (λ)/dλ2 on λ.

We draw the following empirical conclusions from this set of Figures:

• The monotonicity and concavity of F̄ (λ), proven in Theorem 3.1 and Theorem 3.2, respectively, are
confirmed.

• The dependence of F̄ (λ) and log Z̃(λ) on λ is relatively sharp – of a phase transition type at some λ̄,
when we move from the TRW regime at λ < λ̄ to the BP regime at λ > λ̄. Note that the estimate
of the threshold, λ̄, decreases with the growth in N .

5.3 Relation between Exact and Fractional

Figs. (5, 6, 7, 8), shown in Appendix E, also provide empirical confirmation of Lemma 3.3 in the part which
concerns the independence of Z(λ)Z̃(λ) from λ. This observation, combined with the full statement of Lemma
3.3, suggests that if two or more empirical estimates of Z(λ)Z̃(λ) at different λ are sufficiently close to each
other, we can use them to bound Z from above and below. Moreover, the full statement of Theorem 4.1,
i.e., the equality between the left- and right-hand sides of Eq. (11), is also confirmed in all of our simulations
with high accuracy (when we can verify it by computing Z directly).
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Figure 2: Planar zero-field Ising models for n× n grid with J ∼ U(0, 1). For each n, four different instances
are generated by sampling uniformly at random from the unit interval and the exact values, λ∗, are shown
by open symbols on each graph. (a) 10× 10 (b) 20× 20 (c) 30× 30 (d) 40× 40.

5.4 Concentration of the Fractional Parameter in Large Ensembles

Fig. (9) in Appendix E shows the dependence of F̄ (λ) on the fractional parameter, λ, for a number of
instances drawn from two exemplary attractive use-case ensembles. We observe that the variability in the
value of F̄ (λ) is sufficiently large. Variability in λ∗, where Z(λ∗) = Z, is also observed, even though it is
significantly smaller.

This observation suggests that the variability of λ∗ within an attractive ensemble decreases as N grows.
This hypothesis is confirmed in our experiments with larger attractive ensembles, illustrated in Fig. (2) for
different N . For each N in the case of an N × N grid, we generate 4 different instances. We observe that
as N increases, the variability of λ∗ within the ensemble decreases dramatically. This observation is quite
remarkable, as it suggests that it is sufficient to estimate λ∗ for one instance in a large ensemble and then
use it for accurate estimation of Z by simply computing Z(λ∗). Our estimations, based on the data shown
in Fig. (2) and other similar experiments (not shown), suggest that the width of the probability distribution
of λ∗ within the ensemble scales as ∝ 1/

√
N with an increase in N .
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5.5 Convergence of Sampling for Fractional Partition Function

Fig. (10), shown in Appendix E, reports the dependence of the sample-based estimate of Z̃(λ) on the number
of samples. Our major observation here is that the result converges with an increase in the number of
samples. Moreover, comparing the speed of convergence (with the number of samples) to the size of the
system, N , we estimate that the number of samples needed for convergence scales as O(N [2::4]).

5.6 Fractional Approach for Mixed (Attractive and Repulsive) Cases

Fig. (11) in Appendix E shows two distinct situations which may be observed in the mixed case where some
of the interactions are attractive but others are repulsive, allowing Z(λ) to be smaller or larger than Z. The
former case is akin to the attractive model and λ∗ ∈ [0, 1], while in the latter case there exists no λ∗ ∈ [0, 1]
such that Z(λ∗) = Z.

5.7 Application in Machine Learning – Image De-Noising

Consider a black-and-white image represented as a binary vector, x = (xa = ±1|a ∈ V), where V is the set
of nodes in a two-dimensional n× n square grid. For example, the cameraman image shown in Fig. (3) is a
256× 256 = 65536 pixel image, which is represented as a binary vector, x ∈ {±1}65536.

