LD-ENSF: SYNERGIZING LATENT DYNAMICS WITH ENSEMBLE SCORE FILTERS FOR FAST DATA ASSIMILATION WITH SPARSE OBSERVATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Data assimilation techniques are crucial for accurately tracking complex dynamical systems by integrating observational data with numerical forecasts. Recently, score-based data assimilation methods emerged as powerful tools for high-dimensional and nonlinear data assimilation. However, these methods still incur substantial computational costs due to the need for expensive forward simulations. In this work, we propose LD-EnSF, a novel score-based data assimilation method that fully eliminates the need for full-space simulations by evolving dynamics directly in a compact latent space. Our method incorporates improved Latent Dynamics Networks (LDNets) to learn accurate surrogate dynamics and introduces a history-aware LSTM encoder to effectively process sparse and irregular observations. By operating entirely in the latent space, LD-EnSF achieves speedups orders of magnitude over existing methods while maintaining high accuracy and robustness. We demonstrate the effectiveness of LD-EnSF on several challenging high-dimensional benchmarks with highly sparse (in both space and time) and noisy observations.

1 Introduction

Data assimilation (DA) (Sanz-Alonso et al., 2023) plays a central role in improving simulation accuracy for complex physical systems by integrating observational data into numerical models. It has been extensively applied in real-world domains such as weather forecasting (Schneider et al., 2022), computational fluid dynamics (Carlberg et al., 2019), and sea ice modeling (Zuo et al., 2021), where systems exhibit intricate interactions and uncertainties. Classical Bayesian filtering methods, such as the Kalman Filter (Kalman, 1960), Ensemble Kalman Filter (EnKF) (Evensen, 1994) and particle filters (Künsch, 2013), are widely used due to their computational efficiency. Variants such as the Local Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007) and adaptive sampling methods (Bishop et al., 2001) further extend the applicability of EnKF. However, standard EnKFs find it challenging to handle high-dimensional and nonlinear systems due to the quadratic complexity in dimensionality and linearized posterior assumption. Variational methods like 3D/4D-Var (Rabier & Liu, 2003) offer improved accuracy but require complex optimization with repeated forward simulations, leading to high computational cost.

To overcome these limitations, the Ensemble Score Filter (EnSF) (Bao et al., 2024b) has been developed for high-dimensional and nonlinear data assimilation, offering linear complexity and more accurate posterior approximation. Unlike EnKF, EnSF encodes probability densities via score functions and generates samples by solving reverse-time stochastic differential equations (SDEs). However, it performs poorly under sparse observations, where the score becomes ill-posed and unreliable in unobserved regions. Latent-EnSF (Si & Chen, 2025) addresses this issue by using Variational Autoencoders (VAEs) (Kingma & Welling, 2014) to project both states and observations into a shared latent space, where score-based filtering can be effectively applied. The latent representations enable more informative gradients, thus mitigating the limitations of sparsity. After assimilation, the system dynamics are evolved in the original full space using existing simulation methods. While this approach is flexible and model-agnostic, it remains computationally demanding due to the complexity of propagating full-space dynamics, which limits its applications to real-time data assimilation and resource-constrained settings.

Surrogate models, especially neural network-based approaches, offer a solution to this problem (Rudy et al., 2017; Champion et al., 2019; Floryan & Graham, 2022; Vlachas et al., 2022). These models aim to learn reduced representations of the system and directly evolve the dynamics in a low-dimensional latent space, thereby avoiding repeated calls to the original numerical simulator. Among these approaches, Latent Dynamics Networks (LDNets) (Regazzoni et al., 2024) outperform traditional surrogate models by achieving higher accuracy while using significantly fewer trainable parameters across several complex systems. It jointly learns a smooth latent representation and its temporal evolution, without requiring a separate encoder. Crucially, LDNets evolve latent states conditioned on system parameters (e.g., initial conditions, system coefficients). This strong dependency means that inaccuracies in the parameters can lead to significant prediction errors. Yet it also provides an opportunity: by integrating data assimilation, these parameters can be estimated and corrected during inference, which makes them particularly suitable for data assimilation.

Figure 1: The framework of the LD-EnSF method. Offline learning: In phase 1, the LDNet is trained based on the dataset to capture the latent dynamics. In phase 2, an LSTM encoder is trained to encode the observation history $y_{1:t}$ matching the latent variable s_t and parameter u_t of the LDNet at time t. Online deployment: at each assimilation time step, the LD-EnSF assimilates an ensemble of prior latent pairs $\{s_t, u_t\}$ with LSTM encoded latent pairs (\hat{s}_t, \hat{u}_t) . The posterior latent states are then used to reconstruct the full states at arbitrary time and space points.

In this work, we aim to accelerate the assimilation process by avoiding costly forward propagation of full dynamics, while addressing the limitation of EnSF with the sparse observations. We introduce the **Latent Dynamics Ensemble Score Filter (LD-EnSF)**, see Fig. 1 for its general framework. Our approach leverages LDNets to model and preserve system dynamics within a very low-dimensional latent space, where EnSF is applied. Furthermore, we incorporate a Long Short-Term Memory (LSTM) (Hochreiter, 1997) encoder for mapping observations to the latent space, enabling the efficient use of past observations, especially in scenarios with high observation sparsity. Our main contributions are summarized as follows:

- We propose LD-EnSF, a novel data assimilation method for Bayesian filtering using LDNets as a surrogate model to perform the assimilation process in a low-dimensional latent space, significantly reducing the computational costs and enabling real-time data assimilation with large ensembles.
- We advance LDNets with a novel initialization scheme, a two-stage training strategy, and improved network architectures, enabling high accuracy and low-dimensional representations of complex dynamics.
- We propose a new sparse observation encoder based on LSTM, designed to align both latent states and system parameters from LDNets. This encoder effectively captures historical and irregularly spaced observations, enabling accurate and robust joint data assimilation of states and parameters.

• We demonstrate the superior accuracy, efficiency, and robustness of LD-EnSF through highdimensional data assimilation examples of increasing complexity, including Kolmogorov flow, tsunami modeling, and atmospheric modeling, with extreme spatial and temporal sparsity.

2 BACKGROUND

In this section, we introduce the basic concepts and problem setup for data assimilation in the context of filtering, and present the ensemble score filter (EnSF) and its latent space variant, Latent-EnSF.

2.1 PROBLEM SETUP

We denote $x_t \in \mathbb{R}^{d_x}$ as a d_x -dimensional state variable of a dynamical system at (discrete) time $t \in \mathbb{Z}^+$, with initial state x_0 . Given the state x_{t-1} at time t-1, with $t=1,2,\ldots$, the evolution of the state from t-1 to t is modeled as

$$x_t = F(x_{t-1}, u_t), (1)$$

where $F: \mathbb{R}^{d_x} \times \mathbb{R}^{d_u} \to \mathbb{R}^{d_x}$ is a non-linear forward map, $u_t \in \mathbb{R}^{d_u}$ represents a d_u -dimensional uncertain parameter. By $y_t \in \mathbb{R}^{d_y}$ we denote a d_u -dimensional noisy observation data, given as

$$y_t = H(x_t) + \gamma_t, \tag{2}$$

where $H: \mathbb{R}^{d_x} \to \mathbb{R}^{d_y}$ is the observation map, and γ_t represents the observation noise.

Due to the model inadequacies and input parameter uncertainties, the model of the dynamical system in Eq. 1 may produce inaccurate predictions of the ground truth. The goal of data assimilation is to find the best estimate, denoted by \hat{x}_t , of the ground truth, given the observation data $y_{1:t} = (y_1, y_2, \cdots, y_t)$ up to time t. This requires us to compute the conditional probability density function of the state, denoted as $P(x_t|y_{1:t})$, which is often non-Gaussian. In the Bayesian filtering framework (Appendix A.1), data assimilation is formulated as a two-step process of prediction and update, where accurately approximating the prior and posterior densities remains a challenge. This also extends to inferring the uncertain input parameter u_t , which remains a challenging task under sparse or noisy observations.

2.2 ENSF AND LATENT-ENSF

Built on the recent advances in score-based sampling methods (Song et al., 2021), EnSF (Bao et al., 2024b) draws samples from the posterior $P(x_t|y_{1:t})$ using its score $\nabla_x \log P(x_t|y_{1:t})$ through Monte Carlo integration for the prior score in the prediction step, and a damped likelihood score in the update step; see details of the method and algorithm in Appendix A.2. EnSF utilizes the explicit likelihood function and diffusion process to generate samples without assuming system linearity, proving effective for nonlinear, high-dimensional systems like the Lorenz 96 model (Bao et al., 2024b) and quasi-geostrophic dynamics (Bao et al., 2024a). However, its performance is significantly hindered in sparse observation scenarios, where the score of the likelihood function vanishes in unobserved state components (Si & Chen, 2025).

To address the limitations of EnSF with sparse observations, Latent-EnSF (Si & Chen, 2025) performs data assimilation in a shared latent space, where both states x_t and observations y_t are encoded using a coupled variational autoencoder (VAE). The VAE, comprising a state encoder $\mathcal{E}_{\text{state}}$, an observation encoder \mathcal{E}_{obs} , and a decoder \mathcal{D} , is trained to minimize a loss function balancing state-observation consistency, reconstruction errors, and latent distribution regularization. After training, Latent-EnSF applies EnSF in the latent space using encoded states $\mathcal{E}_{\text{state}}(x_t)$ and observations $\mathcal{E}_{\text{obs}}(y_t)$. Assimilated latent samples are decoded into the full state space and propagated via the dynamical model in Eq. 1. This method mitigates the vanishing score issue faced by EnSF for sparse observations and achieves high accuracy even under extreme sparsity, where the vanilla EnSF fails, such as using only 0.44% of state components for a shallow water wave propagation problem.

