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Abstract

Memory complexity and data scarcity have so far prohibited learning solution operators of
partial differential equations (PDE) at high resolutions. We address these limitations by
introducing a new data efficient and highly parallelizable operator learning approach with
reduced memory requirement and better generalization, called multi-grid tensorized neural
operator (MG-TFNO). MG-TFNO scales to large resolutions by leveraging local and global
structures of full-scale, real-world phenomena, through a decomposition of both the input
domain and the operator’s parameter space. Our contributions are threefold: i) we enable
parallelization over input samples with a novel multi-grid-based domain decomposition, ii)
we represent the parameters of the model in a high-order latent subspace of the Fourier do-
main, through a global tensor factorization, resulting in an extreme reduction in the number
of parameters and improved generalization, and iii) we propose architectural improvements
to the backbone FNO. Our approach can be used in any operator learning setting. We
demonstrate superior performance on the turbulent 2D Navier-Stokes equations where we
achieve less than half the error with over 150× compression compared to the FNO baseline.
The tensorization combined with the domain decomposition, yields over 150× reduction in
the number of parameters and 7× reduction in the domain size without losses in accuracy.

1 Introduction

Real-world scientific computing problems often time require repeatedly solving large-scale and high-resolution
partial differential equations (PDEs). For instance, in weather forecasts, large systems of differential equa-
tions are solved to forecast the future state of the weather. Due to internal inherent and aleatoric uncertain-
ties, multiple repeated runs are carried out by meteorologists every day to quantify prediction uncertainties.
Conventional PDE solvers constitute the mainstream approach used to tackle such computational problems.
Such methods provide convergence guarantess and explicit error bounds to the true solution and have long
served as the backbone for tackling many engireening problems. However, these methods are known to be
slow and memory-intensive. They require an immense amount of computing power, are unable to learn
and adapt based on observed data, and oftentimes require sophisticated tuning (Slingo & Palmer, 2011;
Leutbecher & Palmer, 2008; Blanusa et al., 2022).

*These authors contributed equally to this work
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Figure 1: Comparison of the performance on the relative L2 and H1 test errors (lower is better)
on a log-scale of our approach, compared with both our improved backbone (FNO) and the original FNO, on
Navier-Stokes. Our approach enables large compression for both input and parameter, while outperforming
regular FNO.

Neural operators are a new class of models that aim at tackling these challenging problems (Li et al.,
2020a). They are maps between function spaces whose trained models emulate the solution operators of
PDEs (Kovachki et al., 2021b). In the context of PDEs, these deep learning models are orders of magnitude
faster than conventional solvers, can easily learn from data, can incorporate physically relevant information,
and recently enabled solving problems deemed to be unsolvable with the current state of available PDE
methodologies (Liu et al., 2022; Li et al., 2021c). Among neural operator models, Fourier neural operators
(FNOs), in particular, have seen successful application in scientific computing for the task of learning the
solution operator to PDEs as well as in computer vision for classification, in-painting, and segmentation
(Li et al., 2021b; Kovachki et al., 2021a; Guibas et al., 2021). By leveraging spectral theory, FNOs have
successfully advanced frontiers in weather forecasts, carbon storage, and seismology (Pathak et al., 2022;
Wen et al., 2022; Yang et al., 2021).

While FNOs have shown tremendous speed-up over classical numerical methods, their efficacy can be limited
due to the rapid growth in memory needed to represent complex operators. In the worst case, large memory
complexity is required and, in fact, is unavoidable due to the need for resolving fine-scale features globally.
However, many real-world problems, possess a local structure not currently exploited by neural operator
methods. For instance, consider a weather forecast where predictions for the next hour are heavily dependent
on the weather conditions in local regions and minimally on global weather conditions. Incorporating and
learning this local structure of the underlying PDEs is the key to overcoming the curse of memory complexity.

In this work, we propose a new, scalable neural operator that addresses these issues by leveraging the
structure in both the domain space and the parameter space, Figure 2. Specifically, we introduce the multi-
grid tensor operator (MG-TFNO), a model that exploits locality in physical space by a novel multi-grid
domain decomposition approach to compress the input domain size by up to 7× while leveraging the global
interactions of the model parameters to compress them by over 100× without any loss of accuracy.
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Figure 2: Overview of our approach. First (left), a multi-grid approach is used to create coarse to fine
inputs that capture high-resolution details in a local region while still encoding global context. The resulting
regions are fed to a tensorized Fourier operator (middle), the parameters of which are jointly represented
in a single latent space via a low-rank tensor factorization (here, a Tucker form). Here F denotes Fourier
transform. Finally, the outputs (right) are stitched back together to form the full result. Smoothness in the
output is ensured via the choice of the loss function.

In the input space, to predict the solution in any region of the domain, MG-TFNO decomposes the input
domain into small local regions to which hierarchical levels of global information are added in a multi-grid
fashion. Since a local prediction depends most strongly on its immediate spatial surroundings, the farther
field information is downsampled to lower resolutions, progressively, based on its distance from the region of
interest. Thus, MG-TFNO allows parallelization over the input domain as it relies on high-resolution data
only locally and coarse-resolution data globally. Due to its state-of-the-art performance on PDE problems
and efficient FFT-based implementation, we use the FNO as the backbone architecture for our method. It
is worth noting that the multi-grid approach is readily amendable to neural network settings and, moreover,
any other neural operator architecture can be used in place of FNO as a backbone.

In the parameter space, we exploit the spatiotemporal structure of the underlying PDE solution operator
by parameterizing the convolutional weights within the Fourier domain with a low-rank tensor factorization.
Specifically, we impose a coupling between all the weights in the Fourier space by jointly parameterizing them
with a single tensor, learned in a factorized form such as Tucker or Canonical-Polyadic (Kolda & Bader, 2009).
This coupling allows us to limit the number of parameters in the model without limiting its expressivity. On
the contrary, this low-rank regularization on the model mitigates over-fitting and improves generalization.
Intuitively, our method can be thought of as a fully-learned implicit scheme capable of converging in a
small, fixed number of iterations. Due to the global nature of the integral kernel transform, the FNO
avoids the Courant–Friedrichs–Lewy (CFL) condition plaguing explicit schemes, allowing convergence in
only a few steps (Courant et al., 1928). Our weight coupling ensures maximum communication between the
steps, mitigating possible redundancies in the learned kernels and imposing a low-rank regularizing of the
network Panagakis et al. (2021b).

In summary, we make the following contributions:

• We propose architectural improvements to the backbone which we validated through thor-
ough ablations.

• We propose MG-TFNO, a neural operator parameterized in the spectral domain by a single low-
rank factorized tensor, allowing its size to grow linearly with the size of the problem. It achieves
better performance with a fraction of the parameters: we outperform FNO on solving the turbulent
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Navier Stokes equations with more than 400× weight compression ratio, Figure 7. Our method
overfits less and does better in the low-data regime. In particular, it outperforms FNO with less
than half the training samples, Figure 9.

• We introduce a novel multi-grid domain decomposition approach, a technique which allows
the operator to predict the output only on local portions of the domain, thus reducing the memory
usage by an order of magnitude with no performance degradation. Combining tensorization with
multi-grid domain decomposition leads to MG-TFNO, which is more efficient in terms of task per-
formance, computation, and memory. MG-TFNO achieves 2.5× lower error with 10× model weight
compression, and 1.8× domain compression.

We release an open-source implementation of our proposed method to run all variations of FNO and MG-
TFNO, as well as the Navier-Stokes data used in this paper, along with the paper.

2 Background

Here, we review related works and introduce the background necessary to explain our approach.

