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ABSTRACT

Hidden confounding remains a central challenge in estimating treatment effects
from observational data, as unobserved variables can lead to biased causal esti-
mates. While recent work has explored the use of large language models (LLMs)
for causal inference, most approaches still rely on the unconfoundedness assump-
tion. In this paper, we make the first attempt to mitigate hidden confounding
using LLMs. We propose ProCI (Progressive Confounder Imputation), a frame-
work that elicits the world knowledge of LLMs to iteratively generate, impute, and
validate hidden confounders. ProCI leverages two key capabilities of LLMs: their
strong semantic reasoning ability, which enables the discovery of plausible con-
founders from both structured and unstructured inputs, and their embedded world
knowledge, which supports counterfactual reasoning under latent confounding.
To improve robustness, ProCI adopts a distributional reasoning strategy instead of
direct value imputation to prevent the collapsed outputs. Extensive experiments
demonstrate that ProCI uncovers meaningful confounders and significantly im-
proves treatment effect estimation across various datasets and LLMs.

1 INTRODUCTION

Estimating treatment effects from observational data is a central problem in causal inference,
with widespread applications in healthcare (Prosperi et al., 2020; Grootendorst, 2007), social sci-
ences (Gangl, 2010), and economics (Varian, 2016; Sun et al., 2024). Different from Randomized
Controlled Trials (RCTs), the non-random treatment assignments between treatment and control
groups in observational studies can lead to imbalanced confounders between groups, which has
been recognized as a key contributor to non-causal associations (Pearl, 2009). The bias caused by
imbalanced confounders is referred to as confounding bias (Shalit et al., 2017; Wang et al., 2023).

To estimate treatment effects in an unbiased manner from observational data, recent advances have
focused on representation-based methods that aim to balance latent distributions between treatment
and control groups (Shalit et al., 2017; Wang et al., 2023; Assaad et al., 2021; Yao et al., 2018).
More recently, with the emergence of large language models (LLMs) demonstrating remarkable
capabilities in reasoning and knowledge understanding, a plenty of work has begun to explore their
potential in treatment effect estimation (Ma, 2024; Hüyük et al., 2024; Jin et al., 2023; Han et al.,
2024; Imai & Nakamura, 2024). For example, Jin et al. (2023) prompts LLMs using chain-of-
thought reasoning to generate natural language rationales that support causal conclusions, while Imai
& Nakamura (2024) leverages LLMs to encode high-dimensional text treatments for treatment effect
estimation while mitigating confounding.

However, existing methods including those based on LLMs, mostly rely on the unconfoundedness
assumption (Pearl, 2009), which posits that all confounders affecting both treatment and outcome are
observed. This assumption is often unrealistic in real-world settings, where important factors may
be unobserved or entirely unrecorded (Ananth & Schisterman, 2018). For example, in healthcare,
treatment decisions may be influenced not only by observed clinical features such as age, but also by
unobserved factors like socioeconomic status, which can act as confounders if omitted. To address
hidden confounding issue, prior work has explored three main directions. Sensitivity analysis aims
to quantify the impact of hidden confounding by deriving bounds on treatment effects (Robins et al.,
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2000; Rosenbaum & Rubin, 1983), but typically relies on fixed and untestable assumptions about the
confounding mechanism (Franks et al., 2018; Veitch & Zaveri, 2020). Auxiliary variable methods,
including instrumental variables and front-door adjustment, use external information or intermediate
pathways to recover unbiased estimates (Li et al., 2023; Fulcher et al., 2017; Shah et al., 2023), but
depend on strong structural assumptions that are rarely verifiable (Imbens, 2014; Wu et al., 2022;
Bellemare et al., 2024). RCT integration methods combine randomized and observational data to
correct for hidden confounding bias (Kallus et al., 2018; Hatt et al., 2022; Wu & Yang, 2022), but
the high cost and limited availability of RCTs often restrict their practical utility.

To fill this gap, we make the first attempt to leverage LLMs to mitigate hidden confounding
in treatment effect estimation. Compared to traditional methods, LLMs offers two key advan-
tages. First, LLMs possess strong semantic reasoning capabilities that allow them to interpret both
structured covariates and unstructured textual descriptions, enabling the discovery of plausible con-
founders that are not explicitly recorded in the data. Second, LLMs embed extensive world knowl-
edge learned from large-scale corpora, which implicitly captures a wide range of latent confounders,
allowing them to support counterfactual reasoning even under hidden confounding.

To elicit these capabilities in practice, we propose ProCI (Progressive Confounder Imputation), a
novel framework that leverages LLMs to iteratively uncover and adjust for hidden confounders.
ProCI alternates between two phases: (1) confounder imputation, where the LLM is encouraged
to generate a plausible missing confounder based on the semantics of the observed variables, and
to impute its concrete values; and (2) unconfoundedness validation, which builds on the LLM’s
counterfactual reasoning ability—by prompting the LLM to impute missing potential outcomes,
we empirically test whether the generated confounders restore conditional independence between
treatment and outcomes. Rather than directly predicting values, which we find empirically leads
to collapsed or inconsistent outputs, ProCI adopts a distributional reasoning strategy: it first elicits
from the LLM the most plausible distribution type based on its world knowledge, and then infers dis-
tribution parameters to generate diverse, realistic samples. This progressive process continues until
the generated confounders pass the independence test, indicating that key sources of hidden con-
founding have been mitigated. By incorporating LLMs into the treatment effect estimation pipeline,
ProCI provides a flexible and scalable solution for mitigating hidden confounding in observational
studies. Our contributions can be summarized as follows:

• To the best of our knowledge, this is the first work that leverages LLMs to mitigate hidden con-
founding in treatment effect estimation. This is enabled by eliciting both the semantic signals in
observational data and the implicit confounding knowledge embedded in LLMs.

• We propose ProCI, a progressive framework that elicits LLMs to generate and impute plausible
confounders by jointly leveraging textual descriptions and structured covariates. The sufficiency of
the generated confounders is validated through LLM-based counterfactual prediction and an empir-
ical test of conditional independence.

• Extensive experiments across diverse datasets and multiple LLM architectures demonstrate the
effectiveness and generality of our approach, showing improved performance in uncovering hidden
confounders and estimating treatment effects.

2 PRELIMINARIES

2.1 PROBLEM SETUP

We consider the standard setup in binary treatment effect estimation1. Let T ∈ {0, 1} denote a
binary treatment assignment, where T = 1 indicates receiving the treatment and T = 0 denotes
the control group. Let Y ∈ R be the observed outcome, and X ∈ X be the observed covariates.
The observational dataset consists of i.i.d. samples {(xi, ti, yi)}ni=1 ∼ D. Under the potential
outcomes framework (Rubin, 2005), each unit is associated with two potential outcomes: Y 1 and
Y 0, representing the outcomes the unit would receive under treatment and control, respectively. In
practice, only one factual outcome Y is observed for each unit, depending on the assigned treatment.

1While we focus on the binary treatment setting for clarity, the proposed method of this paper can be directly
extended to other scenarios, such as multi-valued or continuous treatments.
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The individual-level treatment effect is defined as:

τ(x) = E[Y 1 − Y 0 | X = x], (1)

which is commonly referred to as the Conditional Average Treatment Effect (CATE) (Abrevaya
et al., 2015). It quantifies the expected difference in potential outcomes for a given covariate profile
x, and serves as the primary estimand of interest in individual-level treatment effect estimation.

2.2 IDENTIFIABILITY

CATE estimation from observed data requires several identifiability assumptions (Pearl, 2009), in-
cluding consistency, positivity, SUTVA, and unconfoundedness. A detailed introduction to these
assumptions can be found in Appendix B. This paper focuses on the unconfoundedness assumption,
which we formally define as follows:
Assumption 1 (Unconfoundedness). The treatment assignment is independent of the potential out-
comes, conditional on the observed covariates, i.e., (Y 1, Y 0) ⊥⊥ T | X.

When these assumptions hold, the CATE function in Eq. (1) becomes identifiable as follows:

τ(x) = E[Y | T = 1, X = x]− E[Y | T = 0, X = x], (2)

which can be directly estimated from a finite observational dataset D by learning an estimator τ̂(x),
e.g., using CFRNet or TARNet (Shalit et al., 2017), that approximates the true CATE function τ(x).

Hidden Confounding Challenge. However, in practice, the assumption of unconfoundedness can
be easily violated due to limited context (Jesson et al., 2021), where observed covariates X do not
capture all relevant confounders that jointly affect treatment and outcome. In particular, treatment
assignment may depend on hidden variables U that also influence the outcome Y . In such cases, the
conditional independence assumption (Y 1, Y 0) ⊥⊥ T | X is no longer valid, and is instead replaced
by (Y 1, Y 0) ⊥̸⊥ T | X , but possibly (Y 1, Y 0) ⊥⊥ T | (X,U) if U were additionally observed.
This hidden confounding results in a systematic estimation bias: the learned estimator τ̂(x), which
assumes unconfoundedness given X , is biased with respect to the true CATE τ(x).

3 THE PROPOSED PROCI FRAMEWORK

3.1 MOTIVATION

Although a range of methods have been proposed to mitigate hidden confounding issue, includ-
ing auxiliary variables, sensitivity analysis, and data from RCTs, as described in Section 1, these
approaches either rely on untestable assumptions or are prohibitively expensive to apply in prac-
tice (Ananth & Schisterman, 2018). Motivated by these, we propose a new paradigm for addressing
hidden confounding through LLMs. Leveraging their unique capabilities, this paper makes the first
attempt to directly mitigate hidden confounding using LLMs, based on two key advantages:

• Advantage 1: Semantic Utilization Beyond Tabular Data. Traditional methods typically rely
on structured tabular data and predefined variable sets, making it difficult to discover missing con-
founders that are not explicitly recorded. In contrast, as shown in Figure 1 (A1-1) and (A1-2),
LLMs can generate meaningful confounder candidates by interpreting the semantic relationships
among treatment, outcome, and observed covariates. This demonstrates the LLM’s ability to reason
about plausible latent variables using domain-level priors encoded in language. Subsequently, by
leveraging the existing tabular data, the LLM can perform unit-level confounder imputation based
on its contextual inference capabilities to complete missing data.