The de-noising problem is set up as follows Koller & Friedman (2009). Assume that an image is sent through
a noisy Bernoulli channel, where each pixel is flipped independently with a probability ε. The noisy version
of the image y is received, and the task is to recover the original image x.

We also make the plausible assumption that images are constructed in such a way that the probability for
two neighboring pixels a and b to have the same values xa and xb, exp(J)/(cosh(J)), is higher than the
probability exp(−J)/(cosh(J)) that they have opposite values, where J > 0.

Then, the probability for the image x to be reconstructed from the observed noisy image y is given by

p(x|y) ∝ exp

J ∑
(a,b)∈E

xaxb + h
∑
a∈V

xaya

 , h = 1
2 log

(
ε

1− ε

)
, (13)

where G = (V, E) is the graph of the two-dimensional grid, and E is the set of edges of the grid. Clearly,
Eq. (13) shows the probability distribution of the ferromagnetic Ising model.

The basic FBP algorithm solving Eq. (8), as well as its BP and TRW versions, with λ = 1 and λ = 0
respectively, can all be utilized to solve the de-noising problem.

Results of experiments de-noising an image with different algorithms are shown in Fig. (3), where pixels are
flipped with the noise level corresponding to h = 1.1. We then optimize the J parameter in each algorithm
to obtain the best performance, evaluated according to the following error function:

Error = Number of pixels different in true image and noisy version
Total number of pixels .

We find that in the BP and TRW cases, the optimal J values (minimizing the error) are 0.28 and 0.32
respectively. In the case of the basic FBP, we optimize not only over J but also over λ, resulting in optimal
values of J = 0.3 and λ = 0.1. We observe that the basic FBP algorithm demonstrates improved performance
compared to both BP and TRW algorithms.

Note that this example is too large to reliably evaluate our λ-optimal FBP algorithm 1. However, we
conjecture that the value of λ obtained by minimizing the error will converge, in the thermodynamic limit
of a large graph, to the value of λ which is optimal within Algorithm 1. This conjecture is intuitively
based on two facts. First, the error is expressed in terms of pixel marginals. Second, the λ that optimizes
the pixel marginals should be close to the λ that optimizes the partition function. This is because, in the
thermodynamic limit, the marginals can be reformulated in terms of the partition functions of the graphical
models, which differ from the original one only by fixing the respective xa variable (to ±1) at a single pixel
among many.

10
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Image Noisy Image BP TRW FBP

3.56% 3.48% 3.23%

Figure 3: Different algorithms and their corresponding errors (listed below each image) for image de-noising.

6 Conclusions and Path Forward

This manuscript suggests a new promising approach to evaluating inference in Ising Models. The approach
consists in, first, solving a fractional variational problem via a distributed BP algorithm resulting in the
fractional estimations for the partition function and marginal beliefs. We then compute multiplicative
correction to the fractional partition function by evaluating a well-defined expectation of the mean-field
probability distribution both constructed explicitly from the marginal beliefs. We showed that the freedom in
the fractional parameter is useful, e.g. for finding optimal value of the parameter, λ∗, where the multipicative
correction is unity. Our theory-validated experiments result in a number of interesting observations, such as
a phase-transition like dependence of the fractional free-energy on λ and strong suppression of fluctuations
of λ∗ in large ensembles. We also demonstrate how the FBP approach can efficiently and more accurately
solve the de-noising problem in machine learning compared to BP and TRW approaches.

As a path-forward we envision extending this fractional approach along the following directions:

• Proving or disproving the concentration conjecture and small number of samples conjecture, made
informally in Section 5.4 and Section 5.5, respectively.

• Generalizing the extrapolation technique, e.g. building a scheme interpolating between TRW and
Mean-Field (see e.g. Chapter 5 of Wainwright & Jordan (2007)). This will be of special interest for
the case of the mixed ensembles which are generally out of reach of the fractional approach (between
TRW and BP) presented in the manuscript.

• Generalizing the extrapolation technique to a more general class of Graphical Models.

