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A PROXY MATRIX-BASED FRAMEWORK FOR CONTEX-
TUAL STOCHASTIC OPTIMIZATION UNDER CONFOUND-
ING EFFECT

ABSTRACT

Data-driven decision-making in real-world scenarios often faces the challenge of
endogeneity between decisions and outcomes, introducing confounding effects.
While existing literature typically assumes unconfoundedness, this is often unre-
alistic. In practice, decision-making relies on high-dimensional, heterogeneous-
type proxy features of confounders, leading to suboptimal decisions due to limited
predictive power for uncertainty. We propose a novel semi-parametric decision
framework to mitigate confounding effects. Our approach combines exponential
family matrix completion to infer the confounders matrix from proxy features,
with non-parametric prescriptive methods for decision-making based on the esti-
mated confounders. We derive a non-convergent regret bound for data-driven de-
cisions under confounding effects and demonstrate how our framework improves
this bound. Experiments on both synthetic and real datasets validate our method’s
efficacy in reducing confounding effects across various proxy dimensions. We
also show that our approach consistently outperforms benchmarks in practical ap-
plications.

1 INTRODUCTION

With the increasing availability of data and huge computational power combined with advance-
ments in machine learning (ML) and optimization techniques, decision-making frameworks based
on historical data have found application in a growing number of real-world scenarios (Brynjolf-
sson & McElheran, 2016; Sadana et al., 2024). However, in some application contexts, historical
observational data may not suffice to support decision-making. A common example arises when
endogeneity is present in the data, or when decisions influence uncertain outcomes. In such cases,
decision-makers (DMs) can only observe past decisions and the outcomes associated with those de-
cisions. The absence of counterfactual observations can render decision problems based on historical
observational data unidentifiable (Bertsimas & Kallus, 2022), thereby making the decision-making
process challenging. Such decision problems are prevalent in practice, such as pricing (Ferreira
et al., 2016) and promotion (Cohen et al., 2017) strategies faced by firms like Amazon and Uber,
treatment policy decisions in healthcare (Bertsimas et al., 2016), internet advertising placement op-
timization (Avadhanula et al., 2021), and optimization of loan interest rates (Besbes et al., 2010).

For improved decision-making, DMs typically leverage covariates, also known as contextual infor-
mation or features (Mišić & Perakis, 2020). Some of these features simultaneously affect both the
decision and the uncertain quantity, and are referred to as confounders. A commonly used approach
to address the absence of counterfactual observations is to assume that all confounders can be ob-
served, known as the unconfoundedness assumption. This assumption is prevalent in the literature
on data-driven decision-making with endogeneity (Bertsimas & Kallus, 2020; 2022; Biggs, 2022;
Biggs et al., 2021) and treatment effect research (Wager & Athey, 2018; Knaus, 2022; Armstrong &
Kolesár, 2021). If this assumption is not satisfied, confounding effects will be present in historical
data. A straightforward explanation is that, in decision-making, we need to account for how deci-
sions influence uncertainty. However, due to the presence of confounders, inferring this influence
from historical data may lead to inaccuracies, thereby resulting in misguided decisions.

The unconfoundedness assumption is untestable in reality and difficult to satisfy (Wang & Blei,
2019). First, DMs do not know which features are true confounders; they rely on experience or
judgment to observe as many features as possible to avoid omissions. Second, even if DMs know
certain features are confounders, they may not be able to find appropriate observations to represent
them, and the observation process may introduce errors or noise, such as recording mistakes. Conse-
quently, what DMs observe are high-dimensional proxy features for confounders, which may include
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the true confounders or features related to them. Furthermore, high dimensionality can lead to het-
erogeneous data types and missing values. When using historical data containing proxy features for
decision-making, we face several challenges. First, the discrepancy between proxy features and true
confounders leads to confounding effects, which can impair decision-making effectiveness. Second,
the high dimensionality of the data, along with heterogeneous data types and missing values, further
complicates the decision-making process and affects decision performance.

In the field of causal effect research, various methods have been proposed to handle confounding ef-
fects. For instance, instrumental variables (IV) are widely used to estimate causal effects (Carrasco
et al., 2007; Baiocchi et al., 2014; Chen & Qiu, 2016; Guo & Small, 2016; Mogstad & Torgovit-
sky, 2018). Another approach focuses on estimating causal effects using proxy features. The idea
is first to understand the distributional relationship between confounders and proxies, adjust the
confounders, and then identify causal effects (Wooldridge, 2009; Pearl, 2012; Cai & Kuroki, 2012;
Kuroki & Pearl, 2014; Edwards et al., 2015; Miao et al., 2018; Tchetgen et al., 2020). Studies
most closely related to our approach involve inferring confounders using observed proxies, typically
based on latent-variable models (Kingma, 2013; Louizos et al., 2017; Kallus et al., 2018). In more
complex data scenarios, other methods for inferring hidden confounders have also been developed
(Guo et al., 2020; Chu et al., 2021; Ma et al., 2021). This paper focuses on addressing the con-
founding effect issue in stochastic optimization, providing theoretical guarantees and insights that
distinguish it from casual effect literature.