• Advantage 2: Implicit Confounding Awareness via World Knowledge. Beyond explicit con-
founder generation, LLMs inherently encode rich world knowledge that implicitly captures causal
dependencies and latent confounding factors. As illustrated in Figure 1 (A2), this embedded knowl-
edge allows LLMs to approximate the influence of hidden variables and thus support counterfactual
reasoning without requiring direct access to all confounders. Such implicit awareness makes LLMs
particularly suited for scenarios where collecting complete causal information is impractical, offer-
ing a scalable alternative to traditional approaches. This advantage becomes increasingly valuable
as the complexity and dimensionality of real-world data continue to grow.

3
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T Y(Cure) X!(Age) X((MRI) U(Econ)

Variable Generation Value Imputation

(A1-1) Generating Confounder with LLM

Query: Given treatment T(Surgery), outcome Y(Cure), and confounders
X₁(Age), X!(MRI), generate one different confounder based on your
world knowledge.
Answer:
Confounder Name: Economic status (Econ)
Explanation: Patients with higher Econ may have better access to timely
surgical treatment and postoperative care, increasing their recovery
outcomes. Conversely, low-income individuals may face barriers to
surgery and worse recovery due to environmental or resource limitations.

Query: Given the new confounder Econ, determine its data type and
then impute the values based on X"(Age) = 21,65, … , 46 , X!(MRI) =
29.5,17.6, … , 7.8 , T(Surgery) = [0,1, … , 1] and Y(Cure) = [0,1, … , 0].

Answer:
Confounder Type: Binary (1 = high income, 0 = low income)
Values: U = [0,1,…,0]
Explanation: Econ is inferred from MRI, Surg, and Cure. Timely
surgery and good recovery despite severe MRI suggest high income;
lack of treatment or poor outcome suggests low income.

(Surg)

0
1

1

0
1

0

21
65

46

29.5
17.6

7.8

… … ……

0
1

0

…

Variable Generation

Value Imputation

(A2) Causal Graph with LLM

(A1-2) Exemplar Queries and Answers

T Y

X U! U( …

World Knowledge
CATE Estimator

Figure 1: Motivating Illustration. (A1-1) The LLM takes structured data to generate a missing
confounder and impute its individual-level values for CATE estimation. (A1-2) Exemplar queries
and responses show how LLMs leverage semantic and world knowledge in variable generation and
value imputation. (A2) From a causal perspective, LLMs embed latent confounders within their
world knowledge, enabling counterfactual reasoning without requiring explicit access to them.

3.2 OVERVIEW OF THE PROCI FRAMEWORK

To elicit the above capabilities of LLMs for practical use, we propose ProCI, a framework for mit-
igating hidden confounding in observational data. As illustrated in Figure 2, ProCI consists of two
iterative phases: confounder imputation and unconfoundedness validation.

Phase 1: Confounder Imputation. Given the observed dataset {X(0), T, Y }, where X(0) contains
covariates, ProCI guides the LLM to generate a plausible confounder Û based on the semantic
relationships among X(k), T , and Y , along with a textual explanation. It then imputes unit-level
values for Û by determining its distribution type and parameters via LLM-guided reasoning. The
imputed confounder is added to the dataset to form X(k+1), where k denotes the iteration step.

Phase 2: Unconfoundedness Validation. To assess whether the generated confounder Û captures
sufficient hidden bias, ProCI performs an imputation-based empirical unconfoundedness test. Using
the LLM’s world knowledge, ProCI first imputes counterfactual outcomes Ŷ 0 and Ŷ 1, and then
applies a kernel-based conditional independence test (KCIT) to check if (Ŷ 0, Ŷ 1) ⊥⊥ T | X(k+1).
If the test fails, ProCI returns to Phase 1 to generate an additional confounder; if it passes, the
framework proceeds to CATE estimation using a standard estimator like TARNet.

By progressively generating and validating confounders, ProCI adaptively constructs a sufficient
adjustment set without needing access to ground-truth confounders, enabling more reliable treatment
effect estimation in the presence of hidden bias.

3.3 CONFOUNDER IMPUTATION VIA LLMS

In this section, we propose to prompt LLMs to generate hidden confounders that are semantically
grounded and causally relevant. Imputing a confounder involves two key steps: (1) generating a vari-
able with a meaningful textual description, and (2) imputing its concrete values for each individual
in the dataset. We describe these steps in detail below.

Variable Generation. Given a dataset Dobs consisting of observed variables {X,T, Y }, where X
denotes covariates, T the treatment, and Y the outcome, we first design a prompt function Pvar to
convert the textual descriptions of these variables into a natural language query. We then use this

4
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Figure 2: Overview of the ProCI framework. ProCI alternates between two phases: (1) Confounder
Imputation, where the LLM generates a new confounder and imputes its instance-level values based
on current variables. (2) Unconfoundedness Validation, where counterfactual outcomes are im-
puted and a KCIT is applied to assess whether unconfoundedness holds. The process repeats until
the test passes, after which any standard estimator can be used for final CATE estimation.

prompt to query the LLM for a candidate confounder variable Û that is semantically associated with
both T and Y , while being orthogonal to X:

Û , Ûexp = LLM(Pvar(X,T, Y )), (3)

where Û is the name or description of the generated confounder, and Ûexp is the accompanying
natural language explanation provided by the LLM. This explanation enhances the interpretability
of the generation process and can serve as supporting evidence for the semantic plausibility of Û .

Value Imputation. After generating the confounder variable Û , we next impute its values for each
individual to obtain an augmented dataset D̂obs = {xi, ti, yi, ûi}Ni=1. Direct value imputation, i.e.,
prompting the LLM to generate ûi for each individual via a single-pass query, tends to produce
collapsed outputs where many individuals receive similar or identical values. To address this issue,
we decompose value imputation into distribution identification and parameter inference as below.

Distribution Identification. Intuitively, by leveraging its embedded commonsense and world knowl-
edge, the LLM can reliably identify the distribution type of a variable, for example, inferring that
height follows a normal distribution, while birth month is approximately uniform in a community.
Therefore, for the generated variable Û , we can confidently ask the LLM to identify a reasonable
distribution type F ∈ F = {Fz}Zz=1:

F ∼ LLM(Pdist(X,T, Y, Û))
∣∣ F ∈ F. (4)

In practice, the candidate distribution types F include, but are not limited to, Gaussian, Bernoulli,
and categorical distributions.

Parameter Inference. Once the distribution family F is selected, we request the LLM to infer
individual-specific distribution parameters θi based on each individual’s observed features. For
example, θi = (µi, σi) if F is a normal distribution. We then sample the imputed value ûi from the
corresponding personalized distribution:

θi = LLM(Pparam(xi, ti, yi)), ûi ∼ F(θi). (5)

3.4 IMPUTATION-BASED UNCONFOUNDEDNESS VALIDATION

While LLMs can help to impute the confounder, it is still challenging to test the validity of the
generated confounder. Intuitively, a crucial criterion is the unconfoundedness assumption (Assump-
tion 1). However, in observational data, we can only observe one of two potential outcomes for each
individual, making empirical testing of the unconfoundedness assumption seemingly infeasible.
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To bridge this gap, we use LLMs to empirically impute the missing outcomes Y 0 and Y 1 as follows:
ŷ1−ti
i = LLM(Pout(xi, ui, ti, yi)). (6)

Then, we construct the variables Ŷ 0 and Ŷ 1, where for each individual i:
ŷ0i = (1− ti) · yi + ti · ŷ1−ti

i , ŷ1i = ti · yi + (1− ti) · ŷ1−ti
i . (7)

Rationality Analysis. Since LLMs embed extensive world knowledge that potentially covers all
relevant hidden confounders, they can be viewed as approximately unbiased counterfactual estima-
tors under the unconfoundedness assumption. That is, when conditioned on the full context acces-
sible to the LLM—including both structured and unstructured information—the potential outcomes
become independent of the treatment. Formally, we posit that the LLM implicitly conditions on a
latent variable U∗ such that (Y 0, Y 1) ⊥⊥ T | X,U∗, where U∗ denotes a sufficient set of hidden
confounders encoded in the LLM’s prior knowledge.

After obtaining the imputed outcomes Ŷ 0 and Ŷ 1, we can statistically test the unconfoundedness
assumption using a non-parametric independence test. Specifically, we adopt the Kernel-based
Conditional Independence Test (KCIT), which is well-suited for high-dimensional conditioning
sets (Pogodin et al., 2024). KCIT evaluates whether the treatment T is conditionally independent of
the imputed outcomes (Ŷ 0, Ŷ 1) given the observed and generated confounders X and Û :

I
(
KCIT

(
(Ŷ 0, Ŷ 1), T | X, Û

)
> α

)
= 1, (8)

where KCIT(·) returns a p-value, and α is a pre-defined significance level. The indicator function
I(·) outputs 1 if the null hypothesis of conditional independence is not rejected, and 0 otherwise.

