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Abstract
With the widespread adoption of Internet Protocol (IP) communi-
cation technology and Web-based platforms, cloud manufacturing
has become a significant hallmark of Industry 4.0. Integrating graph
algorithms into these web-enabled environments is crucial as they
facilitate the representation and analysis of complex relationships
in manufacturing processes, enabling efficient decision-making
and adaptability in dynamic environments. As a key scheduling
problem in cloud manufacturing, the flexible Job-shop Scheduling
Problem (FJSP) finds extensive applications in real-world scenarios.
However, traditional FJSP-solving methods struggle to meet the
efficiency and adaptability demands of cloud manufacturing due
to generalization issues and excessive computational time, while
reinforcement learning-based methods fail to learn relationships
between FJSP nodes, such as interactions between operations of dif-
ferent jobs, leading to limited interpretability and performance. To
address these issues, we propose a dual operation aggregation graph
neural network (GNN) for solving FJSP. Specifically, we decouple
the disjunctive graph into two distinct graphs, reducing graph den-
sity and clarifying relationships between machines and operations,
thus enabling more effective aggregation and understanding by
neural networks. We develop two distinct graph aggregation meth-
ods to minimize the influence of non-critical machine and operation
nodes on decision-making while enhancing the model’s ability to
account for long-term benefits. Additionally, to achieve more accu-
rate multi-objective estimation and mitigate reward sparsity, we
design a reward function that simultaneously considers machine
efficiency, schedule balance, and makespan minimization. Extensive
experimental results on well-known datasets demonstrate that our
model outperforms state-of-the-art models and exhibits excellent
generalization capabilities, effectively addressing the challenges of
cloud manufacturing.

CCS Concepts
• Networks→ Network algorithms; • Computing methodolo-
gies→Machine learning; Artificial intelligence.

Keywords
Flexible Job-Shop Scheduling Problem, Graph Neural Network, Re-
inforcement Learning, Combinatorial Optimization

1 Introduction
The flexible job-shop scheduling problem (FJSP) is a well-knownNP-
hard problem [50], extending the job-shop scheduling problem with
a significantly larger solution space and increased complexity [1, 10].
The FJSP is characterized by operations with multiple processing
options, constrained by processing sequences and machine load [7].

The objective of solving FJSPs is to minimize the makespan [41],
which is typically pursued in the manufacturing industry [24].

With the widespread adoption of Internet Protocol (IP) commu-
nication technology, web-based cloud manufacturing provides an
intelligent and efficient development trajectory for manufacturing
systems [3], necessitating algorithms with adaptive and efficient
problem-solving capabilities [40]. In this context, the integration
of smart online scheduling becomes crucial. The FJSP presents sig-
nificant opportunities for time and cost savings in industries such
as aerospace engine manufacturing [57] and semiconductor pro-
duction [12] when effectively solved within cloud manufacturing
environments [14]. By leveraging network structures, we can better
exploit the complex relationships and interactions inherent in FJSPs.
Utilizing graph-based models allows for the representation of op-
erations and machines as nodes, while their interactions as edges,
facilitating insightful analysis and enhanced solution strategies.

Due to the importance of the FJSP in both practical application
and theoretical study, numerous traditional methods have been
proposed to solve FJSPs, which are broadly categorized into three
types: exact methods, dispatching rules and metaheuristic meth-
ods. However, these methods often result in insufficient scheduling
quality [37, 49], limited generalization capabilities [15, 42], and
time-consuming processes [54]. Therefore, traditional methods can-
not fully leverage the advantages of graph-based representations,
making it difficult to meet the demands of cloud manufacturing.

As a promising alternative, the methods based on reinforcement
learning (RL) have been widely employed in recent years to solve
FJSPs [11, 15, 51]. These methods often utilize Markov Decision
Processes (MDPs) [23, 26], where the agent assesses decision qual-
ity by computing the reward garnered from each decision and
then improves the agent’s policy iterative through maximizing re-
wards. Furthermore, these RL-based methods are usually integrated
with graph neural networks (GNNs) designed based on disjunctive
graphs [8, 37, 54], since these graphs indicate the relationships
among operations and machines in the scheduling process [2].

However, current methods suffer from two significant limitations.
Firstly, disjunctive graph-based GNNs often fall short in captur-
ing comprehensive relationships. Specifically, disjunctive graphs
cannot capture the logical relationships between operations from
different jobs, because the directed arcs do not connect these op-
erations, but agents must select operations belonging to different
jobs during each decision-making process. The policy’s failure to
consider these logical relationships adversely affects the agent’s
decision quality. Secondly, the reward functions of the existing
methods face challenges in accurately reflecting the agent’s de-
cision quality. Typically, the reward is defined as the difference
between the minimum makespan before and after making a deci-
sion [37, 51, 53]. However, this approach often involves multiple
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reward estimates when computing the makespan during the sched-
uling process, leading to estimation error accumulation, which
hinders accurate guidance for the scheduling process. Furthermore,
since this approach is designed merely based on the final scheduling
objective, it is challenging to reflect specific decisions before the
terminal state, resulting in a sparse reward [38].

To address the aforementioned limitations, we present substan-
tial advancements in the model and the reward function. Firstly,
we introduce a model named Dual Operation Aggregation Graph
Neural Networks (DOAGNN) aimed at capturing the relationships
between machines and operations. Specifically, we decompose the
disjunctive graph into two distinct graphs to effectively represent
the relationships between machines and operations, as well as the
interactions among different operations. Subsequently, we design
two tailored GNNs for these graphs to integrate global scheduling
information into actionable operations, mitigating the impact of ma-
chines with long processing times and late-scheduled operations.
Additionally, we develop new aggregation methods to facilitate
information propagation between operations of different jobs, en-
hancing the agent’s ability to consider long-term benefits. Secondly,
we redesign the reward function in the MDP. Particularly, besides
minimizing makespan as used in previous studies [37, 51, 53], we
add two components to the reward to increase the minimum com-
pletion time and reduce machine idle time, aimed to mitigate the
impact of estimated makespan on decision evaluation, enhance the
feedback of decisions on scheduling objectives, and alleviate reward
sparsity. In summary, our contributions are stated as follows:

• We propose a method to decouple the complex disjunctive
graph into two distinct graphs, accurately representing the
scheduling state and dependencies among operations across
different jobs, thus aiding subsequent neural networks in
better understanding and solving FJSPs.

• We propose an innovative model named DOAGNN for solv-
ing FJSPs, featuring two tailored GNNs to more compre-
hensively and effectively aggregate information from both
machines and operations.

• We develop a reward method that delivers real-time feed-
back on the impact of decisions on scheduling objectives,
reducing biases from estimation uncertainties and alleviat-
ing reward sparsity.

• We demonstrate excellent performance of DOAGNN by
conducting extensive experiments with seven state-of-the-
art baselines on well-known datasets.

2 Related works
In this section, we introduce traditional methods and RL-based
methods for solving FJSPs.

2.1 Traditional Methods
Traditional methods for solving FJSPs can be broadly categorized
into three types: exact methods, dispatching rules andmetaheuristic
methods. Exact methods systematically explore the entire solution
space to achieve the optimal solution, exemplified by the branch
and bound algorithm [5]. Dispatching rules select machines and op-
erations for processing based on pre-designed scheduling rules [16],
such as selecting the machine with the shortest processing time.

Metaheuristic methods rely on carefully designed algorithms to
explore the solution space, often yielding high-quality solutions.
Consequently, numerous metaheuristic methods have been applied
to better solve FJSPs, such as the genetic algorithm [32] and the
particle swarm optimization algorithm [30, 43, 46]. Additionally,
researchers also utilize RL to adjust the parameters of metaheuristic
methods, aiming to improve solution quality [9, 22, 25, 44].

However, traditional FJSP solvers struggle to meet the require-
ments of cloud manufacturing. Specifically, exact methods face
challenges in efficiently exploring the solution space of large-scale
FJSPs within a reasonable time [48, 54]. Dispatching rules that rely
on simplistic scheduling rules struggle to capture complex sched-
uling principles, thereby impeding the generation of high-quality
solutions [37]. Metaheuristic methods are time-consuming and fall
short in generalization capabilities [6, 15, 42].

