DISCOURSE-AWARE RETRIEVAL-AUGMENTED GENERA-TION VIA RHETORICAL STRUCTURE MODELING

Anonymous authors

000

001

002003004

005

006 007 008

010 011

012

013

014

015

016

017

018

019

020

021

023

024

027

029

030 031

033

035

036

037

038

040

041

043

045

Paper under double-blind review

ABSTRACT

Retrieval-Augmented Generation (RAG) has emerged as an important means for enhancing the performance of large language models (LLMs) in knowledge-intensive tasks. However, most existing RAG strategies treat retrieved passages as flat and unstructured text, which prevents the model from capturing structural cues and constrains its ability to synthesize dispersed evidence and to reason across documents. Although a few recent approaches attempt to incorporate structural signals, each remains restricted to shallow representations such as entity graphs or dependency edges and thus fails to capture hierarchical discourse organization. To overcome these limitations, we propose Discourse-RAG, a structure-aware framework that explicitly injects discourse signals into the generation process. Our method constructs intra-chunk rhetorical structure theory (RST) trees to capture local coherence hierarchies and builds inter-chunk rhetorical graphs to model cross-passage discourse flow. These structures are jointly integrated into a planning blueprint that conditions the generation. Experiments on question answering and long-document summarization benchmarks show the efficacy of our approach. Discourse-RAG achieves a new state-of-theart ROUGE-L score of 42.4 on ASQA dataset and improves LLM Score by 12.79 points over standard RAG on Loong benchmark. These findings underscore the important role of discourse structure in advancing retrieval-augmented generation. Code is available at https://anonymous.4open.science/r/Discourse-RAG.

1 Introduction

The advent of large language models (LLMs), including LLaMA (Touvron et al., 2023), Qwen (Yang et al., 2025), and GPT series (Achiam et al., 2023), has promoted research progress in Natural Language Processing (NLP), achieving competitive performance across a wide range of tasks such as question answering (Wu et al., 2025a; Lee et al., 2025a; Zhang et al., 2025b), summarization Mondshine et al. (2025); Liu et al. (2025a); Wang et al. (2025a); Luo et al. (2025), and text generation (Duong et al., 2025; Bigelow et al., 2025; Que & Rong, 2025; Zhang et al., 2025a). However, due to the reliance on static training corpora, LLMs are insufficient in knowledge-intensive scenarios (Chang et al., 2025; Lee et al., 2025b; Yue et al., 2025). Challenges arise in handling domain-specific knowledge, proprietary data, or information that requires real-time updates (Wang et al., 2024b; Xia et al., 2025). Retrieval-Augmented Generation (RAG) has been proposed as a suitable solution by integrating an external knowledge injection component through retrieval-based mechanisms (Lewis et al., 2020; Asai et al., 2024; Chan et al., 2024).

In terms of RAG pipelines, external documents are segmented into chunks, which are then encoded into vectors and stored in a database. At query time, relevant chunks are retrieved to provide contextual grounding for the LLM (Lewis et al., 2020). One important but insufficiently addressed limitation of existing RAG systems concerns the *mismatch between retrieval granularity and generative understanding*. While retrieval modules return semantically relevant chunks, these chunks are often fragmented in discourse, which is like

048

049

050

051

053

054

057

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084 085

087

088

090

091

scattered pieces of evidence without clear logical connections (Edge et al., 2024; Su et al., 2025). This issue manifests at two levels. First, *intra-chunk structural blindness*: within each chunk, models often fail to capture internal coherence. As depicted in Figure 1 (left), Chunk A mentions a "12% lower incidence," while Chunk B notes "no significant overall effect." Without recognizing that the former is a conditional finding (*e.g.*, among deficient adults in winter), the model tends to overgeneralize and incorrectly conclude that "vitamin D reduces flu risk." Second, *inter-chunk coherence gaps*: across multiple chunks, RAG systems struggle to identify rhetorical connections between segments. This deficiency prevents effective resolution of conflicting claims, as standard approaches lack the capacity to organize retrieved evidence through higher-level discourse relations, as shown in Figure 1. Prior relevant methods, including semantic chunking (Wang et al., 2025c; Qu et al., 2025; Zhao et al., 2025) and graph-based RAG (Edge et al., 2024; Nigatu et al., 2025; Hu et al., 2025; Wu et al., 2025b; Zhu et al., 2025), aim to improve semantic connectivity (*e.g.*, linking entities) but they largely overlook the rhetorical structure that governs arguments flow, evidence presentation, and conclusions formulation. This leaves the generator to grapple with a *bag of facts* rather than a coherent *line of reasoning*.

Recent investigations have revealed that integrating discourse knowledge into LLMs can improve downstream performance (Nair et al., 2023; Gautam et al., 2024; Liu & Demberg, 2024). These findings suggest the drawback of relying solely on flat sequential representations and underline the benefits of deeper discourse modeling (Ma et al., 2025). Building on these insights, the present work investigates whether explicitly modeling and providing discourse knowledge to the LLM can further improve generation quality in the context of RAG. To answer this, we suggest Discourse-RAG, a framework that constructs local rhetorical trees for each retrieved chunk and infers inter-chunk rhetorical relations across chunks to form a global discourse graph. To synthesize information, rather than merely concatenating it, a model needs not only to understand the relations between evidence but also to strategize how to present them. This requires a high-level plan to orchestrate the argumentative flow. Therefore, we introduce a discourse-aware planning module that enables the model to dynamically generate a rhetorical plan to guide the generation process. As shown in Figure 1 (right), the structure-aware process enables the model to infer that "vitamin D is

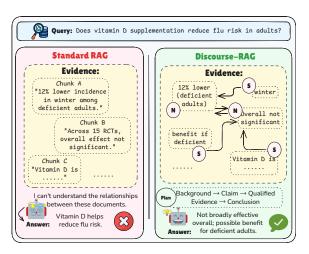


Figure 1: Comparison between standard RAG and our Discourse-RAG. While standard RAG retrieves isolated chunks without structural links, Discourse-RAG organizes evidence into rhetorical relations and plans, yielding qualified and contextually accurate answers. Here, S denotes *Satellite* (the supplementary part), and N denotes *Nucleus* (the core part).

not broadly effective but may benefit deficient adults under specific conditions", producing more faithful answers and aligned with the underlying evidence.

In our experiments, we evaluate Discourse-RAG on three benchmarks, Loong, ASQA, and SciNews. Consistent improvements are observed when compared with standard RAG systems and previously reported state-of-the-art (SOTA) methods. On the Loong benchmark, our approach delivers gains of up to +16.0 points in LLM Score under long-document settings. On the ASQA dataset, the method exceeds the best existing systems on ROUGE-L (42.4 vs. 42.0) and improves exact match and DR Score by notable margins. On the SciNews benchmark, Discourse-RAG establishes new SOTA performance across all evaluation metrics. In addition, our framework is training-free, which allows plug-and-play applicability across different models and tasks.

In summary, this work offers the following contributions:

- We present Discourse-RAG, a framework that explicitly injects discourse knowledge into RAG systems to alleviate the mismatch between retrieval granularity and generative understanding.
- We propose a unified structural modeling approach that combines intra-chunk RST trees, inter-chunk rhetorical graphs, and discourse-driven planning to capture local hierarchies, cross-passage coherence, and global argumentative flow.
- We conduct extensive experiments on knowledge-intensive QA and summarization tasks, demonstrating consistent gains over strong RAG baselines. Analysis studies further confirm the efficacy of discourse-aware guidance in enhancing answer correctness, coherence, and factuality.

2 RELATED WORK

2.1 STRUCTURE-AWARE RETRIEVAL-AUGMENTED GENERATION

Retrieval-Augmented Generation (RAG) enhances LLMs in knowledge-intensive tasks by retrieving external evidence (Lewis et al., 2020). However, conventional RAG methods typically treat retrieved chunks as isolated and flat sequences, overlooking their structural interconnections. To mitigate this, recent research has explored structure-aware variants of RAG. Graph-based methods such as GraphRAG (Edge et al., 2024) and KG-RAG (Sanmartin, 2024) organize evidence into knowledge graphs, while subsequent work improves retrieval by simulating human memory mechanisms (Gutierrez et al., 2024; Gutiérrez et al., 2025) or enriching graph semantics (Liang et al., 2025). Other approaches construct structured subgraphs for coherence (Mavromatis & Karypis, 2025; Li et al., 2025a), or employ alternative formats like hierarchical graphs (Zhang et al., 2024; Wang et al., 2025b; Huang et al., 2025), trees (Fatehkia et al., 2024; Sarthi et al., 2024), and tables (Lin et al., 2025). More adaptive strategies dynamically select structures based on context (Li et al., 2025b). Despite these advances, most efforts emphasize surface-level associations while neglecting rhetorical or argumentative structure. This hinders logical depth and discourse coherence, which our work seeks to address.