The literature on decision-dependent uncertainty in the presence of contextual information is rather
sparse (Bertsimas & Kallus, 2020; Bertsimas & Koduri, 2022; Bertsimas & Kallus, 2022), and
studies in this area typically rely on the unconfoundedness assumption. Bertsimas & Kallus (2020)
consider the impact of decisions on uncertainty for general optimization problems, while Biggs et al.
(2021) and Biggs (2022) study personalized pricing problems. Unlike existing literature, which typ-
ically proceeds under the assumption of no confounding effect, we focuses on the impact when
the unconfoundedness assumption is violated and explores strategies to mitigate the confounding
effect. This paper investigates the impact of confounding effects in a more generalized decision-
making model and utilizes proxy feature matrices and matrix-related methods to improve decision
performance. Specifically, to address the challenges mentioned earlier, we propose a two-step, semi-
parametric decision-making framework that integrates matrix completion and non-parametric data-
driven optimization. Matrix completion methods have been extensively studied (Bennett et al., 2007;
Cao et al., 2014; Schuler et al., 2016) and can be efficiently combined with causal inference tech-
niques such as regression and matching (Imbens & Rubin, 2015; Kallus et al., 2018). We employ
exponential family matrix completion (Gunasekar et al., 2014) and factorization to infer the con-
founders matrix. The estimated confounders matrix is then utilized in the downstream weighted
sample average approximation (wSAA) framework. Our contributions are as follows:

• We extend the research of contextual stochastic optimization problems with endogeneity
to scenarios where the unconfoundedness assumption does not hold. We derive a novel
stochastic regret bound that quantifies the impact of confounding effects. This bound elu-
cidates how the magnitude of confounding effects correlates with the information content
of proxy features regarding the distribution of the uncertainy.

• We propose a novel semi-parametric decision-making framework, as shown in Figure 1,
which is motivated by the form of the quantified confounding effect. The proposed method
mitigates the inherent difficulty of satisfying unconfoundedness and reduces the confound-
ing effect. We derive the stochastic regret bound of our proposed method and theoretically
demonstrate its efficiency in reducing the confounding effect. Experiments using both syn-
thetic and real data confirm the effectiveness of our proposed method in mitigating the
confounding effect and show its superiority compared to other methods.

2 CONTEXTUAL OPTIMIZATION MODEL AND CONFOUNDING EFFECT

2.1 FULL- AND PARTIAL-INFORMATION MODELS

We consider a stochastic optimization problem where the DM seeks a decision q ∈ Q ⊂ Rp to
maximize a utility function π(q;y) that is affected by some decision-dependent uncertainty y ∈
Y ⊂ Rd. We assume that there exist confounders, denoted by x ∈ X ⊂ Rm, influencing both
the decision and uncertainty. The confounders x are interpreted as contextual information in the
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Figure 1: The structure of the proposed semi-parametric decision-making framework

decision-making scenario. For example, the uncertainty may take the form y = f(x, q) + ε, where
f : Rm×Rp → Rd is a deterministic function and ε ∈ Rd is a d-dimensional random vector. Given
confounders x = x, the decision-making problem can be formulated as a contextual stochastic
optimization problem:

[FI-model] max
q∈Q

E [π (q;y(q)) | x = x] , (1)

where the expectation is taken with respect to the conditional random variable y(q) | x.

Problem (1) requires the knowledge of all confounders and the distribution of y(q) for each q
conditional on x. We refer to it as the Full-Information model (FI-model) and use q⋆ to denote its
optimal solution. Usually, instead of the confounders, only proxy features z ∈ Rb can be observed,
which are potentially high-dimensional with heterogeneous data types. Worse still, samples of them
often contain missing values. Given proxy features z = z, it is natural to approximate the FI-model
by the following problem:

[PI-model] max
q∈Q

E [π (q;y(q)) | z = z] , (2)

Problem (2) requires only the distribution y(q) for each q conditional on z. We refer to it as the
Partial-Information model (PI-model) and use q∗ (different from q⋆) to denote the optimal solution.
Typically, confounders x contain more information about the uncertain quantity than their proxies
z, and the optimal expected utility of the FI-model would be higher than that of the PI-model.

