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ABSTRACT

Retrieval-Augmented Generation (RAG) has emerged as an important means for enhancing
the performance of large language models (LLMs) in knowledge-intensive tasks. However,
most existing RAG strategies treat retrieved passages as flat and unstructured text, which
prevents the model from capturing structural cues and constrains its ability to synthesize
dispersed evidence and to reason across documents. Although a few recent approaches
attempt to incorporate structural signals, each remains restricted to shallow representations
such as entity graphs or dependency edges and thus fails to capture hierarchical discourse
organization. To overcome these limitations, we propose Discourse-RAG, a structure-aware
framework that explicitly injects discourse signals into the generation process. Our method
constructs intra-chunk rhetorical structure theory (RST) trees to capture local coherence
hierarchies and builds inter-chunk rhetorical graphs to model cross-passage discourse
flow. These structures are jointly integrated into a planning blueprint that conditions
the generation. Experiments on question answering and long-document summarization
benchmarks show the efficacy of our approach. Discourse-RAG achieves a new state-of-the-
art ROUGE-L score of 42.4 on ASQA dataset and improves LLM Score by 12.79 points
over standard RAG on Loong benchmark. These findings underscore the important role
of discourse structure in advancing retrieval-augmented generation. Code is available at
https://anonymous.4open.science/r/Discourse-RAG.

1 INTRODUCTION

The advent of large language models (LLMs), including LLaMA (Touvron et al., 2023), Qwen (Yang et al.,
2025), and GPT series (Achiam et al., 2023), has promoted research progress in Natural Language Processing
(NLP), achieving competitive performance across a wide range of tasks such as question answering (Wu
et al., 2025a; Lee et al., 2025a; Zhang et al., 2025b), summarization Mondshine et al. (2025); Liu et al.
(2025a); Wang et al. (2025a); Luo et al. (2025), and text generation (Duong et al., 2025; Bigelow et al.,
2025; Que & Rong, 2025; Zhang et al., 2025a). However, due to the reliance on static training corpora,
LLMs are insufficient in knowledge-intensive scenarios (Chang et al., 2025; Lee et al., 2025b; Yue et al.,
2025). Challenges arise in handling domain-specific knowledge, proprietary data, or information that requires
real-time updates (Wang et al., 2024b; Xia et al., 2025). Retrieval-Augmented Generation (RAG) has
been proposed as a suitable solution by integrating an external knowledge injection component through
retrieval-based mechanisms (Lewis et al., 2020; Asai et al., 2024; Chan et al., 2024).

In terms of RAG pipelines, external documents are segmented into chunks, which are then encoded into
vectors and stored in a database. At query time, relevant chunks are retrieved to provide contextual grounding
for the LLM (Lewis et al., 2020). One important but insufficiently addressed limitation of existing RAG
systems concerns the mismatch between retrieval granularity and generative understanding. While retrieval
modules return semantically relevant chunks, these chunks are often fragmented in discourse, which is like
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scattered pieces of evidence without clear logical connections (Edge et al., 2024; Su et al., 2025). This issue
manifests at two levels. First, intra-chunk structural blindness: within each chunk, models often fail to
capture internal coherence. As depicted in Figure 1 (left), Chunk A mentions a “12% lower incidence,” while
Chunk B notes “no significant overall effect.” Without recognizing that the former is a conditional finding (e.g.,
among deficient adults in winter), the model tends to overgeneralize and incorrectly conclude that “vitamin D
reduces flu risk.” Second, inter-chunk coherence gaps: across multiple chunks, RAG systems struggle to
identify rhetorical connections between segments. This deficiency prevents effective resolution of conflicting
claims, as standard approaches lack the capacity to organize retrieved evidence through higher-level discourse
relations, as shown in Figure 1. Prior relevant methods, including semantic chunking (Wang et al., 2025c; Qu
et al., 2025; Zhao et al., 2025) and graph-based RAG (Edge et al., 2024; Nigatu et al., 2025; Hu et al., 2025;
Wu et al., 2025b; Zhu et al., 2025), aim to improve semantic connectivity (e.g., linking entities) but they
largely overlook the rhetorical structure that governs arguments flow, evidence presentation, and conclusions
formulation. This leaves the generator to grapple with a bag of facts rather than a coherent line of reasoning.

Does vitamin D supplementation reduce flu risk in adults?

Chunk A 
"12% lower incidence

in winter among
deficient adults."

Chunk B
"Across 15 RCTs,

overall effect not
significant."

......

Vitamin D helps 
reduce flu risk.

Query:

Answer:

......

Not broadly effective 
overall; possible benefit 

for deficient adults.

12% lower
(deficient
adults)

winter

Overall not
significant

benefit if
deficient

Chunk C
"Vitamin D is

......"

Vitamin D is
......

Background  Claim  Qualified
Evidence  Conclusion

Standard RAG Discourse-RAG

Evidence:

I can't understand the relationships 
between these documents.

Plan

Evidence:

Answer:

S
S

N

S

N
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Figure 1: Comparison between standard RAG and our
Discourse-RAG. While standard RAG retrieves iso-
lated chunks without structural links, Discourse-RAG
organizes evidence into rhetorical relations and plans,
yielding qualified and contextually accurate answers.
Here, S denotes Satellite (the supplementary part), and
N denotes Nucleus (the core part).

Recent investigations have revealed that integrat-
ing discourse knowledge into LLMs can improve
downstream performance (Nair et al., 2023; Gautam
et al., 2024; Liu & Demberg, 2024). These find-
ings suggest the drawback of relying solely on flat
sequential representations and underline the bene-
fits of deeper discourse modeling (Ma et al., 2025).
Building on these insights, the present work inves-
tigates whether explicitly modeling and providing
discourse knowledge to the LLM can further im-
prove generation quality in the context of RAG. To
answer this, we suggest Discourse-RAG, a frame-
work that constructs local rhetorical trees for each re-
trieved chunk and infers inter-chunk rhetorical rela-
tions across chunks to form a global discourse graph.
To synthesize information, rather than merely con-
catenating it, a model needs not only to understand
the relations between evidence but also to strategize
how to present them. This requires a high-level plan
to orchestrate the argumentative flow. Therefore,
we introduce a discourse-aware planning module
that enables the model to dynamically generate a
rhetorical plan to guide the generation process. As
shown in Figure 1 (right), the structure-aware pro-
cess enables the model to infer that “vitamin D is
not broadly effective but may benefit deficient adults under specific conditions”, producing more faithful
answers and aligned with the underlying evidence.

In our experiments, we evaluate Discourse-RAG on three benchmarks, Loong, ASQA, and SciNews. Consistent
improvements are observed when compared with standard RAG systems and previously reported state-of-the-
art (SOTA) methods. On the Loong benchmark, our approach delivers gains of up to +16.0 points in LLM
Score under long-document settings. On the ASQA dataset, the method exceeds the best existing systems on
ROUGE-L (42.4 vs. 42.0) and improves exact match and DR Score by notable margins. On the SciNews
benchmark, Discourse-RAG establishes new SOTA performance across all evaluation metrics. In addition,
our framework is training-free, which allows plug-and-play applicability across different models and tasks.

In summary, this work offers the following contributions:
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• We present Discourse-RAG, a framework that explicitly injects discourse knowledge into RAG systems to
alleviate the mismatch between retrieval granularity and generative understanding.

• We propose a unified structural modeling approach that combines intra-chunk RST trees, inter-chunk
rhetorical graphs, and discourse-driven planning to capture local hierarchies, cross-passage coherence, and
global argumentative flow.