2.2 RHETORICAL STRUCTURE THEORY FOR TEXT GENERATION

Rhetorical Structure Theory (RST; Mann & Thompson (1987; 1988)) is a discourse framework that models hierarchical dependencies and rhetorical relations among Elementary Discourse Units (EDUs). It distinguishes between *nucleus* and *satellite* units, connected by relations such as *Elaboration*, *Causality*, and *Contrast*, forming tree structures that reflect communicative intent. Foundational work (Marcu, 1997; 1999; Mann & Thompson, 1987; Bhatia et al., 2015; Hayashi et al., 2016) has established strong correlations between rhetorical structure and human text planning (Adewoyin et al., 2022). Later studies leveraged RST by converting trees into dependency graphs or imposing structural constraints to improve coherence and consistency in neural generation models (Chistova, 2023; Zeldes et al., 2025; Chistova, 2024; Maekawa et al., 2024). More recent efforts have integrated RST into LLMs to improve cross-sentence reasoning and enhance both structural integrity and interpretability of generated outputs (Liu et al., 2023; Liu & Demberg, 2024). However, most prior work largely depends on task-specific fine-tuning. The present work extends RST modeling to the RAG setting by explicitly encoding the discourse structure of retrieved passages and integrating it into the generation process.

3 METHODOLOGY

Task Formulating. We formalize the Retrieval-Augmented Generation (RAG) as conditional generation. Given a query q and a set of top-k retrieved chunks $\mathcal{C}(q; \mathcal{D}) = c_1, c_2, \ldots, c_k$ from corpus \mathcal{D} , the output is:

$$y = \arg\max_{y'} P(y' \mid q, \mathcal{C}(q; \mathcal{D})), \tag{1}$$

where $P(\cdot)$ denotes the conditional distribution of the generator. To overcome the limitations of the retrievaland-concatenation paradigm (standard RAG), which treats retrieved chunks as a flat sequence, we propose Discourse-RAG that augments RAG with rhetorical parsing and discourse-level planning.

As illustrated in Figure 2, our pipeline consists of three main stages. (1) we delve into each chunk c_i to uncover its internal logical hierarchy by constructing an intra-chunk RST tree t_i , (2) we zoom out to map the relational landscape across all chunks $\mathcal C$ via an inter-chunk rhetorical graph $\mathcal G$, and (3) we apply a rhetorically-driven planning module that devises a blueprint $\mathcal B$ based on $\mathcal T=t_{i=1}^k$ and $\mathcal G$ to guide the final generation.

We hypothesize that under identical retriever and decoding conditions, explicitly injecting rhetorical structures and planning improves correctness, coherence, and factual consistency. Here, rhetorical modeling serves as a knowledge-level prior, while planning offers reasoning-level guidance, jointly inducing stronger structural biases than standard RAG. The following paragraphs provide a detailed account of each component.

Intra-chunk RST Tree Construction. For each retrieved chunk c_i , we construct an RST tree t_i using an LLM-based RST agent \mathcal{A} to model the local coherence. Given c_i , the agent jointly performs elementary discourse units (EDUs) segmentation and rhetorical parsing, producing: (1) a sequence of EDUs $\{e_{i_1}, \ldots, e_{i_m}\}$, (2) nucleus and satellite roles assignments, and (3) rhetorical relations among EDUs. Formally:

$$c_i \xrightarrow{\mathcal{A}} \{e_{i_1}, e_{i_2}, \dots, e_{i_m}\}, \quad t_i = (V_i, E_i), \tag{2}$$

where $V_i = \{e_{i_1}, \dots, e_{i_m}\}$ is the set of EDU nodes, \mathcal{R} is the set of rhetorical relations (e.g., Elaboration, Contrast, and Cause), and $E_i \subseteq V_i \times V_i \times \mathcal{R}$ is the set of directed connections labeled with relation types. The symbol \times denotes the cartesian product. Figure 2 illustrates how EDUs are organized into a hierarchical tree. The parsing process is formalized as a conditional generation problem:

$$P(t_i \mid c_i; \theta_{\mathcal{A}}) = \prod_{j=1}^{m} P(e_{i_j} \mid c_i; \theta_{\mathcal{A}}) \cdot \prod_{(u,v)} P(r_{u,v} \mid e_{i_u}, e_{i_v}, c_i; \theta_{\mathcal{A}}),$$
(3)

where $P(e_{i_j} \mid c_i)$ signifies the probability of EDU boundary prediction and $u, v \in V_i = \{e_{i_1}, \dots, e_{i_m}\}$ are discourse units, $P(r_{u,v} \mid e_{i_u}, e_{i_v}, c_i)$ corresponds to the probability of the rhetorical relation between two EDUs, and θ_A denotes the parameters of the LLM agent.

Inter-chunk Rhetorical Graph. We construct a directed graph $\mathcal{G} = (\mathcal{C}, \mathcal{F})$, where \mathcal{C} represents the node set, each representing a retrieved chunk c_i . Edges set $\mathcal{F} \subseteq \mathcal{C} \times \mathcal{C} \times (\mathcal{R} \cup \text{Unrelated})$ denote rhetorical relations or lack thereof. These inter-chunk connections are inferred via an LLM-based agent \mathcal{A} , which performs pairwise comparison and assigns a discourse label $r_{i,j}$ or marks the pair as Unrelated:

$$c_i, c_i \xrightarrow{\mathcal{A}} r_{i,i}, \quad r_{i,j} \in \mathcal{R} \cup \{\text{Unrelated}\}.$$
 (4)

The complete graph construction is formalized as a probabilistic modeling task:

$$P(\mathcal{G} \mid \mathcal{C}; \theta_{\mathcal{A}}) = \prod_{i=1}^{k} \prod_{j=1, j \neq i}^{k} P(r_{i,j} \mid c_i, c_j; \theta_{\mathcal{A}}).$$
 (5)

 $^{^1}$ We implement an LLM-based RST parser $\mathcal A$ via prompting. Prompt is detailed in Appendix Figure 9.

²See Appendix Figure 10 for prompt and format details used in inter-chunk relation prediction.

189

190

191

192 193

194

195 196

198199200

201

202203

204

205206

207

208

209

210 211

212213

214

215

216217

218

219220

221

222223

224225

226227

228

229

230

231

232

233

234

Figure 2: The Discourse-RAG pipeline: Starting from passage retrieval (providing context), then intra-chunk RST tree parsing (capturing local discourse), inter-chunk rhetorical graph construction (modeling global discourse), rhetorical planning (structuring generation), and finally answer generation (producing the output).

As illustrated in the top-right panel of Figure 2, the graph \mathcal{G} serves as a global discourse scaffold, allowing the generator to reason over cross-chunk connections.

Rhetorically-Driven Generative Planning. To move beyond the flat concatenation of retrieved evidence, we introduce a planning module that produces a rhetorically informed blueprint to guide the text generation. This is modeled through a mapping from the input query q, retrieved chunks \mathcal{C} together with their RST trees \mathcal{T} , and the inter-chunk rhetorical graph \mathcal{G} into a rhetorical plan \mathcal{B} :

$$(q, \mathcal{C}, \mathcal{T}, \mathcal{G}) \xrightarrow{\mathcal{A}} \mathcal{B},$$
 (6)

As illustrated in the center-bottom panel of Figure 2, the plan \mathcal{B} is dynamically conditioned on the discourse structures and the query.³ The plan outlines reasoning steps that involve selecting salient content, organizing argumentative flow, and prioritizing supporting evidence.

RAG Generation with Rhetorical Guidance. The final stage of generation⁴ is conditioned on four inputs: (1) the original text chunks C; (2) the intra-chunk RST trees T; (3) the inter-chunk rhetorical graph G; and (4) the rhetorical plan B. The objective is:

$$y = \arg\max_{y'} P(y' \mid q, C, \mathcal{T}, \mathcal{G}, \mathcal{B}), \tag{7}$$

where y' denotes a candidate output and y refers to the final output that maximizes the conditional probability.

4 EXPERIMENTS

Evaluation Datasets. We evaluate our method on three benchmarks, namely Loong (Wang et al., 2024a), ASQA (Stelmakh et al., 2022), and SciNews (Liu et al., 2024). Loong dataset focuses on knowledge-intensive reasoning with Spotlight Locating (Spot.), Comparison (Comp.), Clustering (Clus.), and Chain of Reasoning (Chain.). These tasks are conducted under varying document lengths, where longer inputs increase evidence fragmentation and reasoning difficulty. ASQA involves long-form question answering and requires models to

³Appendix Figure 11 provides the prompt templates used in rhetorical planning.

⁴Appendix Figure 12 contains the generation prompt.

