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Abstract

Convolutional Neural Networks (CNNs) have been the dominant model for video
action recognition. Due to the huge memory and compute demand, popular action
recognition networks need to be trained with small batch sizes, which makes learn-
ing discriminative spatial-temporal representations for videos become a challenging
problem. In this paper, we present Dynamic Normalization and Relay (DNR), an
improved normalization design, to augment the spatial-temporal representation
learning of any deep action recognition model, adapting to small batch size training
settings. We observe that state-of-the-art action recognition networks usually apply
the same normalization parameters to all video data, and ignore the dependencies of
the estimated normalization parameters between neighboring frames (at the same
layer) and between neighboring layers (with all frames of a video clip). Inspired
by this, DNR introduces two dynamic normalization relay modules to explore the
potentials of cross-temporal and cross-layer feature distribution dependencies for
estimating accurate layer-wise normalization parameters. These two DNR modules
are instantiated as a light-weight recurrent structure conditioned on the current
input features, and the normalization parameters estimated from the neighboring
frames based features at the same layer or from the whole video clip based features
at the preceding layers. We first plug DNR into prevailing 2D CNN backbones
and test its performance on public action recognition datasets including Kinetics
and Something-Something. Experimental results show that DNR brings large
performance improvements to the baselines, achieving over 4.4% absolute margins
in top-1 accuracy without training bells and whistles. More experiments on 3D
backbones and several latest 2D spatial-temporal networks further validate its ef-
fectiveness. Code will be available at https://github.com/caidonkey/dnr.

1 Introduction

Human action recognition is a fundamental problem in video understanding, which has been studied
for decades. The performance of an intelligent action recognition system depends on how well it
can extract compact and discriminative features to characterize temporal evolutions of human object
appearance and its motion information in videos. Early seminal methods [29, 11, 8, 46, 28, 45, 58]
ubiquitously use hand-crafted features to construct spatial-temporal descriptors. In recent years, deep
learning based models [70] have become the mainstream in action recognition research, mainly due to
their remarkably better representation and generalization abilities compared to conventional methods,
especially to model large amounts of training data.

Despite the prevalence of deep learning based methods for action recognition, learning efficient
yet effective video representations is still a challenging problem. To improve the spatial-temporal
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representation learning of CNNs for action recognition, we investigate a new technical perspective
by presenting an improved normalization design called Dynamic Normalization and Relay (DNR),
learning to predict accurate layer-wise normalization parameters for any action recognition network in
an input-dependent manner. We are motivated by two plain facts. On the one side, due to the problem
of space-time cube data structure, the huge memory and compute demand in training a popular
network for action recognition usually restricts the batch size to a much smaller range compared to
the settings for image classification tasks. For instance, on Kinetics [5] the batch size is typically
set to 32 video clips of length 8, while on ImageNet [44] it is set to 256 images. On the other side,
existing CNN models for video action recognition use Batch Normalization (BN) [24] as a standard
component to normalize feature maps learnt at each layer. Although the significance of BN has been
well demonstrated in many previous action recognition works, it will easily introduce noise during
the estimation of layer-wise normalization parameters when the batch size is small, degenerating
the accuracy of the trained model to some extent. This problem could be alleviated by using recent
normalization methods [23, 63, 26, 57, 31, 38, 67]. However, the performance gain of doing so is
limited as they are primarily proposed for image recognition tasks. For example, on Kinetics with
32-frame video clips, it only brings -0.3% and 0.7% top-1 accuracy improvement to ResNet-50
C3D baseline [53] trained with a batch size of 8 and 4 video clips per GPU by replacing BN with
Group Normalization (GN), as reported in [63]. We argue this is mainly because a direct extension of
them from image to video domain lacks a proper mechanism to handle complicated spatial-temporal
feature variations of video data. However, to the best of our knowledge, there is almost no research
effort made to explore a better normalization mechanism for promoting the training of existing action
recognition networks with video clip inputs.

As an improved video normalization design for action recognition networks, our DNR considers
three questions at multiple representation learning scales to alleviate the aforementioned gap: (1)
At individual frame scale, how to estimate input-dependent layer-wise normalization parameters?
(2) At time scale, how to enhance the dependencies of the estimated normalization parameters for
layer-specific feature representations between neighboring frames? (3) At network depth scale, how to
enhance the clip-level dependencies of the estimated normalization parameters between neighboring
layers? To the first question, we formulate our DNR as a dynamic normalization predication
scheme [1] where normalization parameters for any layer of an action recognition network are learnt
and generated dynamically both in training and inference, making them to be input-dependent. To
the other two questions, we bridge the DNR formulation with two interdependent normalization relay
modules called cross-temporal DNR and cross-layer DNR, which are encapsulated into a light-weight
recurrent structure [20]. For a certain layer, the normalization parameters learnt by cross-temporal
DNR module are conditioned on the input features as well as the normalization parameters estimated
from the neighboring frames based features at the same layer, while the normalization parameters
learnt by cross-layer DNR module are conditioned on the input features as well as the normalization
parameters estimated from the whole video clip based features at the preceding layers. On the one
side, the dynamic normalization relay along the temporal axis models the layer-specific frame-level
correlations of the spatial-temporal feature distributions between neighboring frames. On the other
side, the dynamic normalization relay along the sequential layers considers all the hidden layers as
a whole system, and estimates the video clip-level feature dynamics of the current layer by jointly
considering the feature distributions of its preceding layers. Benefiting from the above complementary
designs, our DNR can significantly improve the performance of existing action recognition networks
via replacing their normalization layers by two types of DNR modules.