2.2 NON-PARAMETRIC OPTIMIZATION WITH UNCONFOUNDEDNESS

Although the PI-model does not require knowing the confounders in its entirety, it relies on the dis-
tributions of y(q) | z. Typically, these distributions are unavailable but can be probed via historical
data of the form D = {(zi, qi,yi)}i=1,...,n, where zi, qi, and yi are the ith historical proxy fea-
tures, decision, and realized outcomes, respectively. For each data point i, we use xi to denote the
underlined true confounders. The problem for the DM is therefore to solve the PI-model based on
the sample D.

Unidentifiability and confounding effect. Ideally, if the available data is of the form (zi,yi(q))
(i.e., for each zi, the function yi(q) is observed), then the PI-model can be identified and solved
by the data readily. However, the historical data {(zi, qi,yi)}i=1,...,n follow the joint distribution
of (z,q,y), where the realized uncertainty yi is the function value yi(qi) under the input qi. The
function y(q) and the optimal decision are unidentifiable from the observed data, as the historical
decisions and outcomes are confounded. The unidentifiability and confounding effect would lead to
sub-optimal decisions. The typical approach to address these two issues simultaneously is to have the
following unconfoundedness assumption (also known as exogeneity, ignorability, and conditional
independence).

Assumption 1 (Unconfoundedness) For every q ∈ Q, y(q)⊥q | z.

Assumption 1 means that the proxy features contain all confounders, which further implies that
conditioned on zi, the historical decision qi is statistically independent of the uncertainty yi, or
they are as-if random. This assumption also implies that the proxy features include all factors that
simultaneously affect both decision and uncertainty.
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With Assumption 1, the PI-model can be reformulated as
max
q∈Q

E [π (q;y(q)) | z = z] = max
q∈Q

E [π (q;y) | z = z,q = q] , (3)

where the objective function depends on the joint distribution of (z,q,y). Therefore, the historical
data is sufficient to identify this problem and the confounding effect no longer exists.

Now we turn to solve the problem (3) based on the dataset D. Since the functional form of un-
certainty is unknown, one popular and effective non-parametric data-driven method is the wSAA
approach proposed by Bertsimas & Kallus (2020), which is a variant of the SAA approach with
each data point weighted according to the similarity between the current decision-proxy pair and
the historical decision-proxy pair. Specifically, the weight assigned to the ith data, wi(z, q), is a
function that measures the closeness between vectors (z, q) and (zi, qi). One of the typical weight
functions is defined by the k-nearest neighbor (kNN) and presented below. For more weight func-
tions, please refer to Bertsimas & Kallus (2020).

Definition 1 The kNN weight functions are given by

wi(z, q) =
1

k
1[(zi, qi) is a kNN of (z, q)], (4)

where k = ⌈cnγ⌉, γ ∈ (0, 1), c > 0, (zi, qi) is a k-nearest neighbor of (z, q) if
|{i∗ ∈ {1, ..., N}\i : dist((zi∗ , qi∗), (z, q)) < dist((zi, qi), (z, q))}| < k.

Adopting the wSAA approach with this weight function, a data-driven PI-model (DDPI-Model) is:

[DDPI-model] max
q∈Q

Ě [π (q;y) | z = z,q = q] =

n∑
i=1

wi(z, q)π(q;yi). (5)

Let q̌ denote the optimal data-driven solution for DDPI-model. This paper does not focuses on the
computational aspect of problem (5). We however emphasize that q̌ can be computed in polynomial
time (Bertsimas & Kallus, 2020), with efficient algorithms established (Liu & Zhang, 2023).

Performance of the DDPI-model. We demonstrate under Assumption 1 that the DDPI-model effec-
tively approximates the PI-model. Given proxy features z, the regret of the DDPI-model is defined
as the gap between the optimal expected utility and the expected utility of the DDPI solution q̌:

R1(z) = E [π (q∗;y) | z, q∗]− E [π (q̌;y) | z, q̌] . (6)

To derive the stochastic bound of this regret, we decompose q into q1 (affecting the uncertainty dis-
tribution) and q2 (influencing the utility function, independent of uncertainty). This decomposition
facilitates the proofs and allows for a weaker assumption on q.

Assumption 2 (Utility Function) (i) Q is a compact set. (ii) For any y ∈ Y, q 7→ π(q;y) is
L(y)-Lipschitz continuous on Q. Moreover, for any (z, q1) ∈ A, E [L(y) | z, q1] ≤ L1 < ∞. (iii)
For any q2 ∈ Q, (z, q1) 7→ E [π (q2;y) | z, q1] is L2-Lipschitz continuous on Z × Q. (iv) (z,q1)
has a support A ⊂ [0, 1]b+p, and there exists g > 0 such that P {(z,q1) ∈ Bϵ(z, q1)} > gϵb+p

for any (z, q1) ∈ A and ϵ > 0. (v) For any q2 ∈ Q and (z, q1) ∈ A, the random variable
π(q2;y)− E [π (q2;y) | z, q1] is sub-Gaussian with variance proxy σ2

1 independent of (z, q1) and
q2. (vi) Conditions (iii)–(v) still hold when proxy features z are replaced by confounders x.