• We conduct extensive experiments on knowledge-intensive QA and summarization tasks, demonstrating
consistent gains over strong RAG baselines. Analysis studies further confirm the efficacy of discourse-aware
guidance in enhancing answer correctness, coherence, and factuality.

2 RELATED WORK

2.1 STRUCTURE-AWARE RETRIEVAL-AUGMENTED GENERATION

Retrieval-Augmented Generation (RAG) enhances LLMs in knowledge-intensive tasks by retrieving external
evidence (Lewis et al., 2020). However, conventional RAG methods typically treat retrieved chunks as isolated
and flat sequences, overlooking their structural interconnections. To mitigate this, recent research has explored
structure-aware variants of RAG. Graph-based methods such as GraphRAG (Edge et al., 2024) and KG-RAG
(Sanmartin, 2024) organize evidence into knowledge graphs, while subsequent work improves retrieval by
simulating human memory mechanisms (Gutierrez et al., 2024; Gutiérrez et al., 2025) or enriching graph
semantics (Liang et al., 2025). Other approaches construct structured subgraphs for coherence (Mavromatis
& Karypis, 2025; Li et al., 2025a), or employ alternative formats like hierarchical graphs (Zhang et al., 2024;
Wang et al., 2025b; Huang et al., 2025), trees (Fatehkia et al., 2024; Sarthi et al., 2024), and tables (Lin et al.,
2025). More adaptive strategies dynamically select structures based on context (Li et al., 2025b). Despite
these advances, most efforts emphasize surface-level associations while neglecting rhetorical or argumentative
structure. This hinders logical depth and discourse coherence, which our work seeks to address.

2.2 RHETORICAL STRUCTURE THEORY FOR TEXT GENERATION

Rhetorical Structure Theory (RST; Mann & Thompson (1987; 1988)) is a discourse framework that models
hierarchical dependencies and rhetorical relations among Elementary Discourse Units (EDUs). It distin-
guishes between nucleus and satellite units, connected by relations such as Elaboration, Causality, and
Contrast, forming tree structures that reflect communicative intent. Foundational work (Marcu, 1997; 1999;
Mann & Thompson, 1987; Bhatia et al., 2015; Hayashi et al., 2016) has established strong correlations
between rhetorical structure and human text planning (Adewoyin et al., 2022). Later studies leveraged RST
by converting trees into dependency graphs or imposing structural constraints to improve coherence and
consistency in neural generation models (Chistova, 2023; Zeldes et al., 2025; Chistova, 2024; Maekawa
et al., 2024). More recent efforts have integrated RST into LLMs to improve cross-sentence reasoning and
enhance both structural integrity and interpretability of generated outputs (Liu et al., 2023; Liu & Demberg,
2024). However, most prior work largely depends on task-specific fine-tuning. The present work extends
RST modeling to the RAG setting by explicitly encoding the discourse structure of retrieved passages and
integrating it into the generation process.

3 METHODOLOGY

Task Formulating. We formalize the Retrieval-Augmented Generation (RAG) as conditional generation.
Given a query q and a set of top-k retrieved chunks C(q;D) = c1, c2, . . . , ck from corpus D, the output is:

y = argmax
y′

P (y′ | q, C(q;D)), (1)

3
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where P (·) denotes the conditional distribution of the generator. To overcome the limitations of the retrieval-
and-concatenation paradigm (standard RAG), which treats retrieved chunks as a flat sequence, we propose
Discourse-RAG that augments RAG with rhetorical parsing and discourse-level planning.

As illustrated in Figure 2, our pipeline consists of three main stages. (1) we delve into each chunk ci to uncover
its internal logical hierarchy by constructing an intra-chunk RST tree ti, (2) we zoom out to map the relational
landscape across all chunks C via an inter-chunk rhetorical graph G, and (3) we apply a rhetorically-driven
planning module that devises a blueprint B based on T = tki=1 and G to guide the final generation.

We hypothesize that under identical retriever and decoding conditions, explicitly injecting rhetorical structures
and planning improves correctness, coherence, and factual consistency. Here, rhetorical modeling serves as a
knowledge-level prior, while planning offers reasoning-level guidance, jointly inducing stronger structural
biases than standard RAG. The following paragraphs provide a detailed account of each component.

Intra-chunk RST Tree Construction. For each retrieved chunk ci, we construct an RST tree ti using an
LLM-based RST agent A to model the local coherence.1 Given ci, the agent jointly performs elementary dis-
course units (EDUs) segmentation and rhetorical parsing, producing: (1) a sequence of EDUs {ei1 , . . . , eim},
(2) nucleus and satellite roles assignments, and (3) rhetorical relations among EDUs. Formally:

ci
A−→ {ei1 , ei2 , . . . , eim}, ti = (Vi, Ei), (2)

where Vi = {ei1 , . . . , eim} is the set of EDU nodes, R is the set of rhetorical relations (e.g., Elaboration,
Contrast, and Cause), and Ei ⊆ Vi × Vi ×R is the set of directed connections labeled with relation types.
The symbol × denotes the cartesian product. Figure 2 illustrates how EDUs are organized into a hierarchical
tree. The parsing process is formalized as a conditional generation problem:

P (ti | ci; θA) =
m∏
j=1

P (eij | ci; θA) ·
∏
(u,v)

P (ru,v | eiu , eiv , ci; θA), (3)

where P (eij | ci) signifies the probability of EDU boundary prediction and u, v ∈ Vi = {ei1 , . . . , eim} are
discourse units, P (ru,v | eiu , eiv , ci) corresponds to the probability of the rhetorical relation between two
EDUs, and θA denotes the parameters of the LLM agent.

Inter-chunk Rhetorical Graph. We construct a directed graph G = (C,F), where C represents the node
set, each representing a retrieved chunk ci. Edges set F ⊆ C×C×(R∪Unrelated) denote rhetorical relations
or lack thereof. These inter-chunk connections are inferred via an LLM-based agent A,2 which performs
pairwise comparison and assigns a discourse label ri,j or marks the pair as Unrelated:

ci, cj
A−→ ri,j , ri,j ∈ R ∪ {Unrelated}. (4)

The complete graph construction is formalized as a probabilistic modeling task:

P (G | C; θA) =
k∏

i=1

k∏
j=1,j ̸=i

P (ri,j | ci, cj ; θA). (5)

1We implement an LLM-based RST parser A via prompting. Prompt is detailed in Appendix Figure 9.
2See Appendix Figure 10 for prompt and format details used in inter-chunk relation prediction.
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Figure 2: The Discourse-RAG pipeline: Starting from passage retrieval (providing context), then intra-chunk
RST tree parsing (capturing local discourse), inter-chunk rhetorical graph construction (modeling global
discourse), rhetorical planning (structuring generation), and finally answer generation (producing the output).

As illustrated in the top-right panel of Figure 2, the graph G serves as a global discourse scaffold, allowing
the generator to reason over cross-chunk connections.

Rhetorically-Driven Generative Planning. To move beyond the flat concatenation of retrieved evidence,
we introduce a planning module that produces a rhetorically informed blueprint to guide the text generation.
This is modeled through a mapping from the input query q, retrieved chunks C together with their RST trees
T , and the inter-chunk rhetorical graph G into a rhetorical plan B:

(q, C, T ,G) A−→ B, (6)

As illustrated in the center-bottom panel of Figure 2, the plan B is dynamically conditioned on the discourse
structures and the query.3 The plan outlines reasoning steps that involve selecting salient content, organizing
argumentative flow, and prioritizing supporting evidence.

RAG Generation with Rhetorical Guidance. The final stage of generation4 is conditioned on four inputs:
(1) the original text chunks C; (2) the intra-chunk RST trees T ; (3) the inter-chunk rhetorical graph G; and (4)
the rhetorical plan B. The objective is:

y = argmax
y′

P
(
y′ | q, C, T ,G,B), (7)

where y′ denotes a candidate output and y refers to the final output that maximizes the conditional probability.