Experimental results on Kinetics and Something-Something datasets [18, 40] show that by applying
DNR to prevailing 2D CNN backbones such as ResNet [19], ResNeXt [64] and BNInception [25], it
brings large accuracy improvements to the baselines. We also apply DNR to 3D CNN backbones and
several latest 2D CNN designs constructed with sophisticated spatial-temporal modules for further
validation of its effectiveness. Thorough ablative experiments are also conducted to have a deep
analysis of the proposed method.

2 Related Works

In this section, we summarize existing works that are related to our method, and discuss their
connections and differences.
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Efficient Spatial-Temporal Modeling. Efficient spatial-temporal modeling is a hot research topic in
video action recognition. To strike a direct trade-off between network accuracy and efficiency, some
works [42, 54, 37] use factorized convolutions to approximate 3D convolutions, and some works [65,
71, 15] mix 2D and 3D convolutions into a single CNN architecture. Two-path networks [16, 14,
43, 30] are another kind of efficient 3D designs. One representative is SlowFast [16] which uses a
slow pathway operating at low frame rate of high image resolution to capture spatial semantics and
a fast pathway operating at high frame rate of low image resolution to capture motion information.
Compared to 2D CNN counterparts, the aforementioned networks mixing 2D and 3D convolutions as
well as two-path networks with 3D convolutions are not runtime efficient. They are efficient only to
their own motivations. In some recent works [34, 51, 47, 13, 39, 59], switchable channel grouping
operations such as shift and shuffle along the temporal dimension are incorporated into either 2D
or 3D CNN networks to promote the information exchange between neighboring frames. As our
method improves the basic normalization strategy for training action recognition networks, it could
be potentially combined with some of these efficient designs to get improved performance.

Action Recognition with Recurrent Models. Thanks to their natural abilities to model temporal
relations within video data, Recurrent Neural Networks (RNNs) instantiated as Long Short Term
Memory (LSTM) networks [20] are popularly used in action recognition. This line of research
is originally explored by [3] in which an LSTM network is used to classify actions in soccer
videos, taking hand-crafted features as the input. In the deep learning era, a lot of architectural
extensions [69, 12, 50, 17, 48, 52, 41, 4, 55, 33] have been presented, using LSTM networks to
aggregate the frame-level CNN features for video clip-level action predications. These methods
follow a basic CNN-LSTM framework, using LSTM networks as the fusion module to model temporal
dynamics over the frame-level features extracted by one or several pre-trained CNN models. Unlike
them, we investigate a new perspective for the usage of LSTM: we bridge a light-weight LSTM
structure with a dynamic normalization formulation, learning to generate frame-adaptive layer-wise
normalization parameters for improving the performance of existing action recognition networks.

Action Recognition with Attentive Models. There are a lot of existing works which use different
attention blocks to boost the spatial-temporal representation learning of CNNs for action recogni-
tion. [61] uses a self-attention block with non-local operations to capture long-range dependencies.
Several recent methods [35, 32, 9] extend the attention designs of the SENet family [21, 62] to
construct attention blocks for video action recognition, among which [35] addresses the attention
block design for 2D CNNs while [32] and [9] are for 3D CNNs. Besides these attention blocks,
dynamic convolutions [27, 68, 6] are used in [10, 36] to build their attention blocks. [36] presents
a temporal adaptive module to generate video-specific temporal kernels. Compared to these action
recognition methods inspired by SENet and dynamic convolutions, our method shares the similarity
of modulating learnt features dynamically to improve the spatial-temporal representation learning.
However, they focus on designing powerful attention blocks to replace existing blocks of an action
recognition network, while our method introduces two drop-in normalization relay modules built
with a light-weight recurrent structure in a dynamic video normalization perspective.