Conditions (i)-(iii) are standard assumptions in contextual optimization literature (Sadana et al.,
2024; Bertsimas & McCord, 2019; Lin et al., 2022). Condition (iv) is satisfied for finite support
of (z,q). Condition (v) is a technical assumption for bound derivation. Conditions (iv) and (v)
align with settings in Bertsimas & McCord (2019) and Rahimian & Pagnoncelli (2023). The last
condition parallels conditions (iii), (iv), and (v). Then we have the following result.

Theorem 1 (Stochastic Regret bound of the DDPI-model) Suppose Assumptions 1 and 2 hold,
and the samples D are i.i.d.. Then, under the kNN weight functions (4), for any confidence level
α ∈ (0, 1) and n ≥ 2p+ 2b, with probability at least 1− α, we have R1(z) ≤ ξα,p,b, where

ξα,p,b = max

{
n− 1

2p+2bC1

(
2p+ b

2p+ 2b
log n+ C2

) 1
2p+2b

, n− γ
2 C3

(√
4p+ 4b+ γp

2
log n+ C4

)}
,

C1, C2, C3 and C4 are constants defined in Appendix A.1 and C1, C2 and C4 depend on p and b.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Theorem 1 establishes the regret bound of the DDPI-model under the unconfoundedness assumption
as Õ

(
n− 1

2p+2b

)
with high probability, with p being the decision dimension and b the number of

proxy features. This result implies that as n increases, the regret in (6) approaches zero with high
probability, and the convergence rate decreases as the number of proxy features increases. Moreover,
the DDPI-model achieves asymptotically optimal performance in estimating the PI-model.

2.3 UTILITY GAP CAUSED BY CONFOUNDING EFFECT

Despite the DDPI-model’s effectiveness, real-world scenarios introduce additional complexities.
Assumption 1, which posits absence of confounding effects, is usually violated. The discrepancy be-
tween observed proxy features z and ideal confounders x inevitably introduces confounding effects.
In the idealized scenario where confounders x are directly observed, we define the Data-Driven FI-
model (DDFI-model) as:

[DDFI-model] max
q∈Q

Ẽ [π (q;y) | x, q] =
n∑

i=1

wi(x, q)π(q;yi). (7)

Let q̃ denote the optimal solution of the DDFI-model. Given that x contains more information
about y compared with its proxy features z, the DDFI-model is expected to outperform the DDPI-
model. The confounding effects will cause the performance gap between these models, as shown
in the numerical visualization in Section 5.1. Theoretically, we quantify the confounding effect as
the utility gap between the FI-model’s optimal expected utility and the expected utility from the
DDPI-model’s data-driven solution q̌. This ‘true’ regret of the DDPI-model is expressed as:

R2(x, z) = E [π (q⋆;y) | x, q⋆]− E [π (q̌;y) | x, q̌] . (8)

Theorem 2 (Regret Bound Caused by Confounding Effect) Suppose the conditions in Theo-
rem 1 hold. Then, the regret defined in (8) satisfies

R2(x, z) ≤ R1(z) + 2 sup
q

|E [π (q;y) | x, q]− E [π (q;y) | z, q]| . (9)

Suppose additionally that b = m. Then, for any confidence level α ∈ (0, 1) and n ≥ 2p + 2b, with
probability at least 1− α, we have

R2(x, z) ≤ ξα,p,b + 2L2∥x− z∥. (10)

Theorem 2 provides a theoretical result regarding the confounding effect. The first part of Theorem 2
shows that the upper bound of the confounding effect comprises two terms: (i) the DDPI-model’s
regret, which converges to 0 at Õ

(
n− 1

2p+2b

)
(from Theorem 1); (ii) utility gap between FI- and

PI-models uniformly over decision q, which depends on information about y contained in z, and
independent of sample size. The second term approaches zero only when z fully captures informa-
tion in confounders x. The second part of Theorem 2 shows that when the numbers of confounders
and proxy features are the same (i.e., b = m), the second term in (9) is expressible as the Euclidean
norm ∥x − z∥. This term is independent of the sample size and will only equal zero when the
proxy features are exactly the same as the confounders. Theorem 2 highlights that when the uncon-
foundedness assumption is violated, the confounding effect leads to sub-optimal performance of the
DDPI-model in practical applications.

