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ABSTRACT

Data assimilation techniques are crucial for accurately tracking complex dynamical
systems by integrating observational data with numerical forecasts. Recently, score-
based data assimilation methods emerged as powerful tools for high-dimensional
and nonlinear data assimilation. However, these methods still incur substantial
computational costs due to the need for expensive forward simulations. In this
work, we propose LD-EnSF, a novel score-based data assimilation method that
fully eliminates the need for full-space simulations by evolving dynamics directly
in a compact latent space. Our method incorporates improved Latent Dynamics
Networks (LDNets) to learn accurate surrogate dynamics and introduces a history-
aware LSTM encoder to effectively process sparse and irregular observations. By
operating entirely in the latent space, LD-EnSF achieves speedups orders of magni-
tude over existing methods while maintaining high accuracy and robustness. We
demonstrate the effectiveness of LD-EnSF on several challenging high-dimensional
benchmarks with highly sparse (in both space and time) and noisy observations.

1 INTRODUCTION

Data assimilation (DA) (Sanz-Alonso et al., 2023) plays a central role in improving simulation
accuracy for complex physical systems by integrating observational data into numerical models. It
has been extensively applied in real-world domains such as weather forecasting (Schneider et al.,
2022), computational fluid dynamics (Carlberg et al., 2019), and sea ice modeling (Zuo et al., 2021),
where systems exhibit intricate interactions and uncertainties. Classical Bayesian filtering methods,
such as the Kalman Filter (Kalman, 1960), Ensemble Kalman Filter (EnKF) (Evensen, 1994) and
particle filters (Künsch, 2013), are widely used due to their computational efficiency. Variants such
as the Local Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007) and adaptive sampling
methods (Bishop et al., 2001) further extend the applicability of EnKF. However, standard EnKFs find
it challenging to handle high-dimensional and nonlinear systems due to the quadratic complexity in
dimensionality and linearized posterior assumption. Variational methods like 4D-Var (Rabier & Liu,
2003) offer improved accuracy but require complex optimization with repeated forward simulations,
leading to high computational cost. Ensemble methods such as 4DEnVar (Desroziers et al., 2014)
learn linear tangent models to accelerate the optimization process, but the approximation gap can be
significant. Though data-driven methods such as Tensor-Var (Yang et al.) aim to accelerate the 4DVar
through kernelized representations, they still require solving complex optimization problems and
differentiating through multi-step dynamics, making direct application to high-dimensional systems
nontrivial.

To overcome these limitations, the Ensemble Score Filter (EnSF) (Bao et al., 2024b) has been
developed for high-dimensional and nonlinear data assimilation, offering linear complexity and
more accurate posterior approximation. Unlike EnKF, EnSF encodes probability densities via score
functions and generates samples by solving reverse-time stochastic differential equations (SDEs).
However, it performs poorly under sparse observations, where the likelihood gradient is zero in
the unobserved regions. Latent-EnSF (Si & Chen, 2025) addresses this issue by using Variational
Autoencoders (VAEs) (Kingma & Welling, 2014) to project both states and observations into a
shared latent space, where score-based filtering can be effectively applied. The latent representations
enable more informative gradients, thus mitigating the limitations of sparsity. After assimilation, the
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system dynamics are evolved in the original full space using existing simulation methods. While this
approach is flexible and model-agnostic, it remains computationally demanding due to the complexity
of propagating full-space dynamics, which limits its applications to real-time data assimilation and
resource-constrained settings.

Surrogate models, especially neural network-based approaches, offer a solution to this problem
(Rudy et al., 2017; Champion et al., 2019; Li et al., 2020; Floryan & Graham, 2022; Vlachas

et al., 2022; Bonev et al., 2023). These models aim to learn reduced representations of the system
and directly evolve the dynamics in a low-dimensional latent space, thereby avoiding repeated
calls to the original numerical simulator. Among these approaches, Latent Dynamics Networks
(LDNets) (Regazzoni et al., 2024) outperform traditional surrogate models by achieving higher
accuracy while using significantly fewer trainable parameters across several complex systems. It
jointly learns a smooth latent representation and its temporal evolution, without requiring a separate
encoder. Crucially, LDNets evolve latent states conditioned on system parameters (e.g., initial
conditions, system coefficients). This strong dependency means that inaccuracies in the parameters
can lead to significant prediction errors. Yet it also provides an opportunity: by integrating data
assimilation, these parameters can be estimated and corrected during inference, which makes them
particularly suitable for data assimilation.

Figure 1: The framework of the LD-EnSF method. Offline learning: In phase 1, the LDNet is
trained based on the dataset to capture the latent dynamics. In phase 2, an LSTM encoder is trained
to encode the observation history y1:t matching the latent variable st and parameter ut of the trained
LDNet at time t. Online deployment: at each assimilation time step, the LD-EnSF assimilates an
ensemble of prior latent pairs {st, ut} with LSTM encoded latent pairs (ŝt, ût). The posterior latent
states are then used to reconstruct the full states at arbitrary time and space points.

In this work, we aim to accelerate the assimilation process by avoiding costly forward propagation of
full dynamics, while addressing the limitation of EnSF with the sparse observations. We introduce
the Latent Dynamics Ensemble Score Filter (LD-EnSF), see Fig. 1 for its general framework. Our
approach leverages LDNets to model and preserve system dynamics within a very low-dimensional
latent space, where EnSF is applied. Furthermore, we incorporate a Long Short-Term Memory
(LSTM) (Hochreiter, 1997) encoder for mapping observations to the latent space, enabling the
efficient use of past observations, especially in scenarios with high observation sparsity. Our main
contributions are summarized as follows:

• We propose LD-EnSF, an enhanced data assimilation model developed upon the Latent-
EnSF for Bayesian filtering. We substitute the disconnected VAE and forward propagation
model for a more cohesive framework using LDNets as an improved surrogate model to
perform the assimilation process in a low-dimensional latent space, significantly reducing
the computational costs and enabling real-time data assimilation with large ensembles.
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• We advance LDNets with a novel initialization scheme, a two-stage training strategy, and im-
proved network architectures, enabling high accuracy and low-dimensional representations
of complex dynamics.

• We propose a new sparse observation encoder based on LSTM, designed to align both latent
states and system parameters from LDNets. This encoder effectively captures historical and
irregularly spaced observations, enabling accurate and robust joint data assimilation of states
and parameters.

• We demonstrate the superior accuracy, efficiency, and robustness of LD-EnSF through high-
dimensional data assimilation examples of increasing complexity, including Kolmogorov
flow, tsunami modeling, and atmospheric modeling, with extreme spatial and temporal
sparsity.

2 BACKGROUND

In this section, we introduce the basic concepts and problem setup for data assimilation in the context
of filtering, and present the ensemble score filter (EnSF) and its latent space variant, Latent-EnSF.

2.1 PROBLEM SETUP

We denote xt ∈ Rdx as a dx-dimensional state variable of a dynamical system at (discrete) time
t ∈ Z+, with initial state x0. Given the state xt−1 at time t− 1, with t = 1, 2, . . . , the evolution of
the state from t− 1 to t is modeled as

xt = F (xt−1, ut), (1)

where F : Rdx × Rdu → Rdx is a non-linear forward map, ut ∈ Rdu represents a du-dimensional
uncertain parameter. By yt ∈ Rdy we denote a dy-dimensional noisy observation data, given as

yt = H(xt) + γt, (2)

where H : Rdx → Rdy is the observation map, and γt represents the observation noise.

Due to the model inadequacies and input parameter uncertainties, the model of the dynamical system
in Eq. 1 may produce inaccurate predictions of the ground truth. The goal of data assimilation
is to find the best estimate, denoted by x̂t, of the ground truth, given the observation data y1:t =
(y1, y2, · · · , yt) up to time t. This requires us to compute the conditional probability density function
of the state, denoted as P (xt|y1:t), which is often non-Gaussian. In the Bayesian filtering framework
(Appendix A.1), data assimilation is formulated as a two-step process of prediction and update, where
accurately approximating the prior and posterior densities remains a challenge. This also extends to
inferring the uncertain input parameter ut, which remains a challenging task under sparse or noisy
observations.