Many physical phenomena are governed by PDEs and a wide range of scientific and engineering computation
problems are based on solving these equations. In recent years, a new perspective to PDEs dictates to
formulate these problems as machine learning problems where solutions to PDEs are learned. Prior works
mainly focused on using neural networks to train for the solution map of PDEs (Guo et al., 2016; Zhu &
Zabaras, 2018; Adler & Oktem, 2017; Bhatnagar et al., 2019; Gupta et al., 2021). The use of neural networks
in the prior works limits them to a fixed grid and narrows their applicability to PDEs where maps between
function spaces are desirable. Multiple attempts have been made to address this limitation. For example
mesh free methods are proposed that locally output mesh-free solution (Lu et al., 2019; Esmaeilzadeh et al.,
2020), but they are still limited to fixed input gird.

A new deep learning paradigm, neural operators, are proposed as maps between function spaces (Li et al.,
2020a; Kovachki et al., 2021b). They are discretization invariants maps. The input functions to neural
operators can be presented in any discretization, mesh, resolution, or basis. The output functions can be
evaluated at any point in the domain, either on a regular grid (e.g. FFT based architectures) or for any ar-
bitrary geometry (e.g. graph based architectures). Variants of neural operators deploy a variety of Nyström
approximation to develop new neural operator architecture. Among these, multi-pole neural operators (Li
et al., 2020b) utilize the multi-pole approach to develop computationally efficient neural operator archi-
tecture. Inspired by the spectral method, Fourier-based neural operators show significant applicability in
practical applications (Li et al., 2021b; Yang et al., 2021; Wen et al., 2022; Rahman et al., 2022a), and the
architectures have been used in neural networks for vision and text tasks (Guibas et al., 2021; Dao et al.,
2022). Principle component analysis and u-shaped methods are also considered (Bhattacharya et al., 2020;
Liu et al., 2022; Rahman et al., 2022b; Yang et al., 2022). It is also shown that neural operators can be
additionally trained using PDEs, resulting in physics-informed neural operators, opening new venues for
hybrid data and equation methods (Li et al., 2021c) to tackle problems in scientific computing.

Decomposing the domain in smaller subdomains is at the core of many methods in computational sci-
ences(Dryja & Widlund, 1990; Chan & Mathew, 1994) and extensively developed in deep learning (Dosovit-
skiy et al., 2020). Prior deep learning methods on neural networks propose to decompose the input finite
dimension vector to multiple patches, accomplish local operations, and aggregate the result of such process in
the global sense (Dosovitskiy et al., 2020; Guibas et al., 2021). Such methods do not decompose the output
domain and directly predict the entire output vector. In contrast, MG-TFNO works on function spaces,
and not only decomposes the input domain, but also decomposes the domain of the output functions, and
separately predicts the output at each subdomain.

For the purposes of this paper, tensors are multi-dimensional arrays and generalize the concept of matrices to
more than 2 modes (dimensions). For instance, RGB images are encoded as third-order (three-dimensional)
tensors, videos are 4th order tensors and so on and so forth. Tensor methods generalize linear algebraic
methods to these higher-order structures. They have been very successful in various applications in computer
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vision, signal processing, data mining and machine learning (Panagakis et al., 2021b; Janzamin et al., 2019b;
Sidiropoulos et al., 2017; Papalexakis et al., 2016).

Using tensor decomposition Kolda & Bader (2009); Janzamin et al. (2019a), previous works have been able
to compress and improve deep networks for vision tasks Panagakis et al. (2021a). Either a weight matrix
is tensorized and factorized Novikov et al. (2015), or tensor decomposition is directly to the convolutional
kernels before fine-tuning to recover-for lost accuracy, which also allows for an efficient reparametrization of
the network (Lebedev et al., 2015; Kim et al., 2016; Gusak et al., 2019). There is a tight link between efficient
convolutional blocks and tensor factorization and factorized higher-order structures (Kossaifi et al., 2020).
Similar strategies have been applied to multi-task learning (Bulat et al., 2020a) and NLP (Papadopoulos
et al., 2022; Cordonnier et al., 2020). Of all these prior works, none has been applied to neural operator.
In this work, we propose the first application of tensor compression to learning operators and propose a
Tensorized Fourier Neural Operator (TFNO).

3 Methodology

Here, we briefly review operator learning as well as the Fourier Neural Operator, on which we build to
introduce our proposed Tensor OPerator (TFNO) as well as the Multi-Grid Domain Decomposition, which
together form our proposed MG-TFNO.

3.1 Operator Learning

Let A := {a : DA → RdA} and U := {u : DU → RdU } denote two input and output function spaces
respectively. Each function a, in the input function space A, is a map from a bounded, open set DA ⊂ Rd

to the dA-dimensional Euclidean space. Any function in the output function space U is a map from a
bounded open set DU ⊂ Rd to the dU -dimensional Euclidean space. In this work we consider the case
D = DA = DU ⊂ Rd.

We aim to learn an operator G : A → U which is a mapping between the two function spaces. In particular,
given a dataset of N samples (e.g. PDE solves) {(aj , uj)}N

j=1, where the pair (aj , uj) are functions satisfying
G(aj) = uj , we build an approximation of the operator G . As a backbone operator learning model, we use
neural operators as they are consistent and universal learners in function spaces. We refer the reader to
Kovachki et al. (2021b) for an overview of theory and implementation. We specifically use the FNO and
give details in the forthcoming section (Li et al., 2021b).

3.2 Notation

We summarize the notation used throughout the paper in Table 1.

3.3 Fourier Neural Operators

For simplicity, we will work on the d-dimensional unit torus Td and first describe a single, pre-activation
FNO layer mapping Rm-valued functions to Rn-valued functions. Such a layer constitutes the mapping
G : L2(Td;Rm) → L2(Td;Rn) defined as

G(v) = F−1(
F(κ) · F(v)

)
, ∀ v ∈ L2(Td;Rm) (1)

where κ ∈ L2(Td;Rn×m) is a function constituting the layer parameters and F , F−1 are the Fourier transform
and its inverse respectively. The Fourier transform of the function κ is parameterized directly by some fixed
number of Fourier nodes denoted α ∈ N.

To implement equation 1, F , F−1 are replaced by the discrete fast Fourier transforms F̂ , F̂−1. Let
v̂ ∈ Rs1×···×sd×m denote the evaluation of the function v on a uniform grid discretizing Td with
sj ∈ N points in each direction. We replace F(κ) with a weight tensor T ∈ Covs1×···×sd×n×m

consisting of the Fourier modes of κ which are parameters to be learned. To ensure that κ is
parameterized as a Rn×m-valued function with a fixed, maximum amount of wavenumbers α <
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Variable Meaning Dimensionality

T Tensor of weights in the Fourier domain Covα×···×α×m×n

W Weight tensor parameterizing the entire operator Covα×···×α×n×n×2d−1L

A Input function space Infinite
U output function space Infinite
a Input function Infinite
u Output function Infinite

DA Domain of function a d
DU Domain of function u d
dA Dimension of the co-domain of the input functions 1
dU Dimension of the co-domain of the output functions 1
F Fourier transform Infinite

F−1 Fourier transform Infinite
L Number of integral operation layers In N
l Layer index Between 1 and L
σ Point-wise activation operation Infinite
b Bias vector
v Function at each layer Infinite
α Number of kept frequencies in Fourier space Between 1 and 1

2 min{s1, · · · , sd}

Table 1: Table of notation

1
2 min{s1, · · · , sd} that is independent of the discretization of Td, we leave as learnable parame-
ters only the first α entries of T in each direction and enforce that T have conjugate symmetry.
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Figure 3: Visualization of the hyper-corners containing the low-
frequency in the real-FFT. On the left, we show the low-frequency
modes used by our algorithm. Equivalently, we can first apply an
FFT-shift (right) and keep the central coefficients.