4 EXPERIMENTS

Evaluation Datasets. We evaluate our method on three benchmarks, namely Loong (Wang et al., 2024a),
ASQA (Stelmakh et al., 2022), and SciNews (Liu et al., 2024). Loong dataset focuses on knowledge-intensive
reasoning with Spotlight Locating (Spot.), Comparison (Comp.), Clustering (Clus.), and Chain of Reasoning
(Chain.). These tasks are conducted under varying document lengths, where longer inputs increase evidence
fragmentation and reasoning difficulty. ASQA involves long-form question answering and requires models to

3Appendix Figure 11 provides the prompt templates used in rhetorical planning.
4Appendix Figure 12 contains the generation prompt.
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Retrieval Model Spot. Comp. Clus. Chain. Overall

LLM Score↑ EM↑ LLM Score↑ EM↑ LLM Score↑ EM↑ LLM Score↑ EM↑ LLM Score↑ EM↑

Set 1 (10K–50K Tokens)

Full Context
Llama-3.1-8B-Instruct 55.43 0.35 56.06 0.36 47.41 0.08 65.66 0.37 56.16 0.30
Llama-3.3-70B-Instruct 58.82 0.44 61.33 0.35 48.15 0.11 70.31 0.37 59.54 0.32

Stradard RAG
Llama-3.1-8B-Instruct 62.61 0.32 60.61 0.26 53.61 0.08 58.76 0.32 60.08 0.25
Llama-3.3-70B-Instruct 68.44 0.45 65.32 0.39 55.30 0.12 66.48 0.36 62.78 0.34

SOTA Results
RQ-RAG⋆ (Chan et al., 2024) 72.31 0.54 48.16 0.05 47.44 0.07 58.96 0.25 53.51 0.17

GraphRAG⋆ (Edge et al., 2024) 31.67 0.00 27.60 0.00 40.71 0.14 54.29 0.43 40.82 0.18
StructRAG (Li et al., 2025b) 74.53 0.47 75.58 0.47 65.13 0.23 67.84 0.34 69.43 0.35

Discourse-RAG (Llama-3.1-8B-Instruct) 73.38 0.42 73.61 0.39 64.47 0.14 68.03 0.36 69.21 0.33
Discourse-RAG (Llama-3.3-70B-Instruct) 76.62 0.45 75.66 0.46 65.38 0.19 68.29 0.38 71.01 0.37

Set 2 (50K–100K Tokens)

Full Context
Llama-3.1-8B-Instruct 51.30 0.27 42.37 0.21 38.32 0.06 44.49 0.11 43.78 0.14
Llama-3.3-70B-Instruct 55.27 0.34 47.93 0.26 40.05 0.08 50.08 0.10 48.24 0.17

Stradard RAG
Llama-3.1-8B-Instruct 57.02 0.25 45.42 0.19 44.21 0.05 50.42 0.15 49.12 0.16
Llama-3.3-70B-Instruct 60.38 0.27 53.37 0.22 45.76 0.07 56.73 0.18 53.77 0.18

SOTA Results
RQ-RAG (Chan et al., 2024) 57.35 0.35 50.83 0.16 42.85 0.03 47.60 0.10 47.09 0.10

GraphRAG⋆ (Edge et al., 2024) 24.80 0.00 14.29 0.00 37.86 0.00 46.25 0.12 33.06 0.03
StructRAG⋆ (Li et al., 2025b) 68.00 0.41 63.71 0.36 61.40 0.17 54.70 0.19 60.95 0.24

Discourse-RAG (Llama-3.1-8B-Instruct) 66.04 0.38 63.59 0.25 59.52 0.15 53.07 0.16 59.02 0.24
Discourse-RAG (Llama-3.3-70B-Instruct) 69.93 0.40 64.36 0.36 61.68 0.18 58.25 0.21 63.62 0.29

Set 3 (100K–200K Tokens)

Full Context
Llama-3.1-8B-Instruct 42.25 0.22 37.43 0.12 32.27 0.00 35.62 0.00 36.51 0.08
Llama-3.3-70B-Instruct 47.31 0.31 41.11 0.14 35.64 0.01 49.78 0.01 42.27 0.11

Stradard RAG
Llama-3.1-8B-Instruct 49.22 0.21 40.24 0.03 36.04 0.00 49.05 0.00 43.42 0.06
Llama-3.3-70B-Instruct 50.33 0.33 43.70 0.06 40.13 0.04 50.10 0.05 45.77 0.13

SOTA Results
RQ-RAG⋆ (Chan et al., 2024) 50.50 0.13 44.62 0.00 36.98 0.00 36.79 0.07 40.93 0.05

GraphRAG⋆ (Edge et al., 2024) 15.83 0.00 27.40 0.00 42.50 0.00 43.33 0.17 33.28 0.04
StructRAG (Li et al., 2025b) 68.62 0.44 57.74 0.35 58.27 0.10 49.73 0.13 57.92 0.21

Discourse-RAG (Llama-3.1-8B-Instruct) 60.76 0.27 55.82 0.14 53.09 0.05 50.32 0.09 56.63 0.14
Discourse-RAG (Llama-3.3-70B-Instruct) 66.39 0.39 57.83 0.28 58.87 0.08 52.19 0.16 58.88 0.23

Set 4 (200K–250K Tokens)

Full Context
Llama-3.1-8B-Instruct 31.79 0.12 25.37 0.06 27.87 0.00 26.76 0.00 27.82 0.04
Llama-3.3-70B-Instruct 36.76 0.21 32.22 0.07 30.69 0.00 30.17 0.00 32.21 0.05

Stradard RAG
Llama-3.1-8B-Instruct 40.01 0.11 31.90 0.00 32.33 0.00 29.92 0.00 33.52 0.02
Llama-3.3-70B-Instruct 40.27 0.25 34.49 0.02 36.41 0.01 31.33 0.02 35.61 0.07

SOTA Results
RQ-RAG⋆ (Chan et al., 2024) 29.17 0.08 40.36 0.00 26.92 0.00 34.69 0.00 31.91 0.01

GraphRAG⋆ (Edge et al., 2024) 17.50 0.00 26.67 0.00 20.91 0.00 33.67 0.33 23.47 0.05
StructRAG (Li et al., 2025b) 56.87 0.19 55.62 0.25 56.59 0.00 35.71 0.05 51.42 0.10

Discourse-RAG (Llama-3.1-8B-Instruct) 56.70 0.20 53.94 0.13 57.54 0.02 36.03 0.04 50.89 0.10
Discourse-RAG (Llama-3.3-70B-Instruct) 67.77 0.26 55.82 0.19 57.39 0.03 36.10 0.07 54.63 0.13

Table 1: Loong benchmark results across four document-length settings. Our method (Discourse-RAG) is
compared against zero-shot LLMs with full context, standard RAG, and prior SOTA. ⋆ indicates that the results
are directly taken from Li et al. (2025b). We use bold red to indicate the best results and blue with underline
to indicate the second-best results.

generate responses that are coherent and factually grounded. SciNews targets long-document summarization,
where the objective is to rewrite scientific articles into accurate and accessible summaries for general audiences
(Cachola et al., 2025). These datasets cover heterogeneous domains and provide a comprehensive evaluation
of robustness and generalization. Dataset statistics are reported in Appendix Table 5.