Based on the following theorem, we establishe the asymptotic validity of using imputed counterfac-
tual outcomes and LLM-generated confounders in conditional independence testing.
Theorem 1. Under standard regularity conditions on the kernel function and the class of imputation
distributions, the KCIT applied to imputed variables satisfies:

KCIT
(
(Ŷ 0, Ŷ 1), T | X, Û

)
= KCIT

(
(Y 0, Y 1), T | X,U

)
+ op(1),

where op(1) denotes a term that converges to zero in probability as the sample size increases. Please
kindly refer to Appendix C for a detailed proof of this theorem.

3.5 PROGRESSIVE CONFOUNDER IMPUTATION PROCEDURE

Up to now, we have discussed imputing a single confounder and testing its validity. However, in
real-world scenarios, hidden confounding often arises from multiple factors, such as demographic
and socioeconomic in healthcare (Prosperi et al., 2020; Grootendorst, 2007), many of which are
difficult to observe. A naive approach of generating multiple confounders simultaneously may lead
to redundancy or semantic overlap. To address this, we propose the complete ProCI framework,
which incrementally generates confounders step by step, ensuring both diversity and sufficiency.

Formally, let X(0) = X denote the initial observed covariates. At each iteration k, we query the
LLM using the current context (X(k−1), T, Y ) to produce a new confounder Û and update X as:

Û , Ûexp = LLM(Pvar(X
(k−1), T, Y )), X(k) = [X(k−1), Û ]. (9)

After each generation step, we apply the empirical unconfoundedness test described in Eq. (14) to
assess whether the updated set X(k) sufficiently captures all relevant confounding information. The
process terminates at the smallest iteration k such that X(k) passes the test:

min
{
k
∣∣∣KCIT((Ŷ 0, Ŷ 1), T | X(k)

)
> α

}
. (10)

4 EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness of the ProCI framework, guided
by the following research questions: [RQ1] Can imputed confounders from different LLMs improve
treatment effect estimation? [RQ2] Do the imputed confounders capture additional confounding
information beyond observed covariates? [RQ3] Is ProCI robust to varying levels of hidden con-
founding? [RQ4] What is the contribution of each ProCI component?

6
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Table 1: Overall comparison of treatment effect estimation performance on the Jobs and Twins
datasets. For each base model, the best results across methods are highlighted.

Datasets Jobs Twins

Test Types In-sample Out-sample In-sample Out-sample

Methods ϵATT Rpol ϵATT Rpol ϵATE ϵPEHE ϵATE ϵPEHE

S-Learner 0.0491±0.0011 0.2289±0.0008 0.0876±0.0018 0.1678±0.0002 0.0131±0.0020 0.2527±0.0012 0.0037±0.0024 0.2819±0.0001

+ProCI-4o 0.0793±0.0043 0.2288±0.0001 0.0833±0.0001 0.1667±0.0014 0.0057±0.0000 0.2524±0.0001 0.0077±0.0000 0.2867±0.0003

+ProCI-R1 0.0216±0.0002 0.2324±0.0000 0.0712±0.0001 0.1745±0.0002 0.0066±0.0008 0.2596±0.0001 0.0028±0.0009 0.2817±0.0004

PSM 0.6197±0.0000 0.2707±0.0000 0.1259±0.0015 0.2192±0.0013 0.0457±0.0006 0.3399±0.0007 0.0840±0.0000 0.4027±0.0001

+ProCI-4o 0.6149±0.0001 0.2691±0.0017 0.1125±0.0032 0.2219±0.0002 0.0454±0.0051 0.3396±0.0004 0.0825±0.0021 0.4002±0.0011

+ProCI-R1 0.6245±0.0000 0.2633±0.0000 0.1292±0.0041 0.2163±0.0131 0.0454±0.0040 0.3399±0.0027 0.0849±0.0009 0.4033±0.0125

TARNet 0.0191±0.0002 0.2177±0.0001 0.1466±0.0026 0.2201±0.0002 0.0233±0.0044 0.2917±0.0001 0.0310±0.0005 0.3237±0.0001

+ProCI-4o 0.0424±0.0023 0.2167±0.0022 0.3223±0.0098 0.2150±0.0202 0.0144±0.0218 0.2729±0.0017 0.0185±0.0001 0.3107±0.0206

+ProCI-R1 0.0131±0.0001 0.2266±0.0000 0.0656±0.0024 0.2111±0.0004 0.0159±0.0001 0.2844±0.0009 0.0243±0.0001 0.3172±0.0001

CFR-Wass 0.0355±0.0006 0.2150±0.0001 0.1487±0.0028 0.2191±0.0004 0.0189±0.0000 0.2818±0.0000 0.0186±0.0002 0.3138±0.0000

+ProCI-4o 0.0300±0.0009 0.2085±0.0001 0.0402±0.0003 0.2151±0.0005 0.0094±0.0001 0.2729±0.0001 0.0178±0.0001 0.3110±0.0001

+ProCI-R1 0.0303±0.0010 0.2264±0.0042 0.1141±0.0067 0.2088±0.0004 0.0215±0.0002 0.2796±0.0061 0.0282±0.0003 0.3119±0.0032

ESCFR 0.0543±0.0012 0.2184±0.0001 0.2245±0.0390 0.2274±0.0002 0.0199±0.0001 0.2715±0.0001 0.0207±0.0003 0.3059±0.0007

+ProCI-4o 0.0369±0.0004 0.2174±0.0001 0.3225±0.0622 0.1891±0.0002 0.0191±0.0001 0.2700±0.0032 0.0297±0.0029 0.3045±0.0001

+ProCI-R1 0.0130±0.0001 0.2219±0.0000 0.1294±0.0072 0.2101±0.0008 0.0087±0.0001 0.2684±0.0002 0.0132±0.0001 0.3038±0.0000

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate on two commonly-used causal benchmarks: Twins (Almond et al., 2005)
and Jobs (LaLonde, 1986). Twins contains 8,244 twin pairs from U.S. birth records, with treatment
indicating the heavier twin and outcome measuring one-year mortality. The dataset includes 50
demographic and birth-related covariates. Selection bias is introduced following (Louizos et al.,
2017). Jobs studies the effect of a job training program on employment status. It includes 297
treated individuals, 425 randomized controls, and 2,490 observational controls, with 7 covariates
describing demographic and economic features.

Base Models. ProCI augments observed data with confounders and thus is model-agnostic. We
evaluate it with: (i) meta-learners (S-Learner (Künzel et al., 2019)); (ii) matching-based methods
(PSM (Caliendo & Kopeinig, 2008)); and (iii) representation learning models (TARNet, CFR-
Wass (Shalit et al., 2017), and ESCFR (Wang et al., 2023)). For confounder generation, we use two
advanced LLMs: GPT-4o (Hurst et al., 2024) and DeepSeek-R1 (Guo et al., 2025).

Training & Evaluation Protocols. We use grid search for hyperparameter tuning on validation
sets, and adopt consistent settings across shared base models. LLM temperature is fixed at 0.7. All
models are implemented in PyTorch 1.10 and trained with Adam optimizer. For both datasets, we
split the data into training, validation, and test sets (63:27:10 for Twins, 56:24:20 for Jobs). Twins is
evaluated using ϵPEHE and ϵATE (Hill, 2011), while Jobs uses ϵATT and policy risk (Rpol) (Shalit
et al., 2017) for evaluation. Please kindly refer to Appendix D for more experimental details.

4.2 [RQ1] CATE PERFORMANCE WITH IMPUTED CONFOUNDERS

To answer RQ1, we apply our proposed ProCI framework using two LLMs, GPT-4o and DeepSeek-
R1, denoted as ProCI-4o and ProCI-R1 respectively. We evaluate both variants across a diverse set
of base CATE estimators. Each experiment is repeated five times to ensure stability.

Results. As shown in Table 1, we can see: i) ProCI-augmented estimators consistently outper-
form base models in both in-sample and out-of-sample settings, demonstrating the effectiveness of
our imputed confounders. ii) All base model categories benefit from ProCI, with representation-
based methods gaining the most, likely due to improved latent variable balancing. iii) ProCI-R1
generally outperforms ProCI-4o, indicating that DeepSeek-R1’s stronger reasoning leads to more
accurate confounder generation and better bias correction. The results from two open-source mod-
els, LLaMA 3-8B and Qwen2.5-7B, are provided in Appendix E.1. Additionally, since the Twins
dataset includes ground-truth potential outcomes, we further evaluate the estimation accuracy of the
potential outcomes using our ProCI framework in Appendix E.3.
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Confounder 1: Access to Childcare

Explanation: Individuals with a criminal record may be less likely to
participate in job training programs due to eligibility restrictions
(treatment). Simultaneously, a criminal record can reduce employment
opportunities due to employer discrimination (outcome). This confounder
is distinct from existing confounders like race or education.

Confounder 2: Criminal Record

Explanation: Individuals without reliable childcare may struggle to attend
training projects regularly or maintain full-time employment, reducing their
chances of program enrollment (treatment) and job placement (outcome).

Explanation: Individuals with strong work histories are more likely to join 
training to improve skills while those with weaker histories may perceive 
limited job prospects after training (treatment), affecting their chances of 
securing employment (outcome).

Confounder 3: Employment History

Figure 3: (Left) CMI measures dependence between LLM-generated confounders and treatmen-
t/outcome, compared to random confounders. (Right) Confounders generated in Jobs demonstrate
their semantic relevance and impact on treatment/outcome.
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Figure 4: Robustness of ProCI in CATE estimation with varying hidden confounder removal.

4.3 [RQ2] CONFOUNDING INFORMATION IN IMPUTED CONFOUNDERS

To answer RQ2, we evaluate whether the confounders imputed by ProCI contain additional infor-
mation beyond observed covariates. We use conditional mutual information (CMI) to measure the
dependency of imputed confounders U with treatment T and outcome Y given observed variables
X , i.e., I(U, T |X) and I(U, Y |X). Higher CMI values indicate more confounding information.