We also anticipate that all of these developments, presented in this manuscript and others to follow, will
help to make variational GM techniques competitive with other, and admittedly more popular, methods of
Machine Learning, such as Deep Learning (DL). We foresee that in the future, there will be more examples
where variational GM techniques will be enhanced with automatic differentiation, e.g. in the spirit of
(Lucibello et al., 2022), and also integrated into modern Deep Learning protocols, e.g. as discussed in
(Garcia Satorras & Welling, 2021). This hybrid GM-DL approach is expected to be particularly beneficial
and powerful in physics problems where we aim to learn reduced models with graphical structures prescribed
by the underlying physics from data.
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A Fractional Variational Formulation: Details

A.1 Lagrangian Formulation

Introducing Lagrangian multipliers associated with the linear constraints in Eqs. (9a,9b) we arrive at the
following Lagrangian reformulation of Eq. (8)

F̄ (λ) = min
B≥0

max
η,ψ

L(λ)(B;η,ψ), L(λ) := F (λ)(B)+ (14)

∑
a∈V;b∼a

∑
xa

ηb→a(xa)
(∑

xb

Bab(xa, xb)− Ba(xa)
)

+
∑
{a,b}∈E

ψab

(
1−

∑
xa,xb

Bab(xa, xb)
)
,

where L(λ)(B;η,ψ) is the (extended) Lagrangian dependent on both the primary variables (beliefs, B) and the
newly introduced dual variables, η := (ηb→a(xa) ∈ R|∀a ∈ V, ∀b ∼ a, ∀xa = ±1) and ψ := (ψa ∈ R|∀a ∈ V).
The stationary point of the Lagrangian (14), assuming that it is unique, is defined by the following system
of equations

∀{a, b} ∈ E , ∀xa, xb = ±1 : δL(λ)(B)
δBab(xa, xb)

= 0⇒ Eab(xa, xb)+ (15)

ρ
(λ)
ab

(
log
(
B(λ)
ab (xa, xb)

)
+ 1
)
− ψ(λ)

ab + η
(λ)
b→a(xa) + η

(λ)
a→b(xb) = 0,

∀a ∈ V, ∀xa = ±1 : δL(λ)(B)
δBa(xa) = 0⇒

(∑
b∼a

ρ
(λ)
ab − 1

)(
logB(λ)

a (xa) + 1
)

+
∑
b∼a

η
(λ)
b→a(xa) = 0, (16)

augmented with Eqs. (9a,9b). Eqs. (15) and Eqs. (16) result in the following expressions for the marginals
in terms of the Lagrangian multipliers

∀a ∈ V, ∀xa = ±1 : B(λ)
a (xa) ∝ exp

−
∑
b∼a

η
(λ)
b→a(xa)∑

b∼a
ρ

(λ)
ab − 1

 , (17)

∀{a, b} ∈ E , ∀xa, xb = ±1 : B(λ)
ab (xa, xb)∝exp

(
−
Eab(xa, xb)+η(λ)

b→a(xa)η(λ)
a→b(xb)

ρ
(λ)
ab

)
. (18)

Here in Eqs. (15,16,17,18) and below, the upper index (λ) in B(λ), η(λ) and ψ(λ) variables indicates that the
respective variables are optimal, i.e. argmax and argmin, over respective optimizations in Eq. (14).
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A.2 Message Passing

We may also rewrite Eqs. (17,18) in terms of the so-called message (from node-to-node) variables. Then the
marginal beliefs are expressed via the µ(λ)-messages according to

∀a ∈ V, ∀b ∼ a : µ
(λ)
b→a(xa) := exp

− η
(λ)
b→a(xa)∑

b∼a
ρ

(λ)
ab − 1

 , (19)

∀a ∈ V, ∀xa = ±1 : B(λ)
a (xa) =

∏
b∼a

µ
(λ)
b→a(xa)∑

xa

∏
b∼a

µ
(λ)
b→a(xa)