Evaluation Metrics. To ensure consistency and fair comparison across, we follow the official evaluation
protocols provided by each dataset’s repository (Wang et al., 2024a; Stelmakh et al., 2022; Liu et al., 2024).
For Loong dataset (Wang et al., 2024a; Li et al., 2025b), we report results using Exact Match (EM) and
LLM-based scores. For ASQA (Stelmakh et al., 2022; Chang et al., 2025), the evaluation includes EM,
ROUGE-L (RL) (Lin, 2004), and DR Score (Stelmakh et al., 2022). On SciNews, we evaluate with RL,
BERTScore (Zhang et al., 2020), SARI (Xu et al., 2016), and SummaC (Laban et al., 2022). These metrics
assess informativeness, fluency, and factual consistency. Detailed definitions are provided in Appendix C.

Implementation Details. Unless specified otherwise, we use Llama-3.1-8B-Instruct or
Llama-3.3-70B-Instruct across all modules to instantiate and compare performance at different model
scales (Grattafiori et al., 2024). For embedding and retrieval modules, we utilize Qwen3-Embedding-8B
(Zhang et al., 2025c), using a chunk size of 256 tokens and Top-10 retrieval based on semantic similarity.
Generation is performed using beam search with a beam width of 3. For Loong and ASQA, retrieval is
conducted over the entire corpus, reflecting an open-domain setting. For SciNews, retrieval is restricted to the
source document associated with each summary, reflecting a closed-domain setup.
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Selected Baselines. We compare Discourse-RAG against three baseline settings: (1) zero-shot LLMs
(Llama-3.1-8B-Instruct and Llama-3.3-70B-Instruct) with full input context. (2) standard RAG ap-
proach (Lewis et al., 2020), where relevant chunks are prepended to the query prior to inference.5 and (3)
previously published results from state-of-the-art RAG (if applicable) baselines on the same benchmarks.

5 RESULTS AND ANALYSIS Model EM↑ RL↑ DR Score↑

Baselines with full context
Llama-3.1-8B-Instruct 20.1 30.6 16.3
Llama-3.3-70B-Instruct 22.7 32.9 16.8

Baselines with standard RAG
Llama-3.1-8B-Instruct 37.3 36.9 23.4
Llama-3.3-70B-Instruct 38.2 37.2 24.1

SOTA Results
FLARE (Jiang et al., 2023) 41.3 34.3 31.1
Tree of Clarifications (Kim et al., 2023) — 39.7 36.6
Open-RAG (Islam et al., 2024) 36.3 38.1 —
ConTReGen (Roy et al., 2024) 41.2 — 30.3
DualRAG (Cheng et al., 2025) — 31.7 —
RAS (Jiang et al., 2025) — 39.1 —
MAIN-RAG-Mistral-7B (Chang et al., 2025) 35.7 36.2 —
MAIN-RAG-Llama3-8B (Chang et al., 2025) 39.2 42.0 —

Ours
Discourse-RAG (Llama-3.1-8B-Instruct) 40.6 42.3 32.7
Discourse-RAG (Llama-3.3-70B-Instruct) 42.1 42.4 33.0

Table 2: Performance on the ASQA benchmark.
Discourse-RAG consistently outperforms standard RAG
baselines across all metrics. It also surpasses existing SOTA
methods on most dimensions.

General Results. The experimental results
are summarized in Table 1, Table 2, and
Table 3, which correspond to the Loong,
ASQA, and SciNews benchmarks, respectively.
Across all benchmarks and evaluation met-
rics, Discourse-RAG consistently delivers sta-
ble and substantial improvements over the stan-
dard RAG baseline.

On the Loong benchmark, Discourse-RAG
exhibits clear gains across vary-
ing document length settings. With
Llama-3.3-70B-Instruct as backbone,
our method achieves an LLM Score of 71.01
in Set 1, outperforming standard RAG by 8.23
points. The performance gap becomes more
significant in Set 4, where Discourse-RAG
scores 54.63 compared to 35.61 from standard
RAG. When averaged across all four sets, our
approach also surpasses the best prior reported
training-based method StructRAG, thereby highlighting its robustness in long-context reasoning.

Model RL↑ BERTScore↑ SARI↑ SummaC↑

Baselines with full context
Llama-3.1-8B-Instruct 15.33 59.27 35.43 48.31
Llama-3.3-70B-Instruct 17.19 61.03 37.65 54.73

Baselines with standard RAG
Llama-3.1-8B-Instruct 17.12 60.35 38.01 55.26
Llama-3.3-70B-Instruct 18.17 61.37 37.74 60.39

SOTA Results
RSTformer Liu et al. (2024) 20.12 62.80 41.56 —
SingleTurnPlan Liang et al. (2024) 19.68 — — —
Plan-Input Liu et al. (2025b) — 65.32 — 72.40

Ours
Discourse-RAG (Llama-3.1-8B-Instruct) 19.26 63.49 40.27 63.37
Discourse-RAG (Llama-3.3-70B-Instruct) 21.12 65.70 44.39 69.49

Table 3: SciNews results. Our method (Discourse-RAG)
improves over both zero-shot and RAG baselines, and often
surpasses prior SOTA across multiple evaluation metrics.

On ASQA, our method again yields consistent
advantages. With Llama-3.1-8B-Instruct,
EM, RL, and DR Score increase from
37.3/36.9/23.4 to 40.6/42.3/32.7, and with
Llama-3.3-70B-Instruct, EM rises to 42.1
and DR to 33.0. Notably, our method out-
performs MAIN-RAG (42.0 RL) and Tree of
Clarifications (39.7 RL), achieving 42.4
RL score. On the SciNews summarization
task, our approach exhibits strong generaliza-
tion ability. Using Llama-3.3-70B-Instruct,
Discourse-RAG obtains 21.12 RL score, 65.70
BERTScore, 44.39 SARI, and 69.49 SummaC,
surpassing both standard RAG and the previ-
ous best system (Liu et al., 2024; 2025b).

Ablation Studies. We conduct ablation studies on the Loong benchmark, as summarized in Table 4, to
assess the contribution of each component in Discourse-RAG. The removal of any single module, namely,
the intra-chunk RST tree, the inter-chunk rhetorical graph, or the planning module, results in declines in

5All experiments are training-free and use only task instructions without in-context examples. Hyperparameters follow
the settings described above.
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Method Set 1 Set 2 Set 3 Set 4 Overall

LLM Score↑ EM↑ LLM Score↑ EM↑ LLM Score↑ EM↑ LLM Score↑ EM↑ LLM Score↑ EM↑

Discourse-RAG (full) 71.01 0.37 63.62 0.29 58.88 0.23 54.63 0.13 62.12 0.26
w/o RST tree 65.47 0.35 58.42 0.22 54.92 0.17 47.67 0.09 56.24 0.21
w/o Rhetorical graph 67.81 0.35 58.89 0.25 54.07 0.17 48.19 0.11 57.11 0.22
w/o Planning 69.12 0.36 60.15 0.26 57.21 0.20 50.36 0.13 59.77 0.24

Llama-3.3-70B-Instruct (standard RAG) 62.78 0.34 53.77 0.18 45.77 0.13 35.61 0.07 49.33 0.17

Table 4: Ablation study of the three modules in Discourse-RAG with Llama-3.3-70B-Instruct. ‘w/o
RST tree’ removes intra-chunk discourse modeling, ‘w/o rhetorical graph’ removes inter-chunk coherence
modeling, and ‘w/o planning’ removes discourse-driven generative planning.

performance. The full model achieves an Overall LLM Score of 62.12, which falls to 56.24, 57.11, and 59.77
when the RST tree, rhetorical graph, and planner are removed, respectively. The Exact Match metric also
decreases from 0.26 in the full setting to values ranging between 0.21 and 0.24 across the ablated variants.