While Latent-EnSF improves sampling efficiency over the vanilla EnSF, its forward evolution still requires numerical propagation of the full dynamical system, which is computationally prohibitive for large-scale and real-time applications. Moreover, Latent-EnSF's latent states exhibit oscillatory

and non-smooth behavior, making it challenging to construct a stable dynamical model in the latent space approximating complex physical dynamics. These challenges motivate the method we develop in this work.

3 METHODOLOGY

In this section, we present LD-EnSF, a fast, robust, and accurate data assimilation method that avoids using full-model dynamics during assimilation. It accomplishes this by learning a latent representation of the system state via LDNets and effectively incorporating sparse observations using an LSTM encoder, which extends the VAE encoder in Latent-EnSF not only from current observations to historical observations but also from regular spatial sparsity to irregular sparsity.

3.1 LATENT DYNAMICS NETWORK

Latent Dynamics Network (LDNet) (Regazzoni et al., 2024) has been demonstrated as one of the most capable methods in capturing low-dimensional representations of many complex dynamics. The architecture consists of a dynamics network \mathcal{F}_{θ_1} , which evolves the latent state s_t , and a reconstruction network \mathcal{R}_{θ_2} , which maps latent states back to the full state space at any spatial point.

To extend and improve LDNet for learning more complex dynamics with varying initial conditions in the context of data assimilation, we propose three new variants: (1) shifting initial latent state, (2) two-stage training and fine-tuning, and (3) a new architecture of the reconstruction net.

The dynamics network \mathcal{F}_{θ_1} , as shown in Fig. 1 offline learning phase 1, takes the latent state $s_{t-1} \in \mathbb{R}^{d_s}$ and parameter u_t as inputs and outputs the time derivative of s_{t-1} :

$$\dot{s}_{t-1} = \mathcal{F}_{\theta_1}(s_{t-1}, u_t), \quad t = 0, 1, 2, \dots$$
 (3)

The latent state s_t is updated from the one-step forward Euler scheme as follows:

$$s_t = s_{t-1} + \Delta t \ \dot{s}_{t-1}, \quad t = 0, 1, 2, \dots,$$
 (4)

where Δt is the time step, set as $\Delta t = T/n$ for n steps. Unlike (Regazzoni et al., 2024), we initialize the latent state as $s_{-1} = 0$ instead of $s_0 = 0$ to flexibly accommodate varying initial conditions.

The reconstruction network \mathcal{R}_{θ_2} , also shown in Fig. 1, reconstructs from the latent state s_t an approximate full state $\tilde{x}(t,\xi)$ at any spatial query point $\xi \in \Omega$ in domain Ω as:

$$\tilde{x}(t,\xi) = \mathcal{R}_{\theta_2}(s_t,\xi), \quad t = 0, 1, 2, \dots$$

To train the LDNet, we propose a two-stage training strategy. First, we jointly train both the dynamics network and the reconstruction network by minimizing the loss:

$$\mathcal{L}(\theta_1, \theta_2) = \frac{1}{NMn} \sum_{j=1}^{N} \sum_{t} \sum_{\xi} \|\tilde{x}_j(t, \xi) - x_j(t, \xi)\|^2,$$
 (5)

where $\{x_j\}_{j=1}^N$ are N trajectories, and M is the number of spatial points ξ in each trajectory. In the second stage, we fine-tune the reconstruction network \mathcal{R}_{θ_2} with fixed latent representations from the dynamics network, effectively reducing reconstruction errors. This novel training strategy ensures accurate and efficient modeling of both the latent dynamics and the full state reconstruction.

Moreover, to enhance the reconstruction power for more complex dynamics, we propose to employ a ResNet-based architecture (He et al., 2016) and integrate Fourier encoding (Qiu et al., 2024; Salvador & Marsden, 2024) to better capture high-frequency spatial components, defined as $\xi \mapsto [\cos B\xi, \sin B\xi]$, where $B \in \mathbb{R}^{m \times d_\xi}$ is a trainable parameter matrix, and m is the hyperparameter controlling the dimensionality of the encoding.

3.2 Observation encoding

To map the observations into the learned latent space, we propose training a separate observation encoder employing LSTM (Hochreiter, 1997) to address the challenge of encoding sparse and noisy

observations. In contrast to the VAE encoder used in Latent-EnSF, which constructs latent representations of the sparse observations at step t, the LSTM encoder leverages temporal correlations in sequential observations $y_{1:t}$. In addition, while the VAE in Latent-EnSF can only handle observations on a regular grid, the LSTM encoder is capable of effectively handling observations at random/irregular locations.

As shown in Fig. 1, the LSTM encoder, denoted as $\mathcal{E}_{\theta_3}: \mathbb{R}^{d_y \times t} \to \mathbb{R}^{d_u + d_s}$, is parameterized by trainable parameters θ_3 , with input of the historical observations $y_{1:t}$ up to time t. The output of the LSTM network is a pair of the approximate latent state $\hat{s}_t \in \mathbb{R}^{d_s}$ and parameter $\hat{u}_t \in \mathbb{R}^{d_u}$:

$$(\hat{s}_t, \hat{u}_t) = \mathcal{E}_{\theta_3}(y_{1:t}),\tag{6}$$

where $y_t = H(x_t)$ is the noiseless sparse observation at time t. This encoder facilitates the assimilation of not only the state as in Latent-EnSF but also the parameter u_t .

To train the LSTM encoder, we minimize the following loss:

$$\mathcal{L}(\theta_3) = \frac{1}{Nn} \sum_{j=1}^{N} \sum_{t} \left(\left\| \hat{s}_t^{(j)} - s_t^{(j)} \right\|^2 + \left\| \hat{u}_t^{(j)} - u_t^{(j)} \right\|^2 \right), \tag{7}$$

where the N trajectories are sampled from the LDNet training data, with s_t provided by the trained LDNet. This loss enforces the alignment between the encoded observations and the corresponding latent states and parameters, enabling additional parameter estimation during data assimilation. While proper weighting between these two terms can be explored, we found that common normalization or standardization of the states and parameters to similar ranges works well without weighting.

3.3 LD-ENSF: LATENT DYNAMICS ENSEMBLE SCORE FILTER

After training LDNet and LSTM offline, we integrate EnSF to perform data assimilation in the latent space, as illustrated in the online deployment phase in Fig. 1. Let $\kappa_t = (s_t, u_t)$ denote the augmented latent state. The corresponding latent observation encoded by the LSTM network Eq. 6 is given by $\phi_t = (\hat{s}_t, \hat{u}_t)$. The latent observation data can be approximately modeled as

$$\phi_t = H_{\text{latent}}(\kappa_t) + \hat{\gamma}_t, \tag{8}$$

where we take the identity map $H_{\text{latent}}(\kappa_t) = \kappa_t$ and estimate latent observation noise $\hat{\gamma}_t$ via LSTM encoding of the true observation noise γ_t from Eq. 2, as detailed in Appendix E.1. To this end, the Bayesian filtering problem in latent space is formulated in two steps. In the prediction step, we have

$$P(\kappa_t | \phi_{1:t-1}) = \int P(\kappa_t | \kappa_{t-1}) P(\kappa_{t-1} | \phi_{1:t-1}) d\kappa_{t-1}, \tag{9}$$

with the transition probability $P(\kappa_t|\kappa_{t-1})$ derived from the latent dynamics in Eqs. 3 and 4, where we draw samples of u_t from the empirical posterior of u_{t-1} . In the update step, we have

$$P(\kappa_t|\phi_{1:t}) \propto P(\phi_t|\kappa_t)P(\kappa_t|\phi_{1:t-1}),\tag{10}$$

with the likelihood function $P(\phi_t|\kappa_t)$ defined through the latent observation model (Eq. 8). We can then employ EnSF to solve this Bayesian filtering problem in the latent space, with the latent dynamics (LD) evolved as a surrogate of the full dynamics. We present one step of the LD-EnSF in Algorithm 1.

Algorithm 1 One step of LD-EnSF

Input: Ensemble of the latent states and parameters $\{\kappa_{t-1}\}$ from distribution $P(\kappa_{t-1}|\phi_{1:t-1})$ and the observations $y_{1:t}$. Dynamics network \mathcal{F}_{θ_1} , observation encoder \mathcal{E}_{θ_3} .

Output: Ensemble of the latent states and parameters $\{\kappa_t\}$ from posterior distribution $P(\kappa_t|\phi_{1:t})$.

- 1: Simulate the latent dynamics in Equations 3 and 4 from the ensemble of samples $\{\kappa_{t-1}\}$ to obtain samples $\{\kappa_t\}$ following $P(\kappa_t|\phi_{1:t-1})$, where we draw samples of $\{u_t\}$ based on $\{u_{t-1}\}$.
- 2: Encode the historical observations by the LSTM network as $\phi_t = \mathcal{E}_{\theta_3}(y_{1:t})$.
- 3: Draw an ensemble of random samples $\{\kappa_{t,1}\}$ from the standard normal distribution N(0,I).
- 4: Run the reverse-time SDE of EnSF from each $\kappa_{t,1}$ to obtain the posterior sample $\kappa_t = \kappa_{t,0}$.

As shown in Fig.1, the assimilation process runs entirely in the latent space, removing the need to map back to the full state space during assimilation. Once latent states are obtained, the reconstruction network can be used to recover the full system state at any desired spatial location. Moreover, the smoothness of the latent trajectories, as we will show in our experiments in Section 4.1, enables accurate interpolation in time, allowing the full state to be evaluated at any continuous time point.