, (20)

∀{a, b} ∈ E , ∀xa, xb = ±1 : B(λ)
ab (xa, xb) (21)

=
exp

(
−Eab(xa,xb)

ρ
(λ)
ab

)(
µ

(λ)
b→a(xa)

)∑c∼a ρ(λ)
ac −1

ρ
(λ)
ab

(
µ

(λ)
a→b(xb)

)∑c∼b ρ(λ)
bc
−1

ρ
(λ)
ab

∑
xa,xb

exp
(
−Eab(xa,xb)

ρ
(λ)
ab

)(
µ

(λ)
b→a(xa)

)∑c∼a ρ(λ)
ac −1

ρ
(λ)
ab

(
µ

(λ)
a→b(xb)

)∑c∼b ρ(λ)
bc
−1

ρ
(λ)
ab

,

and the Fractional Belief Propagation (FBP) equations, expressing relations between pairwise and singleton
marginals become:

∀a ∈ V, ∀b ∼ a, ∀xa = ±1 : B(λ)
a (xa) ∝

∏
b∼a

µ
(λ)
b→a(xa) (22)

∝
∑
xb

exp
(
−Eab(xa, xb)

ρ
(λ)
ab

)(
µ

(λ)
b→a(xa)

)∑c∼a ρ(λ)
ac −1

ρ
(λ)
ab

(
µ

(λ)
a→b(xb)

)∑c∼b ρ(λ)
bc
−1

ρ
(λ)
ab ∝

∑
xb

B(λ)
ab (xa, xb).

Note (on a tangent), that the µ(λ)-(message) variables introduced here are related but not equivalent to the
M (λ)-messages which can also be seen used in the BP-literature, see e.g. Section 4.1.3 of (Wainwright &
Jordan, 2007). Specifically in the case of BP, i.e. when ρ(λ)

ab = 1, relation between µ(λ) and M (λ) variables
is as follows, (µ(λ)

b→a(xa))da−1 =
∏
c∼a;c6=bM

(λ)
c→a(xa).

B Proof of Theorem 3.1

Let us evaluate the derivative of the fractional free energy (8) over λ explicitly

d

dλ
F̄ (λ) = d

dλ
F (λ)

(
B(λ)

)
=
∑
{a,b}

∑
xa,xb

∂F (λ) (B(λ))
∂B(λ)

ab (xa, xb)
dB(λ)

ab (xa, xb)
dλ

+
∑
a

∑
xa

∂F (λ) (B(λ))
∂B(λ)

a (xa)
dB(λ)

a (xa)
dλ

−
∑
{a,b}

∂H(λ)(B(λ))
∂ρ

(λ)
ab

dρ
(λ)
ab

dλ
.
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Taking into account the conditions of stationarity of the fractional free energy, tracking explicit dependencies
of the fractional entropy on ρ(λ)

ab , and thus on λ, we arrive at

∀{a, b} :
∂F (λ) (B(λ))
∂B(λ)

ab (xa, xb)
= 0; ∀a :

∂F (λ) (B(λ))
∂B(λ)

a (xa)
= 0;

∂H(λ)(B(λ))
∂ρ

(λ)
ab

= −
∑

xa,xb=±1
B(λ)
ab (xa, xb) logB(λ)

ab (xa, xb) +
∑

xa=±1
B(λ)
a (xa) logB(λ)

a (xa)

+
∑
xb=±1

B(λ)
b (xb) logB(λ)

b (xb) = −I(λ)
ab ,

where the newly introduced I(λ)
ab is nothing but the pairwise mutual information defined according to B(λ).

Notice that I(λ)
ab ≥ 0. Since, dρ(λ)

ab /dλ = 1− ρab ≥ 0, and summarizing all of the above we derive
d

dλ
F̄ (λ) = −

∑
{a,b}

(1− ρab)I(λ)
ab ≤ 0, (23)

thus concluding the proof of both continuity (the derivative is bounded) and monotonicity (the derivative is
negative).