In particular, we parameterize half
the corners of the d-dimensional
hyperrectangle with 2d−1 hyper-
cubes with length size α. That
is, T is made up of the free-
parameter tensors T̃1, · · · , T̃2d−1 ∈
Covα×···×α×n×m situated in half of
the corners of T. Each corner diag-
onally opposite of a tensor T̃j is as-
signed the conjugate transpose val-
ues of T̃j. All other values of T
are set to zero. This is illustrated
in the middle-top part of Figure 3.3
for the case d = 2 with T̃1 and T̃2.
Note that, equivalently, we can ap-
ply an FFT-shift to the output of
the real FFT so the low-frequency
coefficients are located in one block
in the middle. In that case, we then

apply another FFT-shift to the output of the contraction before applying the inverse real FFT. We will
use the notation T(k, · · · ) = T̃k for any k ∈ [2d−1]. The discrete version of equation 1 then becomes the
mapping Ĝ : Rs1×···×sd×m → Rs1×···×sd×n defined as

Ĝ(v̂) = F̂−1(
T · F̂(v̂)

)
, ∀ v̂ ∈ Rs1×···×sd×m (2)

where the · operation is simply a tensor contraction along the last dimension. Specifically, we have
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(
T · F̂(v̂)

)
(l1, . . . , ld, j) =

m∑
i=1

T(l1, . . . , ld, j, i)
(
F̂(v̂)

)
(l1, . . . , ld, i). (3)

From equation 2, a full FNO layer is build by adding a point-wise linear action to v̂, a bias term, and applying
a non-linear activation. In particular, from an input v̂ ∈ Rs1×···×sd×m, the output q̂ ∈ Rs1×···×sd×n is given
as

q̂(l1, · · · , ld, :) = σ
(
Qv̂(l1, · · · , ld, :) + Ĝ(v̂) + b

)
with σ : R → R a fixed, non-linear activation, and b ∈ Rn, Q ∈ Rn×m, T̃1, · · · , T̃2d−1 ∈ Covα×···×α×n×m are
the learnable parameters of the layer. The full FNO model consists of L ∈ N such layers each with weight
tensors T1, · · · , TL that have learnable parameters T̃(l)

k = Tl(k, · · · ) for any l ∈ [L] and k ∈ [2d−1]. In the
case n = m for all layers, we introduce the joint parameter tensor W ∈ Covα×···×α×n×m×2d−1L so that

W
(
. . . , 2d−1(l − 1) + k + 1

)
= T̃(l)

k . (4)

A perusal of the above discussion reveals that there are (2dαd + 1)mn + n total parameters in each FNO
layer. Note that, since m and n constitute the respective input and output channels of the layer, the number
of parameters can quickly explode due to the exponential scaling factor 2dαd if many wavenumbers are
kept. Preserving a large number of modes could be crucial for applications where the spectral decay of the
input or output functions is slow such as in image processing or the modeling of multi-scale physics. In the
following section, we describe a tensorization method that is able to mitigate this growth without sacrificing
approximation power.

3.4 Architectural improvements

Our proposed approach uses FNO as a backbone. To improve its performance, we first study various aspects
of the Fourier Neural Architecture and perform thorough ablation to validate each aspect. In particular, we
propose improvements to the base architecture that improve performance.

Normalization in neural operators While normalization techniques, such as Batch-Normalization Ioffe
& Szegedy (2015), have proven very successful in training neural networks, additional consideration must
be given when applying those to neural operators in order to preserve its properties, notably discretization
invariance. Specifically, it cannot depend on the spatial variables and therefore has to be either a global or
a function-wise normalization. We investigate several configurations using instance normalization Ulyanov
et al. (2016) and layer-normalization Ba et al. (2016), in conjunction with the use-of preactivation He et al.
(2016).

Channel mixing FNO relies on a global convolution realized in the spectral domain. Inspired by previous
works, e.g. Guibas et al. (2021), we propose adding an MLP in the original space, after each Spectral
convolution. In practice, we found that two-layer bottleneck MLP works well, e.g. we decrease the co-
dimension by half in the first linear layer before restoring it in the second one.

Boundary conditions: domain padding and skip connections Fourier neural operators circumvent
the limitation of traditional Fourier methods to inputs with periodic boundaries only. This is achieved
through a local linear transformation added to the spectral convolution. This can be seen as a linear
skip connection. We investigate replacing these with an identity skip-connection and a soft-gated skip-
connection Bulat et al. (2020b).

We represent in Figure. 4 the original FNO architecture (Li et al., 2021b), subfigure 4(a), the improved
version with double (sequential) skip connections (subfigure 4(b)) and our best architecture, both with and
without preactivation (subfigures 4(c) and 4(d), respectively).
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(d) Improved backbone.

Figure 4: Original FNO and Improved Backbone Architecture. The original FNO architecture (Li
et al., 2021b) is composed of simply a Spectral Convolution, with a (linear, soft-gating, or identity) skip
connection to recover high-frequency information and handle non-periodic inputs (4(a)). We improve the
architecture as detailed in section 3.4. In particular, we have a version with a double (sequential) skip
connection (4(b)), while our best architecture uses nested skip connections, and can be made both with pre-
or post-activation (subfigures 4(c) and 4(d), respectively). The latter, subfigure 4(d), is our best architecture.

We also investigate the impact of domain-padding, found by Li et al. (2021b) to improve results, especially
for non-periodic inputs, and padding for the multi-grid decomposition. In fact, the multi-grid domain
decomposition inherently breaks any periodic boundary conditions (if the function itself is periodic, its
patches typically likely are not). The effect of this can be mitigated by padding the inputs, which increases
computational cost, resulting in a tradeoff between padding and computational efficiency.

3.5 Tensor Fourier Neural Operators

In the previous section, we introduced a unified formulation of FNO where the whole operator is parametrized
by a single parameter tensor W. This enables us to introduce the tensor operator, which parameterizes ef-
ficiently W with a low-rank, tensor factorization. We introduce the method for the case of a Tucker decom-
position Tucker (1966c), for its flexibility. Other decompositions, such as Canonical Polyadic (CP) Carroll
& Chang (1970); Harshman (1970), can be readily integrated. This joint parametrization has several ad-
vantages: i) it applies a low-rank constraint on the entire tensor W, thus regularizing the model. These
advantages translate into i) a huge reduction in the number of parameters, ii) better generalization and an
operator less prone to overfitting. We show superior performance for low-compression ratios (up to 200×) and
very little performance degradation when largely compressing (> 450×) the model, iii) better performance
in a low-data regime.

In practice, we express W in a low-rank factorized form, e.g. Tucker or CP. In the case of a Tucker
factorization with rank (R1, · · · , Rd, RL, RI , RO), where RL controls the rank across layers, RI = RO control
the rank across the input and output co-dimension, respectively, and R1, · · · , Rd control the rank across the
dimensions of the operator:
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W =
R1∑

r1=1
· · ·

Rd∑
rd=1

RI∑
ri=1

RO∑
ro=1

RL∑
rl=1

G(r1, · · · , rd, ri, ro, rl) · U(1)(:, r1) · · · · · U(d)(:, rd) · U(I)(:, ri) · ·U(O)(:, ro) · U(L)(:, rl).

(5)

Here, G is the core of size RL × RI × RO × R1 × · · · × Rd and U(L), U(I), U(O), U(1), · · · , U(d) are factor
matrices of size (RL × L), (RI × I), (RO × O), (R1 × α), · · · , (Rd × α), respectively.