Retrieval	Model	Spot.		Comp.		Clus.		Chain.		Overal	ı
Retrievan	Model	LLM Score↑	EM↑	LLM Score _↑	EM↑	LLM Score↑	EM↑	LLM Score↑	EM↑	LLM Score↑	EM↑
			Set	1 (10K-50K Toke	ens)						
Full Context	Llama-3.1-8B-Instruct	55.43	0.35	56.06	0.36	47.41	0.08	65.66	0.37	56.16	0.30
ruu Comexi	Llama-3.3-70B-Instruct	58.82	0.44	61.33	0.35	48.15	0.11	70.31	0.37	59.54	0.32
Stradard RAG	Llama-3.1-8B-Instruct	62.61	0.32	60.61	0.26	53.61	0.08	58.76	0.32	60.08	0.25
Strauara KAG	Llama-3.3-70B-Instruct	68.44	0.45	65.32	0.39	55.30	0.12	66.48	0.36	62.78	0.34
	RQ-RAG* (Chan et al., 2024)	7 2.3Γ	0.54	48.16	0.05	47.44	0.07	58.96	0.25	53.51	0.17
SOTA Results	GraphRAG* (Edge et al., 2024)	31.67	0.00	27.60	0.00	40.71	0.14	54.29	0.43	40.82	0.18
	StructRAG (Li et al., 2025b)	74.53	0.47	<u>75.58</u>	0.47	<u>65.13</u>	0.23	67.84	0.34	69.43	0.35
	Discourse-RAG (Llama-3.1-8B-Instruct)	73.38	0.42	73.61	0.39	64.47	0.14	68.03	0.36	69.21	0.33
	Discourse-RAG (Llama-3.3-70B-Instruct)	76.62	0.45	75.66	0.46	65.38	0.19	<u>68.29</u>	0.38	71.01	0.37
			Set 2	2 (50K–100K Tok	ens)						
Full Context	Llama-3.1-8B-Instruct	51.30	0.27	42.37	0.21	38.32	0.06	44.49	0.11	43.78	0.14
ruu Comexi	Llama-3.3-70B-Instruct	55.27	0.34	47.93	0.26	40.05	0.08	50.08	0.10	48.24	0.17
Stradard RAG	Llama-3.1-8B-Instruct	57.02	0.25	45.42	0.19	44.21	0.05	50.42	0.15	49.12	0.16
Strauara KAG	Llama-3.3-70B-Instruct	60.38	0.27	53.37	0.22	45.76	0.07	<u>56.73</u>	0.18	53.77	0.18
	RQ-RAG (Chan et al., 2024)	57.35	0.35	50.83	0.16	42.85	0.03	47.60	0.10	47.09	0.10
SOTA Results	GraphRAG* (Edge et al., 2024)	24.80	0.00	14.29	0.00	37.86	0.00	46.25	0.12	33.06	0.03
	StructRAG* (Li et al., 2025b)	<u>68.00</u>	0.41	63.71	0.36	61.40	0.17	54.70	0.19	60.95	0.24
	Discourse-RAG (Llama-3.1-8B-Instruct)	66.04	0.38	63.59	0.25	59.52	0.15	53.07	0.16	59.02	0.24
	Discourse-RAG (Llama-3.3-70B-Instruct)	69.93	0.40	64.36	0.36	61.68	0.18	58.25	0.21	63.62	0.29
				(100K-200K To							
Full Context	Llama-3.1-8B-Instruct	42.25	0.22	37.43	0.12	32.27	0.00	35.62	0.00	36.51	0.08
Fun Comexi	Llama-3.3-70B-Instruct	47.31	0.31	41.11	0.14	35.64	0.01	49.78	0.01	42.27	0.11
Stradard RAG	Llama-3.1-8B-Instruct	49.22	0.21	40.24	0.03	36.04	0.00	49.05	0.00	43.42	0.06
	Llama-3.3-70B-Instruct	50.33	0.33	43.70	0.06	40.13	0.04	50.10	0.05	45.77	0.13
	RQ-RAG* (Chan et al., 2024)	50.50	0.13	44.62	0.00	36.98	0.00	36.79	0.07	40.93	0.05
SOTA Results	GraphRAG* (Edge et al., 2024)	15.83	0.00	27.40	0.00	42.50	0.00	43.33	0.17	33.28	0.04
	StructRAG (Li et al., 2025b)	68.62	0.44	57.74	0.35	<u>58.27</u>	0.10	49.73	0.13	57.92	0.21
	Discourse-RAG (Llama-3.1-8B-Instruct)	60.76	0.27	55.82	0.14	53.09	0.05	50.32	0.09	56.63	0.14
	Discourse-RAG (Llama-3.3-70B-Instruct)	<u>66.39</u>	0.39	57.83	0.28	58.87	0.08	52.19	0.16	58.88	0.23
				(200K-250K To							
Full Context	Llama-3.1-8B-Instruct	31.79	0.12	25.37	0.06	27.87	0.00	26.76	0.00	27.82	0.04
<i>Гии Сошехи</i>	Llama-3.3-70B-Instruct	36.76	0.21	32.22	0.07	30.69	0.00	30.17	0.00	32.21	0.05
Stradard RAG	Llama-3.1-8B-Instruct	40.01	0.11	31.90	0.00	32.33	0.00	29.92	0.00	33.52	0.02
	Llama-3.3-70B-Instruct	40.27	0.25	34.49	0.02	36.41	0.01	31.33	0.02	35.61	0.07
	RQ-RAG* (Chan et al., 2024)	29.17	0.08	40.36	0.00		0.00	34.69	0.00	31.91	0.01
SOTA Results	GraphRAG* (Edge et al., 2024)	17.50	0.00	26.67	0.00	20.91	0.00	33.67	0.33	23.47	0.05
	StructRAG (Li et al., 2025b)	<u>56.87</u>	0.19	<u>55.62</u>	0.25	56.59	0.00	35.71	0.05	51.42	0.10
	Discourse-RAG (Llama-3.1-8B-Instruct)	56.70	0.20	53.94	0.13	57.54	0.02	<u>36.03</u>	0.04	50.89	0.10
	Discourse-RAG (Llama-3.3-70B-Instruct)	67.77	0.26	55.82	0.19	<u>57.39</u>	0.03	36.10	0.07	54.63	0.13

Table 1: Loong benchmark results across four document-length settings. Our method (Discourse-RAG) is compared against zero-shot LLMs with full context, standard RAG, and prior SOTA. * indicates that the results are directly taken from Li et al. (2025b). We use **bold red** to indicate the best results and **blue with underline** to indicate the second-best results.

generate responses that are coherent and factually grounded. SciNews targets long-document summarization, where the objective is to rewrite scientific articles into accurate and accessible summaries for general audiences (Cachola et al., 2025). These datasets cover heterogeneous domains and provide a comprehensive evaluation of robustness and generalization. Dataset statistics are reported in Appendix Table 5.

Evaluation Metrics. To ensure consistency and fair comparison across, we follow the official evaluation protocols provided by each dataset's repository (Wang et al., 2024a; Stelmakh et al., 2022; Liu et al., 2024). For Loong dataset (Wang et al., 2024a; Li et al., 2025b), we report results using Exact Match (EM) and LLM-based scores. For ASQA (Stelmakh et al., 2022; Chang et al., 2025), the evaluation includes EM, ROUGE-L (RL) (Lin, 2004), and DR Score (Stelmakh et al., 2022). On SciNews, we evaluate with RL, BERTScore (Zhang et al., 2020), SARI (Xu et al., 2016), and SummaC (Laban et al., 2022). These metrics assess informativeness, fluency, and factual consistency. Detailed definitions are provided in Appendix C.

Implementation Details. Unless specified otherwise, we use Llama-3.1-8B-Instruct or Llama-3.3-70B-Instruct across all modules to instantiate and compare performance at different model scales (Grattafiori et al., 2024). For embedding and retrieval modules, we utilize Qwen3-Embedding-8B (Zhang et al., 2025c), using a chunk size of 256 tokens and Top-10 retrieval based on semantic similarity. Generation is performed using beam search with a beam width of 3. For Loong and ASQA, retrieval is conducted over the entire corpus, reflecting an open-domain setting. For SciNews, retrieval is restricted to the source document associated with each summary, reflecting a closed-domain setup.

294

295

296

310

311

303

320

321

322

323

324

325

326 327

Selected Baselines. We compare Discourse-RAG against three baseline settings: (1) zero-shot LLMs (Llama-3.1-8B-Instruct and Llama-3.3-70B-Instruct) with full input context. (2) standard RAG approach (Lewis et al., 2020), where relevant chunks are prepended to the query prior to inference.⁵ and (3) previously published results from state-of-the-art RAG (if applicable) baselines on the same benchmarks.

RESULTS AND ANALYSIS

General Results. The experimental results are summarized in Table 1, Table 2, and Table 3, which correspond to the Loong, ASQA, and SciNews benchmarks, respectively. Across all benchmarks and evaluation metrics, Discourse-RAG consistently delivers stable and substantial improvements over the standard RAG baseline.