4 EXPERIMENTS

We consider three experimental examples: (1) a chaotic system modeled by Kolmogorov flow with uncertain viscosity, (2) shallow water wave propagation in tsunami modeling with uncertain initial conditions (for earthquake locations), and (3) forced hyperviscous rotation on a sphere with earth-like topography in atmospheric modeling with uncertain forcing term. Below, we briefly present these problems, with detailed equations and the setup for data generation provided in the Appendix B.

Kolmogorov flow. Kolmogorov flow is a canonical turbulent system driven by a sinusodal body force, parameterized by an uncertain Reynolds number Re (Kochkov et al., 2021). The spatial resolution is set as 150×150 . We burn in for 100 time steps, then simulate 200 time steps with a step size of $\delta t = 0.04$. Observations are provided every 5 steps on a regular 10×10 grid (0.44%) of the domain) and on 100 randomly placed points for evaluating LD-EnSF, resulting in 40 assimilation steps.

Tsunami modeling. We use simplified shallow water equations for tsunami modeling, where the initial condition is specified as a Gaussian bump randomly placed in the spatial domain, following the setup in Si & Chen (2025). For the simulation, we discretize the spatial domain into a uniform grid of 150×150 . The simulation is carried out over 2,000 time steps with a time step size of $\delta t \approx 21$ seconds. Observation data are provided on a regular 10×10 grid (and 100 random/irregular points to test LD-EnSF) for every 40 simulation steps, leading to 50 assimilation steps.

Atmospheric modeling. Adapted from planetswe example in the Well (Ohana et al., 2024). The spatial resolution is set as 512×256 . We simulate for half a year (21 days as we set 42 days for a year), in total 504 hours for approximately 30,240 time steps with an adaptive time step size of about $\delta t \approx 60$ seconds, where the initial condition is derived from the 500 hPa pressure level of the reanalysis dataset ERA5 (Hersbach et al., 2020). Observation data are provided on a regular 16×8 grid for every 8 hours of simulation, leading to 63 assimilation steps, featuring extreme spatial ($\sim 0.1\%$) and temporal ($\sim 0.2\%$) sparsity.

4.1 Offline Learning of LDNets

LDNets are trained via hyperparameter search (Biewald, 2020) with latent states discretized at observation times. The hyperparameter selection and normalization method are detailed in Appendix C.1. The test error of LDNet as a surrogate model is reported in Table 1, compared with the VAE used in Latent-EnSF (Si & Chen, 2025) with a Latent Diffusion Model (Rombach et al., 2022) architecture. For a fair comparison, we also construct a latent dynamical model by integrating the VAE with an LSTM (referred to as VAE-dyn), jointly trained to predict the latent state as $\mathcal{E}_{\text{state}}(x_{t+1}) = \text{LSTM}(\mathcal{E}_{\text{state}}(x_0), \dots, \mathcal{E}_{\text{state}}(x_t))$. This setup allows the LSTM to propagate the initial latent state. As shown in Fig. 3, while the VAE effectively learns latent representations of the full dynamics and achieves low reconstruction error (with VAE-dyn exhibiting similar state reconstruction error), the LSTM in VAE-dyn fails to maintain stable long-term latent predictions, leading to rapid accumulation of the reconstruction errors over time. In contrast, our LDNet achieves the lowest approximation errors in all three examples. Note the large errors of the original LDNet failing to capture the varying initial conditions in the tsunami example while our improved LDNet accommodates this, and the much larger errors of the original LDNet than ours for the Kolmogorov flow in capturing high-frequency dynamics.

Table 1: Relative RMSE (averaged in time) for the approximation of full dynamics by LDNet (original vs ours), VAE reconstruction, and VAE-dyn (with LSTM for latent dynamics).

Example	VAE	VAE-dyn	LDNet (original)	LDNet (ours)
Kolmogorov	0.0131	0.964	0.0349	0.0123
Tsunami	0.0309	1.33	0.1837	0.0168
Atmospheric	0.0856	0.483	0.1042	0.0656

Figure 2: Smoother latent states of LDNet (left) than those of VAE (right) for tsunami modeling.

Compared to the latent states of VAE, the latent states of LDNet are noticeably smoother, as shown in Fig. 2 for the tsunami example, and in Fig. 6 in Appendix D for other examples. The smoother latent states make it much easier for the latent observations (mapped from the sparse observations by an

Figure 3: Relative RMSE for the full-state approximation by LDNet (original and ours), VAE reconstruction, and VAE-dyn (with LSTM trained to predict the VAE latent dynamics).

observation encoder) to match the latent states. This can help to enhance the data assimilation accuracy of the LDNet-based LD-EnSF compared to the VAE-based Latent-EnSF, supported by results in Section 4.3. Moreover, the smooth latent states of LDNet facilitate accurate temporal interpolation, allowing for the reconstruction of full states at arbitrary times besides those at observation times (Fig. 7 in Appendix D).

4.2 OFFLINE LEARNING OF OBSERVATION ENCODER

 After training LDNets, we generate a sequence of the latent states s_t in Eq. 4 for each input parameter sequence u_t by running the latent dynamical model (Eq. 3). The observation operator H is set as a sparse sub-sampling matrix that selects the state values from grid points. The training data of the observations at this stage do not include observation noise. Using single-layer LSTMs, we are able to achieve an average test error of 0.07% for Kolmogorov flow, 0.5% for tsunami modeling, and 2.53% for atmospheric modeling. Detailed training configurations are provided in Appendix C.1.

Irregular observations. For a fair comparison with the VAE encoder in Latent-EnSF, we use sparse observations on equidistant grid points in the following experiments. However, our LSTM encoder can also effectively handle arbitrarily located observations, which is crucial in practical applications. In Appendix E.4, we provide robust and accurate assimilation results using the LSTM encoder with 100 irregularly sampled points for Kolmogorov and tsunami, and 128 for the atmospheric case.

4.3 Online deployment of LD-EnSF

To deploy the trained LDNets and LSTM encoder for online data assimilation, we initialize an ensemble of 20 samples $\{s_{-1}, u_0\}$, each comprising a pair of the latent state $s_{-1} = 0$ and parameter u_0 during the assimilation. For the Kolmogorov flow, u_0 represents the Reynolds number Re and is randomly drawn from uniform distribution $\mathcal{U}([500,1500])$. For the tsunami modeling, $u_0 \in \mathcal{U}([0,0.5],[0,0.5])$ represents the coordinates of the local Gaussian bump for initial surface elevation, which is randomly sampled in the upper-left quarter of the domain. In the atmospheric modeling experiment, we define the time-dependent forcing using $u_0 \in \mathcal{U}([0.1,30],[1,4])$, where the two components represent the amplitude h_f^0 and latitudinal spread σ of a seasonally and diurnally shifting hotspot on the geopotential field. The assimilation process for the complex variation of the dynamics is visualized in Appendix H.

Figure 4: Relative RMSE with uncertainty estimate of the assimilation results for the three examples.

Comparison for assimilation accuracy. We compare the assimilation accuracy of EnSF, Latent-EnSF (by VAE), Latent-EnSF-dyn (by VAE-dyn), LETKF (state-of-the-art variant of EnKF (Hunt et al., 2007)), and LD-EnSF with 10% observation noise for all examples, as shown in Fig. 4. We can observe that the full space methods LETKF and especially EnSF fail to assimilate highly sparse and noisy observations in the high-dimensional setting. LD-EnSF achieves the smallest assimilation errors, as also visualized in Fig. 5 for the atmospheric example at the final assimilation step. For the extremely sparse observational data in this example, 0.1% data in space and 0.2% in time, our LD-EnSF still preserves high assimilation accuracy with around 5% relative RMSE for 10% observation noise, while LETKF gives rise to numerical instability issues (to satisfy CFL condition) that stopped the assimilation early, which is not reported in the figure.

Figure 5: Zonal wind velocity field at the 500 hPa pressure level from an atmospheric simulation with a given forcing field. Top-left: ground truth; bottom-left: sparse observations. Remaining columns: assimilation results (top) and corresponding errors (bottom) at the final time step.

Comparison of computational cost. We evaluate the computational efficiency of LD-EnSF compared to the other methods. EnSF, Latent-EnSF, and LETKF all require simulating the full dynamics during data assimilation, whereas LD-EnSF evolves only a surrogate latent dynamics. As shown in Table 2, compared to the full dynamics used by other methods, evolving latent dynamics by LD-EnSF achieves 2×10^5 , 2×10^3 , and 5×10^5 times speedup (T_d) for the three examples. As LD-EnSF performs all data assimilation steps in the latent space, it does not require transforming assimilated latent states back to full states at each assimilation step. In contrast, Latent-EnSF reconstructs or decodes the latent states to full states at every step, incurring additional reconstruction time (T_r) . Additionally, LDNet learns a much lower-dimensional latent representation, 10, 12, and 52 dimensions compared to 400, 400, and 512 dimensions in Latent-EnSF, which further reduces the assimilation time (T_f) . Meanwhile, LETKF incurs significantly higher computational costs due to its assimilation process. The high efficiency of LD-EnSF not only enables real-time data assimilation and the use of larger ensembles to capture extreme events, but also provides increasing advantages in online cost as the number of assimilation cycles grows. A detailed comparison of online gains versus offline cost is given in Appendix C.2.

Table 2: Comparison in wall-clock runtime in seconds. We denote the time for evolution of the dynamics as T_d , the time for data assimilation as T_f , and the time for reconstructing the full state from the latent state as T_r (only needed at the last time step for LD-EnSF). The assimilation dimension is denoted as D_s . All results are for the full trajectories of an ensemble of 100 samples. The device is AMD 7543 CPU by default (64 processors for parallel simulation in atmospheric modeling), unless GPU (a single NVIDIA RTX A6000 GPU) is specified.