Results. Figure 3 (left) compares imputed confounders from ProCI variants using GPT-4o and
DeepSeek-R1 against random confounders generation baseline. The notably higher CMI values
confirm that ProCI’s confounders carry significant additional information about treatment and out-
come beyond observed covariates. In addition, Figure 3 (right) shows three example confounders
generated by DeepSeek-R1 on Jobs. These confounders have plausible links to treatment and out-
comes and are distinct from observed covariates, highlighting ProCI’s ability to uncover meaningful
latent confounders omitted by traditional data. We also investigate the impact of LLM’s temperature
on confounder generation quality in Appendix E.2.

4.4 [RQ3] ROBUSTNESS OF PROCI TO HIDDEN CONFOUNDING

In this section, we test the robustness of CATE estimators under hidden confounders. Since
hidden confounders are unobservable, we simulate their effects by progressively removing
{0, 1, 2, 3, 4, 5, 6} confounders from the dataset. This allows us to mimic the impact of latent con-
founders in a controlled manner. We experiment on Jobs and select CFR-Wass as base model.

Results. As shown in Figure 4, when the number of removed confounders increases, the perfor-
mance of vanilla CATE estimators, such as CFR-Wass and ESCFR, degrades significantly across all
metrics. This is expected, since these models are vulnerable to hidden confounder bias, leading to
distorted CATE estimations. In contrast, our proposed ProCI framework maintains stable CATE esti-
mation performance despite the progressive removal of confounders from the observed dataset. This
robustness is primarily attributed to ProCI’s progressive confounder generation capability, which in-
troduces novel and informative confounders to effectively counteract the sparsity induced by the
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removal of observed confounders. Furthermore, we also conduct experiments in Appendix E.4 to
reveal the matching degree between the generated confounders and the observed covariates.

4.5 [RQ4] ABLATION STUDIES OF PROCI COMPONENTS

Table 2: Results of ablation studies.

In-sample Out-sample
Methods ϵATT Rpol ϵATT Rpol

w/o DR 0.0327 0.2178 0.1599 0.2229
w/o PI 0.0308 0.2223 0.1020 0.2374
w/o UT 0.0315 0.2218 0.0890 0.2270
ProCI 0.0300 0.2085 0.0402 0.2151

In this experiment, we conduct ablation stud-
ies to evaluate ProCI components. In spe-
cific, we tailor three variants: i) ProCI w/o DR,
which removes distributional reasoning; ii)
ProCI w/o PI, which eliminates the progressive
manner in generating confounders; and iii)
ProCI w/o UT, which omits the unconfounded-
ness test. Experiments are conducted on Jobs
using GPT-4o as the LLM backbone.

Results. Table 2 shows that removing any com-
ponent from ProCI reduces performance. Specifically, removing distributional reasoning (w/o DR)
leads to less robust estimations due to the corrupted values often generated by LLMs. Removing
the progressive imputation process (w/o PI), where all confounders are generated at once, would
inevitably introduces semantic overlap. Finally, omitting the unconfoundedness test (w/o UT) can
include irrelevant confounders, further degrading the performance of ProCI.

5 RELATED WORKS

Treatment Effect Estimation with Hidden Confounding. To mitigate hidden confounding, ex-
isting approaches generally fall into three categories. Sensitivity analysis methods (Rosenbaum &
Rubin, 1983; Robins et al., 2000) assess the potential effect of hidden confounders by deriving
bounds on treatment effect estimates, though they rely on fixed, unverifiable assumptions (Franks
et al., 2018; Veitch & Zaveri, 2020). Auxiliary variable techniques, including instrumental variables
and front-door adjustments (Li et al., 2023; Fulcher et al., 2017; Shah et al., 2023), exploit external
or intermediate variables to achieve unbiased estimates, but these depend on unverifiable structural
assumptions (Imbens, 2014; Wu et al., 2022; Bellemare et al., 2024). Another line of work resorts
to RCT data (Kallus et al., 2018; Hatt et al., 2022; Wu & Yang, 2022) to correct for hidden biases,
but their applicability is often constrained by the high costs of RCT data.

LLMs for treatment effect estimation. LLMs have recently been explored for causal inference
tasks (Liu et al., 2024; Zhao et al., 2024; Chen et al., 2024a; Lin et al., 2024; Wei et al., 2022;
Tan, 2023; Chen et al., 2024b; Lin et al., 2023; Vashishtha et al., 2025), especially in estimating
treatment effects through prompt-based reasoning (Abdali et al., 2023; Jin et al., 2023; Pawlowski
et al., 2023; Dhawan et al., 2024; Imai & Nakamura, 2024). These methods typically focus on ex-
tracting causal structures from text or guiding LLMs to simulate interventional queries via carefully
crafted prompts. For example, recent works use self-consistency (Abdali et al., 2023), tool augmen-
tation (Pawlowski et al., 2023), and chain-of-thought prompting Jin et al. (2023) to improve causal
variable identification and treatment effect estimation. Dhawan et al. (2024) further automates
treatment effect estimation by combining LLM outputs with traditional treatment effect estimators.

6 CONCLUSION

In this work, we make the first attempt to leverage LLMs to mitigate hidden confounding in treat-
ment effect estimation. We propose ProCI, a framework that progressively elicits LLMs to generate,
impute, and validate hidden confounders using both structured and unstructured information. By
incorporating distribution-aware imputation and an empirical unconfoundedness test grounded in
the world knowledge embedded in LLMs, ProCI provides a robust and scalable solution for treat-
ment effect estimation under hidden confounding. Extensive experiments across diverse datasets
and LLMs demonstrate the effectiveness of our approach. Our results show that ProCI significantly
improves treatment effect estimation, offering a novel solution to the challenge of hidden confound-
ing. This work offers a new perspective on using LLMs as knowledge-rich tools for treatment effect
estimation under hidden confounding.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We affirm that this research fully complies with the ICLR Code of Ethics. The study does not
involve human subjects, and all datasets utilized are publicly available, containing no sensitive or
personal information. We have carefully considered the ethical implications of our work, particularly
regarding fairness and the potential risks associated with the misuse of LLMs. Our commitment
remains focused on ensuring that this research makes a positive and responsible contribution to both
the academic community and society.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, the code for implementing the ProCI framework will be provided as sup-
plemental material upon submission. Detailed instructions for running the experiments, along with
the prompts used in the confounder imputation process, are included in Appendix F. Information
regarding the datasets, experimental setup, and data processing steps can be found in Section 4.1
and Appendix D. The theoretical assumptions and proofs are provided in Appendix B and C. These
resources collectively ensure that the methods and results presented can be accurately replicated.
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A ACKNOWLEDGMENT OF LLM USAGE

In the preparation of this manuscript, large language models (LLMs) were solely employed for tasks
related to language refinement, such as fixing typographical errors, improving grammatical accuracy,
and enhancing sentence structure. While LLMs were employed as a component of the technical
framework, they were not central to the core research processes. Specifically, LLMs played no role
in the formulation of research ideas, data analysis, or interpreting the findings. The authors bear full
responsibility for the scientific content presented.

B IN-DEPTH CAUSAL INFERENCE PRELIMINARIES

This section provides additional background on causal inference, which is particularly intended
to assist readers who may be less familiar with the foundational concepts or technical aspects of
treatment effect estimation from observational data.

We begin by introducing key definitions and assumptions underlying causal inference from observa-
tional data. For an individual characterized by covariates x, there are two potential outcomes: Y 1 if
the individual receives treatment and Y 0 if assigned to control. The Conditional Average Treatment
Effect (CATE) captures the expected difference in outcomes between these two scenarios:
Definition 1. The CATE for individuals with covariates x is defined as

τ(x) = E[Y 1 − Y 0 | X = x], (11)

where X denotes the covariate variable, and Y 1, Y 0 are the potential outcomes under treatment
and control, respectively.

Estimating CATE from observational data poses two primary challenges:

1. Missing counterfactuals: For each individual, we only observe the outcome corresponding
to the assigned treatment. The unobserved counterfactual remains inaccessible.

2. Selection bias: Treatment assignment may depend on covariates related to the outcome,
leading to systematic differences between treated and control groups.

To address these challenges, Pearl & Mackenzie (2018) proposed a two-stage framework. The first
stage, identification, aims to express causal quantities, such as τ(x), in terms of observed data using
assumptions and adjustment formulas. Identification is not always guaranteed, and depends on the
following assumptions:
Assumption 2 (Ignorability / Unconfoundedness). The treatment assignment is independent of the
potential outcomes given the covariates, i.e., Y 1, Y 0 ⊥⊥ T | X = x.

Assumption 3 (Positivity). For any value x, both treatment and control must have non-zero proba-
bility, i.e., 0 < P (T = t | X = x) < 1 for all t ∈ {0, 1}.

Assumption 4 (SUTVA). The potential outcomes for any individual are unaffected by others’ treat-
ment assignments, and each treatment corresponds to a single well-defined outcome.

Assumption 5 (Consistency). The observed outcome equals the potential outcome under the treat-
ment actually received.

Once identification is established, the second stage, estimation, transforms the causal estimand into
a statistical estimand that can be computed from the data:

E[Y 1 − Y 0 | X = x] = E[Y 1 | X = x]− E[Y 0 | X = x]

(1)
= E[Y 1 | X = x, T = 1]− E[Y 0 | X = x, T = 0]

(2)
= E[Y | X = x, T = 1]− E[Y | X = x, T = 0],

(12)

where step (1) uses Assumption 2, and step (2) additionally relies on Assumptions 3, 4, and 5.