Note that the mode (dimension) corresponding to the co-dimension can be left uncompressed by setting
RL = L and U(L) = Id. This leads to layerwise compression. Also note that having a rank of 1 along any of
the modes would mean that the slices along that mode differ only by a (multiplicative) scaling parameter.
Also note that during the forward pass, we can pass T directly in factorized form to each layer by selecting
the corresponding rows in U(L). While the contraction in equation 3 can be done using the reconstructed
tensor, it can also be done directly by contracting F̂(v̂) with the factors of the decomposition. For small,
adequately chosen ranks, this can result in computational speedups.

Figure 5: Illustration of a Tucker
decomposition. For clarity , we
show W as a 3rd-order tensor weight.

A visualization of the Tucker decomposition of a third-order tensor
can be seen in Figure 5). Note that we can rewrite the entire weight
parameter for this Tucker case, equivalently, using the more compact
n-mode product as:

W = G ×1 U(1) · · · ×d U(d) ×d+1 U(I) ×d+2 U(O) ×d+3 U(L)

We can efficiently perform an iFFT after contraction with the ten-
sorized kernel. For any layer l, the (j1, j2) coordinate of the matrix-
valued convolution function κ(x) is as follows,

[κl(x)]j1, j2 =
m1∑

i1=1
· · ·

md∑
id=1

RL∑
rl=1

RI∑
ri=1

RO∑
ro=1

R1∑
r1=1

· · ·
Rd∑

rd=1
G(r1, · · · , rd, ri, ro, rl)·

U(1)(i1, r1) · · · U(d)(id, rd) · U(I)(j1, ri) · U(O)(j2, ro) · U(L)(l, rl) · exp(2π

d∑
k=1

ixkik)

This joint factorization along the entire operator allows us to leverage redundancies both locally and across
the entire operator. This leads to a large reduction in the memory footprint, with only a fraction of the pa-
rameter. It also acts as a low-rank regularizer on the operator, facilitating training. Finally, through global
parametrization, we introduce skip connections that allow gradients to flow through the latent parametriza-
tion to all the layers jointly, leading to better optimization.

Importantly, this formulation is general and works with any tensor factorization. For instance, we also
explore a Canonical-Polyadic decomposition (CP) which can be seen as a special case of Tucker with a
super-diagonal core. In that case, we set a single rank R and express the weights as a weighted sum of R
rank-1 tensors. Concretely:

W =
R∑

r=1
λrU(1)(:, r) · · · · · U(d)(:, r)· (6)

U(I)(:, r) · U(O)(:, r) · U(L)(:, r).

where U(L), U(I), U(O), U(1), · · · , U(d) are factor matrices of size (R×L), (R×I), (R×O), (R×α), · · · , (R×α),
respectively and λ ∈ RR. Note that the CP, contrarily to the Tucker, has a single rank parameter, shared
between all the dimensions. This means that to maintain the number of parameters the same, R needs to
be very high, which leads to memory issues. This makes CP more suitable for large compression ratios,
and indeed, we found it leads to better performance at high-compression / very low-rank. In this paper,

9
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(a) Predicting with padded regions. Local region in the input is
padded and used to predict the corresponding region in the output.

(b) MG-Domain Decomposition. Progres-
sively larger spatial regions are added to a local
region by subsampling.

Figure 6: Domain decomposition in space (6(a)) and our Multi-Grid based approach. (6(b)).
White squares represent the region of interest while yellow squares the larger embeddings.

we also explore the tensor-train decomposition Oseledets (2011). A rank-(1, R1, · · · , RN , RI , RO, RL, 1) TT
factorization expresses W as:

W(i1, · · · , id, ic, io, il) = G1(i1) · ×GN (id)GI(ic) × · · · GO(io) × · · · GL(il).

Where each of the factors of the decompositions Gk are third order tensors of size Rk × Ik × Rk+1.

In the experimental section 4.3, we show results of TFNO trained with a Tucker, TT and CP factorization.

Separable Fourier Convolution The proposed tensorization approach introduces a factorization of the
weights in the spectral domain. When a CP Kolda & Bader (2009) is used, this induces separability over
the learned kernel. In the case where the number of input channels is equal to the number of output
channels (n = m in eq. 1), we propose to make this separability explicit by not performing any channel
mixing in the spectral domain and relying on the MLP introduced above to do so. Specifically, we can now
rewrite the parameters in Eq. 4 as W ∈ Covα×···×α×n×2d−1L (notice this has one less dimension that for the
non-separable case). The operation in the spectral domain simplifies from a tensor contraction to just an
element-wise matrix multiplication:(

T · F̂(v̂)
)
(l1, . . . , ld, i) = T(l1, . . . , ld, i) ∗

(
F̂(v̂)

)
(l1, . . . , ld, i).

The separable Spectral convolution can be considered a depthwise convolution performed in the Fourier
domain, e.g. without any channel mixing, and with separability along each dimension. The mixing between
channels is instead done in the spatial domain. This results in a significant reduction in the number of
parameters while having minimal impact on performance (we found it necessary to increase the depth of the
network, however, to ensure the network retained enough capacity).

3.6 Multi-Grid Domain Decomposition

Having introduced our decomposition in the operator’s parameter space, we now introduce our novel multi-
grid approach to decompose the problem domain.

Domain decomposition is a method commonly used to parallelize classical solvers for time-dependent
PDEs that is based on the principle that the solution for a fixed local region in space depends mostly on
the input at the same local region (Chan & Mathew, 1994). In particular, since the time-step h > 0 of
the numerical integrator is small, the solution u(x, t + h), for any point x ∈ D and t ∈ R+, depends most
strongly on the points u(y, t) for all y ∈ B

(
x, r(h)) where B

(
x, r(h)

)
denotes the ball centered at x with

radius r(h). This phenomenon is easily seen for the case of the heat equation where, in one dimension, the
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solution satisfies

u(x, t + h) ∝
∫ ∞

−∞
exp

(
−(x − y)2

4h

)
u(y, t) dy

≈
∫ x+4h

x−4h

exp
(

−(x − y)2

4h

)
u(y, t) dy

with the approximation holding since 99.9937% of the kernel’s mass is contained within B(x, 4h). While
some results exist, there is no general convergence theory for this approach, however, its empirical success
has made it popular for various numerical methods (Albin & Bruno, 2011). Domain deomposition methods
are also widely used for boundary value, for example, in solving elliptic PDEs (Dryja & Widlund, 1990).
Differences in methods vary based on how boundary data is handled between adjecent subdomains. In our
proposed appraoch we supplemant global data to each subdomain by using overlapping patches and stacking
channels with an increasing receptive between at coarser scales.

To exploit this localization , the domain D is split in q ∈ N pairwise-disjoint regions D1, · · · , Dq so that
D = ∪q

j=1Dj . Each region Dj is then embedded into a larger one Zj ⊃ Dj so that points away from the
center of Dj have enough information to be well approximated. A model can then be trained so that the
approximation G(a|Zj

)|Dj
≈ u|Dj

holds for all j ∈ [q]. This idea is illustrated in Figure 6(a) where D = [0, 1]2
and all Dj , Zj are differently sized squares. This allows the model to be ran fully in parallel hence its time
and memory complexities are reduced linearly in q.

Multi-Grid. Domain decomposition works well in classical solvers when the time step h > 0 is small
because the mapping u(·, t) 7→ u(·, t + h) is close to the identity. However, the major advancement made by
machine learning-based operator methods for PDEs is that a model can approximate the solution, in one
shot, for very large times i.e. h > 1. But, for larger h, the size of Zj relative to Dj must increase to obtain
the same approximation accuracy, independently of model capacity. This causes any computational savings
made by the decomposition approach to be lost.