On the Loong benchmark, Discourse-RAG exhibits across clear gains varying document length settings. With Llama-3.3-70B-Instruct as backbone, our method achieves an LLM Score of 71.01 in Set 1, outperforming standard RAG by 8.23 points. The performance gap becomes more significant in Set 4, where Discourse-RAG scores 54.63 compared to 35.61 from standard RAG. When averaged across all four sets, our approach also surpasses the best prior reported training-based method StructRAG, thereby highlighting its robustness in long-context reasoning.

On ASQA, our method again yields consistent advantages. With Llama-3.1-8B-Instruct, EM, RL, and DR Score increase from 37.3/36.9/23.4 to 40.6/42.3/32.7, and with Llama-3.3-70B-Instruct, EM rises to 42.1 and DR to 33.0. Notably, our method outperforms MAIN-RAG (42.0 RL) and Tree of Clarifications (39.7 RL), achieving 42.4 RL score. On the SciNews summarization task, our approach exhibits strong generalization ability. Using Llama-3.3-70B-Instruct, Discourse-RAG obtains 21.12 RL score, 65.70 BERTScore, 44.39 SARI, and 69.49 SummaC, surpassing both standard RAG and the previous best system (Liu et al., 2024; 2025b).

Model	EM↑	\mathbf{RL}_{\uparrow}	DR Score _↑
Baselines with full con	text		
Llama-3.1-8B-Instruct	20.1	30.6	16.3
Llama-3.3-70B-Instruct	22.7	32.9	16.8
Baselines with standard	RAG		
Llama-3.1-8B-Instruct	37.3	36.9	23.4
Llama-3.3-70B-Instruct	38.2	37.2	24.1
SOTA Results			
FLARE (Jiang et al., 2023)	41.3	34.3	31.1
Tree of Clarifications (Kim et al., 2023)	_	39.7	36.6
Open-RAG (Islam et al., 2024)	36.3	38.1	_
ConTReGen (Roy et al., 2024)	41.2	_	30.3
DualRAG (Cheng et al., 2025)	_	31.7	_
RAS (Jiang et al., 2025)	_	39.1	_
MAIN-RAG-Mistral-7B (Chang et al., 2025)	35.7	36.2	_
MAIN-RAG-Llama3-8B (Chang et al., 2025)	39.2	42.0	_
Ours			
Discourse-RAG (Llama-3.1-8B-Instruct)	40.6	42.3	32.7
Discourse-RAG (Llama-3.3-70B-Instruct)	42.1	42.4	<u>33.0</u>

Performance on the ASOA benchmark. Discourse-RAG consistently outperforms standard RAG baselines across all metrics. It also surpasses existing SOTA methods on most dimensions.

Model	\mathbf{RL}_{\uparrow}	$\mathbf{BERTScore}_{\uparrow}$	\textbf{SARI}_{\uparrow}	$SummaC_{\uparrow}$	
Baselines wi	ith full o	context			
Llama-3.1-8B-Instruct	15.33	59.27	35.43	48.31	
Llama-3.3-70B-Instruct	17.19	61.03	37.65	54.73	
Baselines with	n standa	rd RAG			
Llama-3.1-8B-Instruct	17.12	60.35	38.01	55.26	
Llama-3.3-70B-Instruct	18.17	61.37	37.74	60.39	
SOTA Results					
RSTformer Liu et al. (2024)	20.12	62.80	41.56	_	
SingleTurnPlan Liang et al. (2024)	19.68	_	_	_	
Plan-Input Liu et al. (2025b)	_	<u>65.32</u>	_	72.40	
Ours					
Discourse-RAG (Llama-3 1-8B-Instruct)	19 26	63 49	40.27	63 37	

Table 3: SciNews results. Our method (Discourse-RAG) improves over both zero-shot and RAG baselines, and often surpasses prior SOTA across multiple evaluation metrics.

65.70

44.39

69.49

Discourse-RAG (Llama-3.3-70B-Instruct) 21.12

Ablation Studies. We conduct ablation studies on the Loong benchmark, as summarized in Table 4, to assess the contribution of each component in Discourse-RAG. The removal of any single module, namely, the intra-chunk RST tree, the inter-chunk rhetorical graph, or the planning module, results in declines in

⁵All experiments are training-free and use only task instructions without in-context examples. Hyperparameters follow the settings described above.

Method	Set 1		Set 2		Set 3		Set 4		Overall	l
	LLM Score↑	EM↑	LLM Score _↑	EM↑	LLM Score↑	EM↑	LLM Score↑	EM↑	LLM Score _↑	EM↑
Discourse-RAG (full)	71.01	0.37	63.62	0.29	58.88	0.23	54.63	0.13	62.12	0.26
w/o RST tree	65.47	0.35	58.42	0.22	54.92	0.17	47.67	0.09	56.24	0.21
w/o Rhetorical graph	67.81	0.35	58.89	0.25	54.07	0.17	48.19	0.11	57.11	0.22
w/o Planning	69.12	0.36	60.15	0.26	57.21	0.20	50.36	0.13	59.77	0.24
Llama-3.3-70B-Instruct (standard RAG)	62.78	0.34	53.77	0.18	45.77	0.13	35.61	0.07	49.33	0.17

Table 4: Ablation study of the three modules in Discourse-RAG with Llama-3.3-70B-Instruct. 'w/o RST tree' removes intra-chunk discourse modeling, 'w/o rhetorical graph' removes inter-chunk coherence modeling, and 'w/o planning' removes discourse-driven generative planning.

performance. The full model achieves an Overall LLM Score of 62.12, which falls to 56.24, 57.11, and 59.77 when the RST tree, rhetorical graph, and planner are removed, respectively. The Exact Match metric also decreases from 0.26 in the full setting to values ranging between 0.21 and 0.24 across the ablated variants.

Among the three components, the RST tree and rhetorical graph prove to be the most critical. In the long-document setting (Set 4), eliminating the RST tree leads to a decrease in LLM Score from 54.63 to 47.67. Similarly, removing the rhetorical graph reduces the score to 48.19, whereas excluding the planner causes a smaller drop to 50.36. These findings suggest that while all three modules contribute meaningfully, structural modeling within and across chunks plays a central role in aggregating information and maintaining discourse coherence in long-context generation.

Impact of Retrieval Granularity and Noise Robustness. To assess the robustness of Discourse-RAG under different retrieval conditions, we conduct a series of controlled experiments that manipulate three key variables: the chunk size of retrieved passages, the number of Top-k passages, and the proportion of noisy (irrelevant) passages. All experiments are conducted on the Loong dataset using Llama-3.3-70B-Instruct as the unified generator. We maintain identical prompts and decoding configurations across all systems to ensure fair comparison. The evaluation includes two baseline methods, namely the full-context setting and the standard retrieval-augmented generation framework. Performance is reported using the aggregated LLM Score over four subsets, and the results are visualized in Figure 3.

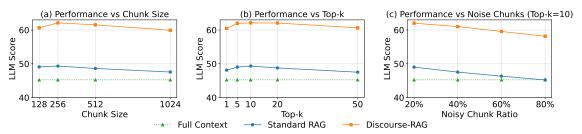


Figure 3: Retrieval stress test: performance under varying chunk size (a), Top-k value (b), and retrieval noise level (c), with identical prompts and decoding.

Panel (a) shows that standard RAG performs best at a moderate chunk size of 256 tokens (50.45) but suffers with larger chunks due to loss of structural coherence. In contrast, Discourse-RAG maintains stable performance across all chunk sizes, with scores ranging from 62.12 to 59.94, showing strong resilience to granularity shifts. Panel (b) examines that while standard RAG peaks at Top-10 and declines with larger k due to accumulating noise, Discourse-RAG also performs best at Top-10 but remains robust up to Top-50, showing enhanced capacity to integrate and filter redundant information. Panel (c) evaluates noise robustness by replacing fractions of the Top-10 retrieved passages with unrelated content. In our experiments, we randomly replaced a certain proportion of the retrieved text chunks (e.g., 20%, 40%) with irrelevant ones sampled at random from a pool of non-retrieved chunks. The standard RAG baseline exhibits a steep performance drop from 49.33 to 45.23 as noise increases, whereas Discourse-RAG retains a score of 58.17, highlighting the structural resilience of our method to retrieval errors.

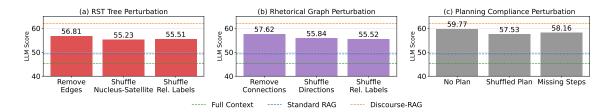


Figure 4: Effect of structural perturbations on performance. Panels (a), (b), and (c) correspond to intra-chunk RST trees, inter-chunk rhetorical graphs, and global rhetorical plans, respectively. Each perturbation involves randomly altering or removing the relevant elements.

Impact of Structure Quality and Perturbation Causality. To determine whether the performance gains of Discourse-RAG arise from the quality of structural modeling rather than the mere presence of structural cues, we conduct a set of controlled perturbation experiments targeting three core components of our framework. These include intra-chunk RST trees, inter-chunk rhetorical graphs, and global rhetorical plans. For each module, we introduce partial degradations by randomly selecting relation labels, edge directions, or planning steps, and either replacing or removing them. This design ensures that the perturbed structures still retain partial coherence, allowing us to assess how sensitive the model is to incomplete or noisy signals. All experiments are conducted with Llama-3.3-70B-Instruct under consistent retrieval and decoding conditions to maintain causal interpretability.