2.2 ENSF AND LATENT-ENSF

Built on the recent advances in score-based sampling methods (Song et al., 2021), EnSF (Bao et al.,
2024b) draws samples from the posterior P (xt|y1:t) using its score ∇x logP (xt|y1:t) through Monte
Carlo integration for the prior score in the prediction step, and a damped likelihood score in the
update step; see details of the method and algorithm in Appendix A.2. EnSF utilizes the explicit
likelihood function and diffusion process to generate samples without assuming system linearity,
proving effective for nonlinear, high-dimensional systems like the Lorenz 96 model (Bao et al.,
2024b) and quasi-geostrophic dynamics (Bao et al., 2024a). However, its performance is significantly
hindered in sparse observation scenarios, where the score of the likelihood function vanishes in
unobserved state components (Si & Chen, 2025).

To address the limitations of EnSF with sparse observations, Latent-EnSF (Si & Chen, 2025) performs
data assimilation in a shared latent space, where both states xt and observations yt are encoded using
a coupled variational autoencoder (VAE). The VAE, comprising a state encoder Estate, an observation
encoder Eobs, and a decoder D, is trained to minimize a loss function balancing state-observation
consistency, reconstruction errors, and latent distribution regularization. After training, Latent-EnSF
applies EnSF in the latent space using encoded states Estate(xt) and observations Eobs(yt). Assimilated
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latent samples are decoded into the full state space and propagated via the dynamical model in Eq. 1.
This method mitigates the vanishing score issue faced by EnSF for sparse observations and achieves
high accuracy even under extreme sparsity, where the vanilla EnSF fails, such as using only 0.44% of
state components for a shallow water wave propagation problem.

While Latent-EnSF improves sampling efficiency over the vanilla EnSF, its forward evolution still
requires numerical propagation of the full dynamical system, which is computationally prohibitive
for large-scale and real-time applications. Moreover, Latent-EnSF’s latent states exhibit oscillatory
and non-smooth behavior, making it challenging to construct a stable dynamical model in the latent
space approximating complex physical dynamics. These challenges motivate the method we develop
in this work.

3 METHODOLOGY

In this section, we present LD-EnSF, a fast, robust, and accurate data assimilation method that
avoids using full-model dynamics during assimilation. It accomplishes this by learning a latent
representation of the system state via LDNets and effectively incorporating sparse observations
using an LSTM encoder, which extends the VAE encoder in Latent-EnSF not only from current
observations to historical observations but also from regular spatial sparsity to irregular sparsity.

3.1 LATENT DYNAMICS NETWORK

Latent Dynamics Network (LDNet) (Regazzoni et al., 2024) has been demonstrated as one of the
most capable methods in capturing low-dimensional representations of many complex dynamics. The
architecture consists of a dynamics network Fθ1 , which evolves the latent state st, and a reconstruction
network Rθ2 , which maps latent states back to the full state space at any spatial point.

To extend and improve LDNet for learning more complex dynamics with varying initial conditions in
the context of data assimilation, we propose three new variants: (1) shifting initial latent state, (2)
two-stage training and fine-tuning, and (3) a new architecture of the reconstruction net.

The dynamics network Fθ1 , as shown in Fig. 1 offline learning phase 1, takes the latent state
st−1 ∈ Rds and parameter ut as inputs and outputs the time derivative of st−1:

ṡt−1 = Fθ1(st−1, ut), t = 0, 1, 2, . . . . (3)

The latent state st is updated from the one-step forward Euler scheme as follows:

st = st−1 +∆t ṡt−1, t = 0, 1, 2, . . . , (4)

where ∆t is the time step, set as ∆t = T/n for n steps. Unlike (Regazzoni et al., 2024), we initialize
the latent state as s−1 = 0 instead of s0 = 0 to accommodate varying initial conditions.

The reconstruction network Rθ2 , also shown in Fig. 1, reconstructs from the latent state st an
approximate full state x̃(t, ξ) at any spatial query point ξ ∈ Ω in domain Ω as:

x̃(t, ξ) = Rθ2(st, ξ), t = 0, 1, 2, . . . .

To train the LDNet, we propose a two-stage training strategy. First, we jointly train both the dynamics
network and the reconstruction network by minimizing the loss:

L(θ1, θ2) =
1

NMn

N∑
j=1

∑
t

∑
ξ

∥x̃j(t, ξ)− xj(t, ξ)∥2 , (5)

where {xj}Nj=1 are N trajectories, and M is the number of spatial points ξ in each trajectory. In the
second stage, we fine-tune the reconstruction network Rθ2 with fixed latent representations from the
dynamics network, effectively reducing reconstruction errors. This novel training strategy ensures
accurate and efficient modeling of both the latent dynamics and the full state reconstruction.

Moreover, to enhance the reconstruction power for more complex dynamics, we propose to employ
a ResNet-based architecture (He et al., 2016) and integrate Fourier encoding (Tancik et al., 2020;
Qiu et al., 2024; Salvador & Marsden, 2024) to better capture high-frequency spatial components,
defined as ξ 7→ [cosBξ, sinBξ], where B ∈ Rm×dξ is a trainable parameter matrix, and m is the
hyperparameter controlling the dimensionality of the encoding.
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3.2 OBSERVATION ENCODING

To map the observations into the learned latent space, we propose training a separate observation
encoder employing LSTM (Hochreiter, 1997) to address the challenge of encoding sparse and
noisy observations. In contrast to the VAE encoder used in Latent-EnSF, which constructs latent
representations of the sparse observations at step t, the LSTM encoder leverages temporal correlations
in sequential observations y1:t, effectively learning a nonlinear time-delay embedding (Noakes, 1991;
Takens, 2006). In addition, while the VAE in Latent-EnSF can only handle observations on a regular
grid, the LSTM encoder is capable of effectively handling observations at random/irregular locations.

As shown in Fig. 1, the LSTM encoder, denoted as Eθ3 : Rdy×t → Rdu+ds , is parameterized by
trainable parameters θ3, with input of the historical observations y1:t up to time t. The output of the
LSTM network is a pair of the approximate latent state ŝt ∈ Rds and parameter ût ∈ Rdu :

(ŝt, ût) = Eθ3(y1:t), (6)

where yt = H(xt) is the noiseless sparse observation at time t. This encoder facilitates the assimila-
tion of not only the state as in Latent-EnSF but also the parameter ut.

To train the LSTM encoder, we minimize the following loss:

L(θ3) =
1

Nn

N∑
j=1

∑
t

(∥∥∥ŝ(j)t − s
(j)
t

∥∥∥2 + ∥∥∥û(j)
t − u

(j)
t

∥∥∥2) , (7)

where the N trajectories are sampled from the LDNet training data, with st provided by the trained
LDNet. This loss enforces the alignment between the encoded observations and the corresponding
latent states and parameters, enabling additional parameter estimation during data assimilation. While
proper weighting between these two terms can be explored, we found that common normalization or
standardization of the states and parameters to similar ranges works well without weighting.

3.3 LD-ENSF: LATENT DYNAMICS ENSEMBLE SCORE FILTER

After training LDNet and LSTM offline, we integrate EnSF to perform data assimilation in the latent
space, as illustrated in the online deployment phase in Fig. 1. Let κt = (st, ut) denote the augmented
latent state. The corresponding latent observation encoded by the LSTM network Eq. 6 is given by
ϕt = (ŝt, ût). The latent observation data can be approximately modeled as

ϕt = Hlatent(κt) + γ̂t, (8)

where we take the identity map Hlatent(κt) = κt and estimate latent observation noise γ̂t via LSTM
encoding of the true observation noise γt from Eq. 2, as detailed in Appendix E.1. To this end, the
Bayesian filtering problem in latent space is formulated in two steps. In the prediction step, we have

P (κt|ϕ1:t−1) =

∫
P (κt|κt−1)P (κt−1|ϕ1:t−1)dκt−1, (9)

with the transition probability P (κt|κt−1) derived from the latent dynamics in Eqs. 3 and 4, where
we draw samples of ut from the empirical posterior of ut−1. In the update step, we have

P (κt|ϕ1:t) ∝ P (ϕt|κt)P (κt|ϕ1:t−1), (10)

with the likelihood function P (ϕt|κt) defined through the latent observation model (Eq. 8). We
can then employ EnSF to solve this Bayesian filtering problem in the latent space, with the latent
dynamics (LD) evolved as a surrogate of the full dynamics. We present one step of the LD-EnSF in
Algorithm 1.
As shown in Fig.1, the assimilation process runs entirely in the latent space, removing the need to map
back to the full state space during assimilation. Once latent states are obtained, the reconstruction
network can be used to recover the full system state at any desired spatial location. Moreover, the
smoothness of the latent trajectories, as we will show in our experiments in Section 4.1, enables
accurate interpolation in time, allowing the full state to be evaluated at any continuous time point.
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Algorithm 1 One step of LD-EnSF
Input: Ensemble of the latent states and parameters {κt−1} from distribution P (κt−1|ϕ1:t−1) and
the observations y1:t. Dynamics network Fθ1 , observation encoder Eθ3 .
Output: Ensemble of the latent states and parameters {κt} from posterior distribution P (κt|ϕ1:t).