Among the three components, the RST tree and rhetorical graph prove to be the most critical. In the long-
document setting (Set 4), eliminating the RST tree leads to a decrease in LLM Score from 54.63 to 47.67.
Similarly, removing the rhetorical graph reduces the score to 48.19, whereas excluding the planner causes a
smaller drop to 50.36. These findings suggest that while all three modules contribute meaningfully, structural
modeling within and across chunks plays a central role in aggregating information and maintaining discourse
coherence in long-context generation.

Impact of Retrieval Granularity and Noise Robustness. To assess the robustness of Discourse-RAG
under different retrieval conditions, we conduct a series of controlled experiments that manipulate three key
variables: the chunk size of retrieved passages, the number of Top-k passages, and the proportion of noisy
(irrelevant) passages. All experiments are conducted on the Loong dataset using Llama-3.3-70B-Instruct
as the unified generator. We maintain identical prompts and decoding configurations across all systems to
ensure fair comparison. The evaluation includes two baseline methods, namely the full-context setting and
the standard retrieval-augmented generation framework. Performance is reported using the aggregated LLM
Score over four subsets, and the results are visualized in Figure 3.
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Figure 3: Retrieval stress test: performance under varying chunk size (a), Top-k value (b), and retrieval noise
level (c), with identical prompts and decoding.
Panel (a) shows that standard RAG performs best at a moderate chunk size of 256 tokens (50.45) but
suffers with larger chunks due to loss of structural coherence. In contrast, Discourse-RAG maintains stable
performance across all chunk sizes, with scores ranging from 62.12 to 59.94, showing strong resilience to
granularity shifts. Panel (b) examines that while standard RAG peaks at Top-10 and declines with larger k due
to accumulating noise, Discourse-RAG also performs best at Top-10 but remains robust up to Top-50, showing
enhanced capacity to integrate and filter redundant information. Panel (c) evaluates noise robustness by
replacing fractions of the Top-10 retrieved passages with unrelated content. In our experiments, we randomly
replaced a certain proportion of the retrieved text chunks (e.g., 20%, 40%) with irrelevant ones sampled at
random from a pool of non-retrieved chunks. The standard RAG baseline exhibits a steep performance drop
from 49.33 to 45.23 as noise increases, whereas Discourse-RAG retains a score of 58.17, highlighting the
structural resilience of our method to retrieval errors.
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Figure 4: Effect of structural perturbations on performance. Panels (a), (b), and (c) correspond to intra-chunk
RST trees, inter-chunk rhetorical graphs, and global rhetorical plans, respectively. Each perturbation involves
randomly altering or removing the relevant elements.
Impact of Structure Quality and Perturbation Causality. To determine whether the performance gains
of Discourse-RAG arise from the quality of structural modeling rather than the mere presence of structural
cues, we conduct a set of controlled perturbation experiments targeting three core components of our
framework. These include intra-chunk RST trees, inter-chunk rhetorical graphs, and global rhetorical plans.
For each module, we introduce partial degradations by randomly selecting relation labels, edge directions,
or planning steps, and either replacing or removing them. This design ensures that the perturbed structures
still retain partial coherence, allowing us to assess how sensitive the model is to incomplete or noisy signals.
All experiments are conducted with Llama-3.3-70B-Instruct under consistent retrieval and decoding
conditions to maintain causal interpretability.

Figure 4 presents the results of the perturbation study. Panel (a) of Figure 4 shows that perturbing intra-chunk
structures leads to consistent performance degradation. Randomly shuffling a portion of rhetorical relation
labels reduces the LLM Score from 62.12 to 55.51. Randomly altering some nucleus–satellite roles lowers the
score to 55.23, reflecting the model’s sensitivity to rhetorical role assignments. Removing a randomly selected
subtree connection decreases the score to 56.81, suggesting that structural completeness also contributes to
generation quality. Panel (b) presents the effect of modifying rhetorical graphs. Randomly removing some
graph connections between chunks reduces the score to 57.62. Randomly flipping the directions of a subset of
edges yields 55.84, while replacing some discourse relation labels within the graph gives 55.52. These results
suggest that both connection topology and relation semantics are integral to effective discourse-level modeling.
Panel (c) analyzes the degradation of rhetorical plans. Omitting the plan altogether reduces performance to
59.77. Shuffling some of the step sequences causes a sharper decline to 57.53, while removing a subset of
steps results in 58.16. These outcomes suggest that both the ordering and the completeness of the rhetorical
plan are necessary for providing coherent structural guidance during generation.

Across all three dimensions, structural perturbations lead to measurable performance degradation, yet do
not entirely eliminate the benefits conferred by structure-aware modeling. Even when exposed to corrupted
or incomplete signals, Discourse-RAG consistently outperforms both the standard RAG baseline and the
full-context setting. These results confirm that the observed improvements are not merely due to the inclusion
of additional tokens, but instead arise from the model’s capacity to leverage coherent and interpretable
structural signals. Further discussion of LLM usage, limitations of our work, and qualitative case studies can
be found in Appendix A, Appendix E, and Appendix F, respectively.

6 CONCLUSION

In this study, we tackle the absence of discourse structure modeling in existing RAG approaches by presenting
Discourse-RAG. Grounded in Rhetorical Structure Theory, our approach constructs both local hierarchical
and global discourse representations over retrieved evidence and leverages them to derive a high-level
content plan that guides the reasoning process of the language model. Experimental results demonstrate
that Discourse-RAG achieves significant gains across multiple knowledge-intensive QA and summarization
tasks, surpassing previous state-of-the-art methods. Ablation studies further validate the complementary
contributions of each structural component. Taken together, these findings highlight structured discourse
modeling as a promising direction for advancing retrieval-augmented generation.
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B DETAILS OF DATASETS

Table 5 summarizes the key statistics of the Loong, ASQA, and SciNews datasets used in our experiments. The
Loong dataset is a large-scale, cross-domain, and multi-task benchmark that covers long-text understanding,
reasoning, and generation. It is specifically designed to evaluate models’ ability in handling long contexts
and performing comprehensive reasoning. The ASQA (Ambiguous Question Answering) dataset focuses
on questions with multiple valid interpretations, providing explanatory responses that evaluate a model’s
capacity to resolve semantic ambiguity and produce interpretable answers. The SciNews dataset centers
on the scientific news domain, spanning a wide range of scientific topics. It contains news articles with
task-specific annotations and is intended to test models’ capacity in long-context news understanding and
summary generation.

Dataset Loong ASQA SciNews
Spilt Set1(10K-50K) Set2(50K-100K) Set3(100K-200K) Set4(200K-250K) Test Test

Language EN, ZH EN, ZH EN, ZH EN, ZH EN EN
Test Instance 323 564 481 232 1015 4188

Table 5: Summary statistics of the Loong, ASQA, and SciNews datasets used in our experiments.

C DETAILS OF EVALUATION METRICS

For the Loong dataset. We report two evaluation metrics. The first is Exact Match (EM), which is a strict
measure of the percentage of model predictions that exactly match any of the ground truth answers. It is
a binary measure that assigns a score of one for a perfect match and zero otherwise. The second metric
is the LLM Score (Wang et al., 2024a), ranging from 0 to 100. Following the protocol introduced by the
dataset authors, we employ GPT-4-turbo-2024-04-09 as an automated evaluator to rate the overall quality
of generated responses. Unlike EM, which captures only factual correctness, the LLM Score provides a
holistic evaluation by jointly considering comprehensiveness, clarity, and adherence to instructions, thereby
offering a more integrated assessment across multiple dimensions of quality.