3 PROXY MATRIX-BASED DECISION-MAKING FRAMEWORK

The confounding effect arises from the discrepancy in predictiveness between proxy features and
confounders. Intuitively, the more information about x the proxy features z contain, the tighter
the bound in (9) is. This insight motivates our two-step, semi-parametric decision-making frame-
work. We first estimate the confounders matrix from the proxy matrix using matrix completion and
factorization techniques, then make decisions using the wSAA framework based on the inferred
confounders. Such matrix-related methods enjoy three advantages. (i) Versatility: Effective in han-
dling high-dimensional, heterogeneous data with missing values. (ii) Compatibility: demonstrated
synergy with causal inference methods (Kallus et al., 2018). (iii) Theoretical guarantees: provide
rigorous mathematical guarantees.
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3.1 STRUCTURE OF PROXY MATRIX

Let Z = (z1, ...,zn)
⊤ ∈ Rn×b represent historical proxy features, where b is the feature dimension.

Denote the current observed feature vector as z. We construct Z = (z1, ...,zn, z)
⊤ ∈ R(n+1)×b

by appending the row vector z⊤ to the bottom of Z. Similarly, we obtain X = (x1, ...,xn,x)
⊤ ∈

R(n+1)×m for confounders, with the last row corresponding to current true confounders.

Proxy matrix generation. There exists a loading matrix V ∈ Rm×b such that the proxy matrix is
generated by

Z ∼ P(Z|A), A = XV =

 X1,1 X1,2 ··· X1,m

X2,1 X2,2 ··· X2,m

...
...

. . .
...

Xn+1,1 Xn+1,2 ··· Xn+1,m


 V1,1 V1,2 ··· V1,b

V2,1 V2,2 ··· V2,b

...
...

. . .
...

Vm,1 Vm,2 ··· Vm,b

 .

For any proxy feature Zi,j (or zij) with i ∈ [n+1] and j ∈ [b], we have Zi,j ∼ P (·|
∑m

s=1 Xi,sVs,j).
This formulation posits Zi,j as a noisy realization of a linear combination of the ith confounders (via
distribution P(·)). Vs,j quantifies the extent to which the sth confounder is proxied by the jth feature,
with larger values indicating stronger informational content. While we present a linear relationship,
this formulation is not restrictive. Nonlinear underlying relationships can be approximated by a
linear form in an expanded feature space through Taylor approximation.

3.2 THE TWO-STEP DECISION MAKING

Step 1. M-Estimator for confounders. Based on the observed proxy features matrix Z, we employ
M-estimation (Gunasekar et al., 2014) to estimate matrix A based on the proxy matrix:

min
∥A∥∞≤ γ√

(n+1)b

∑
i,j∈Ω

− (n+ 1)b

|Ω|
logP (Zi,j |Ai,j) + λ∥A∥⋆, (11)

where ∥ · ∥⋆ is the nuclear norm, λ > 0 is a tuning parameter, and Ω is the subset of indices
[n + 1] × [b] for which the proxy features are observed (refer to Assumption 5 for details). We
denote the M-estimator as Â, i.e., the optimal solution of problem (11). Note that a larger λ implies
a lower rank of Â. The constraint is only for technical use and can be ignored in practice. For a
sufficiently large r̂, problem (11) is equivalent to the following problem (Kallus & Udell, 2020),
which is computationally more tractable:

min
X∈R(n+1)×r̂,V ∈Rr̂×b

∑
i,j∈Ω

− (n+ 1)b

|Ω|
logP

(
Zi,j |

r̂∑
s=1

Xi,sVs,j

)
+

λ

2
∥X∥2F +

λ

2
∥V ∥2F , (12)

where ∥ · ∥F denotes the Frobenius norm, r̂ is the estimated rank of X determined by the cross-
validation. The optimal solution X̂ ∈ R(n+1)×r̂ is equivalent to the left singular matrix of Â. Thus
X̂ has orthogonal columns, and any non-singular linear transformation of X̂ can serve as a valid
estimator of the confounder matrix. For simplicity, we use X̂ in subsequent decision making.