1: Simulate the latent dynamics in Equations 3 and 4 from the ensemble of samples {κt−1} to
obtain samples {κt} following P (κt|ϕ1:t−1), where we draw samples of {ut} based on {ut−1}.

2: Encode the historical observations by the LSTM network as ϕt = Eθ3(y1:t).
3: Draw an ensemble of random samples {κt,1} from the standard normal distribution N(0, I).
4: Run the reverse-time SDE of EnSF from each κt,1 to obtain the posterior sample κt = κt,0.

4 EXPERIMENTS

We consider three experimental examples: (1) a chaotic system modeled by Kolmogorov flow with
uncertain viscosity, (2) shallow water wave propagation in tsunami modeling with uncertain initial
conditions (for earthquake locations), and (3) forced hyperviscous rotation on a sphere with earth-like
topography in atmospheric modeling with uncertain forcing term. Below, we briefly present these
problems, with detailed equations and the setup for data generation provided in the Appendix B.

Kolmogorov flow. Kolmogorov flow is a canonical turbulent system driven by a sinusodal body force,
parameterized by an uncertain Reynolds number Re (Kochkov et al., 2021). The spatial resolution
is set as 150× 150. We burn in for 100 time steps, then simulate 200 time steps with a step size of
δt = 0.04. Observations are provided every 5 steps on a regular 10× 10 grid (0.44% of the domain)
and on 100 randomly placed points for evaluating LD-EnSF, resulting in 40 assimilation steps.

Tsunami modeling. We use simplified shallow water equations for tsunami modeling, where the
initial condition is specified as a Gaussian bump randomly placed in the spatial domain, following the
setup in Si & Chen (2025). For the simulation, we discretize the spatial domain into a uniform grid
of 150× 150. The simulation is carried out over 2, 000 time steps with a time step size of δt ≈ 21
seconds. Observation data are provided on a regular 10× 10 grid (and 100 random/irregular points to
test LD-EnSF) for every 40 simulation steps, leading to 50 assimilation steps.

Atmospheric modeling. Adapted from planetswe example in the Well (Ohana et al., 2024). The
spatial resolution is set as 512 × 256. We simulate for half a year (21 days as we set 42 days for
a year), in total 504 hours for approximately 30,240 time steps with an adaptive time step size of
about δt ≈ 60 seconds, where the initial condition is derived from the 500 hPa pressure level of
the reanalysis dataset ERA5 (Hersbach et al., 2020). Observation data are provided on a regular
16× 8 grid for every 8 hours of simulation, leading to 63 assimilation steps, featuring extreme spatial
(∼0.1%) and temporal (∼0.2%) sparsity.

4.1 OFFLINE LEARNING OF LDNETS

LDNets are trained via hyperparameter search (Biewald, 2020) with latent states discretized at obser-
vation times. The hyperparameter selection and normalization method are detailed in Appendix C.1.
In current experimental settings, we use a static u(t). LDNet can also accommodate slowly vary-
ing u(t) without modification. If ut changes more drastically, then an explicit dynamical model
ut+1 = Fu(ut) would need to be learned in addition to the latent state dynamics. The test error of
LDNet as a surrogate model is reported in Table 1, compared with the VAE used in Latent-EnSF (Si &
Chen, 2025) with a Latent Diffusion Model (Rombach et al., 2022) architecture. For a fair comparison,
we also construct a latent dynamical model by integrating the VAE with an LSTM (referred to as
VAE-dyn), jointly trained to predict the latent state as Estate(xt+1) = LSTM(Estate(x0), . . . , Estate(xt)).
This setup allows the LSTM to propagate the initial latent state. As shown in Fig. 3, while the VAE
effectively learns latent representations of the full dynamics and achieves low reconstruction error
(with VAE-dyn exhibiting similar state reconstruction error), the LSTM in VAE-dyn fails to maintain
stable long-term latent predictions, leading to rapid accumulation of the reconstruction errors over
time. In contrast, our LDNet achieves the lowest approximation errors in all three examples. Note
the large errors of the original LDNet failing to capture the varying initial conditions in the tsunami
example while our improved LDNet accommodates this, and the much larger errors of the original
LDNet than ours for the Kolmogorov flow in capturing high-frequency dynamics.
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Table 1: Relative RMSE (averaged in time) for the
approximation of full dynamics by LDNet (original
vs ours), VAE reconstruction, and VAE-dyn (with
LSTM for latent dynamics).

Example VAE VAE-dyn LDNet (original) LDNet (ours)

Kolmogorov 0.0131 0.964 0.0349 0.0123
Tsunami 0.0309 1.33 0.1837 0.0168

Atmospheric 0.0856 0.483 0.1042 0.0656
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Figure 2: Smoother latent states of LDNet (left)
than those of VAE (right) for tsunami modeling.
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Figure 3: Relative RMSE for the full-state approximation by LDNet (original and ours), VAE
reconstruction, and VAE-dyn (with LSTM trained to predict the VAE latent dynamics).

Compared to the latent states of VAE, the latent states of LDNet are noticeably smoother, as shown in
Fig. 2 for the tsunami example, and in Fig. 6 in Appendix D for other examples. The smoother latent
states make it much easier for the latent observations (mapped from the sparse observations by an
observation encoder) to match the latent states. This can help to enhance the data assimilation accuracy
of the LDNet-based LD-EnSF compared to the VAE-based Latent-EnSF, supported by results in
Section 4.3. Moreover, the smooth latent states of LDNet facilitate accurate temporal interpolation,
allowing for the reconstruction of full states at arbitrary times besides those at observation times
(Fig. 7 in Appendix D).

4.2 OFFLINE LEARNING OF OBSERVATION ENCODER

After training LDNets, we generate a sequence of the latent states st in Eq. 4 for each input parameter
sequence ut by running the latent dynamical model (Eq. 3). The observation operator H is set as a
sparse sub-sampling matrix that selects the state values from grid points. The training data of the
observations at this stage do not include observation noise. Using single-layer LSTMs, we are able to
achieve an average test error of 0.07% for Kolmogorov flow, 0.5% for tsunami modeling, and 2.53%
for atmospheric modeling. Detailed training configurations are provided in Appendix C.1.

Irregular observations. For a fair comparison with the VAE encoder in Latent-EnSF, we use sparse
observations on equidistant grid points in the following experiments. However, our LSTM encoder
can also effectively handle arbitrarily located observations, which is crucial in practical applications.
In Appendix E.4, we provide robust and accurate assimilation results using the LSTM encoder with
100 irregularly sampled points for Kolmogorov and tsunami, and 128 for the atmospheric case.

4.3 ONLINE DEPLOYMENT OF LD-ENSF

To deploy the trained LDNets and LSTM encoder for online data assimilation, we initialize an
ensemble of 20 samples {s−1, u0}, each comprising a pair of the latent state s−1 = 0 and parameter
u0 during the assimilation. For the Kolmogorov flow, u0 represents the Reynolds number Re and
is randomly drawn from uniform distribution U([500, 1500]). For the tsunami modeling, u0 ∈
U([0, 0.5], [0, 0.5]) represents the coordinates of the local Gaussian bump for initial surface elevation,
which is randomly sampled in the upper-left quarter of the domain. In the atmospheric modeling
experiment, we define the time-dependent forcing using u0 ∈ U([0.1, 30], [1, 4]), where the two
components represent the amplitude h0

f and latitudinal spread σ of a seasonally and diurnally shifting
hotspot on the geopotential field. The assimilation process for the complex variation of the dynamics
is visualized in Appendix H.
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Figure 4: Relative RMSE with uncertainty estimate of the assimilation results for the three examples.
LETKF is not shown in the atmospheric modeling case due to divergence.