For the ASQA dataset. We adopt the standard evaluation suite. The first is Exact Match (EM), defined
as above. The second is ROUGE-L (Lin, 2004), a recall-oriented evaluation metric based on the Longest
Common Subsequence (LCS). It measures the n-gram overlap between prediction and reference by identifying
the longest sequence of words that occurs in both while preserving word order, thereby evaluating the coverage
of key information. Given a predicted text ŷi and a reference text yi, let LCS(ŷi, yi) denote the length of
their longest common subsequence. The ROUGE-L recall, precision, and F1 are defined as

RL =
LCS(ŷi, yi)

|yi|
, PL =

LCS(ŷi, yi)

|ŷi|
, FL =

(1 + β2) ·RL · PL

RL + β2 · PL
, (8)

where |yi| and |ŷi| are the lengths of the reference and predicted texts, respectively, and β is set to one by
default to balance recall and precision. In our experiments, we report ROUGE-L F1.

The third metric is the Disambiguation Recall (DR) Score (Stelmakh et al., 2022), which is specifically
designed for ASQA to evaluate whether a prediction covers all possible disambiguated answers present in the
reference set. While ROUGE-L cannot distinguish between two fluent but semantically divergent answers,
the DR score explicitly evaluates coverage across multiple reference answers. A higher DR score indicates
that the generated response captures a larger fraction of the possible interpretations of an ambiguous question.
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Given multiple reference answers Yi = {y(1)i , y
(2)
i , . . . , y

(ki)
i } for a query and a generated answer ŷi, the

instance-level DR score is defined as:

DRi =
1

|Yi|

|Yi|∑
j=1

1
[
ŷi contains the information in y

(j)
i

]
, (9)

where 1[·] is an indicator function equal to one if the predicted answer includes the content of a reference
answer y(j)i , and zero otherwise. The overall DR score across N queries is defined as:

DR =
1

N

N∑
i=1

DRi. (10)

For the SciNews dataset. We focus on summarization quality using four metrics. The first is ROUGE-L
(RL), as defined above. The second is BERTScore (Zhang et al., 2020), which computes token-level similarity
between prediction and reference using contextual embeddings from pre-trained BERT models. Unlike n-
gram–based metrics, BERTScore captures semantic similarity and often correlates more strongly with human
judgment. The third is SARI (Xu et al., 2016), which assesses the quality of simplification by comparing
system outputs against both the source text and the reference texts. SARI explicitly measures the precision
and recall of words that are added, deleted, and kept. For a source sentence si, a prediction ŷi, and a set of
reference simplifications Yi = {y(1)i , . . . , y

(ki)
i }, SARI is defined as:

SARI =
1

3

(
AddF1

+ KeepF1
+ DelF1

)
, (11)

where AddF1
, KeepF1

, and DelF1
denote the F1 scores for added, kept, and deleted n-grams relative to both

the source and the reference sets. The fourth metric is SummaC (Laban et al., 2022), a model-based measure
of factual consistency. SummaC can be used to determine whether a generated summary is entailed by
its source document and detects unsupported or hallucinated content, which is essential for ensuring the
reliability of generated text.

D DETAILS OF BASELINES

Here we describe the baselines used for comparison:

• Standard RAG. We implement the standard retrieval-augmented generation framework, where a re-
triever (Qwen3-Embedding-8B) retrieves relevant documents and a generator (Llama-3.1-8B-Instruct or
Llama-3.3-70B-Instruct) produces the final answer conditioned on the retrieved context.

• GraphRAG. GraphRAG (Edge et al., 2024) augments retrieval with a graph-based knowledge representa-
tion by constructing a semantic knowledge graph from retrieved passages. It leverages community detection
to capture global structures and integrates both local and global graph contexts into generation, enabling
more accurate and globally coherent reasoning across documents.

• RQ-RAG. RQ-RAG (Chan et al., 2024) refines queries through explicit rewriting, decomposition, and
disambiguation before retrieval. It trains LLMs end-to-end on a curated dataset with search-augmented
supervision, enabling dynamic query refinement and improving both single-hop and multi-hop QA by
learning to search only when needed.
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• FLARE. Forward-Looking Active REtrieval augmented generation (FLARE) (Jiang et al., 2023) actively
decides when and what to retrieve during generation by predicting upcoming sentences and using them as
queries to fetch additional documents whenever low-confidence tokens appear.

• Tree of Clarifications. Tree of Clarifications (Kim et al., 2023) addresses ambiguous questions by
recursively constructing a tree of disambiguated questions with retrieval-augmented few-shot prompting,
pruning unhelpful branches through self-verification, and generating a long-form answer that covers all
valid interpretations.

• Open-RAG. Open-RAG (Islam et al., 2024) enhances retrieval-augmented reasoning with open-source
LLMs by transforming a dense model into a parameter-efficient sparse mixture-of-experts, combining
contrastive learning against distractors with hybrid adaptive retrieval.

• ConTReGen. ConTReGen (Roy et al., 2024) employs a context-driven, tree-structured retrieval framework
for open-domain long-form text generation. It performs top-down planning to recursively decompose a
query into sub-questions for in-depth retrieval, followed by bottom-up synthesis to integrate information
from leaf nodes to the root.

• DualRAG. DualRAG (Cheng et al., 2025) introduces a dual-process framework for multi-hop QA, consist-
ing of Reasoning-augmented Querying (RaQ), which identifies knowledge gaps and formulates targeted
queries, and progressive Knowledge Aggregation (pKA), which filters and structures retrieved information
into a coherent knowledge outline. This closed-loop interaction enables dynamic adaptation to evolving
knowledge demands and improves answer accuracy and coherence.

• RAS. Retrieval-And-Structuring (RAS) (Jiang et al., 2025) interleaves iterative retrieval planning with
dynamic construction of query-specific knowledge graphs. It converts retrieved text into factual triples,
incrementally builds a structured graph, and conditions generation on the evolving graph.

• MAIN-RAG. Multi-Agent Filtering RAG (MAIN-RAG) (Chang et al., 2025) is a training-free framework
that employs three LLM agents to collaboratively filter and rank retrieved documents. It introduces an
adaptive judge bar that dynamically adjusts relevance thresholds based on score distributions, effectively
reducing noisy retrievals while preserving relevant information.

• StructRAG. StructRAG (Li et al., 2025b) introduces hybrid information structurization for knowledge-
intensive reasoning. It employs a hybrid structure router to select the optimal structure type (e.g., table,
graph, catalogue), a scattered knowledge structurizer to transform raw documents into structured knowledge,
and a structured knowledge utilizer to decompose complex questions and infer accurate answers based on
the structured representation.

E LIMITATIONS AND FUTURE WORK

While Discourse-RAG demonstrates effectiveness across multiple benchmarks, we acknowledge several
limitations that point toward promising avenues for future research.

First, our framework faces challenges in terms of computational efficiency. The training-free nature of
Discourse-RAG comes at the cost of increased inference overhead. Specifically, the pipeline involves
rhetorical structure parsing for each retrieved chunk, pairwise relation prediction across chunk pairs, global
planning generation, and final answer generation, all of which rely on inference of LLMs. This leads to higher
latency and computational cost per query compared to standard RAG methods (although the parsing of trees
and graphs can be placed before retrieval). A key direction for future work lies in optimizing this pipeline,
such as distilling a lightweight discourse parser or designing a unified multi-task model that jointly performs
structural parsing and content generation in a single forward pass.