Example	[Kolm	ogorov Flow			Tsuna	ami Modeling			Atmosph	eric Modeling	
Metric	LETKF	EnSF	Latent-EnSF	LD-EnSF	LETKF	EnSF	Latent-EnSF	LD-EnSF	LETKF	EnSF	Latent-EnSF	LD-EnSF
T_d (s)	10,829	10,829	10,829	0.049	211.30	211.30	211.30	0.050	35,603	35,603	35,603	0.070
T_f (s)	12,729	40.13	0.71	0.35	10,440	83.86	0.66	0.37	69,820	27.36	2.42	1.42
T_r (GPU) (s)	I -	_	6.86	0.0018	-	_	5.11	0.0014	_	-	35.08	0.017
dimension D_s	45,000	45,000	400	10	67,500	67,500	400	12	393,216	393,216	512	52

Robustness and sensitivity of LD-EnSF. Note that we construct the LSTM encoder without observation noise. To assess the robustness of LD-EnSF to the observation noise, we perform data assimilation with varying noise levels (no noise, 5%, 10%, and 20%) for all examples. The relative RMSE of assimilated full states, parameters, and latent states is shown in Appendix E.5. While the

assimilation errors increase with noise, the increase remains modest, and the errors drop significantly in the initial phase. This demonstrates the robustness of LD-EnSF, achieving high accuracy for both the states and the parameters (averaged over 20 experiments) despite highly sparse and noisy observations. In addition, we examine the effect of non-Gaussian and heteroskedastic noise in Appendix E.2, and evaluate out-of-distribution generalization in Appendix E.3. Sensitivity and stability analyses with respect to latent dimension, ensemble size, and observation sparsity are presented in Appendix F.

Additional ablation studies. We present additional ablations in Appendix G, systematically evaluating the architectural choices of LDNet surrogate and observation encoder, their training strategies, and the impact of their integrated latent-space assimilation. These results isolate each component's contribution and provide concrete support for the design choices in LD-EnSF.

5 RELATED WORK

Score-based data assimilation: Score-based methods have emerged as promising tools for nonlinear data assimilation. Bao et al. (2024b) introduced a filter that integrates diffusion models into Bayesian filtering for state estimation, while Bao et al. (2024a) proposed a training-free ensemble score estimation method that has been successfully applied to geophysical systems. Rozet & Louppe (2023) used conditional score-based generative models to reconstruct entire trajectories; however, these smoothing approaches assume access to future observations and thus differ from the real-time filtering required in practical scenarios, where only past and present data are available. Chen et al. (2025) extended Rozet & Louppe (2023) by incorporating stochastic interpolants and adapting the framework for filtering. However, their surrogate model relies solely on score-based predictions, and their dynamics are propagated in the full state space, resulting in significantly higher computational costs compared to latent-space approaches. Huang et al. (2024) proposed a conditional generation method, but its performance degrades after several assimilation steps, with a simple interpolation baseline outperforming it, indicating limitations in handling states that deviate substantially from the training distribution. More recent work includes the state-observation augmented diffusion (SOAD) model Li et al. (2024b) and sequential Langevin sampling Ding et al. (2024), both of which require expensive training of the score function and differ from the training-free EnSF that we build upon in this work.

Latent space assimilation: Latent space methods have been shown to improve both the accuracy and efficiency of data assimilation (Peyron et al., 2021; Bachlechner et al., 2021; Penny et al., 2022; Pawar & San, 2022; Cheng et al., 2023). For instance, Chen et al. (2023) integrated Feedforward Neural Networks (FNN) with the EnKF to model latent dynamics, while Li et al. (2024a) proposed using Spherical Implicit Neural Representations (SINR) and Neural ODEs Chen et al. (2018) with EnKF. These approaches mainly focus on Kalman-based filtering, while our work takes a different direction. We extend score-based EnSF to handle sparse observations by introducing a new LSTM observation encoder, while maintaining high computational efficiency through latent-space assimilation with LDNets.

6 CONCLUSION AND FUTURE WORK

In this work, we developed LD-EnSF, a robust, efficient, and accurate method for high-dimensional Bayesian data assimilation in large-scale dynamical systems with sparse and noisy observations. By integrating LDNets with improved initialization, training, and architectures, and LSTM-based historical observation encoding, LD-EnSF achieves a smooth, low-dimensional latent representation while enabling fast latent-space dynamics evolution and joint assimilation of state variables and system parameters. Numerical experiments on three challenging examples demonstrated its superior accuracy and efficiency compared to LETKF, EnSF and Latent-EnSF.

For more complex uncertain system parameters, such as high-dimensional stochastic processes and spatially varying random fields, future work should explore effective strategies for encoding these into low-dimensional latent representations. For more complex dynamical systems that are difficult to capture with latent dynamics over long time horizons, our framework could be extended by iteratively applying LD-EnSF over shorter intervals, with the latent model adaptively retrained at each stage.

REFERENCES

- Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell, and Julian McAuley. Rezero is all you need: Fast convergence at large depth. In *Uncertainty in Artificial Intelligence*, pp. 1352–1361. PMLR, 2021.
- Feng Bao, Hristo G Chipilski, Siming Liang, Guannan Zhang, and Jeffrey S Whitaker. Nonlinear ensemble filtering with diffusion models: Application to the surface quasi-geostrophic dynamics. *arXiv* preprint arXiv:2404.00844, 2024a.
- Feng Bao, Zezhong Zhang, and Guannan Zhang. An ensemble score filter for tracking high-dimensional nonlinear dynamical systems. *Computer Methods in Applied Mechanics and Engineering*, 432:117447, 2024b.
- Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/. Software available from wandb.com.
- Craig H Bishop, Brian J Etherton, and Sharanya J Majumdar. Adaptive sampling with the ensemble transform kalman filter. Part I: Theoretical aspects. *Monthly weather review*, 129(3):420–436, 2001.
- Kevin T Carlberg, Antony Jameson, Mykel J Kochenderfer, Jeremy Morton, Liqian Peng, and Freddie D Witherden. Recovering missing CFD data for high-order discretizations using deep neural networks and dynamics learning. *Journal of Computational Physics*, 395:105–124, 2019.
- Kathleen Champion, Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Data-driven discovery of coordinates and governing equations. *Proceedings of the National Academy of Sciences*, 116(45): 22445–22451, 2019.
- Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. *Advances in neural information processing systems*, 31, 2018.
- Siyi Chen, Yixuan Jia, Qing Qu, He Sun, and Jeffrey A Fessler. Flowdas: A flow-based framework for data assimilation. *arXiv preprint arXiv:2501.16642*, 2025.
- Yuming Chen, Daniel Sanz-Alonso, and Rebecca Willett. Reduced-order autodifferentiable ensemble kalman filters. *Inverse Problems*, 39(12):124001, 2023.
- Sibo Cheng, Jianhua Chen, Charitos Anastasiou, Panagiota Angeli, Omar K Matar, Yi-Ke Guo, Christopher C Pain, and Rossella Arcucci. Generalised latent assimilation in heterogeneous reduced spaces with machine learning surrogate models. *Journal of Scientific Computing*, 94(1): 11, 2023.
- Zhao Ding, Chenguang Duan, Yuling Jiao, Jerry Zhijian Yang, Cheng Yuan, and Pingwen Zhang. Nonlinear assimilation with score-based sequential Langevin sampling. *arXiv* preprint *arXiv*:2411.13443, 2024.
- Alessio Dore, Matteo Pinasco, and Carlo S. Regazzoni. Chapter 9 multi-modal data fusion techniques and applications. In Hamid Aghajan and Andrea Cavallaro (eds.), *Multi-Camera Networks*, pp. 213–237. Academic Press, Oxford, 2009. ISBN 978-0-12-374633-7. doi: https://doi.org/10.1016/B978-0-12-374633-7.00011-2. URL https://www.sciencedirect.com/science/article/pii/B9780123746337000112.
- Geir Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using monte carlo methods to forecast error statistics. *Journal of Geophysical Research: Oceans*, 99(C5): 10143–10162, 1994.
- Daniel Floryan and Michael D Graham. Data-driven discovery of intrinsic dynamics. *Nature Machine Intelligence*, 4(12):1113–1120, 2022.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.

- Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-Sabater, Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, et al. The era5 global reanalysis. *Quarterly journal of the royal meteorological society*, 146(730):1999–2049, 2020.
 - S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

- Langwen Huang, Lukas Gianinazzi, Yuejiang Yu, Peter Dominik Dueben, and Torsten Hoefler. DiffDA: a diffusion model for weather-scale data assimilation. In *Forty-first International Conference on Machine Learning*, 2024. URL https://openreview.net/forum?id=vhMq3eAB34.
- Brian R Hunt, Eric J Kostelich, and Istvan Szunyogh. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. *Physica D: Nonlinear Phenomena*, 230(1-2): 112–126, 2007.
- R. E. Kalman. A new approach to linear filtering and prediction problems. *Journal of Basic Engineering*, 82(1):35–45, 03 1960. ISSN 0021-9223. doi: 10.1115/1.3662552. URL https://doi.org/10.1115/1.3662552.
- Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. *International Conference on Learning Representations*, 2014.
- Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan Hoyer. Machine learning–accelerated computational fluid dynamics. *Proceedings of the National Academy of Sciences*, 118(21):e2101784118, 2021.
- Hans R. Künsch. Particle filters. *Bernoulli*, 19(4), September 2013. ISSN 1350-7265. doi: 10.3150/12-bejsp07. URL http://dx.doi.org/10.3150/12-BEJSP07.
- Zhuoyuan Li, Bin Dong, and Pingwen Zhang. Latent assimilation with implicit neural representations for unknown dynamics. *Journal of Computational Physics*, 506:112953, 2024a.
- Zhuoyuan Li, Bin Dong, and Pingwen Zhang. State-observation augmented diffusion model for nonlinear assimilation. *arXiv preprint arXiv:2407.21314*, 2024b.
- James E Matheson and Robert L Winkler. Scoring rules for continuous probability distributions. *Management science*, 22(10):1087–1096, 1976.
- Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina Agocs, Miguel Beneitez, Marsha Berger, Blakesly Burkhart, Stuart Dalziel, Drummond Fielding, et al. The well: a large-scale collection of diverse physics simulations for machine learning. *Advances in Neural Information Processing Systems*, 37:44989–45037, 2024.
- Suraj Pawar and Omer San. Equation-free surrogate modeling of geophysical flows at the intersection of machine learning and data assimilation. *Journal of Advances in Modeling Earth Systems*, 14 (11):e2022MS003170, 2022.
- Stephen G Penny, Timothy A Smith, T-C Chen, Jason A Platt, H-Y Lin, Michael Goodliff, and Henry DI Abarbanel. Integrating recurrent neural networks with data assimilation for scalable data-driven state estimation. *Journal of Advances in Modeling Earth Systems*, 14(3):e2021MS002843, 2022.
- Mathis Peyron, Anthony Fillion, Selime Gürol, Victor Marchais, Serge Gratton, Pierre Boudier, and Gael Goret. Latent space data assimilation by using deep learning. *Quarterly Journal of the Royal Meteorological Society*, 147(740):3759–3777, 2021.
- Yuan Qiu, Nolan Bridges, and Peng Chen. Derivative-enhanced deep operator network. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=WAiqLGfqX6.
- Florence Rabier and Zhiquan Liu. Variational data assimilation: theory and overview. In *Proc. ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, Reading, UK, September 8–12*, pp. 29–43, 2003.

Francesco Regazzoni, Stefano Pagani, Matteo Salvador, Luca Dede', and Alfio Quarteroni. Learning the intrinsic dynamics of spatio-temporal processes through latent dynamics networks. *Nature Communications*, 15(1):1834, 2024.

- Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
- François Rozet and Gilles Louppe. Score-based data assimilation. *Advances in Neural Information Processing Systems*, 36:40521–40541, 2023.
- Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Data-driven discovery of partial differential equations. *Science advances*, 3(4):e1602614, 2017.
- Matteo Salvador and Alison L Marsden. Liquid Fourier latent dynamics networks for fast GPU-based numerical simulations in computational cardiology. *arXiv preprint arXiv:2408.09818*, 2024.
- D. Sanz-Alonso, A. Stuart, and A. Taeb. *Inverse Problems and Data Assimilation*. London Mathematical Society Student Texts. Cambridge University Press, 2023. ISBN 9781009414326. URL https://books.google.com/books?id=ct_LEAAAQBAJ.
- Rochelle Schneider, Massimo Bonavita, Alan Geer, Rossella Arcucci, Peter Dueben, Claudia Vitolo, Bertrand Le Saux, Begüm Demir, and Pierre-Philippe Mathieu. ESA-ECMWF report on recent progress and research directions in machine learning for earth system observation and prediction. *npj Climate and Atmospheric Science*, 5(1):51, 2022.
- Phillip Si and Peng Chen. Latent-EnSF: A latent ensemble score filter for high-dimensional data assimilation with sparse observation data. *The Thirteenth International Conference on Learning Representations (ICLR)*, 2025.
- Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations, 2021. URL https://arxiv.org/abs/2011.13456.
- Pantelis R Vlachas, Georgios Arampatzis, Caroline Uhler, and Petros Koumoutsakos. Multiscale simulations of complex systems by learning their effective dynamics. *Nature Machine Intelligence*, 4(4):359–366, 2022.
- Hao Zuo, Magdalena Alonso Balmaseda, Eric de Boisseson, Steffen Tietsche, Michael Mayer, and Patricia de Rosnay. The ORAP6 ocean and sea-ice reanalysis: description and evaluation. In *EGU General Assembly Conference Abstracts*, pp. EGU21–9997, 2021.

A ADDITIONAL BACKGROUND

A.1 BAYESIAN FILTER FRAMEWORK

In Bayesian filter framework (Dore et al., 2009), the data assimilation problem becomes evolving $P(x_{t-1}|y_{1:t-1})$ to $P(x_t|y_{1:t})$ from time t-1 to t. This includes two steps, a prediction step followed by an update step. In the prediction step, we predict the density of x_t , denoted as $P(x_t|y_{1:t-1})$, from $P(x_{t-1}|y_{1:t-1})$ and the forward evolution of the dynamical model in Eq. 1 as

$$P(x_t|y_{1:t-1}) = \int P(x_t|x_{t-1})P(x_{t-1}|y_{1:t-1})dx_{t-1}, \tag{11}$$

where $P(x_t|x_{t-1})$ represents a transition probability. In the update step, given the new observation data y_t , the prior density $P(x_t|y_{1:t-1})$ from the prediction is updated to the posterior density $P(x_t|y_{1:t})$ by Bayes' rule as

$$P(x_t|y_{1:t}) = \frac{1}{Z}P(y_t|x_t)P(x_t|y_{1:t-1}).$$
(12)

Here, $P(y_t|x_t)$ is the likelihood function of the observation data y_t determined by the observation model in Eq. 2, Z is the model evidence or the normalization constant given as $Z = \int P(y_t|x_t)P(x_t|y_{1:t-1})dx_t$, which is often intractable to compute.

A.2 ENSEMBLE SCORE FILTER

A comparison between previous score-based assimilation methods and our LD-EnSF is shown in Table 3.

Table 3: Comparison of EnSF, Latent-EnSF, and LD-EnSF.

Methods	Sparse Observations	Dynamics
EnSF	Х	Х
Latent-EnSF	✓	×
LD-EnSF	✓	✓

In EnSF, at given physical time t, we define a pseudo diffusion time $\tau \in \mathcal{T} = [0, 1]$, at which we progress

$$dx_{t,\tau} = f(x_{t,\tau}, \tau)d\tau + g(\tau)dW, \tag{13}$$

driven by a d_x -dimensional Wiener process W. Here we use $x_{t,\tau}$ to indicate the state at physical time t and diffusion time τ . The drift term $f(x_{t,\tau},\tau)$ and the diffusion term $g(\tau)$ are chosen as

$$f(x_{t,\tau},\tau) = \frac{d\log\alpha_{\tau}}{d\tau}x_{t,\tau}, \ g^2(\tau) = \frac{d\beta_{\tau}^2}{d\tau} - 2\frac{d\log\alpha_{\tau}}{d\tau}\beta_{\tau}^2, \tag{14}$$

with $\alpha_{\tau}=1-\tau(1-\epsilon_{\alpha})$ and $\beta_{\tau}^2=\tau$, where ϵ_{α} is a small positive parameter to avoid $d\log\alpha_{\tau}/d\tau$ being not defined at $\tau=1$, e.g., $\epsilon_{\alpha}=0.01$ as in our experiments. This choice leads to the conditional Gaussian distribution

$$x_{t,\tau}|x_{t,0} \sim \mathcal{N}(\alpha_{\tau}x_{t,0}, \beta_{\tau}^2 I), \tag{15}$$

which gradually transforms the data distribution taken as $x_{t,0} = x_t \sim P(x_t|y_{1:t})$ at $\tau = 0$ close to a standard normal distribution at $\tau = 1$. This transformation process can be reversed by progressing an SDE from $\tau = 1$ to $\tau = 0$ as

$$dx_{t,\tau} = [f(x_{t,\tau}, \tau) - g^{2}(\tau)\nabla_{x}\log P(x_{t,\tau}|y_{1:t})]d\tau + g(\tau)d\bar{W},$$
(16)

where \bar{W} is another Wiener process independent of W, and $\nabla_x \log P(x_{t,\tau}|y_{1:t})$ is the score of the density $P(x_{t,\tau}|y_{1:t})$ with the gradient ∇_x taken with respect to $x_{t,\tau}$. By this formulation, $x_{t,\tau}$ follows the same distribution with density $P(x_{t,\tau}|y_{1:t})$ in the forward and reverse-time SDEs.

To compute the score $\nabla_x \log P(x_{t,\tau}|y_{1:t})$ in Eq. 16, EnSF (Bao et al., 2024b) uses

$$\nabla_{x} \log P(x_{t,\tau}|y_{1:t}) = \nabla_{x} \log P(x_{t,\tau}|y_{1:t-1}) + h(\tau) \nabla_{x} \log P(y_{t}|x_{t,\tau}),$$
(17)

where the damping function $h(\tau)=1-\tau$ is chosen to monotonically decrease in [0,1], with h(1)=0 and h(0)=1. The likelihood function $P(y_t|x_{t,\tau})$ in the second term can be explicitly derived from the observation map Eq. 2. The first term can be approximated using Monte Carlo approximation, with samples drawn from distribution $P(x_{t,0}|y_{1:t-1})$.

With the score function $\nabla_x \log P(x_{t,\tau}|y_{1:t})$ evaluated as in Eq. 17, the samples from the target distribution $P(x_t|y_{1:t})$ can be generated by first drawing samples from $\mathcal{N}(0,I)$ and then solving the reverse-time SDE Equation 16 using, e.g., Euler-Maruyama scheme. The workflow for a single-step data assimilation using EnSF is summarized in Algorithm 2 in Appendix A.2.

The algorithm of EnSF is presented in Algorithm 2, where state samples are evolved forward according to the physical model, and then refined via score-based sampling in the reverse-time process.