Comparison for assimilation accuracy. We compare the assimilation accuracy of EnSF, Latent-
EnSF (by VAE), Latent-EnSF-dyn (by VAE-dyn), LETKF (state-of-the-art variant of EnKF (Hunt
et al., 2007)), 4DEnVar (for tsunami modeling), and LD-EnSF with 10% observation noise for all
examples, as shown in Fig. 4. We can observe that the full space methods LETKF and especially
EnSF fail to assimilate highly sparse and noisy observations in the high-dimensional setting. In
particular, the EnSF fails due to noninformative gradients, which is resolved by the modifications
made in the latent space methods. Latent-EnSF-dyn, which uses VAE-dyn as surrogate forward model,
has decreased performance compared with Latent-EnS due to limited forecast accuracy. LD-EnSF
achieves the smallest assimilation errors, as also visualized in Fig. 5 for the atmospheric example at
the final assimilation step. For the extremely sparse observational data in this example, 0.1% data
in space and 0.2% in time, our LD-EnSF still preserves high assimilation accuracy with around 5%
relative RMSE for 10% observation noise, while LETKF gives rise to numerical instability issues (to
satisfy CFL condition) that stopped the assimilation early, which is not reported in the figure.
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Figure 5: Zonal wind velocity field at the 500 hPa pressure level from an atmospheric simulation with
a given forcing field. Top-left: ground truth; bottom-left: sparse observations. Remaining columns:
assimilation results (top) and corresponding errors (bottom) at the final time step.

Comparison of computational cost. We evaluate the computational efficiency of LD-EnSF compared
to the other methods. EnSF, Latent-EnSF, and LETKF all require simulating the full dynamics during
data assimilation, whereas LD-EnSF evolves only a surrogate latent dynamics. As shown in Table 2,
compared to the full dynamics used by other methods, evolving latent dynamics by LD-EnSF achieves
2× 105, 4× 103, and 5× 105 times speedup (Td) for the three examples. As LD-EnSF performs all
data assimilation steps in the latent space, it does not require transforming assimilated latent states
back to full states at each assimilation step. In contrast, Latent-EnSF reconstructs or decodes the
latent states to full states at every step, incurring additional reconstruction time (Tr). Additionally,
LDNet learns a much lower-dimensional latent representation, 10, 12, and 52 dimensions compared
to 400, 400, and 512 dimensions in Latent-EnSF, which further reduces the assimilation time (Tf ).
Meanwhile, LETKF incurs significantly higher computational costs due to its assimilation process.
The high efficiency of LD-EnSF not only enables real-time data assimilation and the use of larger
ensembles to capture extreme events, but also provides increasing advantages in online cost as the
number of assimilation cycles grows. A detailed comparison of online gains versus offline cost is
given in Appendix C.2.
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Table 2: Comparison in wall-clock runtime in seconds. We denote the time for evolution of the
dynamics as Td, the time for data assimilation as Tf , and the time for reconstructing the full state from
the latent state as Tr (only needed at the last time step for LD-EnSF). The assimilation dimension is
denoted as Ds. All results are for the full trajectories of an ensemble of 100 samples. The device is
AMD 7543 CPU by default (64 processors for parallel simulation in atmospheric modeling), unless
GPU (a single NVIDIA RTX A6000 GPU) is specified.

Example Kolmogorov Flow Tsunami Modeling Atmospheric Modeling

Metric LETKF EnSF Latent-EnSF LD-EnSF LETKF EnSF Latent-EnSF LD-EnSF LETKF EnSF Latent-EnSF LD-EnSF

Td (s) 10, 829 10, 829 10, 829 0.049 211.30 211.30 211.30 0.050 35, 603 35, 603 35, 603 0.070
Tf (s) 12, 729 40.13 0.71 0.35 10, 440 83.86 0.66 0.37 69, 820 27.36 2.42 1.42

Tr (GPU) (s) – – 6.86 0.0018 – – 5.11 0.0014 – – 35.08 0.017
dimension Ds 45, 000 45, 000 400 10 67, 500 67, 500 400 12 393, 216 393, 216 512 52

Robustness and sensitivity of LD-EnSF. Note that we construct the LSTM encoder without ob-
servation noise. To assess the robustness of LD-EnSF to the observation noise, we perform data
assimilation with varying noise levels (no noise, 5%, 10%, and 20%) for all examples. The relative
RMSE of assimilated full states, parameters, and latent states is shown in Appendix E.5. While the
assimilation errors increase with noise, the increase remains modest, and the errors drop significantly
in the initial phase. This demonstrates the robustness of LD-EnSF, achieving high accuracy for both
the states and the parameters (averaged over 20 experiments) despite highly sparse and noisy observa-
tions. In addition, we examine the effect of non-Gaussian and heteroskedastic noise in Appendix E.2,
and evaluate out-of-distribution generalization in Appendix E.3. Sensitivity and stability analyses
with respect to latent dimension, ensemble size, and observation sparsity are presented in Appendix F.

Additional ablation studies. We present additional ablations in Appendix G, systematically evaluat-
ing the architectural choices of LDNet surrogate and observation encoder, their training strategies,
and the impact of their integrated latent-space assimilation. These results isolate each component’s
contribution and provide concrete support for the design choices in LD-EnSF.

5 RELATED WORK

Score-based data assimilation: Score-based methods have emerged as promising tools for nonlinear
data assimilation. Bao et al. (2024b) introduced a filter that integrates diffusion models into Bayesian
filtering for state estimation, while Bao et al. (2024a) proposed a training-free ensemble score
estimation method that has been successfully applied to geophysical systems. Rozet & Louppe
(2023) used conditional score-based generative models to reconstruct entire trajectories; however,
these smoothing approaches assume access to future observations and thus differ from the real-time
filtering required in practical scenarios, where only past and present data are available. Chen et al.
(2025) extended Rozet & Louppe (2023) by incorporating stochastic interpolants and adapting the
framework for filtering. However, their surrogate model relies solely on score-based predictions, and
their dynamics are propagated in the full state space, resulting in significantly higher computational
costs compared to latent-space approaches. Huang et al. (2024) proposed a conditional generation
method, but its performance degrades after several assimilation steps, with a simple interpolation
baseline outperforming it, indicating limitations in handling states that deviate substantially from the
training distribution. They also rely on expensive score-function training and full-state generative
modeling, contrasting with the training-free EnSF that we utilize. More recent work includes the
state-observation augmented diffusion (SOAD) model Li et al. (2024c) and sequential Langevin
sampling Ding et al. (2024), both of which require expensive training of the score function and differ
from the training-free EnSF that we build upon in this work.

Latent space assimilation: Latent space methods have been shown to improve both the accuracy
and efficiency of data assimilation (Peyron et al., 2021; Bachlechner et al., 2021; Penny et al., 2022;
Pawar & San, 2022; Cheng et al., 2023; Mücke et al., 2024). For instance, Chen et al. (2023)
integrated Feedforward Neural Networks (FNN) with the EnKF to model latent dynamics, while
Li et al. (2024b) proposed using Spherical Implicit Neural Representations (SINR) and Neural
ODEs Chen et al. (2018) with EnKF. These approaches mainly focus on Kalman-based filtering,
while our work takes a different direction. We extend score-based EnSF to handle sparse observations
by introducing a new LSTM observation encoder, while maintaining high computational efficiency
through latent-space assimilation with LDNets. Deep Bayesian filtering (DBF) Tarumi et al. (2024)
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also performs filtering in a learned latent space, but unlike LD-EnSF it trains an end-to-end generative
model with linear latent transitions and a Gaussian inverse observation operator, rather than pairing
a learned surrogate with a training-free EnSF update. Meanwhile, Frion et al. (2024) performs DA
with a learned Koopman prior, and Singh et al. (2024b) links a Koopman-style latent evolution with
an online DA loop. Similar to LD-EnSF, these method also operate in a compressed latent space.

Deep learning and data assimilation: A growing line of work integrates deep learning with data
assimilation to improve forecasting. Gottwald & Reich (2021) couples delay-coordinate surrogate
modeling with EnKF. Singh et al. (2024a) introduces a recursive operator framework for semilinear
PDEs that supports both forecasting and DA. In parallel, several learned 4D-Var systems extend
classical variational DA. Examples include Tensor-Var (Yang et al.), 4DVarNets (Fablet et al., 2023;
Beauchamp et al., 2023b),their ensemble and uncertainty-aware variants (Beauchamp et al., 2023a),
fast attention-based DA surrogates (Wang et al., 2024), and large-scale hybrids (Li et al., 2024a).

6 CONCLUSION AND FUTURE WORK

In this work, we developed LD-EnSF, a robust, efficient, and accurate method for high-dimensional
Bayesian data assimilation in large-scale dynamical systems with sparse and noisy observations.
By integrating LDNets with improved initialization, training, and architectures, and LSTM-based
historical observation encoding, LD-EnSF achieves a smooth, low-dimensional latent representation
while enabling fast latent-space dynamics evolution and joint assimilation of state variables and
system parameters. Numerical experiments on three challenging examples demonstrated its superior
accuracy and efficiency compared to LETKF, EnSF and Latent-EnSF.