Second, the overall performance of our method is closely tied to the LLM’s ability to generate high-quality
rhetorical structures in zero-shot settings. Although our perturbation experiments suggest some robustness
to noisy structures, we do not independently validate the intrinsic quality of the generated RST trees and
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rhetorical graphs. This opens up risks of hallucinatory parsing and error propagation (i.e., inaccurate structural
predictions may misguide planning and generation, resulting in factually inconsistent outputs). Future work
should develop benchmarks for evaluating the reliability of LLM-generated structures. Additionally, moving
beyond a fully training-free paradigm, one could fine-tune the discourse parser on high-quality corpora to
improve structural fidelity and domain generalization.

Lastly, the current study leaves room for broader empirical coverage and evaluation scope. Our experi-
ments focus primarily on long-document question answering and summarization. The generalizability of
Discourse-RAG to other RAG applications, such as dialog-style QA, multilingual retrieval, and low-resource
domains, remains to be tested. Moreover, exploring alternative discourse theories beyond RST, e.g., discourse
graphs or neural coherence modeling, could help build more general and flexible structure-aware RAG
frameworks.

F CASE STUDY

We present a qualitative case study to illustrate the effectiveness of Discourse-RAG compared to standard
RAG, and the details of these two cases are shown in Figures 5 and 6.

G PROMPTS FOR DISCOURSE-RAG

Figures 9, 10, 11 and 12 present the prompts used in Discourse-RAG.
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Case Study 1

Query. When did The Lion King debut on Broadway?
Retrieved Chunks.
[Chunk 1] The Lion King is a stage musical ... It debuted on July 8, 1997, in
Minneapolis, Minnesota at the Orpheum Theatre ...
[Chunk 2] ... The musical premiered on Broadway at the New Amsterdam Theatre in
previews on October 15, 1997 ...
[Chunk 3] ... The official Broadway opening was on November 13, 1997, at the New
Amsterdam Theatre ...
[Chunk 4] ... On June 13, 2006, the Broadway production moved to the Minskoff
Theatre, where it is still running ...

Standard RAG Output.
The Lion King debuted on Broadway in 1997. It was first performed in Minneapolis
before moving to Broadway, where it became one of the most popular shows.

Discourse-RAG Output.
The Lion King opened on Broadway more than once. It premiered in previews at the
New Amsterdam Theatre on October 15, 1997, and officially opened on November
13, 1997. Later, on June 13, 2006, the production moved to the Minskoff Theatre,
where it continues to run.

Reference Answer
The Lion King opened on Broadway more than once. It premiered on Broadway
at the New Amsterdam Theatre in previews on October 15, 1997, then officially
opened on Broadway on November 13, 1997. On June 13, 2006, the Broadway
production moved to the Minskoff Theatre, another Broadway theater, where it is
still running after more than 9,000 performances.

Remark. Standard RAG produces a vague answer that misses key details about the Broadway
timeline, providing only the year 1997. In contrast, Discourse-RAG integrates evidence across all
relevant chunks, capturing both the preview and official opening dates as well as the later theater
relocation, thereby delivering a more precise and comprehensive response.

Figure 5: Case study comparing standard RAG and Discourse-RAG on the query “When did The Lion
King debut on Broadway?”. Our method captures both the preview and official opening as well as the later
relocation, while standard RAG gives only a vague year-based answer.
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Case Study 2

Query. Where did Italy win the World Cup in 2006?
Retrieved Chunks.
[Chunk 1] The 2006 FIFA World Cup final was played on July 9, 2006, between Italy
and France ... after a 1-1 draw, Italy won 5-3 on penalties ...
[Chunk 2] ... The final was held at the Olympiastadion in Berlin, Germany, with
an attendance of 69,000 spectators ...
[Chunk 3] Italy claimed their fourth world title, having previously won in 1934,
1938, and 1982 ...
[Chunk 4] ... France had won their only previous World Cup in 1998, while Italy
had lost finals in 1970 and 1994 ...
[Chunk 5] The match was part of the France-Italy football rivalry, and marked
Italy’s first world title in 24 years ...

Standard RAG Output.
Italy won the 2006 World Cup in Munich, Germany, after a penalty shootout against
France.

Discourse-RAG Output.
Italy defeated France in the 2006 FIFA World Cup Final, played on July 9, 2006, at
the Olympiastadion in Berlin, Germany. After a 1–1 draw, Italy prevailed 5–3 in the
penalty shootout.

Reference Answer.
The Italy national football team defeated France and was declared world champions
in the 2006 World Cup Final, the last match of the 2006 FIFA World Cup, at the
Olympiastadion stadium in Berlin, Germany, on July 9, 2006. Italy had won three
previous finals in 1934, 1938, 1982 and lost in 1970 and 1994, while France had
won their only previous final in 1998.

Remark. Standard RAG incorrectly states that the final took place in Munich, likely due to spurious
retrieval or shallow aggregation of context. In contrast, Discourse-RAG integrates evidence across
multiple chunks, correctly identifying the Olympiastadion in Berlin as the venue and providing richer
historical context. This illustrates how explicit discourse modeling mitigates error propagation and
enhances factual accuracy.

Figure 6: Case study comparing standard RAG and our proposed Discourse-RAG on the query “Where did
Italy win the World Cup in 2006?”. Our method correctly identifies the Olympiastadion in Berlin, while
standard RAG produces a factual error.
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Relation Definitions in Intra-chunk RST Tree Construction

Relation Definitions:
- ELABORATION: Satellite provides additional detail or information about the nucleus.
- EXPLANATION: Satellite explains or clarifies the nucleus content.
- EVIDENCE: Satellite provides evidence or proof for the nucleus claim.
- EXAMPLE: Satellite gives a specific example of the nucleus concept.
- CONTRAST: Satellite presents opposing or contrasting information.
- COMPARISON: Satellite compares two or more entities or concepts.
- CONCESSION: Satellite acknowledges opposing viewpoint while maintaining main claim.
- ANTITHESIS: Satellite presents directly opposite or contradictory information.
- CAUSE: Satellite describes the cause of an event or situation.
- RESULT: Satellite describes the result or consequence of an action.
- CONSEQUENCE: Satellite shows the outcome following from the nucleus.
- PURPOSE: Satellite explains the intended goal or purpose.
- CONDITION: Satellite specifies conditions under which something holds.
- TEMPORAL: Satellite indicates temporal relationship between events.
- SEQUENCE: Satellite shows sequential order of events or actions.
- BACKGROUND: Satellite provides background context or setting.
- CIRCUMSTANCE: Satellite describes circumstances surrounding an event.
- SUMMARY: Satellite summarizes or generalizes the nucleus content.
- RESTATEMENT: Satellite restates the nucleus in different words.
- EVALUATION: Satellite provides evaluation or assessment of the nucleus.
- INTERPRETATION: Satellite offers interpretation of the nucleus content.
- ATTRIBUTION: Satellite attributes information to a source.
- DEFINITION: Satellite defines a term or concept.
- CLASSIFICATION: Satellite classifies or categorizes information.

Figure 7: Relation Definitions for Intra-chunk RST Tree Construction.
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Relation Definitions in Inter-chunk Rhetorical Graph Construction

Relation Definitions:
- SUPPORTS: Chunk provides support or evidence for another chunk.
- CONTRADICTS: Chunk contradicts or opposes another chunk.
- ELABORATES: Chunk elaborates on information in another chunk.
- EXEMPLIFIES: Chunk provides examples for another chunk’s concepts.
- CAUSES: Chunk describes causes for events in another chunk.
- RESULTS FROM: Chunk describes results from another chunk’s events.
- ENABLES: Chunk describes what enables another chunk’s situation.
- PREVENTS: Chunk describes what prevents another chunk’s situation.
- PRECEDES: Chunk describes events that precede another chunk.
- FOLLOWS: Chunk describes events that follow another chunk.
- SIMULTANEOUS: Chunk describes simultaneous events with another chunk.
- BACKGROUND FOR: Chunk provides background context for another chunk.
- GENERALIZES: Chunk provides general principles for another chunk’s specifics.
- SPECIFIES: Chunk provides specific details for another chunk’s generalizations.
- COMPARES WITH: Chunk compares information with another chunk.
- CONTRASTS WITH: Chunk contrasts information with another chunk.
- SUPPLEMENTS: Chunk supplements information in another chunk.
- REPLACES: Chunk replaces or updates information in another chunk.
- MOTIVATES: Chunk provides motivation for another chunk’s content.
- JUSTIFIES: Chunk justifies claims or actions in another chunk.
- UNRELATED: Chunk has no meaningful rhetorical or semantic relation to another chunk.