2.2 Reinforcement Learning-Based Methods
In recent years, numerous RL-based methods have been proposed
to solve FJSPs, with predominant approaches involving the integra-
tion of RL with GNNs [4, 15, 27, 37, 47, 54]. RL is responsible for
making decisions of scheduling, while GNNs focus on embedding
and aggregating features based on the disjunctive graph.

The RL-based methods for solving FJSPs utilize a hierarchical
structure to select the operations and machines separately. Brandi-
marte et al. [4] initially introduced this hierarchical concept, im-
plementing it with tabu search. The subsequent methods typically
utilize RL to determine selections, and treat the selections as de-
cisions in each step of the MDP [20, 21, 28, 29, 45]. However, the
information about operations and machines is interactive, leading
agents to overlook the interplay between selecting operations and
machines during decision-making.

In addition to exploring various scheduling strategies, researchers
have employed various RL-based algorithms to solve FJSPs, such as
the Proximal Policy Optimization (PPO) algorithm [55, 58] and the
Deep Deterministic Policy Gradient algorithm [13]. Furthermore,
researchers have endeavored to employ multi-agent reinforcement
learning methods to solve FJSPs [19, 31]. However, RL-based algo-
rithms do not ensure that agents learn the accurate logical relation-
ships in the scheduling process because the FJSP is highly complex
and nonlinear. Addressing this challenge necessitates acquiring
appropriate embeddings and aggregating features of machines and
operations from GNNs.

AsGNNs are designed based on the disjunctive graph, researchers
have developed various graphs to represent the scheduling process
of the FJSP, thereby determining the direction of feature aggre-
gation. Han et al. [15] proposed a three-dimensional disjunctive
graph, while Song et al. [37] transformed disjunctive graph into a
heterogeneous graph. Subsequently, Zhang et al. [54] designed a
multi-agent graph for the FJSP, capturing the relationships between
machines and operations. However, these approaches rely heavily
on the sequential scheduling logic of the FJSP, leading to overly
complex and dense graph structures that hinder model learning.
Moreover, they overlook relationships among operations from dif-
ferent jobs, causing each operation to ignore meaningful changes
in the scheduling environment.
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(a) Disjunctive graph. (b) M2O graph (up) and O2O graph (down). (c) Arc changes ofM2O graph (up) and O2O graph (down).

Figure 1: The illustrations of disjunctive graph, the initial M2O graph and O2O graph, and their arc changes.

3 Preliminaries
In this section, we define the fundamental setting and the disjunc-
tive graph of the FJSP.

3.1 The FJSP Setting
The FJSP comprises a series of jobs and machines, with each job
possesses its own sequence of operations. Each operation must be
processed on a specified set of machines. The scheduling process is
complete when all operations have been assigned to machines.

We define a set of 𝑛 jobs as 𝐽 = {𝐽1, 𝐽2, ..., 𝐽𝑛}, where 𝐽𝑖 de-
notes the 𝑖th job. Similarly, we define a set of 𝑚 machines as
𝑀 = {𝑀1, 𝑀2, ..., 𝑀𝑚}, where 𝑀𝑘 denotes the 𝑘-th machine. The
job 𝐽𝑖 consists of 𝑛𝑖 consecutive operations, which are denoted as
the set 𝑂𝑖 = {𝑂𝑖1,𝑂𝑖2, ...,𝑂𝑖𝑛𝑖 }. 𝑀𝑖 𝑗 denotes the set of machines
capable of processing operation 𝑂𝑖 𝑗 , and the processing time of
operation 𝑂𝑖 𝑗 on machine𝑀𝑘 (𝑀𝑘 ⊆ 𝑀𝑖 𝑗 ) is denoted as 𝑝𝑖 𝑗𝑘 . We
denote the completion time of operation 𝑂𝑖 𝑗 as 𝐶𝑖 𝑗 , and 𝐶𝑖𝑛𝑖 de-
notes the completion time of the last operation𝑂𝑖𝑛𝑖 of job 𝐽𝑖 , which
corresponds to the makespan of job 𝐽𝑖 . Our optimization goal is to
minimize the makespan 𝐶𝑚𝑎𝑥 = max(𝐶𝑖𝑛𝑖 ), ∀𝑖 ∈ {1, 2, . . . , 𝑛}.

The FJSP satisfies the following constraints during scheduling:
1) operations within the same job must be processed sequentially;
2) operations must be processed within the specified machine sets;
3) once an operation starts processing, it cannot be interrupted;
4) each machine processes only one operation at a time.

3.2 Definition of The Disjunctive Graph
We denote the scheduling state of the FJSP as a disjunctive graph
𝐺 = {𝑂,𝐶, 𝐷}. Here, 𝑂 = {𝑂𝑖 |∀𝑖 ∈ {1, 2, ..., 𝑛}}

⋃{𝑆, 𝐸}, where 𝑆
and 𝐸 denote the start and end virtual nodes, respectivaly. 𝐶 de-
notes the directed arcs connecting adjacent operations on the same
jobs, and 𝐸 denotes the undirected disjunctive edges connecting
adjacent operations on the same and compatible machines. During
the scheduling process, the direction for each disjunctive arc within
an operation node needs to be determined, and the remaining undi-
rected disjunctive edges are removed. We present an illustration of
a disjunctive graph in Figure 1a.

4 Method
In this section, we introduce DOAGNN, an advanced model de-
signed to effectively solve FJSPs. DOAGNN features two GNNs
tailored for the decoupled disjunctive graph, embedding machine
features and other operation features into operation nodes sepa-
rately. At each step of the MDP, the agent utilizes the output from
DOAGNN to make decisions (i.e., select the appropriate machine
and operation) until the scheduling process is complete. The fol-
lowing subsections provide a detailed explanation of the MDP for
the FJSP, the decomposition and improvement of the disjunctive
graphs, the architecture of the DOAGNN, and the training process.

4.1 Markov Decision Process
We define the process of solving FJSPs as a discrete MDP. At each
step, the agent makes a decision by selecting from the action space,
and the state transitions based on this decision. The scheduling
process is completed when all operations are scheduled. In the
following paragraphs, we elaborate on the details of the MDP, in-
cluding the novel settings of state, action and reward.

4.1.1 State. We define the state as the current scheduling situation
in the FJSP. Specifically, at each step 𝑝 of the MDP, the state 𝑠𝑝
comprises the states of both operations and machines (refer to
Appendix A for details of the composition of states). When an
operation is not scheduled, the start time𝑇𝑠 and end time𝑇𝑒 in this
operation state are estimated. We define the estimated time 𝑇𝑠 and
𝑇𝑒 of the unscheduled operation 𝑂𝑖 𝑗 at step 𝑝 as follows:

𝑇𝑠 (𝑂𝑖 𝑗 , 𝑠𝑝 ) = max(𝑇𝑒 (𝑂𝑖, 𝑗−1, 𝑠𝑝 ),
∑︁

𝑀𝑘 ∈𝑀𝑖 𝑗

𝑇𝑚 (𝑀𝑘 , 𝑠𝑝 )/|𝑀𝑖 𝑗 |), (1)

𝑇𝑒 (𝑂𝑖 𝑗 , 𝑠𝑝 ) = 𝑇𝑠 (𝑂𝑖 𝑗 , 𝑠𝑝 ) +
∑︁

𝑀𝑘 ∈𝑀𝑖 𝑗

𝑝𝑖 𝑗𝑘/|𝑀𝑖 𝑗 |, (2)

where 𝑇𝑚 (𝑀𝑘 , 𝑠𝑝 ) denotes the actual processing end time of ma-
chine 𝑀𝑘 in the state 𝑠𝑝 . For the initial state, we set 𝑇𝑠 and 𝑇𝑚 to
0. The start and end time of scheduled operations adhere to their
actual time, while the start and end time of unscheduled operations
are iteratively computed according to (1) and (2).
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4.1.2 Action. We define an action as the decision that the agent
makes at a certain step. Considering that separating the decision-
making process for operations and machines overlooks the impact
of the machine state on the decisions of operations, we simulta-
neously determine both the operation and machine at each step.
Consequently, the action space includes all combinations of schedu-
lable operations and available machines.