For more complex uncertain system parameters, such as high-dimensional stochastic processes and
spatially varying random fields, future work should explore effective strategies for encoding these
into low-dimensional latent representations. For more complex dynamical systems that are difficult to
capture with latent dynamics over long time horizons, our framework could be extended by iteratively
applying LD-EnSF over shorter intervals, with the latent model adaptively retrained at each stage.
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A ADDITIONAL BACKGROUND

A.1 BAYESIAN FILTER FRAMEWORK

In Bayesian filter framework (Dore et al., 2009), the data assimilation problem becomes evolving
P (xt−1|y1:t−1) to P (xt|y1:t) from time t−1 to t. This includes two steps, a prediction step followed
by an update step. In the prediction step, we predict the density of xt, denoted as P (xt|y1:t−1), from
P (xt−1|y1:t−1) and the forward evolution of the dynamical model in Eq. 1 as

P (xt|y1:t−1) =

∫
P (xt|xt−1)P (xt−1|y1:t−1)dxt−1, (11)

where P (xt|xt−1) represents a transition probability. In the update step, given the new observa-
tion data yt, the prior density P (xt|y1:t−1) from the prediction is updated to the posterior density
P (xt|y1:t) by Bayes’ rule as

P (xt|y1:t) =
1

Z
P (yt|xt)P (xt|y1:t−1). (12)

Here, P (yt|xt) is the likelihood function of the observation data yt determined by the obser-
vation model in Eq. 2, Z is the model evidence or the normalization constant given as Z =∫
P (yt|xt)P (xt|y1:t−1)dxt, which is often intractable to compute.

A.2 ENSEMBLE SCORE FILTER

A comparison between previous score-based assimilation methods and our LD-EnSF is shown in
Table 3.

Table 3: Comparison of EnSF, Latent-EnSF, and LD-EnSF.

Methods Sparse Observations Dynamics

EnSF ✗ ✗
Latent-EnSF ✓ ✗

LD-EnSF ✓ ✓

In EnSF, at given physical time t, we define a pseudo diffusion time τ ∈ T = [0, 1], at which we
progress

dxt,τ = f(xt,τ , τ)dτ + g(τ)dW, (13)
driven by a dx-dimensional Wiener process W . Here we use xt,τ to indicate the state at physical time
t and diffusion time τ . The drift term f(xt,τ , τ) and the diffusion term g(τ) are chosen as

f(xt,τ , τ) =
d logατ

dτ
xt,τ , g

2(τ) =
dβ2

τ

dτ
− 2

d logατ

dτ
β2
τ , (14)

with ατ = 1− τ(1− ϵα) and β2
τ = τ , where ϵα is a small positive parameter to avoid d logατ/dτ

being not defined at τ = 1, e.g., ϵα = 0.01 as in our experiments. This choice leads to the conditional
Gaussian distribution

xt,τ |xt,0 ∼ N (ατxt,0, β
2
τ I), (15)

which gradually transforms the data distribution taken as xt,0 = xt ∼ P (xt|y1:t) at τ = 0 close to a
standard normal distribution at τ = 1. This transformation process can be reversed by progressing an
SDE from τ = 1 to τ = 0 as

dxt,τ = [f(xt,τ , τ)− g2(τ)∇x logP (xt,τ |y1:t)]dτ + g(τ)dW̄ , (16)

where W̄ is another Wiener process independent of W , and ∇x logP (xt,τ |y1:t) is the score of the
density P (xt,τ |y1:t) with the gradient ∇x taken with respect to xt,τ . By this formulation, xt,τ follows
the same distribution with density P (xt,τ |y1:t) in the forward and reverse-time SDEs.

To compute the score ∇x logP (xt,τ |y1:t) in Eq. 16, EnSF (Bao et al., 2024b) uses

∇x logP (xt,τ |y1:t) =∇x logP (xt,τ |y1:t−1)

+ h(τ)∇x logP (yt|xt,τ ), (17)
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where the damping function h(τ) = 1−τ is chosen to monotonically decrease in [0, 1], with h(1) = 0
and h(0) = 1. The likelihood function P (yt|xt,τ ) in the second term can be explicitly derived from
the observation map Eq. 2. The first term can be approximated using Monte Carlo approximation,
with samples drawn from distribution P (xt,0|y1:t−1).

With the score function ∇x logP (xt,τ |y1:t) evaluated as in Eq. 17, the samples from the target
distribution P (xt|y1:t) can be generated by first drawing samples from N (0, I) and then solving the
reverse-time SDE Equation 16 using, e.g., Euler-Maruyama scheme. The workflow for a single-step
data assimilation using EnSF is summarized in Algorithm 2 in Appendix A.2.

The algorithm of EnSF is presented in Algorithm 2, where state samples are evolved forward
according to the physical model, and then refined via score-based sampling in the reverse-time
process.

Algorithm 2 One step of EnSF
Input: Ensemble of the states {xt−1} from distribution P (xt−1|y1:t−1) and new observation yt.
Output: Ensemble of the states {xt} from distribution P (xt|y1:t).

1: Simulate the forward model in Equation 1 from {xt−1} to obtain samples {xt,0} following
P (xt|y1:t−1).

2: Generate random samples {xt,1} from standard normal distribution N(0, I).
3: Solve the reverse-time SDE in Equation 16 starting from samples {xt,1} using the score in

Equation 17 to obtain {xt}.

B DETAILS OF EXPERIMENTS SETTINGS

B.1 TSUNAMI MODELING

We consider tsunami modeling, which are widely used to model the propagation of shallow water
where the vertical depth of the water is much smaller than the horizontal scale. These equations
are frequently applied in oceanographic and atmospheric fluid dynamics. In this study, we adopt a
simplified form of the tsunami modeling:

dv

dt
= −fk× v − g∇η,

dη

dt
= −∇ · ((η +H)v),

(18)

where v is the two-dimensional velocity field, and η represents the surface elevation. Both v and
η constitute the system states to be assimilated. Here, H = 100m denotes the mean depth of the
fluid, f is the full latitude varying Coriolis parameter, and g is the constant representing gravitational
acceleration. k refers to the unit vector in the vertical direction. We define a two-dimensional domain
of size L × L, where L = 106m in each direction. The initial condition is a displacement of the
surface elevation modeled by a Gaussian bump with its center randomly and uniformly distributed in
the lower-left quarter of the domain. The boundary conditions are set such that v = 0. Over time,
the wave dynamics become increasingly complex due to reflections at the boundaries. The spatial
domain is discretized into a uniform grid of 150 × 150, following the setup in (Si & Chen, 2025).
The simulation is carried out over 2000 time steps using an upwind scheme with a time step size of
δt ≈ 21 seconds. Including the initial condition, the dataset comprises 2001 time steps. We generate
200 trajectories, dividing them into training (60%), validation (20%), and evaluation (20%) sets.

B.2 KOLMOGOROV FLOW

In the second example, we consider the Kolmogorov flow with an uncertain Reynolds number, a
parametric family of statistically stationary turbulent flows driven by body force. This incompressible
fluid is governed by the Navier-Stokes equation (Kochkov et al., 2021):

dv

dt
= −v · ∇v +

1

Re
∇2v − 1

ρ
∇p+ f ,

∇ · v = 0,

(19)
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where the external forcing term f is defined as f = sin(4ξ2)ξ̂1 − 0.1v, where ξ = (ξ1, ξ2) is the
spatial coordinate, ξ̂1 = (1, 0), v is the velocity field, p is the pressure field, and ρ = 1 denotes the
fluid density. The fluid velocity v is the state variable to be assimilated. The spatial domain is defined
as [0, 2π]2 with periodic boundary conditions and a fixed initial condition. The flow complexity is
controlled by the Reynolds number Re. The spatial resolution is set as 150 × 150. We simulate
the flow over 300 time steps with a step size of δt = 0.04 and take the data from time steps 100 to
300. A total of 200 trajectories are generated, with the Reynolds number (Re) randomly sampled
from the range [500, 1500]. These trajectories are divided into training (60%), validation (20%), and
evaluation (20%) sets.

B.3 ATMOSPHERIC MODELING

In the third example, we model the atmosphere by adopting the PlanetSWE formulation from (Ohana
et al., 2024). This system serves as a simplified approximation of the primitive equations used in
atmospheric modeling at a single pressure level.