Normalization Methods. For modern CNNs, Batch Normalization (BN) [24] is a standard compo-
nent, improving the optimization stability and accelerating the training convergence. Despite its great
success, BN is prone to making an inaccurate estimation of the batched statistics when training with a
small batch size, exhibiting a noticeable accuracy drop. To alleviate this issue, a lot of variant methods
have been proposed. Batch Renormalization (BRN) [23] introduces two extra hyperparameters to
limit the estimated batch statistics. Eval Normalization (EN) [49] presents an online strategy to
estimate corrected statistics for BN. Moving Average Batch Normalization (MABN) [67] uses moving
average statistics in both forward and backward propagation. These three methods concentrate on
improving estimated statistics, particularly mean and standard deviation for each channel. Recurrent
Batch Normalization [7] utilizes the benefits of BN to normalize the hidden states of LSTM networks.
Switchable Normalization (SN) [57] learns to automatically select the best choice for each layer
among a predefined set of normalizers including BN, Layer Normalization (LN) [2] and Instance
Normalization (IN) [56]. Group Normalization (GN) [63] divides the channels into groups and
computes the group-wise batched statistics. Adaptive Normalization (AdaNorm) [66] controls the
scaling weight of LN with a simple linear transformation. Batch Kalman Normalization (BKN) [57]
considers layer correlations when computing statistics of a certain BN layer. Following the basic
principle of BKN to model layer correlations, DIANet [22] uses an LSTM network instead of Kalman
Filtering process to improve the design of convolutional attention blocks for image classification
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Figure 1: A schematic overview of DNR. The left figure shows cross-temporal DNR (for neighboring
frames at the same layer) and the right figure shows cross-layer DNR (for the whole video clip
between neighboring layers). They are encapsulated into a light-weight recurrent structure. SD/LT
denotes standardization/linear transform, and the mathematical notations are clarified in the Method
section. Being a drop-in design, DNR could be used to replace existing normalization layers of any
action recognition network, largely improving the model training as shown in the experiments (where
cross-temporal DNR and cross-temporal DNR are typically used in an interleaving manner).

tasks. However, DIANet leads to noticeable top-1 accuracy drops (over 3% even on CIFAR-100
dataset) when using its attention blocks to replace batch normalization layers. Recently, there are
also some works attempting to make the normalization be sample-adaptive. Instance-Level Meta
Normalization (ILM) [26] learns to predict the normalization parameters adaptively with an encoder-
decoder sub-network. Attentive Normalization [31] makes an integration of feature normalization
and channel-wise feature attention [21]. As discussed in the previous section, these normalization
methods are mainly proposed for image recognition tasks, while this work explores the dynamic
normalization mechanism to promote the training of action recognition networks at multiple scales.

3 Method

In this section, we first review mainstream normalization methods for video action recognition in a
general formulation, and then present the insights of our method, its formulation and design details.

3.1 Normalization Formulation

Given a deep video model, let x ∈ RN×C×T×H×W be the feature tensor extracted at a certain layer,
where N is the batch size, C is the number of channels, T is the video clip length, H and W are the
spatial feature height and width. In the subsequent normalization, mainstream methods such as BN,
IN, LN and GN perform a two-stage computation. The first stage is the standardization (SD):

x̂i =
xi − µ
σ

, (1)

where i is the feature index, µ and σ denote the feature mean and standard deviation. For all methods
of BN, IN, LN and GN, the input feature tensor is divided into K non-overlapping sub-sets. The main
difference of them lies in the feature partition which is defined along different feature dimensions. Let
{S1, S2, · · · , SK} denote the resulting feature pixel sub-sets, then their mean and standard deviation
statistics could be approximated by: µk = 1

|Sk|
∑

xi∈Sk
xi and σk =

√
1
|Sk|

∑
xi∈Sk

(xi − µk)2 + ε,
where ε is a small positive constant. After x is standardized to have zero mean and unit variance, the
following stage is a channel-wise linear transform (LT) to recover the feature representation ability:

yi = γx̂i + β, (2)
where γ and β are learnable scale and shift parameters.