4.1.3 Reward. We consider three objectives when setting the re-
ward: minimizing the makespan, maximizing the minimum comple-
tion time, and minimizing machine idle time. Firstly, the most com-
mon scheduling objective of the FJSP is tominimize themakespan (i.e.,
min(𝐶max)), we define the difference between the 𝐶max before and
after the state transition as the first objective of our reward as:

𝑟𝑡𝑔𝑡 (𝑠𝑝 , 𝑎𝑝 , 𝑠𝑝+1) = 𝐶max (𝑠𝑝 ) −𝐶max (𝑠𝑝+1), (3)

where 𝐶max (𝑠𝑝 ) denotes the estimated value of 𝐶max in the state
𝑠𝑝 , computed by the minimum estimated end time 𝑇𝑒 of the last op-
erations of all jobs. Considering this reward requires reestimation
at each time step, we introduce two additional directly measur-
able objectives to balance and mitigate the impact of estimation,
encouraging more comprehensive and practical decisions.

In addition to the scheduling objective ofmin(𝐶max), we consider
simultaneously increasing both maximum makespan and minimum
completion time, and reducing machine idle time (the details of
analysis are described in Appendix B). When considering these
two objectives, machines are evenly selected for processing, while
maximizing the load on each machine as much as possible. We also
define these two objectives 𝑟ave and 𝑟util as reward:

𝑟ave (𝑠𝑝 , 𝑎𝑝 , 𝑠𝑝+1) = min(𝐶𝑖 𝑗 (𝑠𝑝 )) −min(𝐶𝑖′ 𝑗 ′ (𝑠𝑝+1)), (4)

𝑟util (𝑠𝑝 , 𝑎𝑝 , 𝑠𝑝+1) = max(𝜇𝑖 𝑗𝑘 ′𝐶𝑖 𝑗 (𝑠𝑝 )) −𝐶𝑖′ 𝑗 ′ (𝑠𝑝+1), (5)
where 𝑖 𝑗 denotes the index of any operation in the set of all sched-
uled operations. 𝜇𝑖 𝑗𝑘 denotes a decision variable with the value
equal to 1 when operation 𝑂𝑖 𝑗 is processed by machine 𝑀𝑘 , and
0 otherwise. 𝑂𝑖

′
𝑗
′ and 𝑀𝑘

′ represent the operation and machine
selected by the agent at the current step, respectively. According to
(4) and (5), the agent receives higher rewards as the minimum com-
pletion time increases, while rewards decrease with longer machine
idle time. Finally, we define the total reward as:

𝑟 = 𝜆1𝑟𝑡𝑔𝑡 + 𝜆2𝑟𝑎𝑣𝑒 + 𝜆3𝑟𝑢𝑡𝑖𝑙 , (6)

where the hyperparameters 𝜆𝑖 ∈ (0, 1] (∀𝑖 ∈ {1, 2, 3}) balance
the numerical contributions of the three reward components (the
analysis of hyperparameters settings is provided in the Appendix C).
Furthermore, we calculate the discounted return 𝐺𝑝 at step 𝑝 as
follows:

𝐺𝑝 =
∑︁−𝑝+∑𝑛

𝑖=1 𝑛𝑖

𝑘=0
𝛾𝑘𝑟𝑝+𝑘 , (7)

where 𝑟𝑖 denotes the actual reward obtained at step 𝑖 of the MDP,
and the discount factor 𝛾 ∈ (0, 1) denotes the degree of emphasis
on long-term returns.

4.2 The Decomposition and Improvement of
Disjunctive Graphs

To reduce graph density and clarify the relationships between ma-
chines and operations, we decompose the disjunctive graph into two
separate graphs. As shown in Figure 1b, one graph illustrates the

Figure 2: The framework of DOAGNN.

relationships among machines and operations, named the "Machine
to Operation graph" (M2O graph). Another graph illustrates the
relationships among the different operations, named the "Operation
to Operation graph" (O2O graph). In the M2O graph, operations
and machines are represented through nodes, and these nodes are
connected by undirected edges, which store the corresponding pro-
cessing time information. These undirected edges indicate the com-
patibility between operations and machines, rather than describing
the processing sequence relationships for the same machine among
different operations, as traditional disjunctive arcs do [36]. The O2O
graph retains the backbone of directed arcs from the disjunctive
graph, and effectively indicates the processing sequences among
operations through a specially designed edge update method (see
Section 4.3.2 for details).

Formally, we define the M2O graph and O2O graph as 𝐺M2O =

(𝑂,𝑀, 𝑃) and 𝐺O2O = (𝑂,𝐶), respectively. Here, 𝑂 denotes the set
of nodes containing machine information corresponding to the
operation set 𝑂 , and 𝑃 denotes the undirected edge set connect-
ing machines and operations. Both 𝑃 and 𝐶 vary with changes in
the state. Specifically, when making decision (𝑂𝑖 𝑗 and𝑀𝑘 ) in state
𝑠𝑝 , the edges in 𝑃 connected with the nodes (𝑂𝑖 𝑗 and 𝑀𝑘

′ (∀𝑘 ′ ∈
{1, ...,𝑚}, 𝑘 ′ ≠ 𝑘)) are removed, indicating that the machine selec-
tion for the operation 𝑂𝑖 𝑗 is determined. Then, new directed arcs
are added in 𝐶 , pointing from 𝑂𝑖 𝑗 to 𝑂𝑖

′
𝑗
′ (∀𝑂𝑖

′
𝑗
′ ∈ 𝑂𝑝 , 𝑂𝑝 de-

notes the set of all nodes with the same predecessor as 𝑂𝑖 𝑗 ), while
simultaneously removing all directed arcs from the predecessor
of 𝑂𝑖 𝑗 to 𝑂𝑖

′
𝑗
′ . This signifies that the decision operation node is

connected to all possible decision operation nodes in the next state.
We present an illustration of arc changes of the M2O graph and
O2O graph in Figure 1c.

4.3 DOAGNN Model
We propose a model named DOAGNN to enrich the embedding in-
formation of operation features, utilizing two tailored GNNs based
on the M2O graph and O2O graph. As shown in Figure 2, the archi-
tecture of DOAGNN includes: Machine Relation GNN (MR-GNN) to
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learn the embeddings between different machines and their corre-
sponding operations using the M2O graph, and Operation Sequence
GNN (OS-GNN) to learn the embeddings between operation fea-
tures that include machine information using the O2O graph.

4.3.1 MR-GNN. To enhance the connection betweenmachines and
operations, we propose MR-GNN, which embeds machine features
into operation features. In 𝐺M2O, the neighborhood set 𝑁𝑖 𝑗 of any
operation node 𝑂𝑖 𝑗 comprises exclusively available machine nodes.
We denote ℎ𝑖 𝑗 and ℎ𝑘 as the features of operation𝑂𝑖 𝑗 and machine
𝑀𝑘 , respectively. The initial features are encoded from the operation
states and machine states. We embed the features of all machines
in the neighborhood set 𝑁𝑖 𝑗 into the feature of the corresponding
operation node𝑂𝑖 𝑗 . Drawing inspiration from the Relational Graph
Convolutional Network (RGCN) that handles various relationships
among graph nodes [33], we consider the type of each machine
as the embedding relation for the corresponding operation. The
feature ℎ̄𝑖 𝑗 of the operation node𝑂𝑖 𝑗 after embedding is defined as:

ℎ̄𝑖 𝑗 = LeakyReLU(
∑︁
𝑟 ∈𝑅𝑚

∑︁
𝑘∈𝑁 𝑟

𝑖 𝑗

𝑑𝑖 𝑗𝑘𝑊𝑟ℎ𝑘 +𝑊0ℎ𝑖 𝑗 ), (8)

where 𝑅𝑚 represents the set of relation types, corresponding to
the number of machines𝑚. The learnable parameters𝑊0 and𝑊𝑟

(𝑟 ∈ 𝑅𝑚) capture these relationships. However, as the number of
machines increases, the parameter matrix𝑊𝑟 grows proportionally,
affecting model training efficiency. To address this, we apply basis
decomposition to reduce the dimensionality of𝑊𝑟 as follows:

𝑊𝑟 =
∑︁𝐵

𝑏=1
𝑎𝑟𝑏𝑉𝑏 , (9)

where the hyperparameter 𝐵 denotes the number of decomposed
blocks,𝑉𝑏 denotes the parameter matrix shared among all relations,
and 𝑎𝑟𝑏 denotes the parameter matrix specific to each relations.