To mitigate this, we propose a multi-grid based domain decomposition approach where global information
is added hierarchically at different resolutions. While our approach is inspired by the classical multi-grid
method, it is not based on the V-cycle algorithm (McCormick, 1985). For ease of presentation, we describe
this concept when a domain D = T2 is uniformly discretized by 2s × 2s points, for some s ∈ N, but note
that generalizations can readily be made. Given a final level L ∈ N, we first sub-divide the domain into 22L

total regions each of size 2s−L × 2s−L and denote them D
(0)
1 , · · · , D

(0)
22L . We call this the zeroth level. Then,

around each D
(0)
j , for any j ∈ [22L], we consider the square D

(1)
j of size 2s−L+1 × 2s−L+1 that is equidistant,

in every direction, from each boundary of D
(0)
j . We then subsample the points in D

(1)
j uniformly by a factor

of 1
2 in each direction, making D

(1)
j have 2s−L × 2s−L points. We call this the first level. We continue this

process by considering the squares D
(2)
j of size 2s−L+2 × 2s−L+2 around each D

(1)
j and subsample them

uniformly by a factor of 1
4 in each direction to again yield squares with 2s−L × 2s−L points. The process is

repeated until the Lth level is reached wherein D
(L)
j is the entire domain subsampled by a factor of 2−L in

each direction. The input to the model is then the concatenation each of these levels, in particular,

aj = [D(0)
j , . . . , D

(L)
j ] ∈ RL+1×2s−L×2s−L

The process is illustrated for the case L = 2 in Figure 6(b). Since we work with the torus, the region of the
previous level is always at the center of the current level.

The intuition behind this method is that since the dependence of points inside a local region diminishes the
further we are from that region, it is enough to have coarser information, as we go farther. We combine
this multi-grid method with the standard domain decomposition approach by building appropriately padded
squares Z

(l)
j of size 2s−L + 2p × 2s−L + 2p around each D

(l)
j where p ∈ N is the amount of padding to be

added in each direction. We then take the evaluations of the input function a at each level and concatenate
them as channels. In particular, we train a model so that Ĝ

(
(a|

Z
(0)
j

, · · · , a|
Z

(L)
j

)
)
|
D

(0)
j

≈ u|
D

(0)
j

. Since the
model only operates on each padded region separately, we reduce the total number of grid points used from
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Figure 7: Tensorization: error in logscale as a function of the compression ratio. We compare the
tensor neural operator with an FNO with the same number of parameters (trimmed). We achieve over
100x compression ratio with better performance that the original FNO

Figure 8: MG-Domain Decomposition: error as a function of the domain compression ratio.
We compare MG-TFNO with different numbers of multigrid regions both with and without weight tensor
compression to a full field FNO model. We achieve over 7x input space compression, 10x parameter
space compression ratios and better performance than the original FNO.

22s to (2s−L + 2p)2 and define the domain compression ratio as the quotient of these numbers. Furthermore,
note that, assuming a is RdA -valued, a model that does not employ our multi-grid domain decomposition
uses inputs with dA channels while our approach builds inputs with (L + 1)dA channels. In particular, the
number of input channels scales only logarithmically in the number of regions hence global information is
added at very little additional cost. Indeed, FNO models are usually trained with internal widths much
larger than dA hence the extra input channels cause almost no additional memory overhead.
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4 Experiments

In this section, we first introduce the data, experimental setting and implementation details before empirically
validating our approach through thorough experiments and ablations.

4.1 Data.

We experiment on a dataset of 10K training samples and 2K test samples of the two-dimensional Navier-
Stokes equation with Reynolds number 500. We also experiment with the one-dimensional viscous Burgers’
equation.

Navier-Stokes. We consider the vorticity form of the two-dimensional Navier-Stokes equation,

∂tω + ∇⊥ϕ · ω = 1
Re∆ω + f, x ∈ T2, t ∈ (0, T ]

−∆ϕ = ω,

∫
T2

ϕ = 0, x ∈ T2, t ∈ (0, T ]
(7)

with initial condition ω(0, ·) = 0 where T2 ∼= [0, 2π)2 is the torus, f ∈ L̇2(T2;R) is a forcing function, and
Re > 0 is the Reynolds number. Then ω(t, ·) ∈ Ḣs(T2;R) for any t ∈ (0, T ] and s > 0, is the unique
weak solution to equation 7 (Temam, 1988). We consider the non-linear operator mapping f 7→ ω(T, ·) with
T = 5 and fix the Reynolds number Re = 500. We define the Gaussian measure µ = N (0, C) on the forcing
functions where we take the covariance C = 27(−∆ + 9I)−4, following the setting in (De Hoop et al., 2022).
Input data is obtained by generating i.i.d. samples from µ by a KL-expansion onto the eigenfunctions of
C (Powell et al., 2014). Solutions to equation 7 are then obtained by a pseudo-spectral scheme (Chandler
& Kerswell, 2013). Generating a single instance of the data at the 128 × 128 resilution on a single GPU
takes approximately one minute. All machine learning methods compared in this work have an execution
time of less than one second, providing, at least, 100× speed-up. The cost of generating the high resolution
data scales quadrtically due to the CFL condition and the speed-up due to the machine learning methods
becomes much larger.

Burgers’ Equation. We consider the one-dimensional Burgers’ equation on the torus,

∂tu + uux = νuxx, x ∈ T, t ∈ (0, T ]
u|t=0 = u0, x ∈ T

(8)

for initial condition u0 ∈ L2(T;R) and viscosity ν > 0. Then u(t, ·) ∈ Hs(T;R), for any t ∈ R+ and s > 0,
is the unique weak solution to 8 (Evans, 2010). We consider the non-linear operator u0 7→ u(T, ·) with
T = 0.5 or 1 and fix ν = 0.01. We define the Gaussian measure µ = N (0, C) where we take the covariance
C = 35/2(− d2

dx2 + 9I)−3. Input data is obtained by generating i.i.d. samples from µ by a KL-expansion onto
the eigenfunctions of C. Solutions to equation 8 are then obtained by a pseudo-spectral solver using Heun’s
method. We use 8K samples for training and 2K for testing.

4.2 Implementation details

Implementation We use PyTorch Paszke et al. (2017) for implementing all the models. The tensor
operations are implemented using TensorLy Kossaifi et al. (2019) and TensorLy-Torch Kossaifi (2021). Our
code will be released under the permissive MIT license, as a Python package that is well-tested and comes
with extensive documentation, to encourage and facilitate downstream scientific applications. It will be
made available along withe the final version of the manuscript.

Hyper-parameters We train all models via gradient backpropagation using a mini-batch size of 16, the
Adam optimizer, with a learning rate of 1e−3, weight decay of 1e−4, for 500 epochs, decreasing the learning
rate every 100 epochs by a factors of 1

2 . The model width is set in all cases to 64 except when specified
otherwise (for the Trimmed FNO), meaning that the input was first lifted (with a linear layer) from the

13



Published in Transactions on Machine Learning Research (08/2024)

Table 2: Comparing the performance of MG-TFNO with previous works, on the Navier-Stokes
equations. Our method achieves superior performance with a fraction of the parameters while largely
compressing the weights (TFNO) and the input-domain (MG-TFNO).

Method L2 test error (%) # Params Model CR Input CR
FNO Li et al. (2021b) 1.34 % 67M - -
FFNO Tran et al. (2023) 1.15 % 1M 67× -
UNO Rahman et al. (2022b) 0.5 % 96M - -
TUNO (CP) 0.49% 1M 72× -
TFNO (CP) 0.29% 890K 75× -
TFNO (CP) 0.47% 447K 150× -
MG-TFNO (CP) 0.49 % 447K 40× 1.9×
MG-TFNO (Tucker) 0.42 % 447K 19× 1.9×

number of input channels to that width. The projection layer projects from the width to 256 and a prediction
linear layer outputs the predictions. 10000 samples were used for training, as well as a separate set of 2000
samples for testing. All experiments are done on a NVIDIA Tesla V100 GPU. The resolution is 128 × 128
unless specified otherwise.