Figure 4 presents the results of the perturbation study. Panel (a) of Figure 4 shows that perturbing intra-chunk structures leads to consistent performance degradation. Randomly shuffling a portion of rhetorical relation labels reduces the LLM Score from 62.12 to 55.51. Randomly altering some nucleus–satellite roles lowers the score to 55.23, reflecting the model's sensitivity to rhetorical role assignments. Removing a randomly selected subtree connection decreases the score to 56.81, suggesting that structural completeness also contributes to generation quality. Panel (b) presents the effect of modifying rhetorical graphs. Randomly removing some graph connections between chunks reduces the score to 57.62. Randomly flipping the directions of a subset of edges yields 55.84, while replacing some discourse relation labels within the graph gives 55.52. These results suggest that both connection topology and relation semantics are integral to effective discourse-level modeling. Panel (c) analyzes the degradation of rhetorical plans. Omitting the plan altogether reduces performance to 59.77. Shuffling some of the step sequences causes a sharper decline to 57.53, while removing a subset of steps results in 58.16. These outcomes suggest that both the ordering and the completeness of the rhetorical plan are necessary for providing coherent structural guidance during generation.

Across all three dimensions, structural perturbations lead to measurable performance degradation, yet do not entirely eliminate the benefits conferred by structure-aware modeling. Even when exposed to corrupted or incomplete signals, Discourse-RAG consistently outperforms both the standard RAG baseline and the full-context setting. These results confirm that the observed improvements are not merely due to the inclusion of additional tokens, but instead arise from the model's capacity to leverage coherent and interpretable structural signals. Further discussion of LLM usage, limitations of our work, and qualitative case studies can be found in Appendix A, Appendix E, and Appendix F, respectively.

6 Conclusion

In this study, we tackle the absence of discourse structure modeling in existing RAG approaches by presenting Discourse-RAG. Grounded in Rhetorical Structure Theory, our approach constructs both local hierarchical and global discourse representations over retrieved evidence and leverages them to derive a high-level content plan that guides the reasoning process of the language model. Experimental results demonstrate that Discourse-RAG achieves significant gains across multiple knowledge-intensive QA and summarization tasks, surpassing previous state-of-the-art methods. Ablation studies further validate the complementary contributions of each structural component. Taken together, these findings highlight structured discourse modeling as a promising direction for advancing retrieval-augmented generation.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv* preprint *arXiv*:2303.08774, 2023.
- Rilwan Adewoyin, Ritabrata Dutta, and Yulan He. RSTGen: Imbuing fine-grained interpretable control into long-FormText generators. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), *Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 1822–1835, Seattle, United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.133. URL https://aclanthology.org/2022.naacl-main.133/.
- Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning to retrieve, generate, and critique through self-reflection. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=hSyW5go0v8.
- Parminder Bhatia, Yangfeng Ji, and Jacob Eisenstein. Better document-level sentiment analysis from RST discourse parsing. In Lluís Màrquez, Chris Callison-Burch, and Jian Su (eds.), *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, pp. 2212–2218, Lisbon, Portugal, September 2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1263. URL https://aclanthology.org/D15-1263/.
- Eric J Bigelow, Ari Holtzman, Hidenori Tanaka, and Tomer Ullman. Forking paths in neural text generation. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=8RCmNLeeXx.
- Isabel Cachola, Daniel Khashabi, and Mark Dredze. Evaluating the evaluators: Are readability metrics good measures of readability? *arXiv preprint arXiv:2508.19221*, 2025.
- Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo, Wei Xue, Yike Guo, and Jie Fu. RQ-RAG: Learning to refine queries for retrieval augmented generation. In *First Conference on Language Modeling*, 2024. URL https://openreview.net/forum?id=tzE7VqsaJ4.
- Chia-Yuan Chang, Zhimeng Jiang, Vineeth Rakesh, Menghai Pan, Chin-Chia Michael Yeh, Guanchu Wang, Mingzhi Hu, Zhichao Xu, Yan Zheng, Mahashweta Das, and Na Zou. MAIN-RAG: Multi-agent filtering retrieval-augmented generation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 2607–2622, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.131. URL https://aclanthology.org/2025.acl-long.131/.
- Rong Cheng, Jinyi Liu, Yan Zheng, Fei Ni, Jiazhen Du, Hangyu Mao, Fuzheng Zhang, Bo Wang, and Jianye Hao. DualRAG: A dual-process approach to integrate reasoning and retrieval for multi-hop question answering. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 31877–31899, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1539. URL https://aclanthology.org/2025.acl-long.1539/.
- Elena Chistova. End-to-end argument mining over varying rhetorical structures. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 3376–3391, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.209. URL https://aclanthology.org/2023.findings-acl.209/.

Elena Chistova. Bilingual rhetorical structure parsing with large parallel annotations. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 9689–9706, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.577. URL https://aclanthology.org/2024.findings-acl.577/.

Song Duong, Florian Le Bronnec, Alexandre Allauzen, Vincent Guigue, Alberto Lumbreras, Laure Soulier, and Patrick Gallinari. SCOPE: A self-supervised framework for improving faithfulness in conditional text generation. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=dTkgaCKLPp.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt, Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A graph rag approach to query-focused summarization. *arXiv preprint arXiv:2404.16130*, 2024.

Masoomali Fatehkia, Ji Kim Lucas, and Sanjay Chawla. T-rag: lessons from the llm trenches. *arXiv preprint* arXiv:2402.07483, 2024.

Akash Gautam, Lukas Lange, and Jannik Strötgen. Discourse-aware in-context learning for temporal expression normalization. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)*, pp. 306–315, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-short.27. URL https://aclanthology.org/2024.naacl-short.27/.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv* preprint arXiv:2407.21783, 2024.

Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. HippoRAG: Neurobiologically inspired long-term memory for large language models. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=hkujvAPVsg.

Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From RAG to memory: Non-parametric continual learning for large language models. In *Forty-second International Conference on Machine Learning*, 2025. URL https://openreview.net/forum?id=LWH8yn4HS2.

Katsuhiko Hayashi, Tsutomu Hirao, and Masaaki Nagata. Empirical comparison of dependency conversions for RST discourse trees. In Raquel Fernandez, Wolfgang Minker, Giuseppe Carenini, Ryuichiro Higashinaka, Ron Artstein, and Alesia Gainer (eds.), *Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue*, pp. 128–136, Los Angeles, September 2016. Association for Computational Linguistics. doi: 10.18653/v1/W16-3616. URL https://aclanthology.org/W16-3616/.

Yuntong Hu, Zhihan Lei, Zheng Zhang, Bo Pan, Chen Ling, and Liang Zhao. GRAG: Graph retrieval-augmented generation. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 4145–4157, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.232. URL https://aclanthology.org/2025.findings-naacl.232/.

Haoyu Huang, Yongfeng Huang, Junjie Yang, Zhenyu Pan, Yongqiang Chen, Kaili Ma, Hongzhi Chen, and James Cheng. Retrieval-augmented generation with hierarchical knowledge. *arXiv preprint arXiv:2503.10150*, 2025.

Shayekh Bin Islam, Md Asib Rahman, K S M Tozammel Hossain, Enamul Hoque, Shafiq Joty, and Md Rizwan Parvez. Open-RAG: Enhanced retrieval augmented reasoning with open-source large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 14231–14244, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.831. URL https://aclanthology.org/2024.findings-emnlp.831/.