RGCN does not consider the information of undirected edges.
To address this, we convert the processing time 𝑝𝑖 𝑗𝑘 associated
with undirected edges into a distance 𝑑𝑖 𝑗𝑘 ∈ (0, 1) between the
connected operation and machine nodes. Longer processing time
causes the distance between operation and machine nodes to ap-
proach 0. Consequently, machines with longer processing time
exert less influence on the operation nodes during embedding. We
define the computation of the distance 𝑑𝑖 𝑗𝑘 as follows:

𝑑𝑖 𝑗𝑘 = ( | |𝑊𝑑 (ℎ𝑘/𝑝𝑖 𝑗𝑘 ), ℎ𝑖 𝑗 | |cos + 1)/2|𝑁𝑖 𝑗 |, (10)

where the parameter𝑊𝑑 learns the similarity between machine
nodes and operation nodes. | |𝑎, 𝑏 | |cos denotes the computation of
the cosine similarity between vectors 𝑎 and 𝑏. The value of process-
ing time 𝑝𝑖 𝑗𝑘 serves as the scaling factor for the machine feature,
which mitigates the impact of excessively long processing time
on the features of the corresponding operation. |𝑁𝑖 𝑗 | denotes the
number of elements within the neighborhood set 𝑁𝑖 𝑗 .

4.3.2 OS-GNN. ThroughMR-GNN, operation nodes are effectively
embedded the features of their neighboring machine nodes. Since
the agent makes decisions by selecting from all schedulable op-
eration nodes, and due to the sequential scheduling constraints
of the FJSP, these operations necessarily belong to different jobs.
Therefore, we aggregate global information into the schedulable
operation nodes through 𝐺O2O.

Figure 3: An illustration of the directions of node informa-
tion aggregation. The green lines denote the direction of the
same job’s operations, and the blue lines denote the direction
of the different job’s operations.

The classical disjunctive graph does not include directed arcs
connecting operation nodes of different jobs, resulting in the em-
beddings based on the arcs failing to capture the impact of these
operations on the current operation. Therefore, we propose two
new aggregation methods to address this issue. Specifically, opera-
tion nodes from the same job transmit information in the direction
opposite to the directed arcs. We denote the last two nodes sched-
uled from the same job as the first layer, with layers incrementing
forward in the reverse direction of the directed arcs until the next
qualified scheduling node. After aggregating information from op-
erations of the same job, we aggregate information from operations
of different jobs. To prevent redundant aggregation, the information
of aggregated node do not transmit further.

We present an instance in Figure 3 to illustrate the direction of
information aggregation. As shown in Figure 3, the schedulable
operations are 𝑂12, 𝑂22, 𝑂31. Firstly, these operations aggregate in-
formation from successor nodes that are hierarchically layered (i.e.,
𝑂13,𝑂23,𝑂24,𝑂32). Secondly, the nodes aggregate information from
the operations belonging to different jobs and the previously sched-
uled. When aggregating information for𝑂12,𝑂12 also incorporates
the information for 𝑂22, 𝑂31 and 𝑂21. The aggregation for 𝑂22 and
𝑂31 follows the same process as for 𝑂12.

According to the directions of two different aggregations, we
design two aggregation computation methods for operation nodes
from the same job and from different jobs, respectively.

For two neighboring nodes ℎ̄𝑖, 𝑗 and ℎ̄𝑖, 𝑗+1 from the same job at
the 𝑙-th layer, we define the aggregation computation as follows:

ℎ̄
(𝑙+1)
𝑖, 𝑗

=𝑊𝑛 (ℎ̄ (𝑙 )𝑖, 𝑗
+ 𝛾𝑜ℎ̄ (𝑙 )𝑖, 𝑗+1)/2, (11)

where the parameter𝑊𝑛 learns the feature aggregation for neigh-
boring nodes, and the discount factor 𝛾𝑜 aims to diminish the influ-
ence of operations scheduled later on the current operation node.
We define the computation of feature ℎ̄𝑖, 𝑗 for the operation node
awaiting scheduling in the 𝑙th layer as follows:

ℎ̄𝑙𝑖, 𝑗 = 𝜎 ((𝛾𝑜𝑊𝑛/2)𝑙−1ℎ̄ (1)
𝑖,𝑚+𝑙−1 +

𝑙−1∑︁
𝑘=1

𝛾𝑘−1
𝑜 (𝑊𝑛/2)𝑘ℎ̄ (𝑙−𝑘 )𝑖,𝑚+𝑘−1). (12)

For the operation node feature ℎ̄𝑖, 𝑗 and the feature set ℎ̄
′
=

{ℎ̄1, ℎ̄2, ..., ℎ̄𝑛′ } composed of the other schedulable operation nodes,
we define the aggregation computation as follows:

ℎ̄𝑖, 𝑗 = LeakyReLU(𝑊𝑑 ·mean(ℎ̄𝑖, 𝑗 | |𝛾𝑜ℎ̄1 | |...| |𝛾𝑜ℎ̄𝑛′ )), (13)
5
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Algorithm 1: Aggregate the operation features in 𝐺O2O

Input: 𝐺𝑂2𝑂 = (𝑂,𝐶), set of indices for 𝑛 schedulable
nodes 𝑂𝐿 , discount factor 𝛾𝑜

Output: schedulable node feature set 𝐿
1 𝐿𝑛 ← [ ] // save the embedded features

2 for 𝑖 ← 1 to n do
3 𝑂𝑖 ← features of the 𝑖th node and its successor nodes
4 for 𝑖𝑜 ← len(𝑂𝑖 ) to 2 do
5 𝐿𝑛 .append(Aggeration_1(𝑂𝑖 [𝑖𝑜 ],𝑂𝑖 [𝑖𝑜 − 1], 𝛾𝑜 ))

// according to Eq.(11)
6 end
7 end
8 for 𝑖𝑡𝑒𝑟1 ← 1, 𝑖𝑡𝑒𝑟2 ← 1 to n do
9 𝐿.append(Aggeration_2(𝐿𝑛 [𝑖𝑡𝑒𝑟1], 𝐿𝑛 [𝑖𝑡𝑒𝑟2]))

// according to Eq.(13)
10 end

where 𝑎 | |𝑏 denotes the concatenation of vectors 𝑎 and 𝑏. The pa-
rameter𝑊𝑑 learns the embedding of the operation features from
different jobs, and the discount factor 𝛾𝑜 is designed to mitigate the
influence of other nodes to be aggregated on the current node.

In summary, we mitigate the impact of operations scheduled
late by aggregating information from operations within the same
job into schedulable operations. The aggregation across different
jobs treats each schedulable operation as the next to be scheduled,
incorporating long-term benefits into the aggregated information.
The embedding algorithm is detailed in Algorithm 1.

4.4 Training Process
We adopt an actor-critic framework [39] to train our model, where
the actor guides the agent to select machines and operations to
schedule via the policy network, while the critic evaluates the value
of the agent’s decision via the value network.

The actor generates decision policy and selects actions. First, we
concatenate the output operation features from OS-GNN to form
the feature ℎ𝑠𝑘𝑑 as [ℎ̄1 | |ℎ̄2 | |...| |ℎ̄𝑛′ ]. Next, we pass ℎ𝑠𝑘𝑑 into policy
network to determine the action 𝑎𝑝 in the current state 𝑠𝑝 . The
computation for the policy network 𝜋 (𝑎 |𝑠;𝜃 ) is defined as:

𝜋 (𝑎𝑝 |𝑠𝑝 ;𝜃 ) = 𝑒𝑆⊙(𝑊𝜃 ·fl(ℎ𝑠𝑘𝑑 ) )∑𝑛
1
∑𝑚

1 𝑒𝑆⊙(𝑊𝜃 ·fl(ℎ𝑠𝑘𝑑 ) )
, (14)

where fl(𝑎) flattens the feature matrix 𝑎 along the first dimension. 𝑆
is a set of masks determining machine availability for scheduling. 𝑆𝑖
represents a row-wise slice of 𝑆 , with elements set to 1 if the corre-
sponding machine is idle, and 0 otherwise. ⊙ denotes element-wise
multiplication. The learnable parameter𝑊𝜃 consists of a Multilayer
Perceptron (MLP) with a single hidden layer and two non-linear
activation layers.