3.2 Dynamic Normalization and Relay

As we discussed before, existing normalization methods primarily consider image recognition
tasks. Directly using them to handle video action recognition task would not likely to get satisfied
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performance as video data usually incorporate complex spatial-temporal variations. Motivated by this,
we present Dynamic Normalization and Relay (DNR), an improved drop-in normalization design,
to boost the training of action recognition networks. Intuitively, being a normalization solution
for video action recognition, it is necessary to think of feature dependencies among video frames.
Accordingly, our DNR explores feature dependencies at multiple scales. On the one side, note that
BN is used as the standard normalization layers in almost all high-performance action recognition
networks, however it is not sample-adaptive as the learnt normalization parameters are fixed during
evaluation. Recent works [21, 62, 27, 68, 6, 31, 26, 1] show that CNNs could acquire stronger
representation abilities when their parameters are conditioned on the pertinent priors. Inspired by
them, given a normalization operator (e.g., BN and GN, which are considered in our experiments),
we first formulate our DNR as a dynamic normalization prediction scheme, learning to generate
input-dependent normalization parameters of the linear transform (i.e., the second stage defined
in Eq. 2) while calculating the parameters of the standardization as usual. One the other side, existing
works on the fusion module designs for action recognition [69, 12, 50, 17, 48, 52, 41, 55, 33] show
the effectiveness of LSTM networks in modeling motion dynamics, and recent works on the feature
calibration designs for image recognition [57, 22] indicate the importance of layer correlations in
learning discriminative feature representations. Inspired by them, in our DNR, we further bridge
the dynamic normalization prediction scheme with two complementary relay modules namely cross-
temporal DNR and cross-layer DNR, which are the core contributions of our method. They are
encapsulated into a light-weight LSTM structure conditioned on the current input features, and the
normalization parameters estimated from the neighboring frames based features at the same layer
or from the whole clip based features at the preceding layers. Cross-temporal DNR enhances the
dependencies of the estimated normalization parameters of layer-specific feature representations
between neighboring frames, and cross-layer DNR enhances the video clip-level dependencies of the
estimated normalization parameters between neighboring layers. A schematic overview of DNR is
shown in Figure 1.

In the following, we detail the formulation of DNR, considering cross-temporal DNR first. For the
lth layer, let xt denote the feature maps extracted from the tth frame group sampled from an input
video clip and x̄t be the input feature computed by applying channel-wise Global Average Pooling
(GAP) operations to xt. Let the scale γt and the shift βt be the normalization parameters need to be
estimated. Cross-temporal DNR is then defined as a light-weight LSTM which models the recurrent
transition of normalization parameters across neighboring frames by

(ft, it, gt, ot) = φh(ht−dr ) + φx(x̄t) + b, (3)

where φ(·) is a bottleneck unit (we will detail its structure in the next sub-section) for processing the
input feature x̄t and the hidden state ht−dr

(dr is the relay distance which will be clarified later), and
b is the bias. ft, it, gt, ot form a set of gates to regularize the update of the LSTM by

ct = σ(ft)� ct−dr
+ σ(it)� tanh(gt), (4)

ht = σ(ot)� σ(ct), (5)
where ct is the cell state, σ(·) is the sigmoid function, and � is the Hadamard product operator. For
simplicity, we set

γt = ht, βt = ct. (6)

That is, the scale γt and the shift βt are the hidden state ht and the cell state ct that need to be
learnt. This simple setting makes the normalization parameters γt and βt for the feature maps of tth
frame group be conditioned on not only the current input feature x̄t but also the previously estimated
γt−dr and βt−dr at the preceding (t − dr)th frame group. This controlled recurrent transition
across neighboring frames based feature maps provides a frame-adaptive prediction of normalization
parameters and allows a feature statistics relay along the temporal axis at the same layer.

As cross-temporal DNR considers the feature distribution dependencies at the same layer between
neighboring frames, cross-layer DNR further extends this formulation to consider the feature distribu-
tion dependencies of the entire video clip between neighboring layers. Specifically, in cross-layer
DNR, the LSTM is unrolled along the network depth and makes the following changes in notations:
(1) x̄t denotes the input feature computed by applying channel-wise GAP operations to the feature
maps xt extracted from the whole video clip at the lth layer; (2) The scale and shift parameters γt−dr

and βt−dr are known priors estimated at the (l − dr)
th layer; (3) γt and βt are the scale and shift

parameters need to be leant for the lth layer.
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3.3 Implementation of DNR

Now we describe the LSTM structure used in DNR. To get improved feature learning ability and
enjoy good efficiency, we modify the structure of conventional LSTM [20] leveraging the wisdom of
recent attention block designs for CNN architecture research. First, following the design principle
of SENet [21], we adopt a contraction-expansion bottleneck unit to process the input feature x̄t and
the hidden state ht−dr

. Let x̄t, vt ∈ RM×C be the input and the output where C is the number of
channels and M is the number of frames (in either a frame group for cross-temporal DNR or the
whole video clip for cross-layer DNR), then this bottleneck unit takes the form:

vt = W2δ(W1x̄t), (7)

where W1 ∈ RC×C
r denotes the weight matrix of a Fully Connected (FC) layer which maps the input

to a low dimensional space with the reduction ratio r (typically set to 4 w.r.t. the input dimension,
avoiding high model complexity). δ(·) denotes the Rectified Linear Unit (ReLU) activation function,
and W2 ∈ RC

r ×C denotes the weight matrix of another FC layer which makes the output have the
same number of channels as the input. Second, following the recent practice in attentive convolutional
block designs [62, 22, 68], for the activation function to compute the hidden state ht, we replace the
original tanh(ct) by the sigmoid function as shown in Equation 5. We empirically find this can help
to learn slightly better γt and βt with DNR.