∂v

∂t
= −v · ∇v − g∇h− ν∇4v − 2Ω× v,

∂h

∂t
= −H∇ · v −∇ · (hv)− ν∇4h+ F,

where v is the two-dimensional velocity field, h denotes the deviation of the pressure surface height
from the mean H , and Ω represents the Coriolis parameter. The term ∇4 denotes hyperviscosity. The
initial conditions are derived from the 500 hPa pressure level in the ERA5 reanalysis dataset. F is an
external forcing term that introduces both daily and annual seasonality.

ϕc(t) = 2π · t

day
,

θc(t) = sin

(
2π · t

year

)
· θmax,

F (ϕ, θ, t) = h0
f · cos(ϕ− ϕc(t)) · exp

(
− (θ − θc(t))

2

σ2

)
,

where ϕ and θ denote longitude and latitude, respectively; t is the simulation time; h0
f is the forcing

amplitude; ϕc(t) and θc(t) represent the seasonally shifting longitude and latitude centers of the
forcing. θmax = 0.4 is the maximum latitudinal declination; σ = π/2 controls the latitudinal spread
of the forcing; day and year are time scale constants corresponding to a daily and annual cycle. This
dataset defines a 42-day year to increase simulation complexity. In our setting, we simulate a half-year
period (21 days), with snapshots selected every 8 hours, resulting in a total of 63 time steps, with
a spatial resolution of 512× 256. A total of 200 trajectories are generated by sampling the forcing
amplitude h0

f ∼ U [0.1, 30] and the latitudinal spread parameter σ ∼ U [1, 4]. These trajectories are
split into training (60%), validation (20%), and evaluation (20%) sets.

C TRAINING DETAILS

C.1 HYPERPARAMETER CHOICE

Normalization. Prior to training, we normalize the data following the approach of (Regazzoni et al.,
2024). For bounded data, we scale variables, including the parameter u, the space coordinate ξ, and
the state variable x, to the range [−1, 1]. For unbounded data, we standardize the variables to zero
mean and unit variance. The time step ∆t in Eq. 4 is treated as a hyperparameter during training.

To determine the optimal hyperparameter choices for LDNets in our examples, we automate the
hyperparameter search using Bayesian optimization (Biewald, 2020). The range of hyperparameters
considered is listed in Table 4. The “downsample time steps" refers to the number of time steps
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sampled from the original dataset. Meanwhile, “∆t normalize" is a constant used to scale the time
step ∆t during latent state evolution. It serves as a practical tool to ensure numerical stability and
adjust the effective temporal scale of the latent dynamics, rather than representing a physical time
unit. The details of further training and optimized hyperparameters are shown in Table 5. When
fine-tuning the reconstruction network, we set the number of epochs to 1000 and the learning rate to
10−4. We also present the training parameters of LSTM encoder in Table 6.

Table 4: Hyperparameter search range for LDNets training

Dataset

Tsunami modeling Kolmogorov flow Atmospheric modeling

Downsampled time steps 20− 50 20− 50 25− 63
∆t 0.03− 0.05 0.04 0.04− 0.05

Num of latent states 8− 20 2− 15 10− 100
Dynamics net depth

5− 10
width

10− 200

depth
2− 15

width
20− 200

depth
5− 10

width
100− 200

Reconstruction net depth
5− 12

width
100− 400

depth
2− 15

width
20− 700

depth
8− 15

width
300− 500

Fourier embedding dim 0− 50 0− 50 10− 100
StepLR (gamma) 0.1− 0.8 0.1− 0.9 0.1− 0.7

Batch size 2− 16 2− 16 1− 4

Table 5: Training details for LDNets

Dataset

Tsunami modeling Kolmogorov flow Atmospheric modeling

Downsample time step 50 40 63
∆t 0.036 0.04 0.04

Space points 5000 5000 10000
Dynamics net MLP

8 hidden layers
50 hidden dim
ReLU

MLP
9 hidden layers
200 hidden dim
ReLU

MLP
8 hidden layers
200 hidden dim
ReLU

Reconstruction net MLP
10 hidden layers
300 hidden dim
ReLU

MLP
14 hidden layers
500 hidden dim
ReLU

MLP
15 hidden layers
500 hidden dim
ReLU

Fourier embedding dim – 10
Initialization Glorot normal Glorot normal

Adam (lr) 10−3 10−3 10−3

StepLR (gamma, step size) (0.6, 200) (0.7, 200) (0.6, 200)
Batch size 2 6 2

Epoch 2000 2000 2000
Loss MSE MSE MSE

C.2 OFFLINE COST VS. ONLINE GAIN

Training of LDNets takes 12.08 hours for Kolmogorov flow, 10.76 hours for the tsunami modeling,
and 21.86 hours for atmospheric modeling on a single NVIDIA RTX A6000 GPU. The training
process can be further accelerated by utilizing multiple GPUs, and further code optimization may
improve efficiency and reduce computational costs.

Although LD-EnSF incurs a higher initial training cost, this cost is quickly offset due to its signifi-
cantly lower per-cycle assimilation cost. Based on a practical cost breakdown, LD-EnSF becomes
more computationally efficient than Latent-EnSF when the ensemble size exceeds 100 in a single
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Table 6: Training details for LSTM encoder

Dataset

Tsunami modeling Kolmogorov flow Atmospheric modeling

Hidden layers 1 1 1
Hidden dim 256 128 512
Initialization Glorot normal Glorot normal Glorot normal

Adam (lr) 10−3 0.002 10−4

CosineAnnealingLR (Tmax, eta min) – (5000, 10−4) (5000, 10−4)
Epoch 20000 75000 75000

Dropout 0.1 0 0

assimilation cycle. To quantify this, we use the following total cost formulation for n assimilation
cycles. (Tf , Tr, and Td in Table 2 are computed based on 100 trajectories):

Ttotal = Tdata + Ttraining +
n

100
(Tf + Tr + Td)

Take atmospheric modeling as an example. Combining the data in Table 2 and providing that
Tdata = 298 seconds, it is easy to see that when n > 100, LD-EnSF becomes more efficient than
other methods. At the same time, there are many scenarios where real-time assimilation is crucial.
For example, in tsunami modeling, we can spend time on offline training beforehand, but once a
tsunami occurs, we need predictions as quickly as possible for effective forecasting. In such cases,
LD-EnSF is about 4 × 103 times faster than Latent-EnSF and other methods during assimilation,
making it highly suitable for time-sensitive applications.

D SMOOTHNESS OF LATENT STATES

The comparison of VAE and LDNet latent space for Kolmogorov flow and atmospheric modeling is
shown in Fig. 6.
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Figure 6: Latent states of Kolmogorov flow and atmospheric modeling.

Due to the smoothness of LDNet latent space, the output can be evaluated at arbitrary continuous
time steps by interpolation. In the tsunami modeling, Fig. 7 reports the reconstruction error based on
these interpolated latent states, where the model is trained on 50 time steps sampled from a total of
2000 physical time steps. During testing, the latent trajectories are interpolated to 400 time steps for
reconstructing the full physical states.

E ROBUSTNESS TO NOISE AND DISTRIBUTION SHIFT

E.1 ESTIMATING THE UNCERTAINTY OF LATENT STATES

To estimate latent observation noise γ̂t, we first train the LSTM encoder using noise-free observations.
We then encode noisy observations and compare the resulting latent states to the reference latent
states obtained from a trained LDNet. γ̂t is then estimated as the standard deviation of the difference
between the noisy and reference latent states. Fig. 8 shows the estimated γ̂t, in which we assume a
uniform noise level across latent dimensions.
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Figure 7: Test error of reconstructing full physical states from interpolated latent states in tsunami
modeling.
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Figure 8: Estimated uncertainty in the latent space, measured as the standard deviation of the
difference between the encoded latent states (from noisy observations) and the true latent states
obtained from the trained LDNet.

E.2 NON-GAUSSIAN / HETEROSKEDASTIC NOISE

To evaluate the robustness of LD-EnSF under more realistic observation conditions, we conduct
experiments using several non-Gaussian and heteroskedastic noise models in the tsunami assimilation
task. All noise distributions are scaled to achieve a mean noise-to-signal ratio of approximately 10%.
Table 7 reports the assimilation error across these settings.

Table 7: Assimilation error under different observation noise models.