The critic evaluates the value 𝑉 of the policy by the value net-
work. We define the value network 𝑉 (𝑠;𝜔) as follows:

𝑉 (𝑠𝑝 ;𝜔) =𝑊𝜔 (pool(ℎ𝑠𝑘𝑑 )), (15)

where the function pool denotes the averaging pooling method ap-
plied to each operation feature. The parameters𝑊𝜔 are constructed
similarly to𝑊𝜃 except for the last layer.

The objective of the actor is to maximize the mathematical ex-
pectation of the return obtained by policy. We utilize Generalized
Advantage Estimation (GAE) [34] to estimate the advantage func-
tion 𝐴𝑝 for state 𝑠𝑝 as the total return, as follows:

𝐴𝑝 =

∞∑︁
𝑘=0
(𝛾𝜆)𝑘 (𝑟𝑝+𝑘+1 + 𝛾𝑉 (𝑠𝑝+𝑘+1;𝜔) −𝑉 (𝑠𝑝+𝑘 ;𝜔)), (16)

where 𝜆 denotes the decay parameter to reduce variance and bias.
We employ PPO algorithm [35] to limit the step size of policy
updates. We define the loss function 𝐿𝜃 of policy network as follows:

𝐿𝜃 =
1
𝑁

𝑁∑︁
𝑖=1

min(𝑟𝑝𝑖 (𝜃 )𝐴𝑝𝑖 ,Clip(𝑟𝑝𝑖 (𝜃 ) , 1 − 𝜖, 1 + 𝜖)𝐴𝑝𝑖 ), (17)

𝑟𝑝𝑖 (𝜃 ) = exp(log𝜋 (𝑎𝑝 |𝑠𝑝 ;𝜃 ) − log𝜋 (𝑎𝑝 |𝑠𝑝 ;𝜃𝑜𝑙𝑑 )), (18)
where𝑁 denotes the total number of samples, 𝑝𝑖 denotes the current
step of the 𝑖th sample, 𝑟𝑝𝑖 (𝜃 ) denotes the probability ratio of the
𝑖th sample before and after policy update. 𝑟𝑝𝑖 (𝜃 ) calculates the
probability ratio by the log probability as shown in Eq. (18). The
function Clip constrains the probability ratio to the [1 − 𝜖, 1 + 𝜖]
interval, where 𝜖 is a hyperparameter.

The objective of the critic is to minimize the difference between
the estimate of the value network and the actual return. We define
the loss function 𝐿𝜔 of value network as follows:

𝐿𝜔 =
1
𝑁

𝑁∑︁
𝑖=1
(𝑉 (𝑠𝑝𝑖 ;𝜔) −𝐺𝑝𝑖 )2 . (19)

5 Experiments
This section presents a comprehensive evaluation of our method.
We begin by detailing the experimental configuration, baseline
models, and benchmark datasets used in our experiments. Then,
we compare the performance of DOAGNN to the baseline models.
Next, we assess the generalization capability of DOAGNN across
FJSPs of varying sizes. Finally, we conduct ablation studies focusing
on our DOAGNN and reward function.

5.1 Basic Problem Statement
In this subsection, we sequentially introduce the experimental con-
figuration in our model training, describe the selected baselines,
and detail the composition of the selected benchmarks.

5.1.1 Experimental Configuration. All experiments are conducted
on a platform consists of an Intel I9-12900K processor with 24 cores,
64GBmemory, and an RTX4090 GPUwith 24GB VRAM.We present
the detailed parameter settings in Appendix C.

5.1.2 Baselines. Weemploy seven state-of-the-art (SOTA) RL-based
methods, two heuristic methods and four dispatching rules for solv-
ing FJSPs as baselines for performance comparisons.

The following is a brief overview of the seven selected RL-based
methods. Han et al.[15] proposed a Modified Pointer Network
(MPN) for solving FJSPs. Feng et al.[11] introduced an actor-critic
framework optimized with PPO to tackle FJSPs, termed PPO4FJSP.
Zeng et al.[52] developed a Graph Isomorphism Network (GIN) to
extract operation features, optimizing the model using the Asyn-
chronous Advantage Actor-Critic algorithm (MTA3C). Lei et al.[21]
presented aMulti-Pointer GraphNetwork (MPGN) for solving FJSPs.
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Table 1: Performance of our DOAGNN on the Brandimarte dataset.

𝑛 ×𝑚 10 × 6 10 × 6 15 × 8 15 × 8 15 × 4 10 × 15 20 × 5 20 × 10 20 × 10 20 × 15
MK01 MK02 MK03 MK04 MK05 MK06 MK07 MK08 MK09 MK10

AVE GAP
LB 40 26 204 60 172 58 139 523 307 198

MWKR×EET 51(27.5%) 41(57.7%) 210(2.9%) 99(65%) 202(17.4%) 112(93.1%) 215(54.7%) 579(10.7%) 384(25.1%) 291(47%) 26.5%
MWKR×LWT 57(42.5%) 41(57.7%) 234(14.7%) 90(50%) 211(22.7%) 114(96.6%) 219(57.6%) 631(20.7%) 397(29.3%) 294(48.5%) 32.5%
MOPNR×EET 49(22.5%) 42(61.5%) 219(7.4%) 84(40%) 201(16.9%) 107(84.5%) 220(58.3%) 537(2.7%) 355(15.6%) 286(44.4%) 21.6%
MOPNR×LWT 51(27.5%) 43(65.4%) 230(12.8%) 83(38.3%) 192(11.6%) 118(103.5%) 227(63.3%) 551(5.4%) 381(24.1%) 302(52.5%) 26.1%

MPN [15] 44(10%) 28(7.7%) 245(20.1%) 74(23.3%) 193(12.2%) 123(112.1%) 216(55.4%) 523(0%) 386(25.7%) 337(70.2%) 25.6%
PPO4FJSP [11] 42(5%) 32(23.1%) 204(0%) 78(30%) 187(8.7%) 90(55.1%) 169(21.6%) 531(1.5%) 349(13.7%) 279(40.9%) 13.6%
MTA3C [52] 48(20%) 34(30.8%) 235(15.2%) 77(28.3%) 192(11.6%) 78(34.5%) 190(36.7%) 544(4%) 375(22.2%) 256(29.3%) 17.49%
MPGN [21] 47(17.5%) 30(15.4%) 204(0%) 76(26.7%) 178(3.5%) 79(36.2%) 152(9.4%) 541(3.4%) 335(9.1%) 236(19.2%) 8.7%
HGNN [37] 44(10%) 31(19.2%) 211(3.4%) 78(30%) 183(6.4%) 74(27.6%) 156(12.2%) 524(0.2%) 326(6.2%) 241(21.7%) 8.2%
DRL-AC [56] 41(2.5%) 28(7.7%) 206(1%) 88(46.7%) 175(1.74%) 93(60.3%) 213(53.2%) 525(0.4%) 361(17.6%) 277(40%) 16.2%
LMDRL [51] 49(22.5%) 43(65.4%) 216(5.9%) 75(25%) 190(10.5%) 103(77.6%) 212(52.5%) 523(0%) 349(13.7%) 264(33.3%) 17.2%
DOAGNN 41(2.5%) 33(26.9%) 204(0%) 66(10%) 177(2.9%) 83(43.1%) 174(25.2%) 523(0%) 311(1.3%) 244(23.2%) 7.4%

Song et al.[37] designed a Heterogeneous Graph Neural Network
(HGNN) to manage embeddings of machine and operation features.
Zhao et al.[56] proposed a Deep Reinforcement Learning (DRL)
framework based on an actor-critic architecture (DRL-AC) for FJSPs.
Yuan et al. [51] utilized a lightweight MLP within a DRL framework
(LMDRL) and employed PPO to optimize model parameters.