In practice, numerous approaches have been developed to estimate the last quantity. Classical meth-
ods include matching strategies (Caliendo & Kopeinig, 2008), which pair treated and control units
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with similar covariates, and meta-learners (Künzel et al., 2019), which adapt supervised learning
techniques to causal inference tasks. More recent advances leverage deep learning, notably represen-
tation learning methods (Assaad et al., 2021; Wu et al., 2023), which aim to mitigate selection bias by
learning balanced latent spaces. A prominent example is Counterfactual Regression (CFR) (Shalit
et al., 2017), which introduces regularization terms based on distributional distances—such as the
Wasserstein distance or the maximum mean discrepancy—to align representations between treat-
ment groups.

Despite their success, these approaches heavily rely on the unconfoundedness assumption, which
is often violated in real-world datasets where hidden confounding factors may influence both treat-
ment and outcome. While some recent methods attempt to account for hidden confounding, they
typically depend on strong structural assumptions, additional proxies, or access to experimental
(RCT) data—which may be costly or unavailable in practice.

In this paper, we take a new direction by exploring the potential of large language models (LLMs)
to assist in imputing latent confounders from observational text and tabular data. Specifically, we
propose a framework ProCI that leverages LLMs’ implicit knowledge and generative ability to infer
proxy variables that encode hidden causal information—thus helping to relax the unconfoundedness
assumption and improve the robustness of causal estimates in the presence of hidden confounding.

C PROOF OF THEOREM 1

In Theorem 1, we aim to employ the kernel-based conditional independence test (KCIT) to assess
whether the potential outcomes are conditionally independent of the treatment variable, given both
observed and latent covariates. Specifically, we test whether:

Y = (Y 0, Y 1) ⊥⊥ T | X,U

Hypotheses.

• Null Hypothesis (H0): Y ⊥⊥ T | X,U — the potential outcomes are conditionally inde-
pendent of treatment given covariates.

• Alternative Hypothesis (H1): Y ⊥̸⊥ T | X,U — there exists residual dependence between
treatment and outcomes after conditioning on covariates.

Test Statistic. KCIT estimates the squared Hilbert-Schmidt norm of the partial cross-covariance
operator between Y = (Y 0, Y 1) and T given (X,U). Let n be the sample size. For two random
vectors X,Y ∈ X × Y , define the cross-variance operator as ⟨g,ΣY Xf⟩ = EXY (f(X)g(Y )) −
EXf(X)EY g(Y ) for f ∈ HX and g ∈ HY , the RKHS of X and Y respectively. The cross-variance
operator is estimated via Σ̂Y X = 1

nTr(K̃XK̃Y ), with K̃X = HKXH , H = I − 1
n11

⊤ and the
(i,j)-th entry of KX is k(xi, xj). The KCIT operator is estimated via:

Σ̂Y T |(X,U) = Σ̂Y T − Σ̂Y Z(Σ̂ZZ + γI)−1Σ̂ZT (13)

with Z = (X,U), and γ > 0 is a regularization parameter. Finally, the KCIT test statistics is
constructed by

KCIT(Y , T | (X,U)) =
1

n
Tr(Σ̂Y T |(X,U)). (14)

Lemma 1 (Theorem 1 in (Amini & Razaee, 2021)). Let Xi ∈ LC(µi,Σi, ω), i = 1, . . . , n, be a
collection of independent random vectors from the LC distribution class defined in Amini & Razaee
(2021), and let K = K(X) be the kernel matrix for an L-Lipschitz kernel function k(x1, x2), i.e.
|k(x1, x2)−k(y1, y2)| ≤ L(∥x1− y1∥+∥x2− y2∥). Then, for some universal constant c > 0, with
probability at least 1− exp(−ct2),

∥K − EK∥ ≤ 2Lωσ∞(Cn+
√
nt),

where σ2
∞ := maxi ∥Σi∥ and C = c−1/2.

Lemma 2. Let Ŷi, Ẑi be samples from LC classes LC(µY ,ΣY i, ω) and LC(µZ ,ΣZi, ω) respec-
tively2, such that ∥EK̃Ŷ − K̃Y ∥ = op(1) and ∥EK̃Ẑ − K̃Z∥ = op(1). Then, for Gaussian RBF

2Here Ẑ = (X, Û), where Û is the estimation of latent confounders.
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such that σ → ∞ as n → ∞, we have

∥Σ̂Ŷ T − Σ̂Y T ∥ = op(1)

∥Σ̂Ŷ Ẑ − Σ̂Y Z∥ = op(1)

∥Σ̂ẐT − Σ̂ZT ∥ = op(1)

∥Σ̂ẐẐ − Σ̂ZZ∥ = op(1)

(15)

with the last equation implies ∥Σ̂−1

ẐẐ
− Σ̂−1

ZZ∥ = op(1).

Proof of Lemma 2. From Lemma 1, with probability at least 1− exp(−ct2),
∥KŶ − EKŶ ∥ ≤ 2Lωσ∞(Cn+

√
nt).

Therefore, since L = o(σ−1) = o(1) as n tends to infinity, ∥K̃Ŷ −EK̃Ŷ ∥ ≤ ∥H∥2∥KŶ −EKŶ ∥ =
op(n). From above we have

∥Σ̂Ŷ T − Σ̂Y T ∥ =
1

n
Tr(K̃X(K̃Ŷ − K̃Y ))

≤ 1

n
∥K̃X∥ · ∥K̃Ŷ − K̃Y ∥

≤ 1

n
∥K̃X∥ ·

(
∥K̃Ŷ − EK̃Ŷ ∥+ ∥EK̃Ŷ − K̃Y ∥

)
= op(1),

which proves the first equation in Eq. (15). The second equation comes from the fact that

∥Σ̂Ŷ Ẑ − Σ̂Y Z∥ =
1

n
Tr(K̃Ŷ (K̃Ẑ − K̃Z) + K̃Z(K̃Ŷ − K̃Y ))

≤ 1

n

(
∥K̃Ŷ ∥ · ∥K̃Ẑ − K̃Z∥+ ∥K̃Z∥ · ∥K̃Ŷ − K̃Y ∥

)
= op(1).

with the last equation resulting from ∥K̃Ŷ − K̃Y ∥ = op(n) and ∥K̃Ẑ − K̃Z∥ = op(n). The third
equation in Eq. (15) comes from the same deduction as for the first equation, and the last equation
comes from the same deduction for the second equation.

Finally, the conclusion on the inverse matrix is straightforward observing that

(Σ̂ẐẐ + E)−1 = Σ̂−1

ẐẐ
− Σ̂−1

ẐẐ
EΣ̂−1

ẐẐ
+Op(∥E∥) = Σ̂−1

ZZ + op(1)

with ∥E∥ = op(1).

Theorem 2. Under standard regularity conditions on the kernel function and the class of imputation
distributions, the KCIT applied to imputed variables satisfies:

KCIT
(
(Ŷ 0, Ŷ 1), T | X, Û

)
= KCIT

(
(Y 0, Y 1), T | X,U

)
+ op(1),

where op(1) denotes a term that converges to zero in probability as the sample size increases.

Proof of Theorem 1. Based on Lemma 2 and Eq. (13), we have

Σ̂Ŷ T |Ẑ = Σ̂Ŷ T − Σ̂Ŷ Ẑ(Σ̂ẐẐ + γI)−1Σ̂ẐT

= Σ̂Y T − Σ̂Y Z(Σ̂ZZ + γI)−1Σ̂ZT + op(1)

= Σ̂Y T |Z + op(1).

Therefore, based on Eq. (14), we have

|KCIT
(
(Y 0, Y 1), T | X,U

)
− KCIT

(
(Ŷ 0, Ŷ 1), T | X, Û

)
|

=
1

n
|Tr(Σ̂Ŷ T |Ẑ − Σ̂Y T |Z)|

≤∥Σ̂Ŷ T |Ẑ − Σ̂Y T |Z∥
=op(1),

which proves the theorem.
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Table 3: Hyperparameter search space used in all experiments.

Hyperparameter Search Range Description
lr {10−5, 10−4, 10−3, 10−2, 10−1} learning rate
bs {16, 32, 64, 128} batch size
λ {10−4, 10−3, 10−2, 10−1, 1} loss balancing coefficient
dϕ {16, 32, 64} hidden dimension in encoder network ϕ
dh {16, 32, 64} hidden dimension in outcome heads h0 and h1

D FURTHER EXPERIMENTAL DETAILS

D.1 DATASET

Twins. The Twins dataset is derived from all recorded twin births in the United States between
1989 and 1991 (Almond et al., 2005). We focus on twin pairs where both individuals weighed less
than 2000 grams at birth. Each instance contains 50 pre-treatment covariates related to parental
characteristics, pregnancy conditions, and birth outcomes. The treatment assignment is defined such
that T = 1 corresponds to the heavier twin and T = 0 to the lighter one. The outcome variable Y is
one-year mortality.

After removing records with missing values, the resulting dataset comprises 8,244 samples. Since
data for both twins in each pair is available, we observe outcomes under both treatment assignments
(T = 0 and T = 1). To emulate an observational setting, we simulate unobserved counterfactu-
als by selectively masking one twin per pair. When this selection is randomized, the data mimics
a randomized controlled trial. In specific, we model confounding via a proxy variable, where we
assign treatment based on a single feature—GESTAT10—which represents gestational age in 10 cat-
egories. Formally, treatment is drawn as: Ti | Xi, Zi ∼ Bern

(
σ
(
W⊤

o Xi +Wh(Zi/10− 0.1)
))

,
where Wo ∼ N (0, 0.1 · I) and Wh ∼ N (5, 0.1). Here, Xi denotes the 49 non-GESTAT10 features
and Zi is the GESTAT10 value for unit i.