Step 2. Decision-making based on estimated confounders. The estimated confounders matrix can
be denoted by X̂ = (x̂1, ..., x̂n, x̂)

⊤ ∈ R(n+1)×r̂, where the first n rows are the estimated historical
confounders (i.e., x̂1, ..., x̂n) and the last row represents the estimated current confounders (i.e.,
x̂). Subsequently, we use the estimated confounders matrix and historical data to apply the wSAA
framework. The optimization problem can be formulated as:

[PMFI-model] max
q∈Q

Ê [π (q;y) | x̂, q] =
n∑

i=1

wi(x̂, q)π(q;yi), (13)

where the weights wi(x̂, q) for i = 1, ...n is to measure the similarity between the combination of
estimated confounders and the decision (i.e., (x̂, q)) and the combination of ith estimated historical
confounders and historical decision (i.e., (x̂i, qi)). Problem (13) involves approximating the DDFI-
model using methods based on the proxy matrix, named as the Proxies Matrix-Based DDFI-model
(PMFI-model) with optimal decision q̂.
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4 THEORETICAL GUARANTEE

We measure the performance by the difference between the FI-model’s optimal expected utility and
the expected utility obtained from the data-driven solution of the PMPI-model. This utility gap also
represents the regret of the PMPI-model, defined as follows:

R3(x, x̂) = E [π (q⋆;y) | x, q⋆]− E [π (q̂;y) | x, q̂] . (14)

Before presenting our further results, we require the following technical assumptions.

Assumption 3 (Proxy Generation) There exist functions h : R → R and G : R → R such that
G is strictly convex and analytic, ∇2G(u) ≥ e−η|u| ∀u ∈ R for some η > 0, and for any (i, j) ∈
[n+1]× [b], the proxy feature Zi,j is drawn from P(Zi,j |Ai,j) = h(Zi,j) exp(Zi,jAi,j −G(Ai,j)).

The proxy features can be generated by any distribution in the natural exponential family, like Gaus-
sian, Bernoulli, Binomial, Poisson, and Exponential. The conditions about the function G are also
satisfied for these distributions (Gunasekar et al., 2014). Therefore, different types of proxy variables
found in practice can be generated through this process.

Assumption 4 (Matrix Conditions) (i) A is of rank r = o(n). (ii) αsp(A) ≜
√

(n+1)b∥A∥max

∥A∥F
=

O(1). (iii) σmax(A) = O(1). (iv) ∥x̂− x∥2 = O
(

∥X̂−XB∗∥2
F

n

)
where B∗ = arg infB∈Or ∥X̂ −

XB∥2F and Or = {M ∈ Rr×r : M⊤M = Ir} is the set of r × r orthogonal matrices.

In Assumption 4, the big-O (and small-O) notations are with respect to n and b. σmax(A) is the
largest singular value of A. Conditions (i)-(iii) ensure the estimation accuracy of A and the con-
founders matrix, while condition (iv) guarantees that an accurate estimate of the confounders matrix
translates into an accurate estimate of the current confounders.

Assumption 5 (Uniform Observations) Indices in Ω are i.i.d. samples of Uniform([n+ 1]× [b]).

This assumption is common for the low-rank structure matrix with missing values (Gunasekar et al.,
2014), which means that we observe proxy features follow a uniform sampling model.

To ease analysis, we first consider a special case where confounders are known but observed through
noisy one-to-one proxy features. For example, if product quality is a confounder, DMs would use
customer ratings as the sole proxy feature. This case also implies that b = m = r̂ and V = Im.

Theorem 3 (Regret Bound with One-to-One Realization of Proxy) Suppose Assumptions 2-5
hold, Zi,j − g(Xi,j) is sub-Gaussian with variance proxy σ2

2 , and |Ω| > c0rm logm. Let

λ = 2c1σ2

√
(n+ 1)m

√
rm logm

|Ω| . Then, under the kNN weight functions (4), for any 0 < α <

1− c2e
−c3 logm and n ≥ 2p+ 2m, with probability at least 1− α− c2e

−c3 logm, we have

R3(x, x̂) ≤ ξα,p,m + ζm,r, (15)

where g(X) = ∇G(X) ∈ R(n+1)×b, ζm,r ≜ c4αsp(A)σmax(A)σ2

e−2η∥A∥max

√
r3m2 logm

|Ω| , c0, c1, c2, c3 are
positive constants and c4 is a constant defined in Appendix A.2.

Theorem 3 states that when there is a one-to-one correspondence between the confounders and

proxy features, the regret is Õ
(
n− 1

2p+2m
∨√ r3m2 logm

|Ω|

)
with high probability. As r ≪ n and the

number of proxy features m is fixed, this regret will converge to 0 as the sample size n → ∞ and the
support satisfies r3m2 logm

|Ω| → 0. To ensure the regret’s convergence, the number of missing values
in the proxy features should not explode with n. As the dimension of the proxy features is fixed
(b = m), the DMs can enhance the model’s performance by increasing the sample size. Moreover,
a greater number of confounders requires a larger sample to achieve improved performance.