Algorithm 2 One step of EnSF

Input: Ensemble of the states $\{x_{t-1}\}$ from distribution $P(x_{t-1}|y_{1:t-1})$ and new observation y_t . **Output:** Ensemble of the states $\{x_t\}$ from distribution $P(x_t|y_{1:t})$.

- 1: Simulate the forward model in Equation 1 from $\{x_{t-1}\}$ to obtain samples $\{x_{t,0}\}$ following $P(x_t|y_{1:t-1})$.
- 2: Generate random samples $\{x_{t,1}\}$ from standard normal distribution N(0,I).
- 3: Solve the reverse-time SDE in Equation 16 starting from samples $\{x_{t,1}\}$ using the score in Equation 17 to obtain $\{x_t\}$.

B DETAILS OF EXPERIMENTS SETTINGS

B.1 TSUNAMI MODELING

We consider tsunami modeling, which are widely used to model the propagation of shallow water where the vertical depth of the water is much smaller than the horizontal scale. These equations are frequently applied in oceanographic and atmospheric fluid dynamics. In this study, we adopt a simplified form of the tsunami modeling:

$$\frac{d\mathbf{v}}{dt} = -f\mathbf{k} \times \mathbf{v} - g\nabla\eta,
\frac{d\eta}{dt} = -\nabla \cdot ((\eta + H)\mathbf{v}),$$
(18)

where ${\bf v}$ is the two-dimensional velocity field, and η represents the surface elevation. Both ${\bf v}$ and η constitute the system states to be assimilated. Here, $H=100{\rm m}$ denotes the mean depth of the fluid, f is the full latitude varying Coriolis parameter, and g is the constant representing gravitational acceleration. k refers to the unit vector in the vertical direction. We define a two-dimensional domain of size $L\times L$, where $L=10^6{\rm m}$ in each direction. The initial condition is a displacement of the surface elevation modeled by a Gaussian bump with its center randomly and uniformly distributed in the lower-left quarter of the domain. The boundary conditions are set such that ${\bf v}=0$. Over time, the wave dynamics become increasingly complex due to reflections at the boundaries. The spatial domain is discretized into a uniform grid of 150×150 , following the setup in (Si & Chen, 2025). The simulation is carried out over 2000 time steps using an upwind scheme with a time step size of $\delta t\approx21$ seconds. Including the initial condition, the dataset comprises 2001 time steps. We generate 200 trajectories, dividing them into training (60%), validation (20%), and evaluation (20%) sets.

B.2 KOLMOGOROV FLOW

In the second example, we consider the Kolmogorov flow with an uncertain Reynolds number, a parametric family of statistically stationary turbulent flows driven by body force. This incompressible fluid is governed by the Navier-Stokes equation (Kochkov et al., 2021):

$$\frac{d\mathbf{v}}{dt} = -\mathbf{v} \cdot \nabla \mathbf{v} + \frac{1}{Re} \nabla^2 \mathbf{v} - \frac{1}{\rho} \nabla p + \mathbf{f},$$

$$\nabla \cdot \mathbf{v} = 0,$$
(19)

where the external forcing term ${\bf f}$ is defined as ${\bf f}=\sin(4\xi_2)\hat{{\boldsymbol \xi}}_1-0.1{\bf v}$, where ${\boldsymbol \xi}=(\xi_1,\xi_2)$ is the spatial coordinate, $\hat{{\boldsymbol \xi}}_1=(1,0)$, ${\bf v}$ is the velocity field, p is the pressure field, and $\rho=1$ denotes the fluid density. The fluid velocity ${\bf v}$ is the state variable to be assimilated. The spatial domain is defined as $[0,2\pi]^2$ with periodic boundary conditions and a fixed initial condition. The flow complexity is controlled by the Reynolds number Re. The spatial resolution is set as 150×150 . We simulate the flow over 300 time steps with a step size of $\delta t=0.04$ and take the data from time steps 100 to 300. A total of 200 trajectories are generated, with the Reynolds number (Re) randomly sampled from the range [500,1500]. These trajectories are divided into training (60%), validation (20%) sets.

B.3 Atmospheric Modeling

In the third example, we model the atmosphere by adopting the PlanetSWE formulation from (Ohana et al., 2024). This system serves as a simplified approximation of the primitive equations used in atmospheric modeling at a single pressure level.

$$\frac{\partial \mathbf{v}}{\partial t} = -\mathbf{v} \cdot \nabla \mathbf{v} - g \nabla h - \nu \nabla^4 \mathbf{v} - 2\Omega \times \mathbf{v},$$

$$\frac{\partial h}{\partial t} = -H \nabla \cdot \mathbf{v} - \nabla \cdot (h \mathbf{v}) - \nu \nabla^4 h + F,$$

where ${\bf v}$ is the two-dimensional velocity field, h denotes the deviation of the pressure surface height from the mean H, and Ω represents the Coriolis parameter. The term ∇^4 denotes hyperviscosity. The initial conditions are derived from the 500 hPa pressure level in the ERA5 reanalysis dataset. F is an external forcing term that introduces both daily and annual seasonality.

$$\begin{split} \phi_c(t) &= 2\pi \cdot \frac{t}{\mathrm{day}}, \\ \theta_c(t) &= \sin\left(2\pi \cdot \frac{t}{\mathrm{year}}\right) \cdot \theta_{\mathrm{max}}, \\ F(\phi, \theta, t) &= h_f^0 \cdot \cos(\phi - \phi_c(t)) \cdot \exp\left(-\frac{(\theta - \theta_c(t))^2}{\sigma^2}\right), \end{split}$$

where ϕ and θ denote longitude and latitude, respectively; t is the simulation time; h_f^0 is the forcing amplitude; $\phi_c(t)$ and $\theta_c(t)$ represent the seasonally shifting longitude and latitude centers of the forcing. $\theta_{\rm max}=0.4$ is the maximum latitudinal declination; $\sigma=\pi/2$ controls the latitudinal spread of the forcing; day and year are time scale constants corresponding to a daily and annual cycle. This dataset defines a 42-day year to increase simulation complexity. In our setting, we simulate a half-year period (21 days), with snapshots selected every 8 hours, resulting in a total of 63 time steps, with a spatial resolution of 512×256 . A total of 200 trajectories are generated by sampling the forcing amplitude $h_f^0\sim\mathcal{U}[0.1,30]$ and the latitudinal spread parameter $\sigma\sim\mathcal{U}[1,4]$. These trajectories are split into training (60%), validation (20%), and evaluation (20%) sets.

C Training Details

C.1 Hyperparameter Choice

Normalization. Prior to training, we normalize the data following the approach of (Regazzoni et al., 2024). For bounded data, we scale variables, including the parameter u, the space coordinate ξ , and the state variable x, to the range [-1,1]. For unbounded data, we standardize the variables to zero mean and unit variance. The time step Δt in Eq. 4 is treated as a hyperparameter during training.

To determine the optimal hyperparameter choices for LDNets in our examples, we automate the hyperparameter search using Bayesian optimization (Biewald, 2020). The range of hyperparameters considered is listed in Table 4. The "downsample time steps" refers to the number of time steps

sampled from the original dataset. Meanwhile, " Δt normalize" is a constant used to scale the time step Δt during latent state evolution. It serves as a practical tool to ensure numerical stability and adjust the effective temporal scale of the latent dynamics, rather than representing a physical time unit. The details of further training and optimized hyperparameters are shown in Table 5. When fine-tuning the reconstruction network, we set the number of epochs to 1000 and the learning rate to 10^{-4} . We also present the training parameters of LSTM encoder in Table 6.

Table 4: Hyperparameter search range for LDNets training

		Dataset	
	Tsunami modeling	Kolmogorov flow	Atmospheric modeling
Downsampled time steps	20 - 50	20 - 50	25 - 63
Δt	0.03 - 0.05	0.04	0.04 - 0.05
Num of latent states	8 - 20	2 - 15	10 - 100
Dynamics net	depth	depth	depth
•	5 - 10	2 - 15	5 - 10
	width	width	width
	10 - 200	20 - 200	100 - 200
Reconstruction net	depth	depth	depth
	5 - 12	2 - 15	8 - 15
	width	width	width
	100 - 400	20 - 700	300 - 500
Fourier embedding dim	0 - 50	0 - 50	10 - 100
StepLR (gamma)	0.1 - 0.8	0.1 - 0.9	0.1 - 0.7
Batch size	2 - 16	2 - 16	1-4

Table 5: Training details for LDNets

		Dataset	
	Tsunami modeling	Kolmogorov flow	Atmospheric modeling
Downsample time step	50	40	63
Δt	0.036	0.04	0.04
Space points	5000	5000	10000
Dynamics net	MLP	MLP	MLP
Reconstruction net	8 hidden layers 50 hidden dim ReLU MLP 10 hidden layers 300 hidden dim ReLU	9 hidden layers 200 hidden dim ReLU MLP 14 hidden layers 500 hidden dim ReLU	8 hidden layers 200 hidden dim ReLU MLP 15 hidden layers 500 hidden dim ReLU
Fourier embedding dim	_	10	
Initialization	Glorot normal	Glorot normal	
Adam (lr)	10^{-3}	10^{-3}	10^{-3}
StepLR (gamma, step size)	(0.6, 200)	(0.7, 200)	(0.6, 200)
Batch size	$\dot{2}$	6	$\dot{2}$
Epoch	2000	2000	2000
Loss	MSE	MSE	MSE

C.2 OFFLINE COST VS. ONLINE GAIN

Training of LDNets takes 12.08 hours for Kolmogorov flow, 10.76 hours for the tsunami modeling, and 21.86 hours for atmospheric modeling on a single NVIDIA RTX A6000 GPU. The training process can be further accelerated by utilizing multiple GPUs, and further code optimization may improve efficiency and reduce computational costs.