The two selected heuristic methods are recent genetic algorithm
and jaya algorithm. Caldeira et al. [6] integrate jaya algorithm with
a local search technique and an acceptance criterion (IJA) to solve
FJSPs. Rooyani et al. [32] develop an efficient two-stage genetic
algorithm (2SGA) for FJSPs.

The dispatching rules used include four types: MWKR × EET,
MOPNR × EET, MWKR × LWT, and MOPNR × LWT. MWKR and
MOPNR represent selecting jobs with the most work remaining
and the most operations remaining, respectively. EET and LWT
represent selecting machines with the earliest end time and the
least total processing time, respectively.

5.1.3 Benchmarks. Weutilize two publicly available datasets: Hurink
dataset [18], and Brandimarte dataset, serving as benchmarks in
accordance with previous studies [11, 15, 21, 37, 51, 52, 56]. Hurink
dataset comprises three sets of data with different scales (Edata,
Rdata, Vdata), where the scale refers to the average number 𝑛𝑢𝑚
of operations executable on each machine with 𝑛𝑢𝑚Edata = 1.15,
𝑛𝑢𝑚Rdata = 2 and 𝑛𝑢𝑚Vdata = 5. Each set of data consists of 40
instances (La01-La40) and is divided into 8 different sizes. Brandi-
marte dataset consists of 10 instances (MK01-MK10), collectively
representing 7 different sizes. These instances of different sizes
feature varying numbers of jobs and machines (𝑛 ×𝑚).

During DOAGNN training, we generate instances of each size
for training and validation, retaining the policy that performs best
on the validation set. This policy is then tested on the correspond-
ing sizes in Hurink and Brandimarte datasets to assess DOAGNN’s
performance on out-of-distribution instances. In the generated in-
stances, processing times range from [1, 20], the number of com-
patible machines per operation ranges from [1,𝑚], and the number
of operations per job ranges from [4, 12]. The training data is ran-
domly sampled from these intervals.

5.2 Experiment Results and Analysis
In this subsection, we analyze DOAGNN’s performance, evaluate
its generalization capability, and conduct ablation studies on both
the model and reward function.

5.2.1 Performance comparison. We present the results of the ex-
periments in Table 1 and Table 2, where "LB" denotes the optimal
or best-known solution for each instance. The full performance of
DOAGNN on the Hurink dataset is detailed in Appendix D. The
tables show the makespan for each instance, with values in paren-
theses representing the relative difference from the LB. The best
results for each dataset are highlighted in bold.

Firstly, as shown in Table 1, RL-based methods generally out-
perform traditional dispatching rules due to their ability to learn
more sophisticated scheduling policies. DOAGNN’s results stand
out, averaging a 7.16% improvement in solution quality over ex-
isting RL-based methods. This significant margin highlights the
competitiveness and robustness of the scheduling policies learned
by DOAGNN, further reinforcing its effectiveness in solving FJSPs.
Although HGNN [37] and MPGN [21] models achieve better perfor-
mance on certain datasets, they are at a disadvantage on datasets
with more complex data compositions (e.g., Hurink dataset Vdata).
This is because a single GNN struggles to balance the capture of
features representing each state and the consideration of long-term
benefits, whereas the dual-model architecture of DOAGNN utilizes
two GNNs to learn these aspects separately.

As shown in Table 2, DOAGNN surpasses the four baselines
across three datasets with varying operation compatibilities. To fa-
cilitate a better comparison of the strategies learned by the models,
the results of DOAGNN and all RL-based baselines are obtained
using a greedy strategy. The Vdata dataset, which presents a greater
challenge due to a higher average number of machine choices per
operation, further emphasizes the complexity of the scheduling
problem. DOAGNN’s marked superiority on this dataset highlights
its capability in handling more complex scenarios. This effective-
ness is largely attributed to the mechanism of MR-GNN, which
embeds comprehensive machine information into operation fea-
tures, thereby enhancing the model’s ability to accurately capture
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Figure 4: Performance and runtime of our DOAGNN on the
Hurink dataset Vdata.

Table 2: Performance of our DOAGNN on the Hurink dataset.

Edata Rdata Vdata
LB 1028.9 934.3 919.5

MWKR×EET 1492.8(45.09%) 1172.7(25.52%) 992.6(7.95%)
MWKR×LWT 1482(44.04%) 1174.7(25.73%) 1028.7(11.88%)
HGNN [37] 1201.4(16.77%) 1032.9(10.55%) 956.4(4.01%)
LMDRL [51] 1187.9(15.45%) 1041.8(11.51%) 963.8(4.82%)
DOAGNN 1169.2(13.64%) 1015.6(8.7%) 940.1(2.24%)

and leverage the relationships between operations and machines
during decision-making.

5.2.2 Run Time Analysis. As shown in Figure 4, we presents the
performance and the average time of DOAGNN compared to three
RL-based methods and two heuristic methods on the Hurink dataset
Vdata. It is evident that heuristic methods explore the solution space
to find higher-quality solutions; however, they consume more time
compared to RL-based methods. DOAGNN retains the advantage
of rapid inference associated and achieves excellent results within
a reasonable time frame.

5.2.3 Generalization Ability. We conduct a generalization experi-
ment using Hurink dataset Vdata la31-35 instances of size 30 × 10.
To validate the model’s ability to generalize to large-sized and un-
known instances, we train DOAGNN on instances of size 10 × 5,
then test the resulting policy on Vdata la31-35. Both HGNN [37]
and LMDRL [51] are trained on instances of size 30 × 10, and the
resulting policies are tested on Vdata la31-35. As shown in Table 3,
our DOAGNN outperforms all baselines in the generalized results.
Notably, we adjust the parameter shapes based on the number of
machines during the basis decomposition (see Eq. (9)), which neces-
sitates the use of zero-padding for the parameter𝑊𝑟 . By effectively
adapting most parameters, knowledge from previous instances is
successfully transferred to unknown instances, demonstrating the
superior generalization capability of our DOAGNN.

5.2.4 Ablation studies. We conduct ablation studies on Brandi-
marte dataset to evaluate the effectiveness of our DOAGNN. In
these experiments, we separately retained either the OS-GNN or the
MR-GNN components of DOAGNN and also tested using raw state
information without embedding it through our GNNs. As shown
in Table 4, the solutions obtained using raw state information are
inferior to other models, indicating the crucial role of incorporating
machine information and the transmission of operation data. These

Table 3: Generalization performance of our DOAGNN.

Vdata la31 la32 la33 la34 la35
LB 1520 1658 1497 1537 1549

MWKR×EET 1591(4.7%) 1737(4.8%) 1588(6.1%) 1582(2.9%) 1600(3.3%)
MWKR×LWT 1618(6.5%) 1781(7.4%) 1574(5.1%) 1645(7%) 1681(8.5%)
MPGN [21] 1561(0.7%) 1693(2.1%) 1531(2.3%) 1562(1.6%) 1574(1.6%)
HGNN [37] 1565(3%) 1714(3.4%) 1529(2.1%) 1574(2.4%) 1612(4.1%)
LMDRL [51] 1575(3.6%) 1726(4.1%) 1531(2.3%) 1594(3.7%) 1575(1.7%)

DOAGNN∗30×10 1552(2.1% 1668(0.6%) 1511(0.94%) 1555(1.2%) 1564(1%)
DOAGNN10×5 1549(1.9%) 1691(2%) 1519(1.5%) 1555(1.2%) 1573(1.6%)
∗ : DOAGNN30×10 is trained on instances of size 30×10 , while DOAGNN10×5 is
trained on instances of size 10×5 .

Table 4: Ablation studies of DOAGNN on the Brandimarte
dataset.

BASELINE LB MR-GNN OS-GNN RawFeatures DOAGNN
AVERAGE 172.7 187.4(8.5%) 189.7(9.8%) 191.2(10.7%) 185.6(7.4%)

Table 5: Ablation studies of our reward function on Brandi-
marte dataset.