Theorem 4 (Regret Bound of the PMFI-model) Suppose Assumptions 2-5 hold. Then, under the
kNN weight functions (4), we have

R3(x, x̂) ≤ R1(x̂) + 2 sup
q∈Q

|E [π (q;y) | x, q]− E [π (q;y) | x̂, q]| . (16)
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Suppose additionally that r̂ = m, ∀(i, j), Zi,j − g(Xi,j) is sub-Gaussian with variance proxy σ2
2 ,

|Ω| > c0rb log b and λ = 2c1σ2

√
(n+ 1)b

√
rb log b
|Ω| . Then, for any 0 < α < 1 − c2e

−c3 log b and

n ≥ 2p+ 2m, with probability at least 1− α− c2e
−c3 log b, we have

R3(x, x̂) ≤ ξα,p,b + φb,r, (17)

where φb,r ≜ c5rζb,r

σmin(Â)
and c5 is a constant defined in Appendix A.2.

The first term of (16) is due to the limitations of the non-parametric decision approach, which is
analogous to the regret defined in (6), with estimated confounders x̂ replacing proxy features z.
This term is bounded by Õ

(
n− 1

2p+2r̂

)
. Given that r̂ < b, R1(x̂) converges faster than R1(z)

in (9). As n and b increase, Â approaches the true matrix, indicating that x̂ captures confounder
and uncertainty information more accurately than z. Consequently, the second term in (16) caused
by the data generating process is expected to be smaller when conditioned on x̂ versus z. In the
second part of Theorem 4, when r̂ = m (the estimated number of confounders equals the true

value), φb,r in (17) is O
(√

r5b2 log b
|Ω|

)
. This term converges to 0 as r5b2 log b

|Ω| → 0 when n → ∞

or b → ∞. We can also interpret the expression |Ω|
r5b2 log b as the quality of proxy features, where

higher quality leads to better model performance and lower regret. Thus, the regret in (17) is upper

bounded by Õ
(
n− 1

2p+2m
∨√ r5b2 log b

|Ω|

)
. This bound significantly improves upon (10) in two key

aspects: (i) convergence: our bound is convergent, whereas (10) reaches zero only under perfect
confounder-proxy alignment; (ii) controllability: the regret can be reduced by adjusting n and b,
offering practical avenues for improvement.

5 NUMERICAL EXPERIMENTS

In our synthetic and real data experiments, we take the classic joint inventory and pricing prob-
lem as the contextual stochastic optimization example for evaluation. This problem simultaneously
optimizes product prices and order quantities to maximize profit, with pricing decisions directly
impacting uncertain demand. The problem formulation is detailed in Appendix B, while dataset
specifications are provided in Appendix C.

5.1 VISUALIZATIONS OF THE UTILITY GAP REDUCTION

We first visualize the confounding effect by comparing the performance (i.e., profit) of the DDFI-
model against DDPI-models with varying dimensions of proxy features, based on synthetic datasets.
Figure 2 shows a significant gap between the average out-of-sample performance of the DDPI-model
and the DDFI-model, regardless of the number of proxy features b and weight functions (kNN and
random forest). This gap represents the discrepancy in predictive capability between proxy features
and confounders, effectively quantifying the utility gap induced by confounding effects. While
Figure 2 suggests that DMs can partially mitigate confounding effects by adjusting the dimension of
proxy features, the impact of this approach is still limited.

We also visualize the efficacy of the proposed solution method in mitigating confounding effect. We
implement our proposed semi-parametric decision-making framework across various proxy feature
numbers (b = 50, 100, 500) and assess the out-of-sample performance in Figure 3. The dimension of
the estimated confounders is determined through cross-validation. The PMFI-model is shown to sig-
nificantly improve out-of-sample performance, irrespective of the dimension of proxy features used.
It aligns with our theoretical analysis in Theorem 4. Specifically, it supports our hypothesis that
our proposed PMPI-model, leveraging M-estimation techniques, extracts more accurate confounder
information and thus enhances demand prediction accuracy and decision-making quality.

5.2 AN REAL-WORLD RETAILING APPLICATION

We test the proposed framework on sales data from AEON, which is one of the largest retail compa-
nies in Japan. In the main text, we present the results using data from a specific store. In Appendix
C, we further demonstrate the experimental outcomes with other stores’ datasets to illustrate the ro-
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Figure 2: Performance gap caused by confounding effect (m=5)
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Figure 3: Performance gap reduction by the PMFI-model (m=5)

bustness of the proposed method. We benchmark our proposed semi-parametric framework against
established methodologies:

• First-predict-then-optimize (FPTO) framework (El Balghiti et al., 2019; Elmachtoub et al.,
2020). FPTO framework involves two steps: (i) predicting uncertainty based on proxy
features; (ii) making decisions based on predictive outcomes. We consider the follow-
ing predictive models: (a) parametric methods: Ordinary Least Squares (OLS), LASSO
regression (Hara & Maehara, 2017; Muthukrishnan & Rohini, 2016); (b) non-parametric
methods: random forest (RF), kNN; and (c) deep learning: deep neural networks (DNNs),
for their ability to handle high-dimensional data (Yu & Yan, 2020; Han et al., 2023).