In implementation, we plug our two DNR modules into action recognition networks along the
temporal axis and along the sequential layers interleavingly. On the one side, the DNR module along
the temporal axis models the frame-level correlations of the spatial-temporal feature distributions
between neighboring frames at the same layer. Here, for the cross-temporal DNR module, each video
clip is sequentially divided into a number of non-overlapping groups with the same length first, then
the relay distance dr is defined as the group length (i.e., the number of frames in each group, which
is computed as video clip length divided by group number). On the other side, the DNR module
along the sequential layers considers all the hidden layers as a whole system, and estimates the
video clip-level feature dynamics of the current layer by jointly considering the feature distributions
of its preceding layers. Here, for the cross-layer DNR module, the relay distance dr is defined as
the distance between two neighboring layers added with a cross-layer DNR module. Generally
speaking, our DNR could be used to replace any normalization layers in popular CNN architectures
for video action recognition, such as ResNet [19], ResNeXt [64] and BNInception [25] as tested in
our experiments. These networks are all constructed with a block-wise design principle, and each
block usually includes two or three convolutional layers. For basic blocks with skip connections,
we apply the cross-temporal DNR module to the first convolutional layer and the cross-layer DNR
module to the second convolutional layers between two neighboring blocks. At the input side of each
DNR pair, we additionally insert a simple channel interlacing operation [34, 51, 47, 13] along the
temporal axis to strengthen local short-term feature interactions during the model training process.
It is noted that the parameters of DNR modules could be optimized simultaneously together with any
action recognition network, since their computation flow is completely differentiable.

4 Experiments

In this section, we provide comprehensive experiments to study our method from a lot of aspects,
validate its effectiveness on different video action recognition datasets, and compare its performance
with other related methods.

4.1 Experimental Setup

Datasets. Four public datasets, including Kinetics-400 [5], Kinetics-200 [65], Something-Something
(Sth-Sth) V1 [18] and V2 [40], are considered in the experiments. Specifically, we use Kinetics-200
to analyze the architectural design choices of two relay modules in DNR and to perform ablative
studies, and use the other three datasets to testify the generalization ability of DNR. Details of these
four datasets are described in the supplemental material.

Implementation Details. For fair comparisons, we choose MMaction21 for implementing all
methods. On Kinetics-200/-400, we randomly sample an 8-frame clip with an interval of 8 from the

1https://github.com/open-mmlab/mmaction2
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Table 1: Exploring different design choices for DNR. Experiments are performed on Kinetics-
200 dataset using action recognition model TSN with the ResNet50 backbone. The baseline has
top-1|top-5 accuracy of 72.80%|91.59%. Best results (in terms of top-1 accuracy) are bolded.

(a) Inserted locations.

Method Location Top-1(%) Top-5(%)

CT BN1 74.52 92.55
BN2 75.52 92.49

CL BN1 75.70 92.63
BN2 74.50 92.30

CT+CL BN1 + BN2 77.28 93.81
CL+CT (DNR) BN1 + BN2 78.39 94.08

(b) Relay distance.

Method Relay Distance (rd) Top-1(%) Top-5(%)

CT

1 74.06 92.11
2 74.56 92.33
4 75.52 92.49
8 75.28 93.13

CL 1 75.70 92.63
2 75.44 92.85

(c) LSTM structure.

Method Settings Top-1(%) Top-5(%)

DNR

reduction ratio
(d = 1)

r = 1 77.98 94.23
r = 2 77.72 94.39
r = 4 78.39 94.08
r = 8 78.29 94.35

depth
(r = 4)

d = 1 78.39 94.08
d = 2 78.00 94.13

(d) Relay mechanism.

Method Relay Top-1(%) Top-5(%)

CL

× 72.96 91.55

X
FC 72.28 90.83
SE 75.20 92.93

LSTM 75.70 92.63

CT

× 73.40 91.21

X
FC 72.78 91.29
SE 75.04 92.17

LSTM 75.52 92.49

DNR

× 76.90 93.71

X
FC 74.50 92.13
SE 77.78 93.97

LSTM 78.39 94.08

full-length video (unless otherwise stated) during training. The input clip is resized to 340×256 pixels
and cropped to 224× 224 using multi-scale cropping. Following the from-scratch training strategy
in [16], we adopt cosine schedule of learning rate decaying and use a linear warm-up strategy with
warm-up ratio of 0.01 in the first 60K/128K iterations. For evaluation, we follow common practice to
uniformly sample 10 clips from a video and take 3 crops of 256× 256 pixels. The prediction score is
averaged over all clips. On Sth-Sth V1&V2 (with shorter video durations compared to Kinetics), we
follow the pre-training (on Kinetics-400) and fine-tuning strategy, and report 1 clip and center-crop
testing accuracy on validation set. Detailed implementations are in the supplemental material.