- Pengcheng Jiang, Lang Cao, Ruike Zhu, Minhao Jiang, Yunyi Zhang, Jimeng Sun, and Jiawei Han. Ras: Retrieval-and-structuring for knowledge-intensive llm generation. *arXiv preprint arXiv:2502.10996*, 2025.
- Zhengbao Jiang, Frank Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 7969–7992, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.495. URL https://aclanthology.org/2023.emnlp-main.495/.
- Gangwoo Kim, Sungdong Kim, Byeongguk Jeon, Joonsuk Park, and Jaewoo Kang. Tree of clarifications: Answering ambiguous questions with retrieval-augmented large language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 996–1009, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.63. URL https://aclanthology.org/2023.emnlp-main.63/.
- Philippe Laban, Tobias Schnabel, Paul N. Bennett, and Marti A. Hearst. SummaC: Re-visiting NLI-based models for inconsistency detection in summarization. *Transactions of the Association for Computational Linguistics*, 10:163–177, 2022. doi: 10.1162/tacl_a_00453. URL https://aclanthology.org/2022.tacl-1.10/.
- Dosung Lee, Wonjun Oh, Boyoung Kim, Minyoung Kim, Joonsuk Park, and Paul Hongsuck Seo. ReSCORE: Label-free iterative retriever training for multi-hop question answering with relevance-consistency supervision. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 341–359, Vienna, Austria, July 2025a. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.16. URL https://aclanthology.org/2025.acl-long.16/.
- Meng-Chieh Lee, Qi Zhu, Costas Mavromatis, Zhen Han, Soji Adeshina, Vassilis N. Ioannidis, Huzefa Rangwala, and Christos Faloutsos. HybGRAG: Hybrid retrieval-augmented generation on textual and relational knowledge bases. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics* (*Volume 1: Long Papers*), pp. 879–893, Vienna, Austria, July 2025b. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.43. URL https://aclanthology.org/2025.acl-long.43/.
- Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:9459–9474, 2020.
- Mufei Li, Siqi Miao, and Pan Li. Simple is effective: The roles of graphs and large language models in knowledge-graph-based retrieval-augmented generation. In *The Thirteenth International Conference on Learning Representations*, 2025a. URL https://openreview.net/forum?id=JvkuZZ0407.
- Zhuoqun Li, Xuanang Chen, Haiyang Yu, Hongyu Lin, Yaojie Lu, Qiaoyu Tang, Fei Huang, Xianpei Han, Le Sun, and Yongbin Li. StructRAG: Boosting knowledge intensive reasoning of LLMs via inference-time hybrid information structurization. In *The Thirteenth International Conference on Learning Representations*, 2025b. URL https://openreview.net/forum?id=GhexuBLxb0.

Lei Liang, Zhongpu Bo, Zhengke Gui, Zhongshu Zhu, Ling Zhong, Peilong Zhao, Mengshu Sun, Zhiqiang Zhang, Jun Zhou, Wenguang Chen, Wen Zhang, and Huajun Chen. Kag: Boosting llms in professional domains via knowledge augmented generation. In *Companion Proceedings of the ACM on Web Conference* 2025, WWW '25, pp. 334–343, New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400713316. doi: 10.1145/3701716.3715240. URL https://doi.org/10.1145/3701716.3715240.

- Yi Liang, You Wu, Honglei Zhuang, Li Chen, Jiaming Shen, Yiling Jia, Zhen Qin, Sumit Sanghai, Xuanhui Wang, Carl Yang, et al. Integrating planning into single-turn long-form text generation. *arXiv preprint arXiv:2410.06203*, 2024.
- Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics. URL https://aclanthology.org/W04-1013/.
- Teng Lin, Yizhang Zhu, Yuyu Luo, and Nan Tang. Srag: Structured retrieval-augmented generation for multi-entity question answering over wikipedia graph. *arXiv preprint arXiv:2503.01346*, 2025.
- Dongqi Liu and Vera Demberg. RST-LoRA: A discourse-aware low-rank adaptation for long document abstractive summarization. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 2200–2220, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.121. URL https://aclanthology.org/2024.naacl-long.121/.
- Dongqi Liu, Yifan Wang, and Vera Demberg. Incorporating distributions of discourse structure for long document abstractive summarization. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5574–5590, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.306. URL https://aclanthology.org/2023.acl-long.306/.
- Dongqi Liu, Yifan Wang, Jia Loy, and Vera Demberg. SciNews: From scholarly complexities to public narratives a dataset for scientific news report generation. In Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), *Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)*, pp. 14429–14444, Torino, Italia, May 2024. ELRA and ICCL. URL https://aclanthology.org/2024.lrec-main.1258/.
- Dongqi Liu, Chenxi Whitehouse, Xi Yu, Louis Mahon, Rohit Saxena, Zheng Zhao, Yifu Qiu, Mirella Lapata, and Vera Demberg. What is that talk about? a video-to-text summarization dataset for scientific presentations. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 6187–6210, Vienna, Austria, July 2025a. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.310. URL https://aclanthology.org/2025.acl-long.310/.
- Dongqi Liu, Xi Yu, Vera Demberg, and Mirella Lapata. Explanatory summarization with discourse-driven planning. *Transactions of the Association for Computational Linguistics*, 13:1146–1170, 09 2025b. ISSN 2307-387X. doi: 10.1162/TACL.a.30. URL https://doi.org/10.1162/TACL.a.30.
- Guanran Luo, Zhongquan Jian, Wentao Qiu, Meihong Wang, and Qingqiang Wu. DTCRS: Dynamic tree construction for recursive summarization. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 10948–10963, Vienna, Austria, July 2025.

Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.536. URL https://aclanthology.org/2025.acl-long.536/.

- Bolei Ma, Yuting Li, Wei Zhou, Ziwei Gong, Yang Janet Liu, Katja Jasinskaja, Annemarie Friedrich, Julia Hirschberg, Frauke Kreuter, and Barbara Plank. Pragmatics in the era of large language models: A survey on datasets, evaluation, opportunities and challenges. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 8679–8696, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.425. URL https://aclanthology.org/2025.acl-long.425/.
- Aru Maekawa, Tsutomu Hirao, Hidetaka Kamigaito, and Manabu Okumura. Can we obtain significant success in RST discourse parsing by using large language models? In Yvette Graham and Matthew Purver (eds.), *Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 2803–2815, St. Julian's, Malta, March 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.eacl-long.171. URL https://aclanthology.org/2024.eacl-long.171/.
- William C Mann and Sandra A Thompson. Rhetorical structure theory: A theory of text organization. Technical report, University of Southern California, Information Sciences Institute Los Angeles, 1987.
- William C Mann and Sandra A Thompson. Rhetorical structure theory: Toward a functional theory of text organization. *Text-interdisciplinary Journal for the Study of Discourse*, 8(3):243–281, 1988.
- Daniel Marcu. From discourse structures to text summaries. In *Intelligent Scalable Text Summarization*, 1997.
- Daniel Marcu. A decision-based approach to rhetorical parsing. In *Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics*, pp. 365–372, 1999.
- Costas Mavromatis and George Karypis. GNN-RAG: Graph neural retrieval for efficient large language model reasoning on knowledge graphs. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 16682–16699, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.856. URL https://aclanthology.org/2025.findings-acl.856/.
- Itai Mondshine, Tzuf Paz-Argaman, and Reut Tsarfaty. Beyond n-grams: Rethinking evaluation metrics and strategies for multilingual abstractive summarization. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 19019–19035, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.932. URL https://aclanthology.org/2025.acl-long.932/.
- Inderjeet Nair, Shwetha Somasundaram, Apoorv Saxena, and Koustava Goswami. Drilling down into the discourse structure with LLMs for long document question answering. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 14593–14606, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.972. URL https://aclanthology.org/2023.findings-emnlp.972/.
- Hellina Hailu Nigatu, Min Li, Maartje Ter Hoeve, Saloni Potdar, and Sarah Chasins. mRAKL: Multilingual retrieval-augmented knowledge graph construction for low-resourced languages. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for*

Computational Linguistics: ACL 2025, pp. 13072–13089, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.678. URL https://aclanthology.org/2025.findings-acl.678/.

- Renyi Qu, Ruixuan Tu, and Forrest Sheng Bao. Is semantic chunking worth the computational cost? In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 2155–2177, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.114. URL https://aclanthology.org/2025.findings-naacl.114/.
- Haoran Que and Wenge Rong. PIC: Unlocking long-form text generation capabilities of large language models via position ID compression. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 6982–6995, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.347. URL https://aclanthology.org/2025.acl-long.347/.
- Kashob Kumar Roy, Pritom Saha Akash, Kevin Chen-Chuan Chang, and Lucian Popa. ConTReGen: Context-driven tree-structured retrieval for open-domain long-form text generation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 13773–13784, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.807. URL https://aclanthology.org/2024.findings-emnlp.807/.
- Diego Sanmartin. Kg-rag: Bridging the gap between knowledge and creativity. arXiv preprint arXiv:2405.12035, 2024.
- Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Manning. RAP-TOR: Recursive abstractive processing for tree-organized retrieval. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=GN921JHCRw.
- Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming-Wei Chang. ASQA: Factoid questions meet long-form answers. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 8273–8288, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.566. URL https://aclanthology.org/2022.emnlp-main.566/.
- Weihang Su, Yichen Tang, Qingyao Ai, Junxi Yan, Changyue Wang, Hongning Wang, Ziyi Ye, Yujia Zhou, and Yiqun Liu. Parametric retrieval augmented generation. In *Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 1240–1250, 2025.
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
- Jiaan Wang, Fandong Meng, Zengkui Sun, Yunlong Liang, Yuxuan Cao, Jiarong Xu, Haoxiang Shi, and Jie Zhou. An empirical study of many-to-many summarization with large language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 11328–11344, Vienna, Austria, July 2025a. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.555. URL https://aclanthology.org/2025.acl-long.555/.