Jobs. This dataset combines the Lalonde randomized experiment (297 treated and 425 control units)
with an observational sample from the PSID (2,490 control units) (LaLonde, 1986). Each record
includes 7 covariates such as age, education level, ethnicity, and prior earnings. The outcome reflects
post-intervention employment status. By merging the experimental and observational subsets, we
can introduce the selection bias between treated and control groups, making this dataset useful for
evaluating robustness to such bias.

D.2 TRAINING AND EVALUATION PROTOCOLS

Training Protocol. All models are optimized using grid search based on validation per-
formance. The learning rate and batch size are tuned over predefined discrete sets:
{10−5, 10−4, 10−3, 10−2, 10−1} for learning rates and {16, 32, 64, 128} for batch sizes. For meth-
ods involving balancing losses (CFR-Wass, CFR-MMD, and ESCFR), the regularization weight λ
is selected from {10−4, 10−3, 10−2, 10−1, 1} to control the trade-off between outcome prediction
and representation alignment. Table 3 summarizes the full hyperparameter configuration space used
during training. All models, including the baselines and our proposed method, are tuned under the
same conditions to ensure fair comparison.

Training is performed for a maximum of 200 epochs, with early stopping applied based on validation
loss. Specifically, we stop the training process if no improvement is observed within 30 consecutive
epochs, which helps prevent overfitting—particularly relevant for datasets like Twins, where ground-
truth outcomes are fully known. All experiments are implemented using PyTorch 1.10 and trained
with the Adam optimizer. Hardware used includes an NVIDIA A40 GPU and an Intel(R) Xeon(R)
Gold 5318Y CPU at 2.10GHz.

Evaluation Protocol. For the Twins dataset, where the distributions of potential outcomes are
available, we evaluate model performance using two metrics: the Precision in Estimation of Hetero-
geneous Effect (ϵPEHE) and the Average Treatment Effect error (ϵATE) (Hill, 2011).
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The PEHE is defined as:

ϵPEHE =
1

N

N∑
i=1

(
E(y0

i ,y
1
i )∼PY|xi

(
y1i − y0i

)
−
(
ŷ1i − ŷ0i

))2
,

where ŷ0i and ŷ1i denote the estimated outcomes under control and treatment, respectively, and y0i
and y1i represent the corresponding true outcomes.

For the ATE error, we compute it as:

ϵATE =

∣∣∣∣∣ 1N
N∑
i=1

(
y1i − y0i

)
− 1

N

N∑
i=1

(
ŷ1i − ŷ0i

)∣∣∣∣∣ .
Lower values of ϵPEHE and ϵATE indicate better estimation performance.

For the Jobs dataset, where ground-truth ITE is not available, we use two metrics: policy risk
Rpol (Shalit et al., 2017) and the error in estimating the Average Treatment effect on the Treated
(ϵATT ).

Policy risk is defined as:

Rpol = 1−
(
E[Y 1 | π(x) = 1] · P(π(x) = 1) + E[Y 0 | π(x) = 0] · P(π(x) = 0)

)
,

where π(x) = 1 if ŷ1 − ŷ0 > 0, and π(x) = 0 otherwise.

We estimate this metric using only units from the randomized component of the dataset:

Rpol = 1−

(
1

|A1 ∩ T 1 ∩ E|
∑

xi∈A1∩T 1∩E

y1i ·
|A1 ∩ E|

|E|

+
1

|A0 ∩ T 0 ∩ E|
∑

xi∈A0∩T 0∩E

y0i ·
|A0 ∩ E|

|E|

) (16)

with E denoting the randomized experiment set, A1 = {xi : ŷ
1
i −ŷ0i > 0}, A0 = {xi : ŷ

1
i −ŷ0i < 0},

T 1 = {xi : ti = 1}, and T 0 = {xi : ti = 0}. A lower value of Rpol indicates that the CATE
estimation method provides better support for the decision-making strategy.

We also report ϵATT as:

ϵATT =

∣∣∣∣∣ 1

N1

∑
i:ti=1

(
y1i − y0i

)
− 1

N1

∑
i:ti=1

(
ŷ1i − ŷ0i

)∣∣∣∣∣ ,
where N1 is the number of treated units in the randomized group. A lower ϵATT indicates more
accurate treatment effect estimation for the treated population.

D.3 BASE MODELS

Since our proposed ProCI framework is model-agnostic and only augments the original dataset with
new confounders, it can be flexibly combined with a variety of existing CATE estimation methods.
In our experiments, we treat several well-established and state-of-the-art CATE estimators as base
models to assess how their performance improves when equipped with the confounders generated
by ProCI.

We consider representative methods from three major categories: meta-learning, matching-based,
and representation-based approaches.

i) Meta-learners: These methods differ in how they handle treatment information. The S-
Learner (Künzel et al., 2019) uses a single model that includes treatment as a feature.

ii) Matching-based methods: We include propensity score matching (PSM) (Caliendo & Kopeinig,
2008), followed by regression on the matched samples. Propensity scores in PSM are estimated
using logistic regression, consistent with the implementation in (Caliendo & Kopeinig, 2008).
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Table 4: Overall performance comparison of treatment effect estimation between base models
and their enhanced versions with ProCI-La (LLaMA 3-8B) and ProCI-Qw (Qwen2.5-7B). Best-
performing results across all methods are highlighted.

Datasets Jobs Twins

Test Types In-sample Out-sample In-sample Out-sample

Methods ϵATT Rpol ϵATT Rpol ϵATE ϵPEHE ϵATE ϵPEHE

S-Learner 0.0491±0.0011 0.2289±0.0008 0.0876±0.0018 0.1678±0.0002 0.0131±0.0020 0.2527±0.0012 0.0037±0.0024 0.2819±0.0001

+ProCI-La 0.0227±0.0004 0.2253±0.0013 0.1009±0.0001 0.1648±0.0002 0.0117±0.0001 0.2536±0.0000 0.0035±0.0029 0.2833±0.0032

+ProCI-Qw 0.0320±0.0007 0.2301±0.0000 0.0832±0.0001 0.1697±0.0010 0.0068±0.0013 0.2518±0.0027 0.0050±0.0004 0.2846±0.0012

PSM 0.6197±0.0000 0.2707±0.0000 0.1259±0.0015 0.2192±0.0013 0.0457±0.0006 0.3399±0.0007 0.0840±0.0000 0.4027±0.0001

+ProCI-La 0.6185±0.0008 0.2716±0.0003 0.1126±0.0002 0.2181±0.0001 0.0460±0.0012 0.3394±0.0004 0.0845±0.0000 0.4026±0.0000

+ProCI-Qw 0.6173±0.0000 0.2691±0.0001 0.0992±0.0003 0.2191±0.0035 0.0455±0.0037 0.3401±0.0000 0.0818±0.0001 0.4017±0.0000

TARNet 0.0191±0.0002 0.2177±0.0001 0.1466±0.0026 0.2201±0.0002 0.0233±0.0044 0.2917±0.0001 0.0310±0.0005 0.3237±0.0001

+ProCI-La 0.0163±0.0021 0.2059±0.0027 0.1179±0.0032 0.2139±0.0011 0.0190±0.0021 0.2755±0.0013 0.0270±0.0019 0.3043±0.0012

+ProCI-Qw 0.0129±0.0001 0.2005±0.0000 0.0761±0.0010 0.2201±0.0032 0.0101±0.0000 0.2775±0.0014 0.0092±0.0001 0.3123±0.0002

CFR-Wass 0.0355±0.0006 0.2150±0.0001 0.1487±0.0028 0.2191±0.0004 0.0189±0.0000 0.2818±0.0000 0.0186±0.0002 0.3138±0.000

+ProCI-La 0.0312±0.0003 0.2023±0.0001 0.1373±0.0073 0.1986±0.0004 0.0132±0.0001 0.2762±0.0001 0.0150±0.0001 0.3073±0.0001

+ProCI-Qw 0.0295±0.0004 0.2029±0.0001 0.1389±0.0068 0.2140±0.0002 0.0137±0.0000 0.2724±0.0000 0.0110±0.0001 0.3041±0.0002

ESCFR 0.0543±0.0012 0.2184±0.0001 0.2245±0.0390 0.2274±0.0002 0.0199±0.0001 0.2715±0.0001 0.0207±0.0003 0.3059±0.0007

+ProCI-La 0.0362±0.0005 0.2074±0.0000 0.1218±0.0038 0.2055±0.0015 0.0160±0.0001 0.2714±0.0002 0.0177±0.0001 0.3030±0.0001

+ProCI-Qw 0.0317±0.0008 0.2154±0.0011 0.2114±0.0430 0.2239±0.0033 0.0131±0.0001 0.2699±0.0021 0.0062±0.0000 0.2989±0.0001

iii) Representation-based methods: This includes TARNet (Shalit et al., 2017), which em-
ploys a shared feature representation with separate heads for predicting potential outcomes; CFR-
Wass (Shalit et al., 2017), which adds distributional regularization using the Wasserstein metric; and
ESCFR (Wang et al., 2023), which leverages unbalanced optimal transport to achieve mini-batch-
level representation balance and robustness to outliers.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 EFFECTIVENESS OF PROCI WITH OPEN-SOURCE LANGUAGE MODELS

Experimental Setup. To further investigate the generalizability of ProCI under different LLM
architectures, we introduce two additional models: LLaMA 3–8B and Qwen2.5–7B, denoted as
ProCI-La and ProCI-Qw, respectively. These models are selected for their competitive reasoning
capabilities and open accessibility. ProCI-La is based on Meta’s LLaMA 3 series (Grattafiori et al.,
2024), a dense decoder-only transformer optimized for instruction-following. ProCI-Qw leverages
Alibaba’s Qwen2.5 family (Qwen et al., 2025), which has shown strong performance in multi-lingual
and causal reasoning tasks.