4.2 Optimal Settings of DNR

We first study the optimal design choice for two core modules of DNR, i.e., cross-temporal DNR
and cross-layer DNR (CT and CL for short), and the optimal relay design of the LSTM structure
for DNR and its two core modules. Experiments are performed on Kinetics-200 dataset using the
popular Temporal Segment Networks (TSN) [60] with the ResNet50 backbone as the test case to
explore these questions in the following aspects.

Inserted Locations. We first consider where to place CT and CL using our default settings of
LSTM structure. Table 1a summarizes the results, where BN1 and BN2 denote the first and second
normalization layers in a bottleneck block of ResNet50, respectively. We can find that at an individual
layer, CT at BN2 and CL at BN1 perform better compared to the other choices. When combining CT
and CL, this combination also performs the best. Besides, we also tried to place CT/CL at BN3 yet
got marginal top-1 gain (less than 0.3 percent). According to these experimental results, we place CL
at the first BN layer and CT at the second BN layer in each block of all networks in an interleaving
manner, and used it as the default settings, yielding a good accuracy and efficiency tradeoff.

Relay Distance. Once the inserted locations of two typed DNR modules are determined, how to set
relay distance for each of them is now critical. For CT, each video clip is sequentially divided into a
number of non-overlapping groups with the same length first, then the relay distance dr is defined as
the number of frames in each group. Considering that the input video length is 8, we explore relay
distance from 1 to 8. From Table 1b, the best performance of CT is achieved when the relay distance
is 4. For CL, dr is defined as the distance between two neighboring layers added with a CL module.
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Table 2: Main results of DNR on Kinetics-200
dataset using TSN with different backbones.
Best results are bolded.

Method Backbone Top-1(%) Top-5(%) ∆Top-1(%)

TSN BNInception 69.13 89.20 +5.39TSN+DNR 74.52 92.17

TSN ResNet50 72.80 91.59 +5.59TSN+DNR 78.39 94.09

TSN ResNet101 73.58 92.29 +5.79TSN+DNR 79.37 94.51

TSN ResNeXt101 75.10 91.55 +4.43TSN+DNR 79.53 94.19

Table 3: Comparison of DNR with different nor-
malization methods under small training batch
sizes (BS) per GPU on Kinetics-200 dataset us-
ing TSN with ResNet50. Best results are bolded.

Method
BS/GPU

8 6 4

BN 72.80/91.59 70.93/91.03 67.59/89.22
DNR 78.39/94.08 77.66/94.11 75.48/93.57

∆Top-1/-5(%) +5.59/2.49 +6.73/3.08 +7.89/4.35

GN 67.27/88.54 67.35/88.42 67.41/88.49
DNR 77.22/93.35 76.24/93.15 75.40/92.95

∆Top-1/-5(%) +9.95/4.81 +8.89/4.73 +7.99/4.46

Table 4: Main results of DNR on different datasets. Best results are bolded.
Dataset Method Backbone Pretrain Top-1(%) Top-5(%) ∆Top-1(%)

Kinetics-400

TSN ResNet50
None

68.17 87.97 +5.58TSN+DNR 73.75 91.44
TSN ResNet101 69.50 88.90 +5.30TSN+DNR 74.80 91.99

Sth-Sth V1 TSN ResNet50 Kinetics-400 17.81 44.62 +27.77TSN+DNR 45.58 75.24

Sth-Sth V2 TSN ResNet50 Kinetics-400 31.35 62.66 +27.25TSN+DNR 58.60 86.21

Since the most common number of bottleneck blocks within one stage in ResNets is 3, we explore
relay distance of 1 and 2 here. From Table 1b, relaying feature distribution statistics between nearby
blocks performs better than that between blocks having a larger layer distance. Therefore, we set
relay distance of CT and CL to 4 and 1 respectively as the default settings.

Architectural Choices of LSTM. As both CT and CL are encapsulated into an LSTM structure, it
is necessary to study its architectural choices. Our LSTM structure has two basic hyper-parameters:
reduction ratio r and the number of bottleneck units d. Table 1c provides the results of experiments
in which we alter the settings of r and d separately. It can be seen that the LSTM structure reaches a
compromise between accuracy and efficiency with r = 4 and d = 1 which are used as the default
settings. A somewhat surprising finding is that increasing the depth of LSTM structure does not
brings extra gains to model accuracy compared to the default settings. We conjecture this maybe
because the optimization has already saturated with the shallow design.