C Proof of Theorem 4.1

Consistently with Eq. (5), Eqs. (20,21) allow us to rewrite the joint probability distribution in terms of the
optimal beliefs which solve the fractional Eqs. (22)

p(x)=Z−1
∏
{a,b}∈E

( ∑
xa,xb

exp
(
−Eab(xa, xb)

ρ
(λ)
ab

)(
µ

(λ)
b→a(xa)

)∑c∼a ρ(λ)
ac −1

ρ
(λ)
ab

(
µ

(λ)
a→b(xb)

)∑c∼b ρ(λ)
bc
−1

ρ
(λ)
ab

)ρ(λ)
ab

×

∏
a∈V

(∑
xa

∏
b∼a

µ
(λ)
b→a(xa)

)∑
c∼a

ρ(λ)
ac −1

∏
{a,b}∈E

(
B(λ)
ab (xa, xb)

)ρ(λ)
ab

∏
a∈V

(
B(λ)
a (xa)

)∑
c∼a

ρ
(λ)
ac −1

. (24)

Normalization condition, that is the requirement for the sum on the right hand side of Eq. (24) to return 1,
results in the desired statement, i.e. Eqs. (11,12).

D Proof of Lemma 5.1

Our proof of the statement is constructive and it is thus formalized in the Algorithm 2. The Algorithm
follows induction, starting from a complete graph and then progressing by removing edges (and therefore
loops) sequentially, such that at any step all nodes continue to be of degree two or larger. The induction
terminates when the resulting graph is a single loop. See Fig. (4) for an illustration on the example of N = 4,
thus K4.

The proof allows to construct the required set of spanning trees for any graph (with all nodes of degree two
or larger) because by selecting a sequence of edges in the Algorithm 2 properly we can arrive at the given
graph starting from the complete graph containing as many nodes as the given graph and eliminating edges
according to the Algorithm 2.

E More Figures from Numerical Experiments

We show in this Appendix an extended set of Figures for the experiments discussed in the Section 5.3 of
the main text. Specifically, results of our experiment for the case of the Ising model over planar graphs
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(a) (b) (c)

Figure 4: Construction of the set of spanning trees for a sequence of graphs built from the K4 graph (sub-
figure (a)) in two steps, from (a) to (b) and from (b) to (c), each time eliminating an edge. At each step we
remove one edge (shown dashed green), remove one spanning tree (shown circled and crossed red), and add
a new edge (shown solid green) to all the remaining spanning trees which lost an edge such that they stay
spanning trees and the resulting ρab edges are uniform among the remaining spanning trees. The resulting
number of spanning trees and the uniform edge weights are (a) |V | = 4 and ∀(a, b) ∈ V, ρab = |V| − 1/|E| =
(4 − 1)/6 = 3/6 = 1/2; (b) |V | = 5 and ∀(a, b) ∈ V, |V| − 1/|E| = (4 − 1)/5 = 3/5; (c) |V | = 4 and
∀(a, b) ∈ V, |V| − 1/|E| = (4− 1)/4 = 3/4.

Algorithm 2 Edge-Uniform Set of Spanning Trees
Input: KN , graph. Sequence of edges, {e1, · · · , eN−2} of KN and respective sequence of graphs,
{G1, · · · ,GN−2}, such that, G1 = KN \ e1, ∀n = 1, · · · , N − 3 : Gn+1 := Gn \ en+1, and GN−2 is a
single loop
Initialize: T - set of all linear spanning trees of G. (A spanning tree is linear if all nodes is of degree two
or one.)
Repeat: n = 1, · · ·

1. G = (V, E) = Gn

2. ∀T ∈ T : ρT = 1/|E| and thus ∀(a, b) ∈ E : ρab = (|V| − 1)/|E|.