Noise Type Gaussian Nonstationary
Gaussian

Sinusoidal Het-
eroskedastic

Beta Multivariate
Gaussian

Assim. Error 0.053 0.086 0.061 0.072 0.064

The nonstationary Gaussian setting introduces a time-dependent mean that varies across assimilation
steps but is spatially uniform. The sinusoidal heteroskedastic setting applies temporally varying
Gaussian noise whose variance oscillates between 0% and 20% of the signal amplitude, following a
sine waveform. The Beta noise is sampled from a scaled Beta distribution (e.g., Beta(2, 5)), inducing
asymmetric, bounded perturbations. Finally, the multivariate Gaussian model introduces correlated
noise with covariance matrix Σ = AA⊤, where A contains i.i.d. standard normal entries.

Despite the increased variability and structural complexity of these noise models, LD-EnSF con-
sistently achieves low assimilation error, demonstrating robustness beyond the standard isotropic
Gaussian setting.

E.3 OUT-OF-DISTRIBUTION GENERALIZATION

While out-of-distribution (OOD) generalization is not the main focus of this work, it remains an
important consideration for real-world deployment. We evaluate the robustness of LDNet under
distribution shift by testing it on trajectories initialized with Gaussian bumps displaced outside the
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training region. We evaluate the OOD generalization of LDNet by testing it on trajectories whose
initial Gaussian bump lie outside the training region. Specifically, while training conditions are
sampled from [0, 0.5L]× [0, 0.5L], we test on locations such as [0.25L, 0.52L], [0.25L, 0.54L], etc.
(Table 8).

Table 8: LDNet test error under increasing displacement from the training region. The horizontal
axis indicates the center shift L of the initial Gaussian bump.

Distance to Train Region 0.02L 0.04L 0.06L 0.08L 0.10L

LDNet Error 0.0553 0.0720 0.0889 0.104 0.122

As expected, the error increases with distance from the training region, indicating a consistent
degradation under distribution shift. However, the extent of generalization is problem dependent. For
instance, the original LDNet paper (Regazzoni et al., 2024) demonstrates strong extrapolation in time
on unsteady Navier–Stokes flows.

E.4 UNSTRUCTURED OBSERVATIONS ASSIMILATION RESULTS UNDER NOISE

By leveraging the LSTM encoder, LD-EnSF can accommodate unstructured observations at arbitrary
locations. However, training a new LSTM is required for different sets of observation points. In
the following results, 100 observation points (0.44%) are randomly selected as the observation set.
Training the LSTM observation encoder to the observations with latent states using the hyperparameter
setting in Table 6 achieves a test relative RMSE of 0.094% for the Kolmogorov flow, 0.83% for the
tsunami modeling and 2.68% for atmospheric modeling. The visualizations are in Appendix H.

Under random observation settings, we present the assimilation results in Fig. 9. We conduct 20
experiments, each with a different ground-truth trajectory, and report the mean and uncertainty of our
method. The figure also includes results under different noise levels, demonstrating the robustness
of LD-EnSF. For the Kolmogorov flow and atmospheric modeling, since the data is normalized to
have a mean of 0 and a standard deviation of 1, Gaussian noise is applied with a standard deviation
proportional to the specified noise level, e.g., a standard deviation of 0.1 for 10% noise. For the
tsunami modeling, due to the long-tailed nature of the data distribution, Gaussian noise is added
adaptively based on the value at each observation point.

Note that Fig. 9 (bottom middle) shows the results of parameter estimation, where the purple line
corresponds to the no-assimilation baseline and exhibits high variance. It corresponds to the no-
assimilation baseline and reflects the prior distribution of the parameters before any data assimilation
is applied. The reported variance is computed across multiple test cases with different ground-truth
trajectories, and the wide spread of the purple curve reflects the variability in true parameter values
across these cases. This highlights the inherent difficulty of parameter estimation in the absence of
assimilation, particularly when the parameter is not directly observed and affects the system only
indirectly. In contrast, the assimilation results (depicted by the remaining curves) show substantially
reduced variance and lower mean errors. For instance, under 20% observation noise, the mean
estimation error is approximately 10%, with a standard deviation of around 15%. This performance
is comparable across most benchmarks, though atmospheric modeling remains more challenging due
to the weak sensitivity of the observed field to the external forcing parameter. This makes the inverse
problem more ill-posed, especially under sparse observations. In terms of convergence behavior,
the estimated parameters generally stabilize within approximately 10 assimilation steps, which is
consistent with other benchmark settings.

E.5 STRUCTURED OBSERVATIONS ASSIMILATION RESULTS UNDER NOISE

Fig. 10 shows the assimilation performance of LD-EnSF under varying levels of observation noise.
Results are averaged over 20 runs with different ground-truth trajectories, and both the mean and
uncertainty estimates are reported. Note that the inferred parameter u exhibits higher uncertainty,
which is expected, as recovering the system parameters from limited and noisy data is inherently
ill-posed.
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Figure 9: Assimilation results for unstructured observations in the Kolmogorov flow(top), tsunami
modeling (middle), and atmospheric modeling (bottom). The left panel shows the relative RMSE of
full states, while the middle and right panels display the error of the assimilated parameters and latent
states, respectively, compared to the latent states at the true parameters. For reference, errors of the
original (unassimilated) quantities are also included.

F SENSITIVITY AND STABILITY ANALYSIS

Empirically, we conducted additional experiments that vary the latent dimension, ensemble size,
and observation sparsity for the tsunami modeling problem. To facilitate comparison, To facilitate
comparison, the assimilation error shown in this section is defined as the relative RMSE at the final
time step, while the surrogate model error refers to the relative RMSE averaged over time.

F.1 LATENT DIMENSION SENSITIVITY

In our tsunami modeling experiments, we investigate how varying the latent dimension influences both
the surrogate model accuracy and the assimilation performance, while keeping other hyperparameters
unchanged. As shown in Table 9, a clear failure mode emerges when the latent space is restricted to
1 or 2 dimensions. The best performance, in terms of relative RMSE, is achieved with a moderate
latent dimension between 5 and 10. While a high-dimensional latent space (e.g., 500 dimensions)
does not lead to complete failure, it results in significantly higher errors compared to these more
balanced settings.
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Figure 10: Assimilation results for grid-based observations in the Kolmogorov flow(top), tsunami
modeling (middle), and atmospheric modeling (bottom). The left panel shows the relative RMSE of
full states, while the middle and right panels display the error of the assimilated parameters and latent
states, respectively, compared to the latent states at the true parameters. For reference, errors of the
original (unassimilated) quantities are also included.

Table 9: Effect of latent dimension on the LDNet surrogate error (in relative RMSE) and assimilation
performance for tsunami modeling.

Latent Dim 1 2 3 5 10 50 100 200 500

LDNet Error 0.861 0.459 0.0225 0.0216 0.0213 0.0239 0.0271 0.0230 0.0473
Assim. Error 0.869 0.387 0.0430 0.0364 0.0371 0.0504 0.0528 0.0474 0.0993

F.2 ENSEMBLE SIZE SENSITIVITY

EnSF consists of two components: the prior score estimation (done through Monte-Carlo sampling)
and the likelihood score estimation. The latent observation in the likelihood is defined over the entire
latent space, whose contribution dominates the construction of the posterior score, a point explored in
Latent-EnSF (Section 4.1.1). With one ensemble member, the algorithm effectively reduces to a MAP
estimate and yields similar accuracy. For LD-EnSF, increasing the ensemble size has minimal impact
on the average error, as shown in Figure 11, which reports both the root-mean-square error (RMSE)
and the Continuous Ranked Probability Score (CRPS) Matheson & Winkler (1976). While the
mean errors remain stable, the variance across 20 different trajectories increases with ensemble size,
reflecting the uncertainty introduced by sparse and noisy observations. Note that a small ensemble
size was shown to be sufficient in the latent assimilation, see Figure 5 in (Si & Chen, 2025), while a
large ensemble size has to be used for the full/original space assimilation to increase its accuracy.
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Figure 11: CRPS and RMSE values for varying ensemble size in tsunami modeling

F.3 SURROGATE MODEL SENSITIVITY

The accuracy of the surrogate models (LDNet and LSTM encoder) plays a critical role in the overall
assimilation performance. In our setting, the LSTM is trained on latent trajectories generated by
LDNet, so poor LDNet accuracy also affects the quality of the observation encoder. Therefore, it is
essential to ensure that LDNet reaches a reasonable level of fidelity. In Table 10, the assimilation
error decreases as LDNet error decreases during training. Notably, even when the LSTM achieves
similar test errors across different LDNet models, the assimilation accuracy still depends strongly on
the quality of LDNet.