- Minzheng Wang, Longze Chen, Fu Cheng, Shengyi Liao, Xinghua Zhang, Bingli Wu, Haiyang Yu, Nan Xu, Lei Zhang, Run Luo, Yunshui Li, Min Yang, Fei Huang, and Yongbin Li. Leave no document behind: Benchmarking long-context LLMs with extended multi-doc QA. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 5627–5646, Miami, Florida, USA, November 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.322. URL https://aclanthology.org/2024.emnlp-main.322/.
- Shu Wang, Yixiang Fang, Yingli Zhou, Xilin Liu, and Yuchi Ma. Archrag: Attributed community-based hierarchical retrieval-augmented generation. *arXiv preprint arXiv:2502.09891*, 2025b.
- Xiaohua Wang, Zhenghua Wang, Xuan Gao, Feiran Zhang, Yixin Wu, Zhibo Xu, Tianyuan Shi, Zhengyuan Wang, Shizheng Li, Qi Qian, Ruicheng Yin, Changze Lv, Xiaoqing Zheng, and Xuanjing Huang. Searching for best practices in retrieval-augmented generation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 17716–17736, Miami, Florida, USA, November 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.981. URL https://aclanthology.org/2024.emnlp-main.981/.
- Zhitong Wang, Cheng Gao, Chaojun Xiao, Yufei Huang, Shuzheng Si, Kangyang Luo, Yuzhuo Bai, Wenhao Li, Tangjian Duan, Chuancheng Lv, Guoshan Lu, Gang Chen, Fanchao Qi, and Maosong Sun. Document segmentation matters for retrieval-augmented generation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 8063–8075, Vienna, Austria, July 2025c. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.422. URL https://aclanthology.org/2025.findings-acl.422/.
- Jian Wu, Linyi Yang, Dongyuan Li, Yuliang Ji, Manabu Okumura, and Yue Zhang. MMQA: Evaluating LLMs with multi-table multi-hop complex questions. In *The Thirteenth International Conference on Learning Representations*, 2025a. URL https://openreview.net/forum?id=GGlpykXDCa.
- Junde Wu, Jiayuan Zhu, Yunli Qi, Jingkun Chen, Min Xu, Filippo Menolascina, Yueming Jin, and Vicente Grau. Medical graph RAG: Evidence-based medical large language model via graph retrieval-augmented generation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 28443–28467, Vienna, Austria, July 2025b. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1381. URL https://aclanthology.org/2025.acl-long.1381/.
- Peng Xia, Kangyu Zhu, Haoran Li, Tianze Wang, Weijia Shi, Sheng Wang, Linjun Zhang, James Zou, and Huaxiu Yao. MMed-RAG: Versatile multimodal RAG system for medical vision language models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=s5epFPdIW6.
- Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch. Optimizing statistical machine translation for text simplification. *Transactions of the Association for Computational Linguistics*, 4:401–415, 2016. doi: 10.1162/tacl_a_00107. URL https://aclanthology.org/Q16-1029/.
- An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.
- Zhenrui Yue, Honglei Zhuang, Aijun Bai, Kai Hui, Rolf Jagerman, Hansi Zeng, Zhen Qin, Dong Wang, Xuanhui Wang, and Michael Bendersky. Inference scaling for long-context retrieval augmented generation. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=FSjIrOm1vz.

Amir Zeldes, Tatsuya Aoyama, Yang Janet Liu, Siyao Peng, Debopam Das, and Luke Gessler. eRST: A signaled graph theory of discourse relations and organization. *Computational Linguistics*, 51(1):23–72, March 2025. doi: 10.1162/coli_a_00538. URL https://aclanthology.org/2025.cl-1.3/.

Jinghao Zhang, Yuting Liu, Wenjie Wang, Qiang Liu, Shu Wu, Liang Wang, and Tat-Seng Chua. Personalized text generation with contrastive activation steering. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7128–7141, Vienna, Austria, July 2025a. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.353. URL https://aclanthology.org/2025.acl-long.353/.

Taolin Zhang, Dongyang Li, Qizhou Chen, Chengyu Wang, and Xiaofeng He. BELLE: A bi-level multi-agent reasoning framework for multi-hop question answering. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 4184–4202, Vienna, Austria, July 2025b. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.211. URL https://aclanthology.org/2025.acl-long.211/.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating text generation with bert. In *International Conference on Learning Representations*, 2020. URL https://openreview.net/forum?id=SkeHuCVFDr.

Xiaoming Zhang, Ming Wang, Xiaocui Yang, Daling Wang, Shi Feng, and Yifei Zhang. Hierarchical retrieval-augmented generation model with rethink for multi-hop question answering. *arXiv* preprint arXiv:2408.11875, 2024.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie, An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding and reranking through foundation models. *arXiv preprint arXiv:2506.05176*, 2025c.

Jihao Zhao, Zhiyuan Ji, Zhaoxin Fan, Hanyu Wang, Simin Niu, Bo Tang, Feiyu Xiong, and Zhiyu Li. MoC: Mixtures of text chunking learners for retrieval-augmented generation system. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5172–5189, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.258. URL https://aclanthology.org/2025.acl-long.258/.

Xiangrong Zhu, Yuexiang Xie, Yi Liu, Yaliang Li, and Wei Hu. Knowledge graph-guided retrieval augmented generation. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 8912–8924, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.449. URL https://aclanthology.org/2025.naacl-long.449/.

A THE USE OF LARGE LANGUAGE MODELS

In preparing this paper, we use GPT-5 as a writing assistant for language polishing, grammar correction, and stylistic refinement. The model is not involved in the research ideation, methodology design, experiments, or result interpretation. All technical content, analyses, and conclusions presented in this paper are fully conceived and validated by the authors. The authors take full responsibility for the content of the manuscript, including any parts generated with the assistance of GPT-5. In accordance with conference policy, we confirm that the LLM is not an author of this work and does not bear responsibility for its scientific claims.

B DETAILS OF DATASETS

Table 5 summarizes the key statistics of the Loong, ASQA, and SciNews datasets used in our experiments. The Loong dataset is a large-scale, cross-domain, and multi-task benchmark that covers long-text understanding, reasoning, and generation. It is specifically designed to evaluate models' ability in handling long contexts and performing comprehensive reasoning. The ASQA (Ambiguous Question Answering) dataset focuses on questions with multiple valid interpretations, providing explanatory responses that evaluate a model's capacity to resolve semantic ambiguity and produce interpretable answers. The SciNews dataset centers on the scientific news domain, spanning a wide range of scientific topics. It contains news articles with task-specific annotations and is intended to test models' capacity in long-context news understanding and summary generation.

Dataset		L	oong		ASQA	SciNews
Spilt	Set1(10K-50K)	Set2(50K-100K)	Set3(100K-200K)	Set4(200K-250K)	Test	Test
Language	EN, ZH	EN, ZH	EN, ZH	EN, ZH	EN	EN
Test Instance	323	564	481	232	1015	4188

Table 5: Summary statistics of the Loong, ASQA, and SciNews datasets used in our experiments.

C DETAILS OF EVALUATION METRICS

For the Loong dataset. We report two evaluation metrics. The first is Exact Match (EM), which is a strict measure of the percentage of model predictions that exactly match any of the ground truth answers. It is a binary measure that assigns a score of one for a perfect match and zero otherwise. The second metric is the LLM Score (Wang et al., 2024a), ranging from 0 to 100. Following the protocol introduced by the dataset authors, we employ GPT-4-turbo-2024-04-09 as an automated evaluator to rate the overall quality of generated responses. Unlike EM, which captures only factual correctness, the LLM Score provides a holistic evaluation by jointly considering comprehensiveness, clarity, and adherence to instructions, thereby offering a more integrated assessment across multiple dimensions of quality.

For the ASQA dataset. We adopt the standard evaluation suite. The first is Exact Match (EM), defined as above. The second is ROUGE-L (Lin, 2004), a recall-oriented evaluation metric based on the Longest Common Subsequence (LCS). It measures the n-gram overlap between prediction and reference by identifying the longest sequence of words that occurs in both while preserving word order, thereby evaluating the coverage of key information. Given a predicted text \hat{y}_i and a reference text y_i , let $LCS(\hat{y}_i, y_i)$ denote the length of their longest common subsequence. The ROUGE-L recall, precision, and F1 are defined as

$$R_{L} = \frac{LCS(\hat{y}_{i}, y_{i})}{|y_{i}|}, \quad P_{L} = \frac{LCS(\hat{y}_{i}, y_{i})}{|\hat{y}_{i}|}, \quad F_{L} = \frac{(1 + \beta^{2}) \cdot R_{L} \cdot P_{L}}{R_{L} + \beta^{2} \cdot P_{L}}, \tag{8}$$

where $|y_i|$ and $|\hat{y}_i|$ are the lengths of the reference and predicted texts, respectively, and β is set to one by default to balance recall and precision. In our experiments, we report ROUGE-L F1.

The third metric is the Disambiguation Recall (DR) Score (Stelmakh et al., 2022), which is specifically designed for ASQA to evaluate whether a prediction covers all possible disambiguated answers present in the reference set. While ROUGE-L cannot distinguish between two fluent but semantically divergent answers, the DR score explicitly evaluates coverage across multiple reference answers. A higher DR score indicates that the generated response captures a larger fraction of the possible interpretations of an ambiguous question.