3. Exit if n = N − 2.

4. Remove edge en from all spanning trees in T

5. T ← T \ (element of T which becomes disconnected)

6. Modify T by adding an extra edge to each spanning tree of T having (N − n − 1) edges. These
added edges should keep each element of T a spanning tree of G and also guarantee that each
edge enters exactly N − 1 resulting spanning trees. (It is straightforward to check that such a
construction is unique and unambiguous. See Fig. (4) for illustration.)

and complete graphs of various sizes in the settings of zero- and non-zero- fields are illustrated in Figs. (5,6,
7,8). We show in this set of figures dependence of logZ(λ) = −F̄ (λ) and log Z̃(λ), as well as dF̄ (λ)/dλ and
d2F̄ (λ)/dλ2, on λ. Observing dependence of the first and second derivatives of the fractional free energy on
λ allows us to conclude (confirm) that the log fractional partition function is monotone decreasing and also
convex in λ. We also observe that when λ is sufficiently large, logZ(λ) is independent of λ. We also track in
these figures the value of λ∗, correspondent to Z̃(λ∗) = 1, and thus Z = Z(λ∗).

Fig. (9), mentioned in Section 5.4 shows λ∗ for a number of instances drawn from the respective ensembles
of the Ising model (over planar and complete graphs). We observe that in the planar case, λ∗ ∈ [0.25, 0.45],
while in the case of the complete graph, λ∗ ∈ [0.05, 0.15].

Fig. (10), mentioned in Section 5.5, shows results for the experiments with the Ising model of two different
sizes. We see here estimation of the correction factor, logZ(λ), evaluated at different λ for a varying number
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of samples (drawn i.i.d. from the mean-field distribution built based on the fractional nodal beliefs). We
observe that the estimate stops to change with increase in the number of samples, once a sufficient number
of samples, Mc, is drawn. We estimate that Mc grows with N as O(N4) or slower.

Fig. (11), mentioned in Section 5.6, shows results for the mixed case when the pair-wise interaction can vary
in sign from edge to edge. In this mixed case, as seen in the presented examples, we can not guarantee that
BP provides a lower bound on the partition function, and thus λ∗ may or may not be identified within the
[0, 1] interval.
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Figure 5: The case of the Ising Model with non-zero magnetic field and random interaction, h, J ∼ U(0, 1)
over 3× 3 planar grid. We show (a) fractional log-partition function (minus fractional free energy) - on the
left- and the respective correction factor Z̃(λ) – on the right vs the fractional parameter, λ; (b) the first order
derivative – on the left – and second order derivative – on the right – vs λ.
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Figure 6: The case of the Ising Model with zero magnetic field and random interaction, J ∼ U(0, 1) over
3× 3 planar grid. Further details are identical to used in Fig. (5).
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Figure 7: The case of the Ising Model with non-zero magnetic field and random interaction, h, J ∼ U(0, 1)
over K9 complete graph. Further details are identical to used in Fig. (5).
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Figure 8: The case of the Ising Model with zero magnetic field and random interaction, J ∼ U(0, 1) over K9
complete graph. Further details are identical to used in Fig. (5).
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Figure 9: F (λ) vs λ for a number of instances (shown in different colors) drawn for the Ising model ensembles
over, (a) 3 × 3 grid, and (b) K9 graph, where elements of J and h are i.i.d. from U(0, 1). Circles mark
respective exact values, λ∗.
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Figure 10: Dependence of the sample-based estimate of Z̃(λ) on the number of samples in the case of
attractive Ising model over (a) 3× 3, and (b) 6× 6 grids, where elements of J and h are drawn i.i.d. from
U [0, 1]. Different colors correspond to different values of λ.
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Figure 11: Two different random instance of 4× 4 Isisng Model with (a) J ∼ U(−1, 1) and h ∼ U(−1, 1) (b)
J ∼ U(−1, 1), h = 0. Dashed line show exact value of partition functions for the corresponding curve.
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