To disentangle the effect of each of our components, the comparisons between the original FNO, the MG-
FNO, TFNO, and the MG-TFNO were conducted in the same setting, with a mini-batch size of 32, modes
of 42 and 21 for the height and width, respectively, and an operator width of 64.

For the comparison between our best models, we use all the modes (64 and 32) and a mini-batch size of
16, which leads to improved performance for all models but longer training times. For each comparison, the
same setting and hyper-parameters were used for all models.

Training the operator. Since MG-TFNO predicts local regions which are then stitched together to form
a global function without any communication, aliasing effects can occur where one output prediction does
not flow smoothly into the next. To prevent this, we train our model using the H1 Sobolev norm (Czarnecki
et al., 2017; Li et al., 2021a). By matching derivatives, training with this loss prevents any discontinuities
from occurring and the output prediction is smooth. We note that this approach is only applicable if the
PDE solution is globally H1 which may not always be the case, for example, in problems which contains
shocks. A new approach for smoothly stiching the patch-wise solution will be needed in such cases and we
leave this to future work. We note that all problems considered in our experimental section satisfy the H1

assumption.

4.3 Experimental results

In this section, we empirically verify the performance of our method, by comparing it with previous works,
and through thorough ablation studies.

Comparison with previous works In this section, we compare our approach with both the regular
FNO Li et al. (2021b), the Factorized-FNO (FFNO) Tran et al. (2023) and the U-Shaped Neural Opera-
tor Rahman et al. (2022b).

FFNO separately applied FFT along each mode before combining the results. We used the same settings
as described in the original paper Tran et al. (2023). U-NO uses a U-shaped architecture and reduces the
spacial resolution while increasing the co-domain size.

In all cases, our approach achieves superior performance with a fraction of the parameters, as can be seen
in Table 4.4.4.
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Figure 9: Error as a function of the number of training samples (left) and training VS testing
loss. We compare TFNO with a regular FNO. Note that on the left we show the testing L2 error while,
for training, the H1 loss is used and that is compared with the H1 test error on the right. Our approach
generalizes better while requiring fewer training samples.

Tensorizing: better compression. In Figure 7, we show the performance of our approach (TNO) com-
pared to the original FNO, for varying compression ratios. In the Trimmed-FNO, we adjust the width in
order to match the number of parameters in our TNO. We focus on the width of the network as it was
shown to be the most important parameter (De Hoop et al., 2022). Our method massively outperforms the
Trimmed-FNO at every single fixed parameter amount. Furthermore, even for very large compression ratios,
our FNO outperforms the full-parameter FNO model. This is likely due to the regularizing effect of the
tensor factorization on the weight, showing that many of the ones in the original model are redundant.

Tensorizing: better generalization. Figure 9 (left) shows that our TNO generalizes better with less
training samples. Indeed, at every fixed amount of training samples, the TNO massively outperforms the
full-parameter FNO model. Even when only using half the samples, our TNO outperforms the FNO trained
on the full dataset. Furthermore, Figure 9 (right) shows that our TNO overfits significantly less than FNO,
demonstrating the regularizing effect of the tensor decomposition. This result is invaluable in the PDE setting
where very few training samples are typically available due to the high computational cost of traditional
PDE solvers.

Multi-Grid Domain Decomposition. In Table 4.4.4, we compare our MG-TFNO with the baseline
FNO and the TFNO, respectively. MG-TFNO enables compressing both the weight tensor but also the
input domain. On the other hand, preserving resolution invariance requires padding the patches, which
decreases performance, resulting in a tradeoff between input domain compression and prediction accuracy.

We also show the impact of multi-grid domain decomposition on performance in Figure 8. We find that
lower compression ratios (corresponding to a larger amount of padding in the decomposed regions) perform
better which is unsurprising since more information is incorporated into the model. More surprisingly, we
find that using a larger number of regions (16) performs consistently better than using a smaller number (4)
and both can outperform the full-field FNO. This can be due to the fact that: i) the domain decomposition
acts as a form of data augmentation, exploiting the translational invariance of the PDE and more regions
yield larger amounts of data, and ii) the output space of the model is simplified since a function can have
high frequencies globally but may only have low frequencies locally. Consistently, we find that the tensor
compression in the weights acts as a regularizer and improves performance across the board.

Architectural improvements to the backbone In addition to the ablation performed on our MG-
TFNO, we also investigate architectural improvements to the FNO backbone, see Sec 3.4 for details. In
particular, we find that, while instance normalization decreases performance, layer normalization helps, es-
pecially when used in conjunction with a pre-activation. Adding an MLP similarly improves performance, we
found that a bottleneck (expansion factor of 0.5) works well in practice, resulting in an absolute improvement
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Table 3: Impact of our architectural improvements.
Method Layers L2 test error H1 test error # Params Model CR
FNO Li et al. (2021b) 4 1.34% 3.78% 67,142,657 -
FNO Li et al. (2021b) 6 0.90% 2.59% 100,705,409 0.7×
FNO Li et al. (2021b) 8 0.73% 2.09% 134,268,161 0.5×
TFNO (CP) 4 0.47% 1.20% 447,105 150×
TFNO (CP) 6 0.27% 0.74% 662,081 101×
TFNO (CP) 8 0.22% 0.59% 877,057 77×

Table 4: Resolution invariance of TFNO. Since the model is an operator, it is resolution invariant. In
particular, here, we trained our model in resolution 128 × 128 and test it on unseen samples in various
resolutions and show it generalizes, with virtually no loss of performance to higher resolutions unseen during
training.

Method 128 × 128 256 × 256 512 × 512 1024 × 1024
L2 error H1 error L2 error H1 error L2 error H1 error L2 error H1 error

CP TFNO 0.3% 0.87% 0.3% 0.93% 0.3% 0.93% 0.3% 0.93%
CP MG-TFNO 0.49% 1.2% 0.49% 1.3% 0.49% 1.5% 0.49% 1.6%

of 0.87% in relative L2 error. We found the ordering of normalization, activation, and weights (including
preactivation), did not have a significant impact on performance. Finally, when not using multi-grid domain
decomposition, the inputs are periodic and padding is not necessary. In that case, not padding the input im-
proves performance. We use all these improvements for the backbone of the best version of our MG-TFNO,
Fig 1 where we show that our improved backbone significantly outperforms the original FNO, while our
approach significantly outperforms both, with a small fraction of the parameters, opening the door to the
application of MG-TFNO to high-resolution problems.

We experiment with various number of layers and compare the original FNO with our improved backbone
in Table. 4.3.

4.4 Ablation studies

In this section, we further study the properties of our model through ablation studies. We first look at how
TFNO suffers less from overfitting thanks to the low-rank constraints before comparing its performance with
various tensor decompositions. Finally, we perform ablation studies for our multi-grid domain decomposition
on Burger’s equation.

4.4.1 Resolution invariance

TFNO is resolution invariant, meaning that it can be trained on one resolution and tested on a different
one. To illustrate this, we show zero-shot super-resolution results: we trained our best model (Table 4.4.4)
on images of resolution 128 × 128 and tested it on unseen samples at higher resolutions (256 × 256 and
512 × 512), Table 4. As can be seen, our method does as well on unseen, higher-resolution unseen testing
samples as it does on the training resolution, confirming the resolution invariance property of our neural
operator.