Importance of Relay Mechanism. Since relay mechanism plays an important role in our DNR
design, we conduct experiments to show the advantage of relay and compare different relay designs.
The core idea of relay is to build the connections between learnt features statistics across neighboring
frames and across neighboring layers. In the experiments, we first consider the case without relay
design, only using dynamic normalization of our method at the current frame or layer. To some
extent, this can be considered as a simplified implementation of dynamic normalization designs such
as ILM [26] and AN [31]. Next, we consider relay with "FC"(fully connected) or "SE"(squeeze and
excitation) [21], meaning that we use an FC or SE unit as shared attentive relay aggregating current
features and previously estimated channel statistics to conduct dynamic normalization. Table 1d
shows the performance comparison. We can observe: (1) Both dynamic normalization and relay are
helpful to improve the top-1 accuracy of the baseline in most cases; (2) Relay with LSTM brings over
2% extra top-1 accuracy gain to dynamic normalization; (3) DNR with LSTM structure performs the
best among all designs. This comparison backs up the general dynamic relay philosophy of DNR.

4.3 Main Results

To validate the effectiveness of our DNR method with the default settings identified above, we apply it
to train TSN with a spectrum of popular 2D video action recognition backbones on different datasets.
Table 2 provides the results on Kinetics-200. Clearly, DNR brings large accuracy improvements to
all baseline models with BNInception [25], ResNet [19] and ResNeXt [64] backbones, under the
from-scratch training setting, yielding at most 5.79% top-1 margin and at least 4.43% top-1 margin.
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Table 5: Performance comparison of applying DNR to 3D action recognition networks with different
backbones on Kinetics-200 dataset. Best results are bolded.

Method Backbone Top-1(%) Top-5(%) ∆Top-1(%)

R(2+1)D ResNet34 71.77 91.19 +2.45R(2+1)D+DNR 74.22 92.25

SlowFast 8×8 ResNet18 77.37 93.48 +1.76SlowFast 8×8+DNR 79.13 93.89

Results on Kinetics-400 and Sth-Sth V1&V2 are given in Table 4. We can see the improvements of
DNR on Kinetics-400 and Kinetics-200 are very similar, showing its good generalization ability to a
larger dataset. Significant improvements are also achieved on Sth-Sth V1&V2, demonstrating the
transfer learning ability of DNR to enhance the performance of action recognition networks.

4.4 Ablative Studies

We further provide a number of ablative studies to have a deep analysis of our DNR method.

Impacts of Normalization Methods and Batch Size Settings. Being a drop-in design, DNR could
be applied to other popular normalization methods besides BN. In image recognition field, GN [63]
is known to have much better capability to combat small batch size training problem compared to BN.
Accordingly, we also conduct experiments on Kinetics-200 to explore the effectiveness of applying
DNR to GN besides BN, as well as its advantage in small batch size training. For a fair comparison,
we adopt the linear learning rate scaling rule commonly used in GN to adapt to batch size changes.
Specifically, we make the learning rate be proportional to the batch size (0.1×N/8, where N is the
batch size per GPU). For instance, under the batch size of 8/6/4, the learning rate is initialized to
0.1/0.075/0.05 and decayed with a cosine scheduling. We also use a linear warm-up strategy with
warm-up ratio of 0.01 in the first 60K iterations. Table 3 compares the performance of applying DNR
to BN and GN with different batch sizes. As can be seen, DNR outperforms the baseline method with
consistently large margins (at least 5.59% gain and at most 9.95% gain to top-1 accuracy). Moreover,
to BN, DNR achieves larger margins when reducing mini-batch size per GPU from 8 to 4 video clips,
showing its advantage in resource constrained training scenarios. Compared to the results on BN with
DNR, a reverse performance improvement trend can be observed on GN with DNR. This is because
GN performs better in small batch size training scenarios while performing worse in large batch size
training scenarios. We also compare DNR with dynamic normalization (without relay) in Table 1d.

Applying DNR to 3D CNNs. Although 3D CNNs generally have better spatial-temporal feature
modeling capabilities than 2D CNNs, we also apply DNR to 3D CNN backbones to further evaluate
its potential in enhancing spatial-temporal representation learning. Restricted by our available
computational resource, we choose R(2+1)D [54] with ResNet34 and SlowFast [16] with ResNet18
as the baseline models, which are relatively light-weight in 3D CNNs. As shown in Table 5, DNR
brings around 2% top-1 accuracy boosts for two baseline models, demonstrating its efficacy to
promote the performance of 3D CNNs besides 2D ones.