Although LD-EnSF incurs a higher initial training cost, this cost is quickly offset due to its significantly lower per-cycle assimilation cost. Based on a practical cost breakdown, LD-EnSF becomes more computationally efficient than Latent-EnSF when the ensemble size exceeds 100 in a single

Table 6: Training details for LSTM encoder

	Dataset					
	Tsunami modeling	Kolmogorov flow	Atmospheric modeling			
Hidden layers	1	1	1			
Hidden dim	256	128	512			
Initialization	Glorot normal	Glorot normal	Glorot normal			
Adam (lr)	10^{-3}	0.002	10^{-4}			
CosineAnnealingLR (Tmax, eta min)	=	$(5000, 10^{-4})$	$(5000, 10^{-4})$			
Epoch	20000	75000	75000 ´			
Dropout	0.1	0	0			

assimilation cycle. To quantify this, we use the following total cost formulation for n assimilation cycles. $(T_f, T_r, \text{ and } T_d \text{ in Table 2 are computed based on 100 trajectories):}$

$$T_{\text{total}} = T_{\text{data}} + T_{\text{training}} + \frac{n}{100} (T_f + T_r + T_d)$$

Take atmospheric modeling as an example. Combining the data in Table 2 and providing that $T_{\rm data}=298$ seconds, it is easy to see that when n>100, LD-EnSF becomes more efficient than other methods. At the same time, there are many scenarios where real-time assimilation is crucial. For example, in tsunami modeling, we can spend time on offline training beforehand, but once a tsunami occurs, we need predictions as quickly as possible for effective forecasting. In such cases, LD-EnSF is about 2×10^3 times faster than Latent-EnSF and other methods during assimilation, making it highly suitable for time-sensitive applications.

D SMOOTHNESS OF LATENT STATES

The comparison of VAE and LDNet latent space for Kolmogorov flow and atmospheric modeling is shown in Fig. 6.

Figure 6: Latent states of Kolmogorov flow and atmospheric modeling.

Due to the smoothness of LDNet latent space, the output can be evaluated at arbitrary continuous time steps by interpolation. In the tsunami modeling, Fig. 7 reports the reconstruction error based on these interpolated latent states, where the model is trained on 50 time steps sampled from a total of 2000 physical time steps. During testing, the latent trajectories are interpolated to 400 time steps for reconstructing the full physical states.

E ROBUSTNESS TO NOISE AND DISTRIBUTION SHIFT

E.1 ESTIMATING THE UNCERTAINTY OF LATENT STATES

To estimate latent observation noise $\hat{\gamma}_t$, we first train the LSTM encoder using noise-free observations. We then encode noisy observations and compare the resulting latent states to the reference latent states obtained from a trained LDNet. $\hat{\gamma}_t$ is then estimated as the standard deviation of the difference between the noisy and reference latent states. Fig. 8 shows the estimated $\hat{\gamma}_t$, in which we assume a uniform noise level across latent dimensions.

Figure 7: Test error of reconstructing full physical states from interpolated latent states in tsunami modeling.

Figure 8: Estimated uncertainty in the latent space, measured as the standard deviation of the difference between the encoded latent states (from noisy observations) and the true latent states obtained from the trained LDNet.

E.2 Non-Gaussian / Heteroskedastic Noise

To evaluate the robustness of LD-EnSF under more realistic observation conditions, we conduct experiments using several non-Gaussian and heteroskedastic noise models in the tsunami assimilation task. All noise distributions are scaled to achieve a mean noise-to-signal ratio of approximately 10%. Table 7 reports the assimilation error across these settings.

Table 7: Assimilation error under different observation noise models.

Noise Type	Gaussian	Nonstationary Gaussian	Sinusoidal Het- eroskedastic	Beta	Multivariate Gaussian
Assim. Error	0.053	0.086	0.061	0.072	0.064

The **nonstationary Gaussian** setting introduces a time-dependent mean that varies across assimilation steps but is spatially uniform. The **sinusoidal heteroskedastic** setting applies temporally varying Gaussian noise whose variance oscillates between 0% and 20% of the signal amplitude, following a sine waveform. The **Beta noise** is sampled from a scaled Beta distribution (e.g., Beta(2, 5)), inducing asymmetric, bounded perturbations. Finally, the **multivariate Gaussian** model introduces correlated noise with covariance matrix $\Sigma = AA^{\top}$, where A contains i.i.d. standard normal entries.

Despite the increased variability and structural complexity of these noise models, LD-EnSF consistently achieves low assimilation error, demonstrating robustness beyond the standard isotropic Gaussian setting.

E.3 OUT-OF-DISTRIBUTION GENERALIZATION

While out-of-distribution (OOD) generalization is not the main focus of this work, it remains an important consideration for real-world deployment. We evaluate the robustness of LDNet under distribution shift by testing it on trajectories initialized with Gaussian bumps displaced outside the

training region. We evaluate the OOD generalization of LDNet by testing it on trajectories whose initial Gaussian bump lie outside the training region. Specifically, while training conditions are sampled from $[0,0.5L] \times [0,0.5L]$, we test on locations such as [0.25L,0.52L], [0.25L,0.54L], etc. (Table 8).

Table 8: LDNet test error under increasing displacement from the training region. The horizontal axis indicates the center shift *L* of the initial Gaussian bump.

Distance to Train Region	0.02L	0.04L	0.06L	0.08L	0.10L
LDNet Error	0.0553	0.0720	0.0889	0.104	0.122

As expected, the error increases with distance from the training region, indicating a consistent degradation under distribution shift. However, the extent of generalization is problem dependent. For instance, the original LDNet paper (Regazzoni et al., 2024) demonstrates strong extrapolation in time on unsteady Navier–Stokes flows.

E.4 Unstructured Observations Assimilation Results Under Noise

By leveraging the LSTM encoder, LD-EnSF can accommodate unstructured observations at arbitrary locations. However, training a new LSTM is required for different sets of observation points. In the following results, 100 observation points (0.44%) are randomly selected as the observation set. Training the LSTM observation encoder to the observations with latent states using the hyperparameter setting in Table 6 achieves a test relative RMSE of 0.094% for the Kolmogorov flow, 0.83% for the tsunami modeling and 2.68% for atmospheric modeling. The visualizations are in Appendix H.

Under random observation settings, we present the assimilation results in Fig. 9. We conduct 20 experiments, each with a different ground-truth trajectory, and report the mean and uncertainty of our method. The figure also includes results under different noise levels, demonstrating the robustness of LD-EnSF. For the Kolmogorov flow and atmospheric modeling, since the data is normalized to have a mean of 0 and a standard deviation of 1, Gaussian noise is applied with a standard deviation proportional to the specified noise level, e.g., a standard deviation of 0.1 for 10% noise. For the tsunami modeling, due to the long-tailed nature of the data distribution, Gaussian noise is added adaptively based on the value at each observation point.

Note that Fig. 9 (bottom middle) shows the results of parameter estimation, where the purple line corresponds to the no-assimilation baseline and exhibits high variance. It corresponds to the no-assimilation baseline and reflects the prior distribution of the parameters before any data assimilation is applied. The reported variance is computed across multiple test cases with different ground-truth trajectories, and the wide spread of the purple curve reflects the variability in true parameter values across these cases. This highlights the inherent difficulty of parameter estimation in the absence of assimilation, particularly when the parameter is not directly observed and affects the system only indirectly. In contrast, the assimilation results (depicted by the remaining curves) show substantially reduced variance and lower mean errors. For instance, under 20% observation noise, the mean estimation error is approximately 10%, with a standard deviation of around 15%. This performance is comparable across most benchmarks, though atmospheric modeling remains more challenging due to the weak sensitivity of the observed field to the external forcing parameter. This makes the inverse problem more ill-posed, especially under sparse observations. In terms of convergence behavior, the estimated parameters generally stabilize within approximately 10 assimilation steps, which is consistent with other benchmark settings.

E.5 STRUCTURED OBSERVATIONS ASSIMILATION RESULTS UNDER NOISE

Fig. 10 shows the assimilation performance of LD-EnSF under varying levels of observation noise. Results are averaged over 20 runs with different ground-truth trajectories, and both the mean and uncertainty estimates are reported. Note that the inferred parameter u exhibits higher uncertainty, which is expected, as recovering the system parameters from limited and noisy data is inherently ill-posed.

Figure 9: Assimilation results for unstructured observations in the Kolmogorov flow(top), tsunami modeling (middle), and atmospheric modeling (bottom). The left panel shows the relative RMSE of full states, while the middle and right panels display the error of the assimilated parameters and latent states, respectively, compared to the latent states at the true parameters. For reference, errors of the original (unassimilated) quantities are also included.

F SENSITIVITY AND STABILITY ANALYSIS

Empirically, we conducted additional experiments that vary the latent dimension, ensemble size, and observation sparsity for the tsunami modeling problem. To facilitate comparison, To facilitate comparison, the assimilation error shown in this section is defined as the relative RMSE at the final time step, while the surrogate model error refers to the relative RMSE averaged over time.

F.1 LATENT DIMENSION SENSITIVITY

In our tsunami modeling experiments, we investigate how varying the latent dimension influences both the surrogate model accuracy and the assimilation performance, while keeping other hyperparameters unchanged. As shown in Table 9, a clear failure mode emerges when the latent space is restricted to 1 or 2 dimensions. The best performance, in terms of relative RMSE, is achieved with a moderate latent dimension between 5 and 10. While a high-dimensional latent space (e.g., 500 dimensions) does not lead to complete failure, it results in significantly higher errors compared to these more balanced settings.