4.4.2 Training on higher-resolution with Multi-grid

One important advantage of our multi-grid domain decomposition is that it enables training much larger
models on large inputs by distributing over patches. We demonstrate this, by training on larger resolution
(512x512 discretization) and using the largest FNO and TFNO that fits in memory, on a V100 GPU. For
the original FNO, this corresponds to a width of 12, first row in table 5. We then compare its performance
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Table 5: Training on 512x512. Multi-grid domain decomposition allows us to fit larger models into
memory by distributing patches in the domain space, thus reaching a lower relative error.

Model Width Patches Padding L2 error
FNO 12 0 0 6.1
MG-FNO 42 4 70 2.9
MG-FNO 66 4 53 2.4
MG-FNO 88 16 40 1.8
Tucker MG-TFNO 80 16 46 1.3

with the multigrid approach with a neural operator as large as fits into the same V100 GPUs i.e. each width
in the table has been optimized to be as large as memory allows. As we can see, our approach allows to fit
a larger model and reaches a much lower relative L2 error.

4.4.3 Overfitting and Low-Rank Constraint

Here, we show that lower ranks (higher compressions) lead to reduced overfitting. In Figure 5, we show the
training and testing H1 errors for our TOP with Tucker decomposition at varying compression ratios (2x,
49x and 172x). We can see how, while the test error does not vary much, the gap between training and
test errors reduces as we decrease the rank. As we can see, while being the most flexible, Tucker does not
perform as well at higher compression ratios. In those extreme cases, CP and Tensor-Train lead to lower
errors.

(a) Train VS Test error over time for a TOP with a
CP factorization).

(b) Train VS Test error over time for a TOP with a
TT factorization.

Figure 10: Train/test curve for a TOP-CP (10(a)) and TOP-TT (10(b))

4.4.4 Tensor-Train and TOP

Our approach is independent of the choice of tensor decomposition. We already showed how Tucker is most
flexible and works well across all ranks. We also showed that while memory demanding for high rank, a CP
decomposition leads to better performance and low rank. Our method can also be used in conjunction with
other decompositions, such as tensor-train. To illustrate this, we show the convergence behavior of TNO
with a Tensor-Train decomposition for a compression ratio of 178, figure 10(b).

We also compare in Table 4.4.4 our TFNO with different tensor decompositions.
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Table 6: Relative L2 test error of our MG-TFNO approach for different tensor decompositions.
We empirically found that Tucker works best for small compression ratio, CP excels at large compression ratio
(≈ 100×) but becomes computationally heavy for smaller ones. TT tends to be unstable at low-compression
ratios but preserves a good performance for extreme compression ratio (> 500×).

Method L2 test error # Params Model CR

FNO Li et al. (2021b) 1.12% 67 M 0×
TFNO [Tucker] 0.37% 28 M 2.3×
TFNO [CP] 0.46% 808 K 83×
TFNO [TT] 1.18% 117 K 574×

Table 7: Ablation comparing the performance on the relative L2 test error of our MG-TFNO ap-
proach, compared with its parts TFNO and MG-FNO and the regular FNO, on Navier-Stokes.
CR stands for compression ratio. Tensorization and multi-grid domain decomposition both individually im-
prove performance while enabling space savings. The two techniques combined lead to further improvements,
enabling large compression for both input and parameter, while outperforming regular FNO.

Method L2 test error # Params Model CR Domain CR

FNO (Li et al., 2021b) 2.54% 58 M 0× 0×
TFNO [Tucker] 1.39% 41 M 1.5× 0×
TFNO [CP] 2.24% 130 K 482× 0×
MG-FNO 1.43% 58 M 0× 1.4×
MG-TFNO [Tucker] 0.85% 5.5 M 10× 1.78×
MG-TFNO [Tucker] 1.89% 5.5 M 10× 7×

4.4.5 Decomposing domain and weights: MG-TFNO.

Tensorization and multi-grid domain decomposition not only improve performance individually but their
advantages compound and lead to a strictly better algorithm that scales well to higher-resolution data by
decreasing the number of parameters in the model as well as the size of the inputs thereby improving
performance as well as memory and computational footprint. Table 7 compares FNO with Tensorization
alone, multi-grid domain decomposition alone, and our joint approach combining the two, MG-TFNO. In
all cases, for α, we keep 40 Fourier coefficients for height and 24 for the width and use an operator width of
64. Our results imply that, under full parallelization, the memory footprint of the model’s inference can be
reduced by 7× and the size of its weights by 10× while also improving performance.

Consistently with our other experiments, we find that the tensor compression in the weights acts as a
regularizer and improves performance across the board. Our results imply that, under full parallelization,
the memory footprint of the model’s inference can be reduced by 7× and its weight size by 10× while also
improving performance.

4.4.6 Burgers’ Equation

We test the efficacy of the standard domain decomposition approach by training on two separate Burgers
problems: one with a final time T = 0.5 and one with T = 1. As described in Section 3.6, we expect that
for T = 1, each region requires more global information thus significantly more padding need to be used in
order to reach the same error. The results of Figure 11 indeed confirm this. The domain compression ratios
needed for the approach to reach the performance of the full-field model are higher, indicating the need for
incorporating global information. These results motivate our multi-grid domain decomposition approach.
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Figure 11: Error on Burgers’ equation with T = 0.5 (left) and T = 1 (right) as a function
of domain compression ratio using standard domain decomposition without our multi-grid
approach. We evaluate the performance of the standard domain decomposition approach. The radius
indicates the size, in physical space, of the padding added to each region.

Model # Params GPU RAM (nvml) Max GPU RAM (PyTorch) Runtime
FNO 69 M 4.465 Gb 3.400 Gb 0.023 s

FFNO 1 M 5.465 Gb 4.493 Gb 0.043 s
UNO 79 M 5.048 Gb 3.341 Gb 0.029 s

TUNO [CP-fac] 344 K 4.952 Gb 3.347 Gb 0.026 s
TUNO [TUCKER-fac] 4 M 4.957 Gb 3.376 Gb 0.022 s
TUNO [TUCKER-fac] 836 K 4.860 Gb 3.234 Gb 0.023 s

TFNO [CP-fac] 167 K 4.476 Gb 3.416 Gb 0.019 s
TFNO [CP-fac] 282 K 4.776 Gb 3.678 Gb 0.025 s
TFNO [CP-fac] 514 K 5.289 Gb 4.209 Gb 0.031 s
TFNO [CP-rec] 514 K 6.840 Gb 5.792 Gb 0.025 s
TFNO [TT-fac] 1 M 4.604 Gb 3.473 Gb 0.022 s
TFNO [TT-rec] 1 M 5.254 Gb 4.169 Gb 0.031 s

TFNO [TUCKER-fac] 4 M 4.600 Gb 3.472 Gb 0.022 s
TFNO [TUCKER-fac] 724 K 4.355 Gb 3.297 Gb 0.020 s

Table 8: Training, Network width of 64

4.5 Computational efficiency

In this section, we perform ablation studies to explore the impact of our proposed tensorization on memory
consumption and training and inference times. The tensorized formulation enables an efficient implementa-
tion obtained by directly contracting the activations with the factors of the decomposition, allowing us to
further scale the size of the models we can fit in the memory. However, this speedup depends heavily on the
hardware and parameters. Going forward, we plan to further improve computational efficiency and memory
savings.

To experimentally measure the gains, we created an FNO keeping all the modes, and we benchmarked two
network widths, 64 (Tables 4.5 and 4.5) and 128 (Tables 4.5 and 4.5), for a batch size of 16.