This gap between surrogate and assimilation error is expected. While the LDNet is evaluated using
full and accurate latent inputs, the assimilation process relies on partial and noisy observations,
which are encoded by a separately trained LSTM. The LSTM itself introduces approximation error
when reconstructing latent trajectories, and during testing we additionally add 10% noise to the
observations. Therefore, it is reasonable, and theoretically consistent, that assimilation results exhibit
higher error, e.g., 0.0371, than the surrogate model error, e.g., 0.0213 at epoch 1999.

Table 10: Effect of LDNet training duration on surrogate and assimilation accuracy in tsunami
modeling.

Epoch 99 299 399 499 799 999 1999

LDNet Error 0.144 0.0794 0.0483 0.0359 0.0309 0.0256 0.0213
LSTM Error 0.0041 0.0033 0.0033 0.0030 0.0029 0.0032 0.0028
Assim. Error 0.252 0.0975 0.0693 0.0499 0.0443 0.0411 0.0371

F.4 OBSERVATION DENSITY SENSITIVITY

We also study the impact of observation density on assimilation accuracy. As expected, the assimila-
tion error increases as fewer observations are available, due to the reduced information available for
inference. The results are summarized in Table 11.

Table 11: Assimilation error under varying observation density in tsunami modeling.

Observation Density 0.08% 0.10% 0.16% 0.25% 0.44% 1.00%

Assimilation Error 0.129 0.0891 0.0476 0.0504 0.0371 0.0353

F.5 γ SENSITIVITY
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Figure 12: Assimilation results for misspecified γ̂t in Eq. 8

To test the sensitivity of LD-EnSF to misspecified γ̂t, we varied the scalar value used in latent space.
As shown in Fig. 12, using a γ̂t smaller than the estimated value leads to a mild increase in error
during assimilation. When γ̂t is larger than the estimated value, the initial error is higher, but the
assimilation still converges to low error. Overall, LD-EnSF remains stable across a wide range of γ̂t
values, indicating that the method is not highly sensitive to moderate misspecification of the latent
noise level.

G ABLATION STUDY ON KEY COMPONENTS

We evaluate how each component of LDNet, the observation encoder, the training pipeline, and
integration for data assimilation contributes to overall performance.

G.1 LDNET ARCHITECTURE AND TRAINING STRATEGY

Several improvements have been made to LDNet, including the incorporation of Fourier encoding, the
use of ResNet blocks, and a fine-tuning strategy. In Table 12, we use the Kolmogorov flow example
to isolate and evaluate the individual contributions of these architectural enhancements. We observe
that the combination of ResNet and Fourier embedding largely improves the performance of LDNet.

Table 12: LDNet performance on Kolmogorov Flow with different architectural ablations.

Kolmogorov Flow w/ Fourier & ResNet w/ ResNet w/ Fourier w/o ResNet/Fourier

LDNet Error 0.0223 0.0237 0.0268 0.0340

As shown in Table 13, fine-tuning of the reconstruction network improves accuracy beyond initial
training of our proposed LDNet, and both stages significantly outperform the original LDNet.

Table 13: Relative RMSE for different training strategies in tsunami modeling.

Training Fine-tuning Original LDNet

Tsunami 0.0213 0.0168 0.1837
Kolmogorov 0.0223 0.0123 0.0349

While some works Tancik et al. (2020) keep the Fourier feature matrix B fixed by sampling it from a
Gaussian distribution, in this paper we follow Salvador & Marsden (2024) and treat B as a trainable
parameter. As shown in Fig. 13, whether B is fixed or trainable does not affect the training behavior.
This observation is consistent with Appendix A.3 of Tancik et al. (2020), where optimizing the
Fourier feature parameters yields nearly identical results. In addition, using a trainable B removes
the need to tune the sampling distribution of the fixed random matrix.
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Figure 13: Training loss, validation loss, and test error in tsunami modeling with either fixed or
trainable B in the Fourier encoding.

G.2 OBSERVATION ENCODER ARCHITECTURE

We compare our LSTM observation encoder with a CNN-based encoder composed of residual blocks
and an intermediate self-attention layer, which is also used in (Si & Chen, 2025). In the tsunami
modeling example, we evaluate four configurations and compare the assimilation error: (1) a CNN
encoder with direct full-state reconstruction from encoded observation; (2) LD-EnSF with a CNN
encoder; (3) an LSTM encoder alone; and (4) LD-EnSF with an LSTM encoder. The LSTM encoder,
which incorporates temporal context, achieves significantly lower latent representation error (0.5%
vs. 0.98%) than the CNN encoder. As shown in Fig. 14, this also translates to significantly improved
assimilation accuracy.
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Figure 14: Comparing observation encoders with and without filtering. The colored regions indicate
estimated uncertainties for observation noise at a 10% level.

G.3 TWO PHASE TRAINING OF LDNET AND OBSERVATION ENCODER

Although LDNet can, in principle, be trained jointly with the LSTM encoder to simplify the workflow,
we find that balancing the different loss terms is nontrivial and does not lead to improved performance.
To evaluate this approach, we experimented with a combined training objective:

Ltotal = Llatent + LLSTM + Lobs,

where the first two terms are defined in Eqs. 5 and 7, and Lobs measures the reconstruction error from
LSTM-predicted latents. This joint training strategy results in a surrogate model error of 0.0241 and
an assimilation error of 0.0693 in tsunami modeling, which are higher than the results obtained using
separate training in Table 1.

G.4 WITH AND WITHOUT LATENT-SPACE ASSIMILATION

In Fig. 15, we compare the reconstruction accuracy of two approaches on tsunami modeling under
different noise levels: (i) directly reconstructing the full state from latent observations encoded by the
LSTM encoder (denoted as LSTM-only, without any filtering), and (ii) LD-EnSF, which performs
ensemble-based filtering in the latent space. The LSTM-only baseline performs well when there is
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no observation noise. However, as noise increases (e.g., at 5% and 10%), its performance degrades
significantly. In contrast, LD-EnSF maintains lower reconstruction error by effectively incorporating
both prediction uncertainty and observation uncertainty through latent-space filtering. Moreover,
LD-EnSF is able to estimate output uncertainty using the ensemble, while directly reconstruct full
state using LSTM encoder and reconstruction network cannot. This highlights the benefit of applying
EnSF on top of the LSTM encoder, especially under noisy conditions.

Figure 15: Comparison between the LSTM-only baseline and LD-EnSF assimilation results on
tsunami modeling with 0%, 5%, and 10% observation noise. The colored regions indicate uncertainty
estimated by the ensemble.

H ASSIMILATION RESULTS VISUALIZATION

This section visualizes the assimilation process, including observation points, reconstructed states,
and assimilation errors. Figs. 17 and 16 show results for the tsunami modeling and Kolmogorov flow,
respectively, comparing structured (10× 10 grid) and randomly sampled (100 points) observations.
In Fig. 17, although the trajectory starts from a misspecified initial condition, assimilation corrects
it over time. In Fig. 16, the trajectory with an incorrect Re deteriorates rapidly, while assimilation
with LD-EnSF effectively reduces the error. The assimilated dynamics for atmospheric modeling are
shown in Fig. 18. A comparison of different data assimilation methods at the final time step, in terms
of meridional wind and geopotential height, is presented in Fig. 19.
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Figure 16: Visualization of the vorticity field ω = ∇ × v of the ground truth of the Kolmogorov
flow in at Reynolds number Re = 674.37 (1st row) and the perturbed dynamics at Re = 1469.5
(2nd row), with their difference shown in the 3rd row. Sparse observations (10× 10 from 150× 150
grid) (4th row) are assimilated into an ensemble of 20 LDNet trajectories via LD-EnSF. The 5th row
shows one trajectory from the ensemble, starting from a deviated Re = 1469.5. 6th row presents
assimilation errors. The last three rows correspond to 100 randomly sampled observation points and
their respective assimilation results, where ‘r’ denotes random.
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Figure 17: Visualization of the surface elevation η in tsunami dynamics: (1st row) ground truth,
(2nd row) LDNet predictions from known initial conditions, and (3rd row) prediction errors. Sparse
observations (10× 10 from 150× 150 grid) (4th row) are assimilated into an ensemble of 20 LDNet
trajectories via LD-EnSF. The 5th row shows one trajectory from the ensemble, starting from a
deviated initial condition. The last three rows correspond to 100 randomly sampled observation
points and their respective assimilation results, where ‘r’ denotes random.
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Figure 18: Visualization of LD-EnSF assimilated dynamics over 21 days. The bottom row shows the
corresponding assimilation errors.
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Figure 19: Comparison of LD-EnSF, Latent-EnSF, and EnSF in terms of meridional wind and
geopotential height at the final assimilation step.
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