Figure 8: Relation Definitions for Inter-chunk Rhetorical Graph Construction.
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Prompt for Intra-chunk RST Tree Construction

You are an expert in Rhetorical Structure Theory (RST) analysis. Your task is to analyze the given text and
construct a precise RST TREE.
Critical instructions:
1. RST tree is a HIERARCHICAL TREE structure (not a graph or network).
2. Each internal node has exactly two children: one NUCLEUS (core) and one SATELLITE (support).
3. NUCLEUS contains the main information; SATELLITE provides supporting content.
4. Relations describe how the SATELLITE relates to the NUCLEUS.
5. Think carefully and output ONLY ONE complete RST tree. Do not provide multiple analyses or revisions.
Allowed RST relations:
ELABORATION, EVIDENCE, EXAMPLE, CONTRAST, COMPARISON, CONCESSION, ANTITHESIS,
CAUSE, RESULT, CONSEQUENCE, PURPOSE, CONDITION, TEMPORAL, SEQUENCE, BACKGROUND,
CIRCUMSTANCE, SUMMARY, RESTATEMENT, EVALUATION, INTERPRETATION, ATTRIBUTION,
DEFINITION, CLASSIFICATION
Relation definitions:
{Relation Definition}
Step-by-step process:
1. Segment text into meaningful text segments (clauses, sentences, or coherent units).
2. Determine the most important segment (this becomes the root nucleus).
3. For each other segment, decide: Is it NUCLEUS (core) or SATELLITE (support)?
4. Assign one relation from the allowed list.
5. Build the binary tree bottom-up.
Required output format:
SEGMENTS:
[1] <first segment>
[2] <second segment>
. . .
[N] <Nth segment>
RST ANALYSIS:
RELATION(segmenti, segmentj): {RELATION TYPE}
. . .

TREE_STRUCTURE:
ROOT[1-N]

NUCLEUS[X] <segment text> (N)
SATELLITE[Y] <segment text> (S): {RELATION TYPE}

Validation rules:
- Each segment must be complete and meaningful.
- Relations must be chosen from the allowed list.
- Mark (N) for nucleus, (S) for satellite.
- Output exactly ONE complete tree.
TEXT TO ANALYZE: {chunki}
Now analyze the given text following this exact format. Output ONLY ONE complete RST tree:

Figure 9: Prompt for Intra-chunk RST Tree Construction. The complete relation definitions are provided in
Figure 7.
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Prompt for Pairwise Discourse Relation Inference

You are an expert in discourse analysis. Your task is to determine the rhetorical relation between two given text
chunks. Each call to this prompt considers only one chunk pair, and your goal is to assess whether there is a
directed discourse relation from CHUNKi to CHUNKj .
Task objective:
Analyze the discourse function of CHUNKi with respect to CHUNKj , and decide whether there exists a meaningful
rhetorical relation from CHUNKi to CHUNKj . If so, identify and label the relation. Otherwise, return UNRELATED.
Relation direction:
Always assume the direction is from CHUNKi (source) to CHUNKj (target). The relation type should reflect how the
source chunk contributes rhetorically to the target.
Allowed relation types:
SUPPORTS, CONTRADICTS, ELABORATES, EXEMPLIFIES, CAUSES, RESULTS FROM, ENABLES,
PREVENTS, PRECEDES, FOLLOWS, SIMULTANEOUS, BACKGROUND FOR, GENERALIZES, SPECI-
FIES, COMPARES WITH, CONTRASTS WITH, SUPPLEMENTS, REPLACES, MOTIVATES, JUSTIFIES,
UNRELATED
Step-by-step process:
1. Carefully read both CHUNKi and CHUNKj .
2. Identify the main claim, fact, or event expressed in each chunk.
3. Ask: does CHUNKi serve any discourse function relative to CHUNKj?
4. If a rhetorical link exists, name the relation type. If not, return UNRELATED.
Required output format:
CHUNKi -> CHUNKj: {RELATION TYPE}
Validation rules:
- Output exactly one line.
- Use only the allowed relation types.
- Relation direction must be from CHUNKi to CHUNKj .
- Output UNRELATED if no meaningful relation is present.
TEXT TO ANALYZE:
CHUNKi: [Insert first chunk here]
CHUNKj : [Insert second chunk here]
Now analyze the rhetorical relation from CHUNKi to CHUNKj and output the result:

Figure 10: Prompt for pairwise discourse relation inference. The model is given two text chunks and must
determine whether a directed rhetorical relation exists from the first to the second. This prompt is intended to
be invoked once per chunk pair during graph construction. The complete relation definitions are provided in
Figure 8.
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Prompt for Rhetorically-Driven Generative Planning

You are an expert in discourse-aware text generation. Your task is to produce a RHETORICAL PLAN — a
natural language paragraph that outlines how the final answer should be organized.
Inputs:
1. The user query.
2. Retrieved text chunks.
3. Intra-chunk RST trees, capturing local rhetorical hierarchies.
4. The inter-chunk rhetorical graph, modeling cross-passage discourse flow.
Critical instructions:
1. The plan must be written as a continuous paragraph in natural language.
2. The plan should describe the intended organization of the final answer.
3. The plan must be dynamically adapted to the given query and evidence; do not follow a fixed template.
4. Avoid reproducing the content of the chunks; only outline how they will be used.
5. Output exactly ONE complete rhetorical plan.
Required output format:
PLAN: <one paragraph in natural language that describes the planned organization of the answer>
TEXT TO ANALYZE: {query, chunks, RST trees, rhetorical graph}
Now generate one rhetorical plan that organizes the answer coherently:

Figure 11: Prompt for Rhetorically-Driven Generative Planning.

Prompt for Rhetorical-Guided RAG Generation

You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a
coherent and faithful answer by leveraging the following inputs:
Inputs:
1. The user query.
2. Retrieved text chunks.
3. Intra-chunk RST trees, capturing local rhetorical hierarchies.
4. The inter-chunk rhetorical graph, modeling cross-passage discourse flow.
5. A rhetorical plan that outlines the intended argumentative organization.
Critical instructions:
1. The answer must directly address the user’s query.
2. Integrate evidence from multiple chunks, guided by their RST trees and rhetorical graph.
3. Follow the rhetorical plan for structuring the answer.
4. Maintain factual accuracy, logical coherence, and rhetorical clarity.
5. Output a continuous answer in natural language. Do not output trees, graphs, or plans.
Required output format:
ANSWER: <a single coherent paragraph or multi-paragraph answer grounded in discourse structures>
Validation requirements:
- The answer must be faithful to the retrieved content.
- The answer must be logically organized and reflect discourse-level coherence.
- Avoid verbatim repetition of chunks; instead synthesize and integrate them.
- Output exactly one complete answer.
TEXT TO ANALYZE: {query, chunks, RST trees, rhetorical graph, rhetorical plan}
Now generate the answer in natural language:

Figure 12: Prompt for Rhetorical-Guided RAG Generation.
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