We apply the same ProCI framework using LLaMA 3–8B and Qwen2.5–7B as the confounder gen-
erators. All settings (e.g., temperature = 0.7, prompt structure, distribution identification and impu-
tation, progressive confounder generation) remain consistent with the original experiments to ensure
fair comparisons. The resulting augmented datasets are then passed into the same downstream CATE
estimators as in the original setup.

Results. As shown in Table 4, both ProCI-La and ProCI-Qw significantly improve CATE estimation
performance over their corresponding base models, confirming the effectiveness of using LLM-
generated hidden confounders even beyond proprietary GPT models. Notably, the improvements
are consistent across different types of base estimators, with the following observations:

• ProCI-La, based on LLaMA 3–8B, achieves strong performance gains on both in-
sample and out-of-sample evaluations. Its improvements are particularly evident when
paired with representation-based base models such as TARNet and CFR-Wass, indicating
that LLaMA 3’s semantic reasoning helps uncover latent variables that enhance feature
balancing in the learned representations.

• ProCI-Qw, leveraging Qwen2.5–7B, also brings stable improvements over base mod-
els. While its performance slightly lags behind ProCI-La in some cases, it still consistently
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Figure 5: Conditional mutual information (CMI) values across different temperatures for con-
founders generated by ProCI-La (LLaMA 3–8B), ProCI-Qw (Qwen2.5–7B), and a Random
baseline. The left plot shows I(U, Y | X), and the right plot shows I(U, T | X), with all values on
a log scale. ProCI methods consistently outperform the Random baseline, with peak informativeness
generally occurring at moderate temperatures (0.5–0.7).

enhances treatment effect estimation, especially under models sensitive to unobserved con-
founding. This suggests Qwen2.5 can effectively contribute causal priors despite its smaller
scale.

• Across both models, we observe that representation learning-based estimators benefit
the most from ProCI augmentation. These models are designed to learn balanced rep-
resentations of treated and control groups, and the inclusion of high-quality confounders
improves this balancing, thereby reducing estimation bias and variance more effectively.

These findings demonstrate that ProCI is model-agnostic and remains effective when paired with
open-source, instruction-tuned LLMs. This extends its practical applicability and offers a cost-
efficient, scalable solution for treatment effect estimation under hidden confounding in real-world
settings.

E.2 IMPACT OF TEMPERATURE ON CONFOUNDER QUALITY

Experimental Setup. To assess how the temperature coefficient λ affects the quality of generated
confounders, we conduct a controlled experiment using two open-source LLMs: LLaMA 3–8B
(ProCI-La) and Qwen2.5–7B (ProCI-Qw). We vary λ in the range {0.1, 0.3, 0.5, 0.7, 0.9}, and for
each value, use the respective LLM to generate confounders following the standard ProCI frame-
work. To evaluate the informativeness of the generated variables, we compute their conditional
mutual information (CMI) with the treatment and outcome, conditioned on observed covariates:
I(U, Y | X) and I(U, T | X). We also include a Random baseline that generates synthetic vari-
ables from uniform or Gaussian noise independent of the data. This helps isolate the contribution of
semantically meaningful generation from LLMs.

Results. Figure 6 shows the CMI values I(U, Y | X) and I(U, T | X) across different temperature
values. Each x-axis tick corresponds to a specific temperature coefficient λ, and we compare three
methods: Random, ProCI-La, and ProCI-Qw.

• ProCI-La and ProCI-Qw significantly outperform the Random baseline at all tem-
peratures, with CMI values often one to two orders of magnitude higher, validating that
LLM-generated confounders encode semantically relevant information about treatment and
outcome.

• The impact of temperature varies by method and metric. For I(U, Y | X), ProCI-La
achieves the highest value at λ = 0.5, while ProCI-Qw peaks at λ = 0.9. For I(U, T | X),
ProCI-La performs best at the lowest temperature (λ = 0.1), whereas ProCI-Qw shows
more stable performance across mid-to-high temperatures.

• ProCI-La generally outperforms ProCI-Qw in capturing outcome-relevant infor-
mation, especially at lower temperatures. In contrast, ProCI-Qw sometimes surpasses
ProCI-La on treatment-related informativeness (I(U, T | X)), suggesting complementary
strengths between the LLMs.
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Figure 6: Comparison between the original and imputed outcomes (Y and Ŷ ) for treatment
T = 0 and T = 1, respectively. The blue line represents the original Y values, while the orange
dashed line shows the simulated imputed outcomes Ŷ . The plot illustrates the effectiveness of the
imputation process in approximating the original outcomes.

Table 5: Semantic comparison between removed covariates and imputed confounders. The number
of ✓symbols indicates the level of semantic matching: three checkmarks for a full match, two for a
strong relation, and one for a weaker relation.

Covariate Scope Confounder Generated by ProCI
Name Scope Matching

Age [17, 55] Age [20, 50] ✓✓✓
Education years [3, 16] Education background {Bachelor, Master, ...} ✓✓

Married {0, 1} Marital status {Single, Married, Divorced} ✓✓
Hispanic {0, 1} Living country {USA, UK, Italy, ...} ✓

Previous earning [0, 37431] Average Income per year [0, 120000] ✓✓

These findings reinforce the benefit of using temperature tuning to control the diversity and informa-
tiveness of generated confounders. Moderate values (λ ∈ [0.5, 0.7]) typically offer the best trade-off,
with performance degrading slightly at the extremes.

E.3 QUALITY OF IMPUTED POTENTIAL OUTCOME

Experimental Setup. The Twins dataset contains real potential outcomes, where the outcome vari-
able indicates whether a baby survived or died one year after birth, with 0 representing survival and
1 representing death. In this experiment, we test the quality of the potential outcomes imputed by
our ProCI framework using GPT-4o, comparing them with the real potential outcomes in the dataset.
We respectively test on two treatment groups: T = 1 and T = 0, where T = 1 represents babies
with higher birth weight and T = 0 represents babies with lower birth weight. We aim to assess how
well our framework can approximate the real potential outcomes for these two treatment conditions.
Due to space limitations, we only report the results for the first 1000 samples.

Results. The results demonstrate that our ProCI framework effectively approximates the real out-
come curve, especially in scenarios where the potential outcome is rare (e.g., Y = 1). This high-
lights the ability of ProCI to leverage its world knowledge for counterfactual estimation, successfully
imputing potential outcomes even when direct observation is impossible.

E.4 SEMANTIC COMPARISON BETWEEN REMOVED COVARIATE AND IMPUTED
CONFOUNDER

Experimental Setup. In this experiment, we aim to evaluate how well our ProCI framework can
restore the covariates that have been removed from the dataset, thereby demonstrating its ability
to capture the underlying relationships within the data. Specifically, we remove one covariate at
a time from the Jobs dataset and then use our framework to generate confounders, including both
the semantic information and the value range of the imputed confounder. We then compare the
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generated confounder with the removed covariate, categorizing the results into three groups: fully
matched, strongly related, and weak relation.

Results. The results show that, semantically, while the ProCI framework’s ability to restore the
removed covariates varies across different covariates, it successfully generates confounders that are
quite related to the removed covariates in most cases. However, in terms of value ranges, there is a
noticeable difference between the range of values generated by our model and the original covariates.
For instance, when the covariate “education years” is removed, it frequently reappears as a generated
confounder, such as “education background”. This is a reasonable and expected outcome, as both
“education years” and “education background” are closely related in terms of semantic meaning and
likely share similar underlying concepts. Such results suggest that the model effectively captures
latent relationships, even if it doesn’t always perfectly match the exact value ranges of the original
covariates.

F PROMPT TEMPLATES

In this section, we present the detailed prompt templates used in the proposed ProCI frame-
work. These prompts correspond to the four key components of our method: variable generation
(Pvar(X,Y, T ) in Eq. (4)), distribution type inference (Pdist(X,Y, T, Û) in Eq. (5)), parameter esti-
mation (Pparam(xi, ti, yi) in Eq. (6)), and counterfactual outcome imputation (Pout(xi, ui, yi, ti) in
Eq. (7)). All corresponding equations are provided in the main paper, and this appendix serves to
elaborate on the concrete prompt implementations used for each component.

F.1 PREFIX PROMPT

The prefix prompt provides essential contextual information about the observational dataset, includ-
ing a brief overview and detailed descriptions of the treatment, outcome, and confounding vari-
ables. This prompt serves as a foundation and should be included at the beginning of all subsequent
prompts to ensure that the LLM is aware of the data background and variable semantics.

Prefix prompt: Dataset Introduction

Inputs: The dataset name Dname with a brief introduction Dintro; variable names for

confounders Xname, treatment Tname, and outcome Yname; and their corresponding

descriptions as provided by the original dataset: Xdesc, Tdesc, and Ydesc.

Prompt:

Brief introduction of the {Dname} dataset: {Dintro}
This observational dataset contains:

(1) Treatment — {Tname}: {Tdesc}
(2) Outcome — {Yname}: {Ydesc}
(3) Confounders — {Xname}: {Xdesc}

F.2 VARIABLE GENERATION

In this prompt, we mainly utilize the name and description of variables X,T and Y in the observa-
tional dataset to infer a new confounder Û .
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Pvar(X,Y, T ): Generating new confounder Û

Inputs: Prefix Prompt

Outputs: Confounder name Ûname, a brief explanation Ûexp

Prompts:

{Prefix prompt}
Based on your WORLD KNOWLEDGE, please propose one additional confounder

which BOTH affects the treatment and outcome.