BASELINE LB 𝑟𝑡𝑔𝑡 𝑟𝑎𝑣𝑒 𝑟𝑢𝑡𝑖𝑙 𝑟𝑡 |𝑎 |𝑢
AVERAGE 172.7 194.7(12.7%) 209.1(21.1%) 205.6(19.1%) 185.6(7.4%)

findings also highlight the effectiveness of the dual-network archi-
tecture in DOAGNN for enhancing training quality. Additionally,
MR-GNN outperformed OS-GNN in scheduling performance, likely
because, although information transmission within operations is
limited, the operation features alone can only partially compensate
for the absence of machine information, which is critical for making
informed machine selection decisions.

Additionally, we conduct ablation studies to evaluate the perfor-
mance of using different reward functions (i.e. 𝑟𝑡𝑔𝑡 , 𝑟𝑎𝑣𝑒 , 𝑟𝑢𝑡𝑖𝑙 and
𝑟𝑡𝑔𝑡 +𝑟𝑎𝑣𝑒 +𝑟𝑢𝑡𝑖𝑙 (abbreviated as 𝑟𝑡 |𝑎 |𝑢 )) on the Brandimarte dataset.
Notably, 𝑟𝑡𝑔𝑡 is a commonly used reward function in the scheduling
problem, following [37, 51, 53]. As the results presented in Table 4,
our reward 𝑟𝑡 |𝑎 |𝑢 outperforms the other rewards, highlighting the
effectiveness of incorporating the objectives of maximizing comple-
tion time and reducing machine utilization into our reward function.
We present the results and analysis of the differing sparseness of
reward 𝑟𝑡𝑔𝑡 and 𝑟𝑡 |𝑎 |𝑢 in Appendix E.

6 Conclusion
We propose a model named DOAGNN with a new reward to solve
FJSPs. The dual-model architecture of DOAGNN can better balance
the capture of features representing each state and the improvement
of long-term benefits. Furthermore, our reward function reduces
estimation errors and alleviates the issue of sparse rewards. Experi-
mental results demonstrate that our DOAGNN exhibits excellent
performance and shows remarkable generalization capabilities.

Although the offline training mode is often adopted in practical
applications of FJSP, the dual-model architecture poses a relatively
high computational cost during training. In future work, we con-
sider directly predicting scheduling trends based on relationships
between state changes, thereby reducing the training cost.
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A Details of state
The operation and machine states are encoded by the information
from their respective nodes. In this paper, these state encodings
are used as initial features input to the DOAGNN. We detail the
composition of the operation and machine states as follows.

The meaning of each dimension in the state encoding for each
operation is as follows: 1 if the operation has been scheduled, oth-
erwise 0; the number of available machines for scheduling; the
number of unscheduled operations within the same job; the esti-
mated/actual start time (see Eq. (1)); the average processing time on
all available machines; the estimated/actual end time (see Eq. (2)).

The meaning of each dimension in the state encoding for each
machine is as follows: the end time of the nearby scheduled opera-
tion (the current total processing time of the machine); the number
of schedulable operations; the ratio of machine idle time to its cur-
rent total processing time; and the ratio of current total processing
time to the maximum processing time of all machines.

B Reward analysis
We analyze the components to be added to the reward based on
the differences in two scheduling results. We present two sched-
uling results on the la05 dataset of Hurink Dataset Vdata [18] in
Figure 5: one generates by our model (labeled as A) and the other
obtains through dispatching rules MWKR×EET (labeled as B). As

shown, the results demonstrate that the scheduling result of group
A significantly outperforms that of B. In scheduling result B, there
exists a significant gap in completion time across different machines,
with machines (𝑀2,𝑀3,𝑀4,𝑀5) remaining partially idle during the
scheduling. Based on these findings, under the holistic scheduling
goal of min(𝐶max), we consider simultaneously reducing machine
idle time and increasing both maximum and minimum completion
time. Reducing machine idle time encourages the agent to increase
machine utilization when selecting machines. However, relying
solely on this objective causes the agent to overlook the varying
processing time across different machines. This results in the agent
ignoring machines with shorter processing time but lower utiliza-
tion rates, leading to repetitive processing on a subset of machines
and neglecting the overall scheduling scenario. Consequently, we
propose a objective to increase the minimum completion time,
which promotes diversity in machine selection and ensures a more
even distribution of processing operations across all machines. How-
ever, focusing only on increasing the minimum completion time
results in neglecting the overall scheduling scenario and potentially
underutilizing certain machines. Therefore, both the minimization
of maximum completion time and the maximization of machine
utilization should be considered as complementary objectives.

C The setting of parameters
We present the hyperparameter settings used in our experiment
are shown in Table 6.

Table 6: Basic settings of our experiments.

batch size 64

dimension of hidden layers in actor/critic networks 64

dimension of hidden layers in GNNs 128

the ratio of rewards:𝜆1 : 𝜆2 : 𝜆3 1:0.8:0.3

optimizer Adam

initial learning rate 0.0003

the number of blocks in matrix factorization:B 3

clipping ratio in 𝑐𝑙𝑖𝑝 :𝜖 0.2

decay parameter in GAE:𝜆 0.9

node dimensions embedded in GNNs 12

operations/machines node initial feature dimension 10/5

maximum number of iterations 300

discount factor in discounted return:𝛾 0.95

discount factor in OS-GNN:𝛾𝑜 0.9

In a complete MDP, the total value obtained by 𝑟𝑡𝑔𝑡 corresponds
to the maximum makespan, while the total value obtained by 𝑟𝑎𝑣𝑒
corresponds to the minimum completion time. For a gradually con-
verging model, the 𝑟𝑡𝑔𝑡 values fluctuate slightly within the neigh-
borhood of min(𝐶𝑖 𝑗 )∑

𝑛𝑖
, whereas the 𝑟𝑎𝑣𝑒 values fluctuate within the

neighborhood of max(𝐶𝑖 𝑗 )∑
𝑛𝑖

. The gap between 𝑟𝑡𝑔𝑡 and 𝑟𝑎𝑣𝑒 varies
depending on the dataset and the quality of the scheduling re-
sults, generally not exceeding 10%. The sensitivity of 𝑟𝑢𝑡𝑖𝑙 exhibits
differences across various datasets. In the Hurink dataset Vdata,
complex selections enable machines to have stronger compatibility
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Figure 5: Gantt charts of the two scheduling results on the Hurink Dataset Vdata la05.

Figure 6: Sparseness of different reward functions.

with operations, resulting in a machine idle rate approaching 0
in most high-quality scheduling results. Consequently, increasing
the weight of 𝑟𝑢𝑡𝑖𝑙 (𝜆3) can better guide the scheduling process. In
contrast, in the Brandimarte dataset MK10, the idle rate disparities
among scheduling results of varying quality remain minimal, ne-
cessitating a decrease in 𝜆3. To ensure better compatibility across
all datasets, we set the ratios of 𝜆1 : 𝜆2 : 𝜆3 to 1:0.8:0.3.

D Performance of DOAGNN on the Hurink
dataset

The complete performance of DOAGNN on the Hurink dataset is
shown in Table 7. Due to the space limit, we represent the models
HGNN [37], LMDRL [51] and MPGN [21] as 𝑅𝐿1, 𝑅𝐿2 and 𝑅𝐿3,
respectively. The dispatching rules MWKR×EET and MWKR×LWT
are referred to as 𝑟𝑢𝑙𝑒1 and 𝑟𝑢𝑙𝑒2, respectively.

E Analysis of reward sparsity
Additionally, we evaluate the performance of the reward 𝑟𝑡𝑔𝑡 and
𝑟𝑡 |𝑎 |𝑢 in terms of sparsity. Our experiment is conducted on 100 FJSP
instances, each with a size of 20 × 10 and a total of 194 operations
(i.e., 194 steps). The sparsity of the reward is computed based on
the reward vector 𝑅 obtained by the agent at each step. We define
sparsity by measuring the difference between the 𝐿1 norm and the

𝐿2 norm of 𝑅 [17], as follows:

Sparseness(𝑅) =

√
𝑛 − (∑𝑛

𝑥=1 |𝑅𝑥 |)/
√︃∑𝑛

𝑥=1 𝑅
2
𝑥

√
𝑛 − 1

, (20)

where 𝑛 is the dimensionality of the reward vector 𝑅, and 𝑅𝑥 rep-
resents the 𝑥-th element in 𝑅. Sparseness(𝑅) ranges from [0, 1],
where a higher value indicates greater sparsity of 𝑅. Specifically,
we define sparseness(𝑅) to be 1 when 𝑅 is a zero vector.