• First-select-then-optimize (FSTO) framework. FSTO framework is designed for high-
dimensional problems, including two steps: (i) feature selection; (ii) decision-making using
wSAA with RF and kNN weight functions based on the selected features. We employ two
feature selection methods: (a) LASSO regression; (b) knockoff filter: a state-of-the-art sta-
tistical technique (El Balghiti et al., 2019; Elmachtoub et al., 2020). These methods are
denoted as LASSO-RF (kNN) and KNOCKOFF-RF (kNN), respectively.

• First-learning-then-optimize (FLTO) framework. FSTO framework includes two steps: (i)
confounders learning; (ii) decision-making using wSAA. We employ three representation
learning methods to learn confounders from proxy features: (a) Principal Components
Analysis (PCA); (b) Balancing Neural Network (BNN) (Johansson et al., 2016); (c) Varia-
tional Autoencoders (VAEs) (Kingma, 2013; Louizos et al., 2017).

All hyperparameters are tuned via cross-validation. Table 1 presents the out-of-sample performance
comparison across varying proxy feature dimensions. We consider evaluation metrics: out-of-
sample profit and decision accuracy, measured by the mean square error (MSE) between the resulting
inventory decisions and the actual demand. Our semi-parametric solution methods (PMFI-RF and
PMFI-kNN) outperform benchmark methods in terms of out-of-sample profit and decision accuracy,
underscoring the efficacy of matrix-related methods in confounder estimation and their successful
integration with the wSAA framework.

Figure 4 illustrates the close alignment between resulting inventory decisions and actual demands
for products in the test set. This demonstrates our method’s effectiveness in extracting confounder
information for decision-making. Figure 5 showcases the asymptotic properties of PMFI-RF and

9
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Table 1: Out-of-sample performance comparison: PMFI Models vs. Benchmarks

Method Out-of-sample profit Avg Decision accuracy
b=146 b=292 b=438 (MSE, b=438)

FPTO-OLS 14.17 18.12 10.86 14.38 2149.78
FPTO-LASSO 10.55 16.15 16.10 14.27 456.36
FPTO-RF 20.04 20.49 21.22 20.87 405.80
FPTO-kNN 18.72 18.00 18.04 18.25 295.80
FPTO-DNNs 17.35 18.58 18.72 18.22 489.73

LASSO-RF 12.83 11.39 17.23 13.82 572.74
LASSO-kNN 12.76 9.94 11.82 11.51 358.54
KNOCKOFF-RF 17.35 17.45 17.81 17.54 473.49
KNOCKOFF-kNN 19.87 19.42 19.81 19.56 409.18

DDPI-RF 16.10 16.68 17.85 16.88 634.85
DDPI-kNN 17.77 16.92 16.98 17.22 345.38

PCA-RF 18.72 20.06 22.18 20.32 424.30
PCA-kNN 16.53 16.31 20.83 17.89 326.75
BNN-RF 21.64 20.69 20.46 20.93 634.85
BNN-kNN 16.68 16.44 18.23 17.12 308.90
VAEs-RF 15.14 18.66 17.97 17.26 263.85
VAEs-kNN 4.60 8.50 7.83 6.98 443.85

PMFI-RF 22.75 22.73 27.04 24.17 218.18
PMFI-kNN 19.01 19.59 20.38 19.66 278.61

PMFI-kNN models. We observe the convergence of out-of-sample profit as the number of ob-
served samples increases, aligning with our theoretical analysis in Theorem 4. We also observe that
the out-of-sample performance closely approximates the underlying optimal level even with very
small sample sizes. This suggests that our solution method demonstrates strong robustness in small-
sample scenarios. Additionally, Figure 5 depicts the convergence of optimal order quantity decisions
towards actual demand under current pricing decisions as the number of observations increases.
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Figure 4: Comparison of resulting order quantities in PMFI-RF model vs. Actual demand
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Figure 5: Performance of the PMFI-model: Out-of-sample profit and decision accuracy

6 CONCLUSION

This paper introduces a semi-parametric decision-making framework designed to alleviate the in-
evitable confounding effects present in contextual stochastic optimization problems characterized
by endogeneity. Both theoretical and experimental results validate that the proposed methodology
effectively mitigates the repercussions arising from the unmet assumption of unconfoundedness.
Furthermore, our developed solution framework demonstrates superior performance in practical ap-
plications compared to conventional and state-of-the-art methods through synthetic and real datasets.
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