Applying DNR to State-of-the-art Methods. In order to validate the capability of DNR to boost
action recognition networks with advanced temporal modules, we particularly perform another set of
experiments on Kinetics-400 dataset. In the experiments, besides TSN [60], we also choose TSM [34],
TANet [36] and TDN [59] as the baseline models, which are three latest 2D attentive designs for
spatial-temporal modeling. We apply DNR to these four baselines for performance evaluation under
the exactly same training and test settings. Table 6 shows the results, and also provides a comparison
of DNR with some state-of-the-art methods including 3D and 2D CNNs. Comparatively, TSN+DNR
is 2.7% better than TSN (with 71.65% top-1 accuracy), TSM+DNR is 1.1% better than TSM (with
73.78% top-1 accuracy), TANet+DNR is 0.65% better than TANet (with 76.28% top-1 accuracy),
and TDN+DNR is 0.71% better than TDN (with 76.34% top-1 accuracy). Note these four baseline
models contain three types of advanced action recognition models with 2D CNNs. Specifically,
TSN [60] is the very basic temporal module, TSM [34] uses an improved temporal module with shift
operations across neighboring frames, while more advanced attentive temporal modules are used in
TANet [36] (built with dynamic convolutions) and TDN [59] (encoding frame differences into the
attentive design). Particularly, TANet and TDN are two of the latest top-performing 2D attentive
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Table 6: Comparison of our method with state-of-the-art methods on Kinetics-400 dataset. "◦"
and "∗" refer to our reproduced models using MMaction2 and public code released by the authors,
respectively. Best results are bolded.

Model Backbone Pretrain Frames GFLOPs×Views Top-1(%) Top-5(%)

SlowFast [16] ResNet50 None (4+32)×10×3 36.1×30 75.60 92.1
SlowFast [16] ResNet101 None (8+32)×10×3 106×30 77.90 93.20

NL SlowFast [16] ResNet101 None (16+64)×10×3 234×30 79.80 93.90
X3D [15] X3D-XL None 16×10×3 48.4×30 79.10 93.90

SmallBigNet [30] ResNet50 None 8×10×3 57×30 76.30 92.50

TSN [60] ResNet50 ImageNet 25×1×10 4.11×250 70.60 89.26
TSM [34] ResNet50 ImageNet 8×10×3 33×30 74.10 N/A

TEINet [35] ResNet50 ImageNet 8×10×3 33×30 74.90 91.80
TEA [32] ResNet50 ImageNet 16×10×3 70×30 76.10 92.50
TAM [14] bLResNet50 Kinetics 48×3×3 93.4×9 73.50 91.20

TANet [36] ResNet50 ImageNet 8×10×3 36×30 76.09 92.30
TDN [59] ResNet50 ImageNet 8×10×3 36×30 76.60 92.80

TSN◦ ResNet50 None 8×10×3 33×30 71.65 90.17
TSN+DNR ResNet50 None 8×10×3 33×30 74.35 91.68

TSM◦ ResNet50 ImageNet 8×10×3 33×30 73.78 91.32
TSM+DNR ResNet50 ImageNet 8×10×3 33×30 74.88 91.99

TANet◦ ResNet50 ImageNet 8×10×3 36×30 76.28 92.46
TANet+DNR ResNet50 ImageNet 8×10×3 36×30 76.93 92.81

TDN∗ ResNet50 ImageNet 8×10×3 36×30 76.34 92.63
TDN+DNR ResNet50 ImageNet 8×10×3 36×30 77.05 92.98

temporal modules, in this point of view, the performance improvement of our DNR is decent as DNR
is merely added to normalization layers. Generally, DNR performs the best among 2D CNNs under
the same settings.

More Ablative Experiments. In the supplemental material, we provide more ablative experiments,
showing: (1) Bidirectional LSTM design can slightly improve cross-temporal DNR; (2) The number
of extra FLOPs introduced by DNR is almost negligible, and the extra runtime latency is not negligible
but is acceptable; (3) DNR learns better spatial-temporal features by visualization comparisons.

4.5 Limitations of DNR

Despite that DNR shows promising performance improvements to a lot of action recognition net-
works, its limitations are in two aspects. Firstly, in the experiments, we provide the comparison
of computational cost (in terms of both FLOPs and runtime inference speed) of different baseline
models without and with DNR, showing although DNR introduces almost negligible extra FLOPs to
different baselines, it introduces extra latency at inference stage. Secondly, DNR has three critical
hyperparameters, namely the layer location, the relay distance and the LSTM structure for setting
cross-temporal and cross-layer DNR modules. Although we provide relatively thorough experiments
on Kinetics-200 dataset with the TSN+ResNet50 baseline to study the setting for each of them, and
apply the resulting settings to all baseline models tested in our experiments, it is not the optimal
settings to different action recognition networks. Besides, the potential of applying DNR to emerging
new types of deep action recognition networks is reserved as a future extension.

5 Conclusions

In this paper, we present DNR, a drop-in normalization method, to promote the spatial-temporal
representation learning of CNNs for video action recognition. The core contributions of DNR are
cross-temporal and cross-layer dynamic normalization and relay designs, learning to generate frame-
adaptive layer-wise normalization parameters at both training and runtime. The efficacy of DNR was
validated by thorough experiments on several public action recognition datasets.
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