Make sure that the proposed confounder has a DIFFERENT MEANING compared to

existing confounders.

For this proposed confounder, please provide:

(1) A clear name for the confounder.

(2) A brief explanation of why it affects both treatment and outcome.

F.3 DISTRIBUTION TYPE INFERENCE

After identifying the confounder variable, we leverage the commonsense knowledge embedded in
LLMs to infer an appropriate distribution type for it. Instead of directly imputing its values using the
LLM, which often leads to degenerate or collapsed outputs when applied to tabular data, we defer
value imputation to a subsequent structured process.

Pdist(X,Y, T, Û): Inferring the distribution type of Û

Inputs: Prefix prompt, name of generated variable Ûname

Outputs: Distribution type FÛ

Prompts:

{Prefix Prompt}
Based on your WORLD KNOWLEDGE, please provide the distribution type of con-

founder {Ûname}. For example:

(1) Continuous — e.g., Normal distribution

(2) Discrete — e.g., Multi-categorical distribution

(3) Binary — e.g., Bernoulli distribution

F.4 PARAMETER ESTIMATION

Given the inferred distribution type FÛ of the confounder Û , the next step is to estimate the corre-
sponding distribution parameters. As there are various possible distribution families, we illustrate
the parameter estimation process using the normal distribution as an example.
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Pparam(DX ,DT ,DY ): Generating the distribution parameter for each unit

Inputs: Prefix prompt, the confounder name Ûname, the values of confounder DX ,

treatment DT and outcome DY

Outputs: Distribution parameter θi = {µi, σi} for each individual i

Prompts:

{Prefix prompt}
The values of existing confounders, treatments, and outcomes are given by:

(1) Confounder Values: {DX}
(2) Treatment Values: {DT }
(3) Outcome Values: {DY }
For the confounder {Ûname}, please specify a normal distribution (mean and stan-

dard deviation) for each individual from which we can sample the confounder value.

To accommodate the token limitations of LLMs, this prompt is executed in a mini-batch manner.
Once the distribution parameters (e.g., mean and standard deviation in the case of a normal distribu-
tion) are obtained, we sample concrete values of the confounder Û from the personalized distribution
for each instance.

F.5 COUNTERFACTUAL OUTCOME IMPUTATION

To evaluate the effectiveness of the generated confounders, we assess whether the unconfounded-
ness assumption holds after incorporating them. Since LLMs implicitly encode a wide range of
commonsense and domain-specific knowledge—including information related to potential hidden
confounders—we utilize the LLM to impute counterfactual outcomes, Ŷ 0 and Ŷ 1. These counter-
factuals are then used to perform an empirical test of the unconfoundedness assumption via condi-
tional independence analysis.

Pout(DX ,DÛ ,DT ,DY ): Imputing Counterfactual Outcomes

Inputs: Prefix prompt, the values of confounder DX , imputed confounder DÛ , treat-

ment DT and outcome DY

Outputs: Counterfactual outcomes in Ŷ 0 and Ŷ 1

Prompts:

{Prefix prompt}
The values of existing confounders, treatments, and outcomes are given by:

(1) Confounders: {DX}
(2) Treatments: {DT }
(3) Outcomes: {DY }
Based on the OBSERVED DATA and your WORLD KNOWLEDGE, please infer the values

of the counterfactual outcome corresponding to the alternative value of treatment.
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G CASE STUDY

In this section, we provide two running samples from Jobs dataset for both variable generation and
value imputation.

G.1 CASE ON VARIABLE GENERATION

Generating New Variable {TRANSPORTATION ACCESS}

Prompts:

Brief introduction of the {Jobs} dataset:

{The Jobs dataset is widely used in causal inference research for evaluating the

performance of treatment effect estimation methods. It is constructed by combining

experimental and observational data from the National Supported Work (NSW)

demonstration and comparison group data (e.g., PSID or CPS).}

This observational dataset contains:

(1) Treatment — {Participation in Job Training}: {T ∈ {0, 1} indicating whether the

individual participated or did not participate in the job training program.}
(2) Outcome — {Employment Status}: {The individual’s employment observed

after the treatment decision. Y = 1 means employed, Y = 0 means not employed.}
(3) Confounders — {Age, Marriage, Previous Earning,...}: {Features affecting both

the treatment and the outcome, such as age, education, prior income, etc.}

Based on your WORLD KNOWLEDGE, please propose one additional confounder

which BOTH affects the treatment and outcome.

Make sure that the proposed confounder has a different meaning compared to ex-

isting confounders.

For this proposed confounder, please provide:

(1) A clear name for the confounder.

(2) A brief explanation of why it affects both treatment and outcome.

Answers:

(1) Variable Name: Transportation Access

(2) Explanation: Access to reliable transportation can influence both participation in

the job training program (treatment) and subsequent employment (outcome). Indi-

viduals without transportation may be less likely to enroll in or attend the program

due to logistical barriers. Similarly, lack of transportation can hinder job search ef-

forts and commuting to workplaces, reducing the likelihood of employment.
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G.2 CASE ON VALUE IMPUTATION

Inferring Distribution Type for New Variable {TRANSPORTATION ACCESS}

Prompts:

Brief introduction of the {Jobs} dataset:

{The Jobs dataset is widely used in causal inference research for evaluating the

performance of treatment effect estimation methods. It is constructed by combining

experimental and observational data from the National Supported Work (NSW)

demonstration and comparison group data (e.g., PSID or CPS).}

This observational dataset contains:

(1) Treatment — {Participation in Job Training}: {T ∈ {0, 1} indicating whether the

individual participated or did not participate in the job training program.}
(2) Outcome — {Employment Status}: {The individual’s employment observed

after the treatment decision. Y = 1 means employed, Y = 0 means not employed.}
(3) Confounders — {Age, Marriage, Previous Earning,...}: {Features affecting both

the treatment and the outcome, such as age, education, prior income, etc.}

Based on your WORLD KNOWLEDGE, please provide the distribution type of con-

founder {Transportation Access}. For example:

(1) Continuous — e.g., Normally distribution

(2) Discrete — e.g., Multi-categorical distribution

(3) Binary — e.g., Bernoulli distribution

Answers:

(1) Distribution Type: Binary

(2) Value Description: 0 indicates the individual lacks reliable transportation (e.g.,

no personal vehicle or inadequate public transit access), and 1 indicates they have

reliable transportation.

Estimating Values for New Binary Confounder {TRANSPORTATION ACCESS}

Prompts:

Brief introduction of the {Jobs} dataset:

{The Jobs dataset is widely used in causal inference research for evaluating the

performance of treatment effect estimation methods. It is constructed by combining

experimental and observational data from the National Supported Work (NSW)

demonstration and comparison group data (e.g., PSID or CPS).}
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This observational dataset contains:

(1) Treatment — {Participation in Job Training}: {T ∈ {0, 1} indicating whether the

individual participated or did not participate in the job training program.}
(2) Outcome — {Employment Status}: {The individual’s employment observed

after the treatment decision. Y = 1 means employed, Y = 0 means not employed.}
(3) Confounders — {Age, Education Years, ..., Previous Earnings}: {Features

affecting both the treatment and the outcome, such as age, education, prior income,

etc.}

The values of existing confounders, treatments, and outcomes are given by:

(1) Confounder Values: {[47,12,...,0], ..., [40, 8, ..., 0]}
(2) Treatment Values: {0,0,1,0,...,1}
(3) Outcome Values: {1,0,0,1,...,0}
For the new confounder {Transportation Access}, please specify a binary value for

each individual.

Answers:

(1) Values: [0,0,0,...,1]

(2) Summary: The first 82 individuals (previous earning = 0) lack reliable transporta-

tion (Transportation Access = 0), while the remaining 68 (previous earning > 0) have

access (Transportation Access = 1). This aligns with prior earnings as a proxy for

transportation availability, creating a plausible confounder structure.

H BROADER IMPACTS

This work introduces ProCI, a framework that uses LLMs to help mitigate hidden confounding when
estimating treatment effects from observational data. By combining structured and unstructured data
with the general knowledge and reasoning abilities of LLMs, ProCI offers a new and useful way to
improve causal inference. In practice, the ProCI framework can improve decision-making in areas
where running controlled experiments is difficult or unethical, such as healthcare, social programs,
and economic policies. It can help uncover hidden confounders that affect treatment and outcomes,
leading to fairer and more informed decisions—especially in places with limited resources. Also,
by reducing the need for expert-designed tools or domain knowledge, ProCI makes causal analysis
easier and more available to a wider group of researchers and practitioners.

I LIMITATIONS

While our proposed method consistently outperforms base models across benchmarks, it still ex-
hibits several limitations that warrant further investigation:

• Our evaluation is conducted on two widely-used observational benchmarks—Twins and
Jobs. To better assess the generalizability of the ProCI framework, future work should
explore a broader range of real-world and domain-specific datasets.

• As noted in Theorem 1, the empirical unconfoundedness test using Kernel Conditional In-
dependence Test (KCIT) on imputed counterfactuals approximates the true test only when
the sample size is sufficiently large. More robust or distribution-free statistical tests may
be needed to relax this assumption in smaller datasets.
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• While our study extends confounder generation to include four distinct LLMs—GPT-
4o, DeepSeek-R1, LLaMA 3–8B, and Qwen2.5–7B—these models primarily represent
instruction-tuned decoders. Future work should further examine ProCI’s applicability
across a wider range of architectures, such as multilingual models, encoder-decoder frame-
works, or smaller-scale LLMs, to comprehensively assess its robustness and scalability.
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