In both cases, we measured the memory usage of both a regular FNO and our proposed Tucker TFNO, on
a single RTX 3080 GPU, for a single forward pass (inference) and forward-backward pass (training), using
[1] pynvml (pynvml.nvmlDeviceGetMemoryInfo ) and [2] PyTorch (torch.cuda.max_memory_allocated ).
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Model # Params GPU RAM (nvml) Max GPU RAM (PyTorch) Runtime
FNO 69 M 1.967 Gb 0.832 Gb 0.019 s

FFNO 1 M 1.522 Gb 0.653 Gb 0.041 s
UNO 79 M 2.133 Gb 1.188 Gb 0.021 s

TUNO [CP-fac] 344 K 1.840 Gb 0.896 Gb 0.021 s
TUNO [TUCKER-fac] 4 M 1.840 Gb 0.910 Gb 0.020 s
TUNO [TUCKER-fac] 836 K 1.784 Gb 0.898 Gb 0.020 s

TFNO [CP-fac] 167 K 1.709 Gb 0.575 Gb 0.017 s
TFNO [CP-fac] 282 K 1.709 Gb 0.575 Gb 0.018 s
TFNO [CP-fac] 514 K 1.709 Gb 0.576 Gb 0.021 s
TFNO [CP-rec] 514 K 1.725 Gb 0.790 Gb 0.027 s
TFNO [TT-fac] 1 M 1.713 Gb 0.579 Gb 0.017 s
TFNO [TT-rec] 1 M 1.528 Gb 0.580 Gb 0.021 s

TFNO [TUCKER-fac] 4 M 1.709 Gb 0.588 Gb 0.017 s
TFNO [TUCKER-fac] 724 K 1.711 Gb 0.577 Gb 0.016 s

Table 9: Inference, Network width of 64

Model # Params GPU RAM (nvml) Max GPU RAM (PyTorch) Runtime
FNO 277 M 2.752 Gb 1.926 Gb 0.039 s

FFNO 5 M 2.358 Gb 1.294 Gb 0.080 s
UNO 96 M 2.198 Gb 1.252 Gb 0.023 s

TUNO [CP-fac] 381 K 1.717 Gb 0.896 Gb 0.022 s
TUNO [TUCKER-fac] 5 M 1.860 Gb 0.913 Gb 0.021 s
TUNO [TUCKER-fac] 1 M 1.719 Gb 0.898 Gb 0.022 s

TFNO [CP-fac] 314 K 1.967 Gb 0.896 Gb 0.028 s
TFNO [CP-fac] 496 K 1.844 Gb 0.897 Gb 0.029 s
TFNO [CP-fac] 858 K 1.911 Gb 0.898 Gb 0.033 s
TFNO [CP-rec] 858 K 2.885 Gb 1.566 Gb 0.062 s
TFNO [TT-fac] 2 M 1.914 Gb 0.902 Gb 0.030 s
TFNO [TT-rec] 2 M 2.366 Gb 1.102 Gb 0.046 s

TFNO [TUCKER-fac] 14 M 2.022 Gb 0.950 Gb 0.028 s
TFNO [TUCKER-fac] 3 M 1.967 Gb 0.905 Gb 0.026 s

Table 10: Inference, Network width of 128
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Model # Params GPU RAM (nvml) Max GPU RAM (PyTorch) Runtime
FNO 277 M 6.362 Gb 5.435 Gb 0.038 s

FFNO 5 M 9.805 Gb 8.698 Gb 0.082 s
UNO 96 M 5.054 Gb 3.562 Gb 0.026 s

TUNO [CP-fac] 381 K 4.966 Gb 3.504 Gb 0.023 s
TUNO [TUCKER-fac] 5 M 5.095 Gb 3.600 Gb 0.022 s
TUNO [TUCKER-fac] 1 M 4.950 Gb 3.480 Gb 0.022 s

TFNO [CP-fac] 314 K 6.033 Gb 4.678 Gb 0.029 s
TFNO [CP-fac] 496 K 6.485 Gb 4.939 Gb 0.032 s
TFNO [CP-fac] 858 K 6.755 Gb 5.477 Gb 0.038 s
TFNO [CP-rec] 858 K 11.852 Gb 10.721 Gb 0.059 s
TFNO [TT-fac] 2 M 6.513 Gb 4.994 Gb 0.031 s
TFNO [TT-rec] 2 M 9.476 Gb 8.503 Gb 0.044 s

TFNO [TUCKER-fac] 14 M 6.889 Gb 5.480 Gb 0.031 s
TFNO [TUCKER-fac] 3 M 6.157 Gb 4.858 Gb 0.030 s

Table 11: Training, Network width of 128

4.6 Super-evaluation

In this section, we show some examples of input forcing functions, the corresponding ground-truth target
function and the function predicted by our proposed MG-TFNO.

In particular, we visualize the predictions from our proposed method for two different settings: in both cases
we train the model on a fixed size of 128 × 128 input functions but we either test with i) the same resolution
or ii) with a new, much higher resolution, unseen during training (zero-shot super-evaluation).

Training and evaluating on the same resolution: In this setting, we train our proposed method on
the full training set of functions discretized at resolution 128 × 128 and test on new unseen samples at the
same resolution, Figure. 4.6.

Our model correctly learns the target function.

Zero-shot super-evaluation: In this setting, we take the same model as above, trained on the full training
set of functions discretized at resolution 128 × 128.

However, this time, we give our model as input new unseen samples at new, unseen resolution of 1024×1024,
much higher than the training one, Figure. 4.6. The model is able to use high-frequency information in the
new resolution and produce results as good as in the training resolution.

A natural question is whether there is an advantage compared to just downscaling the input, feeding it at
the training resolution to the model and reupsampling it. In other words, is the model able to leverage
high-frequency information it has not seen during training.

To answer this question, we generated 1000 samples of the Navier-Stokes equation, in the same setting as
previously introduced, but with resolution 1024 × 1024. We trained our proposed TFNO on the full training
set of samples at resolution 128 × 128. We then evaluated the model on the high resolution, unseen, test
samples of resolution 1024 × 1024 in two settings:

1. [upscaling] In that case, we downscale the input to the training resolution (128 × 128), predict
the solution which we then re-upsample to the target high-resolution (1024 × 1024) for evaluation.
In that case, we get a relative l2 error of 4.5%. As expected, the model is not able to leverage
high-frequency information since that is lost when downsampling.

2. [zero-shot super-evaluation] In that case, we leverage the fact that our proposed method is a
neural operator Li et al. (2021b) and therefore can take as input functions at any regular discriti-
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Figure 12: Visualization of evaluation of our model with samples from the Navier-Stokes equa-
tion at resolution 128 × 128. We show the input initial conditions (top-row), the corresponding target
ground-truth function (middle-row), and the prediction function from our proposed model (bottom-row).
Our model has learned to correctly predict the target function and can solve the Navier-Stokes equation
with very high accuracy for any initial conditions.

zation. We directly feed it the samples at high-resolution (1024 × 1024) and use the prediction
(funtions on the same discretization and resolution) for evaluation. In that case, we get a relative
l2 error over 10 times better of only 0.4%.

This enables us to empirically verify the ability of our neural operator to leverage high-frequency information
unseen during training.

5 Conclusion

In this work, we introduced i) a novel tensor operator (TFNO) as well as a multi-grid domain decomposition
approach which together form MG-TFNO, ii) an operator model that outperforms the FNO with a fraction of
the parameters and memory complexity requirements, and iii) architectural improvements to the FNO. Our
method scales better, generalizes better, and requires fewer training samples to reach the same performance;
while the multi-grid domain decomposition enables parallelism over large input sizes. This is a promising
direction for applications on high-resolution data.
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