Figure 10: Assimilation results for grid-based observations in the Kolmogorov flow(top), tsunami modeling (middle), and atmospheric modeling (bottom). The left panel shows the relative RMSE of full states, while the middle and right panels display the error of the assimilated parameters and latent states, respectively, compared to the latent states at the true parameters. For reference, errors of the original (unassimilated) quantities are also included.

Table 9: Effect of latent dimension on the LDNet surrogate error (in relative RMSE) and assimilation performance for tsunami modeling.

Latent Dim	1	2	3	5	10	50	100	200	500
LDNet Error Assim. Error	0.861 0.869	0.459 0.387		0.0216 0.0364	0.0213 0.0371		0.0271 0.0528	0.0200	0.0473 0.0993

F.2 ENSEMBLE SIZE SENSITIVITY

EnSF consists of two components: the prior score estimation (done through Monte-Carlo sampling) and the likelihood score estimation. The latent observation in the likelihood is defined over the entire latent space, whose contribution dominates the construction of the posterior score, a point explored in Latent-EnSF (Section 4.1.1). With one ensemble member, the algorithm effectively reduces to a MAP estimate and yields similar accuracy. For LD-EnSF, increasing the ensemble size has minimal impact on the average error, as shown in Figure 11, which reports both the root-mean-square error (RMSE) and the Continuous Ranked Probability Score (CRPS) Matheson & Winkler (1976). While the mean errors remain stable, the variance across 20 different trajectories increases with ensemble size, reflecting the uncertainty introduced by sparse and noisy observations. Note that a small ensemble size was shown to be sufficient in the latent assimilation, see Figure 5 in (Si & Chen, 2025), while a large ensemble size has to be used for the full/original space assimilation to increase its accuracy.

Figure 11: CRPS and RMSE values for varying ensemble size in tsunami modeling

F.3 SURROGATE MODEL SENSITIVITY

The accuracy of the surrogate models (LDNet and LSTM encoder) plays a critical role in the overall assimilation performance. In our setting, the LSTM is trained on latent trajectories generated by LDNet, so poor LDNet accuracy also affects the quality of the observation encoder. Therefore, it is essential to ensure that LDNet reaches a reasonable level of fidelity. In Table 10, the assimilation error decreases as LDNet error decreases during training. Notably, even when the LSTM achieves similar test errors across different LDNet models, the assimilation accuracy still depends strongly on the quality of LDNet.

This gap between surrogate and assimilation error is expected. While the LDNet is evaluated using full and accurate latent inputs, the assimilation process relies on partial and noisy observations, which are encoded by a separately trained LSTM. The LSTM itself introduces approximation error when reconstructing latent trajectories, and during testing we additionally add 10% noise to the observations. Therefore, it is reasonable, and theoretically consistent, that assimilation results exhibit higher error, e.g., 0.0371, than the surrogate model error, e.g., 0.0213 at epoch 1999.

Table 10: Effect of LDNet training duration on surrogate and assimilation accuracy in tsunami modeling.

Epoch	99	299	399	499	799	999	1999
LDNet Error	0.144	0.0794	0.0483	0.0359	0.0309	0.0256	0.0213
LSTM Error	0.0041	0.0033	0.0033	0.0030	0.0029	0.0032	0.0028
Assim. Error	0.252	0.0975	0.0693	0.0499	0.0443	0.0411	0.0371

F.4 OBSERVATION DENSITY SENSITIVITY

We also study the impact of observation density on assimilation accuracy. As expected, the assimilation error increases as fewer observations are available, due to the reduced information available for inference. The results are summarized in Table 11.

Table 11: Assimilation error under varying observation density in tsunami modeling.

Observation Density	0.08%	0.10%	0.16%	0.25%	0.44%	1.00%
Assimilation Error	0.129	0.0891	0.0476	0.0504	0.0371	0.0353

G ABLATION STUDY ON KEY COMPONENTS

We evaluate how each component of LDNet, the observation encoder, the training pipeline, and integration for data assimilation contributes to overall performance.

G.1 LDNet Architecture and Training Strategy

Several improvements have been made to LDNet, including the incorporation of Fourier encoding, the use of ResNet blocks, and a fine-tuning strategy. In Table 12, we use the Kolmogorov flow example to isolate and evaluate the individual contributions of these architectural enhancements. We observe that the combination of ResNet and Fourier embedding largely improves the performance of LDNet.

Table 12: LDNet performance on Kolmogorov Flow with different architectural ablations.

Kolmogorov Flow	w/ Fourier & ResNet	w/ ResNet	w/ Fourier	w/o ResNet/Fourier
LDNet Error	0.0223	0.0237	0.0268	0.0340

As shown in Table 13, fine-tuning of the reconstruction network improves accuracy beyond initial training of our proposed LDNet, and both stages significantly outperform the original LDNet.

Table 13: Relative RMSE for different training strategies in tsunami modeling.

	Training	Fine-tuning	Original LDNet
Tsunami	0.0213	0.0168	0.1837
Kolmogorov	0.0223	0.0123	0.0349

G.2 Observation Encoder Architecture

We compare our LSTM observation encoder with a CNN-based encoder composed of residual blocks and an intermediate self-attention layer, which is also used in (Si & Chen, 2025). In the tsunami modeling example, we evaluate four configurations and compare the assimilation error: (1) a CNN encoder with direct full-state reconstruction from encoded observation; (2) LD-EnSF with a CNN encoder; (3) an LSTM encoder alone; and (4) LD-EnSF with an LSTM encoder. The LSTM encoder, which incorporates temporal context, achieves significantly lower latent representation error (0.5% vs. 0.98%) than the CNN encoder. As shown in Fig. 12, this also translates to significantly improved assimilation accuracy.

Figure 12: Comparing observation encoders with and without filtering. The colored regions indicate estimated uncertainties for observation noise at a 10% level.

G.3 Two Phase training of LDNet and Observation Encoder

Although LDNet can, in principle, be trained jointly with the LSTM encoder to simplify the workflow, we find that balancing the different loss terms is nontrivial and does not lead to improved performance. To evaluate this approach, we experimented with a combined training objective:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{latent}} + \mathcal{L}_{\text{LSTM}} + \mathcal{L}_{\text{obs}},$$

where the first two terms are defined in Eqs. 5 and 7, and $L_{\rm obs}$ measures the reconstruction error from LSTM-predicted latents. This joint training strategy results in a surrogate model error of 0.0241 and an assimilation error of 0.0693 in tsunami modeling, which are higher than the results obtained using separate training in Table 1.

G.4 WITH AND WITHOUT LATENT-SPACE ASSIMILATION

 In Fig. 13, we compare the reconstruction accuracy of two approaches on tsunami modeling under different noise levels: (i) directly reconstructing the full state from latent observations encoded by the LSTM encoder (denoted as LSTM-only, without any filtering), and (ii) LD-EnSF, which performs ensemble-based filtering in the latent space. The LSTM-only baseline performs well when there is no observation noise. However, as noise increases (e.g., at 5% and 10%), its performance degrades significantly. In contrast, LD-EnSF maintains lower reconstruction error by effectively incorporating both prediction uncertainty and observation uncertainty through latent-space filtering. Moreover, LD-EnSF is able to estimate output uncertainty using the ensemble, while directly reconstruct full state using LSTM encoder and reconstruction network cannot. This highlights the benefit of applying EnSF on top of the LSTM encoder, especially under noisy conditions.

Figure 13: Comparison between the LSTM-only baseline and LD-EnSF assimilation results on tsunami modeling with 0%, 5%, and 10% observation noise. The colored regions indicate uncertainty estimated by the ensemble.

H ASSIMILATION RESULTS VISUALIZATION

This section visualizes the assimilation process, including observation points, reconstructed states, and assimilation errors. Figs. 15 and 14 show results for the tsunami modeling and Kolmogorov flow, respectively, comparing structured (10×10 grid) and randomly sampled (100 points) observations. In Fig. 15, although the trajectory starts from a misspecified initial condition, assimilation corrects it over time. In Fig. 14, the trajectory with an incorrect Re deteriorates rapidly, while assimilation with LD-EnSF effectively reduces the error. The assimilated dynamics for atmospheric modeling are shown in Fig. 16. A comparison of different data assimilation methods at the final time step, in terms of meridional wind and geopotential height, is presented in Fig. 17.

Figure 14: Visualization of the vorticity field $\omega = \nabla \times \mathbf{v}$ of the ground truth of the Kolmogorov flow in at Reynolds number Re = 674.37 (1st row) and the perturbed dynamics at Re = 1469.5 (2nd row), with their difference shown in the 3rd row. Sparse observations (10×10 from 150×150 grid) (4th row) are assimilated into an ensemble of 20 LDNet trajectories via LD-EnSF. The 5th row shows one trajectory from the ensemble, starting from a deviated Re = 1469.5. 6th row presents assimilation errors. The last three rows correspond to 100 randomly sampled observation points and their respective assimilation results, where 'r' denotes random.

Figure 15: Visualization of the surface elevation η in tsunami dynamics: (1st row) ground truth, (2nd row) LDNet predictions from known initial conditions, and (3rd row) prediction errors. Sparse observations (10×10 from 150×150 grid) (4th row) are assimilated into an ensemble of 20 LDNet trajectories via LD-EnSF. The 5th row shows one trajectory from the ensemble, starting from a deviated initial condition. The last three rows correspond to 100 randomly sampled observation points and their respective assimilation results, where 'r' denotes random.

Figure 16: Visualization of LD-EnSF assimilated dynamics over 21 days. The bottom row shows the corresponding assimilation errors.

Figure 17: Comparison of LD-EnSF, Latent-EnSF, and EnSF in terms of meridional wind and geopotential height at the final assimilation step.