Figure 6 shows that our reward function reduces sparseness to
approximately 1/3 of 𝑟𝑡𝑔𝑡 as the steps progress, indicating more
consistent and informative feedback during the learning process.
This advantage results from the inclusion of 𝑟𝑎𝑣𝑒 and 𝑟𝑢𝑡𝑖𝑙 , which
align the reward more closely with scheduling objectives, leading
to better-guided decision-making by the agent.
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Table 7: Performance of our DOAGNN on the Hurink dataset.

Edata Rdata Vdata
𝑛 ×𝑚 LB ours 𝑅𝐿1 𝑅𝐿2 𝑟𝑢𝑙𝑒1 𝑟𝑢𝑙𝑒2 LB ours 𝑅𝐿1 𝑅𝐿2 𝑟𝑢𝑙𝑒1 𝑟𝑢𝑙𝑒2 LB ours 𝑅𝐿1 𝑅𝐿2 𝑅𝐿3 𝑟𝑢𝑙𝑒1 𝑟𝑢𝑙𝑒2

la01 609 621 688 658 866 882 571 617 616 663 709 687 570 599 609 612 610 660 642
la02 655 771 851 809 982 992 530 555 598 666 694 695 529 544 582 601 555 662 587

10 × 5 la03 550 653 657 660 692 988 478 520 507 525 623 565 477 512 517 533 532 544 595
la04 568 674 660 669 872 836 502 563 533 573 633 624 502 544 554 556 530 598 659
la05 503 541 530 593 737 599 457 476 504 500 540 507 457 491 493 525 507 578 614

Average Gap 12.99% 17.36% 17.47% 43.81% 48.94% 7.6% 8.66% 15.32% 26.04% 21.27% 6.11% 8.67% 11.51% 7.85% 20% 22.17%
la06 833 895 926 951 1030 955 799 836 850 856 912 848 799 817 859 888 820 890 938
la07 762 890 910 896 1065 1063 750 776 787 825 846 908 749 768 785 802 757 816 811

15 × 5 la08 845 900 969 947 1267 1162 765 801 804 820 960 829 765 773 805 783 782 848 853
la09 878 912 1046 946 1229 1085 853 882 875 885 1068 940 853 874 862 887 879 931 939
la10 866 888 883 886 1167 1032 804 854 832 870 973 920 804 824 839 843 862 867 871

Average Gap 7.19% 13.14% 10.56% 37.62% 26.6% 4.48% 4.45% 7.17% 19.84% 11.93% 2.16% 4.53% 5.86% 3.27% 9.62% 11.13%
la11 1103 1211 1172 1213 1451 1274 1071 1083 1135 1131 1157 1156 1071 1079 1114 1119 1101 1153 1117
la12 960 1041 1001 1065 1282 1154 936 952 957 977 1050 1086 936 968 967 977 950 1015 1014

20 × 5 la13 1053 1150 1215 1164 1392 1270 1038 1060 1107 1051 1120 1127 1038 1051 1076 1082 1053 1084 1136
la14 1123 1163 1191 1234 1447 1487 1070 1106 1107 1110 1161 1201 1070 1103 1099 1088 1086 1113 1119
la15 1111 1297 1301 1297 1541 1389 1090 1133 1228 1236 1202 1282 1089 1098 1104 1110 1111 1111 1152

Average Gap 9.57% 9.9% 11.64% 32.95% 22.87% 2.47% 6.32% 5.76% 9.31% 12.43% 1.82% 2.99% 3.3% 1.86% 5.22% 6.41%
la16 892 1010 1059 1051 1351 1414 717 815 794 821 984 968 717 731 753 727 717 767 726
la17 707 819 781 773 1039 1016 646 750 731 720 794 825 646 674 658 648 647 659 728

10 × 10 la18 842 939 944 934 1089 1153 666 784 814 766 920 888 663 663 663 663 663 680 704
la19 796 981 950 972 1100 1234 700 839 884 812 885 1023 617 650 654 639 626 647 757
la20 857 974 1007 1004 1317 1199 756 883 943 878 1117 1001 756 766 756 766 756 766 807

Average Gap 15.36% 15.8% 15.63% 44.01% 46.94% 16.81% 19.54% 14.69% 34.86% 35% 2.5% 2.5% 1.29% 0.294% 3.53% 9.5%
la21 1017 1264 1243 1256 1363 1594 835 946 989 967 1096 1146 804 840 839 891 887 926 1043
la22 882 1038 977 1070 1310 1208 760 876 857 893 1072 1132 736 768 812 809 793 817 857

15 × 10 la23 950 1072 1131 1137 1396 1394 842 947 956 1010 1137 1146 815 837 868 872 858 895 957
la24 909 1047 1112 1086 1527 1360 808 937 958 928 1095 1085 775 794 803 873 883 879 904
la25 941 1059 1139 1102 1401 1629 791 888 895 939 1172 1130 756 807 809 840 883 877 926

Average Gap 16.62% 19.21% 20.26% 48.9% 52.9% 13.82% 15.33% 17.36% 38.05% 39.71% 4.11% 6.3% 10.26% 10.75% 13.07% 20.61%
la26 1125 1290 1338 1348 1647 1674 1061 1155 1173 1175 1292 1406 1054 1064 1073 1110 1089 1145 1165
la27 1186 1390 1485 1423 1863 1916 1091 1182 1225 1214 1314 1482 1084 1115 1133 1131 1123 1151 1233

20 × 10 la28 1149 1348 1441 1344 1769 1609 1080 1159 1199 1175 1343 1422 1070 1079 1100 1106 1106 1171 1191
la29 1118 1331 1353 1359 1741 1807 998 1070 1101 1111 1387 1273 994 1019 1027 1076 1049 1178 1138
la30 1204 1423 1459 1410 1846 1863 1078 1200 1227 1275 1361 1382 1069 1087 1106 1143 1117 1223 1215

Average Gap 17.29% 22.38% 19.05% 53.33% 53.39% 8.62% 11.62% 12.09% 26.16% 31.21% 1.76% 3.18% 5.59% 4.04% 11.32% 12.73%
la31 1539 1751 1720 1755 2170 2153 1521 1598 1591 1636 1829 1840 1520 1552 1565 1575 1561 1591 1618
la32 1698 1934 1962 1904 2530 2490 1659 1732 1798 1765 1913 1931 1658 1668 1714 1726 1693 1737 1781

30 × 10 la33 1547 1706 1776 1785 2396 2228 1499 1557 1568 1542 1891 1700 1497 1511 1529 1531 1531 1588 1574
la34 1604 1898 1821 1817 2183 2349 1536 1596 1577 1686 1747 1767 1537 1555 1574 1594 1562 1582 1645
la35 1736 1911 1967 2080 2547 2498 1550 1616 1692 1706 1773 1764 1549 1564 1612 1575 1574 1600 1681

Average Gap 13.24% 13.81% 14.98% 45.56% 44.23% 4.3% 5.93% 7.34% 17.87% 15.93% 1.14% 3% 3.09% 2.06% 4.34% 6.93%
la36 1162 1367 1334 1295 1675 1775 1030 1247 1296 1229 1372 1411 948 958 993 973 985 976 1106
la37 1397 1582 1650 1531 1987 2177 1077 1243 1210 1294 1488 1528 986 1010 1069 1024 1028 1006 1155

15 × 15 la38 1144 1379 1507 1370 1810 1690 962 1098 1128 1107 1389 1516 943 955 945 943 948 981 1069
la39 1184 1357 1547 1412 1757 1884 1024 1153 1174 1228 1452 1455 922 936 951 942 979 1026 1054
la40 1150 1293 1353 1311 1877 1798 970 1139 1098 1108 1435 1392 955 956 985 967 968 965 1066

Average Gap 15.58% 22.42% 14.61% 50.83% 54.44% 16.13% 16.65% 17.83% 40.94% 44.22% 1.28% 3.97% 1.99% 3.23% 4.2% 14.64%
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