Given multiple reference answers $\mathcal{Y}_i = \{y_i^{(1)}, y_i^{(2)}, \dots, y_i^{(k_i)}\}$ for a query and a generated answer \hat{y}_i , the instance-level DR score is defined as:

$$DR_i = \frac{1}{|\mathcal{Y}_i|} \sum_{j=1}^{|\mathcal{Y}_i|} \mathbf{1} [\hat{y}_i \text{ contains the information in } y_i^{(j)}], \tag{9}$$

where $\mathbf{1}[\cdot]$ is an indicator function equal to one if the predicted answer includes the content of a reference answer $y_i^{(j)}$, and zero otherwise. The overall DR score across N queries is defined as:

$$DR = \frac{1}{N} \sum_{i=1}^{N} DR_i.$$
 (10)

For the SciNews dataset. We focus on summarization quality using four metrics. The first is ROUGE-L (RL), as defined above. The second is BERTScore (Zhang et al., 2020), which computes token-level similarity between prediction and reference using contextual embeddings from pre-trained BERT models. Unlike n-gram-based metrics, BERTScore captures semantic similarity and often correlates more strongly with human judgment. The third is SARI (Xu et al., 2016), which assesses the quality of simplification by comparing system outputs against both the source text and the reference texts. SARI explicitly measures the precision and recall of words that are added, deleted, and kept. For a source sentence s_i , a prediction \hat{y}_i , and a set of reference simplifications $\mathcal{Y}_i = \{y_i^{(1)}, \dots, y_i^{(k_i)}\}$, SARI is defined as:

$$SARI = \frac{1}{3} \left(Add_{F_1} + Keep_{F_1} + Del_{F_1} \right), \tag{11}$$

where Add_{F_1} , $Keep_{F_1}$, and Del_{F_1} denote the F1 scores for added, kept, and deleted n-grams relative to both the source and the reference sets. The fourth metric is SummaC (Laban et al., 2022), a model-based measure of factual consistency. SummaC can be used to determine whether a generated summary is entailed by its source document and detects unsupported or hallucinated content, which is essential for ensuring the reliability of generated text.

D DETAILS OF BASELINES

Here we describe the baselines used for comparison:

- **Standard RAG.** We implement the standard retrieval-augmented generation framework, where a retriever (Qwen3-Embedding-8B) retrieves relevant documents and a generator (Llama-3.1-8B-Instruct or Llama-3.3-70B-Instruct) produces the final answer conditioned on the retrieved context.
- **GraphRAG.** GraphRAG (Edge et al., 2024) augments retrieval with a graph-based knowledge representation by constructing a semantic knowledge graph from retrieved passages. It leverages community detection to capture global structures and integrates both local and global graph contexts into generation, enabling more accurate and globally coherent reasoning across documents.
- **RQ-RAG.** RQ-RAG (Chan et al., 2024) refines queries through explicit rewriting, decomposition, and disambiguation before retrieval. It trains LLMs end-to-end on a curated dataset with search-augmented supervision, enabling dynamic query refinement and improving both single-hop and multi-hop QA by learning to search only when needed.

- **FLARE.** Forward-Looking Active REtrieval augmented generation (FLARE) (Jiang et al., 2023) actively decides when and what to retrieve during generation by predicting upcoming sentences and using them as queries to fetch additional documents whenever low-confidence tokens appear.
- Tree of Clarifications. Tree of Clarifications (Kim et al., 2023) addresses ambiguous questions by recursively constructing a tree of disambiguated questions with retrieval-augmented few-shot prompting, pruning unhelpful branches through self-verification, and generating a long-form answer that covers all valid interpretations.
- **Open-RAG.** Open-RAG (Islam et al., 2024) enhances retrieval-augmented reasoning with open-source LLMs by transforming a dense model into a parameter-efficient sparse mixture-of-experts, combining contrastive learning against distractors with hybrid adaptive retrieval.
- **ConTReGen.** ConTReGen (Roy et al., 2024) employs a context-driven, tree-structured retrieval framework for open-domain long-form text generation. It performs top-down planning to recursively decompose a query into sub-questions for in-depth retrieval, followed by bottom-up synthesis to integrate information from leaf nodes to the root.
- DualRAG. DualRAG (Cheng et al., 2025) introduces a dual-process framework for multi-hop QA, consisting of Reasoning-augmented Querying (RaQ), which identifies knowledge gaps and formulates targeted queries, and progressive Knowledge Aggregation (pKA), which filters and structures retrieved information into a coherent knowledge outline. This closed-loop interaction enables dynamic adaptation to evolving knowledge demands and improves answer accuracy and coherence.
- **RAS.** Retrieval-And-Structuring (RAS) (Jiang et al., 2025) interleaves iterative retrieval planning with dynamic construction of query-specific knowledge graphs. It converts retrieved text into factual triples, incrementally builds a structured graph, and conditions generation on the evolving graph.
- MAIN-RAG. Multi-Agent Filtering RAG (MAIN-RAG) (Chang et al., 2025) is a training-free framework that employs three LLM agents to collaboratively filter and rank retrieved documents. It introduces an adaptive judge bar that dynamically adjusts relevance thresholds based on score distributions, effectively reducing noisy retrievals while preserving relevant information.
- **StructRAG.** StructRAG (Li et al., 2025b) introduces hybrid information structurization for knowledge-intensive reasoning. It employs a hybrid structure router to select the optimal structure type (e.g., table, graph, catalogue), a scattered knowledge structurizer to transform raw documents into structured knowledge, and a structured knowledge utilizer to decompose complex questions and infer accurate answers based on the structured representation.

E LIMITATIONS AND FUTURE WORK

While Discourse-RAG demonstrates effectiveness across multiple benchmarks, we acknowledge several limitations that point toward promising avenues for future research.

First, our framework faces challenges in terms of computational efficiency. The training-free nature of Discourse-RAG comes at the cost of increased inference overhead. Specifically, the pipeline involves rhetorical structure parsing for each retrieved chunk, pairwise relation prediction across chunk pairs, global planning generation, and final answer generation, all of which rely on inference of LLMs. This leads to higher latency and computational cost per query compared to standard RAG methods (although the parsing of trees and graphs can be placed before retrieval). A key direction for future work lies in optimizing this pipeline, such as distilling a lightweight discourse parser or designing a unified multi-task model that jointly performs structural parsing and content generation in a single forward pass.

Second, the overall performance of our method is closely tied to the LLM's ability to generate high-quality rhetorical structures in zero-shot settings. Although our perturbation experiments suggest some robustness to noisy structures, we do not independently validate the intrinsic quality of the generated RST trees and

rhetorical graphs. This opens up risks of hallucinatory parsing and error propagation (i.e., inaccurate structural predictions may misguide planning and generation, resulting in factually inconsistent outputs). Future work should develop benchmarks for evaluating the reliability of LLM-generated structures. Additionally, moving beyond a fully training-free paradigm, one could fine-tune the discourse parser on high-quality corpora to improve structural fidelity and domain generalization.

Lastly, the current study leaves room for broader empirical coverage and evaluation scope. Our experiments focus primarily on long-document question answering and summarization. The generalizability of Discourse-RAG to other RAG applications, such as dialog-style QA, multilingual retrieval, and low-resource domains, remains to be tested. Moreover, exploring alternative discourse theories beyond RST, e.g., discourse graphs or neural coherence modeling, could help build more general and flexible structure-aware RAG frameworks.

F CASE STUDY

We present a qualitative case study to illustrate the effectiveness of Discourse-RAG compared to standard RAG, and the details of these two cases are shown in Figures 5 and 6.

G PROMPTS FOR DISCOURSE-RAG

Figures 9, 10, 11 and 12 present the prompts used in Discourse-RAG.

Case Study 1

Query. When did The Lion King debut on Broadway?

Retrieved Chunks.

[Chunk 1] The Lion King is a stage musical ... It debuted on July 8, 1997, in Minneapolis, Minnesota at the Orpheum Theatre ...

[Chunk 2] \dots The musical premiered on Broadway at the New Amsterdam Theatre in previews on October 15, 1997 \dots

[Chunk 3] \dots The official Broadway opening was on November 13, 1997, at the New Amsterdam Theatre \dots

[Chunk 4] ... On June 13, 2006, the Broadway production moved to the Minskoff Theatre, where it is still running ...

Standard RAG Output.

The Lion King debuted on Broadway in 1997. It was first performed in Minneapolis before moving to Broadway, where it became one of the most popular shows.

Discourse-RAG Output.

The Lion King opened on Broadway more than once. It premiered in previews at the New Amsterdam Theatre on October 15, 1997, and officially opened on November 13, 1997. Later, on June 13, 2006, the production moved to the Minskoff Theatre, where it continues to run.

Reference Answer

The Lion King opened on Broadway more than once. It premiered on Broadway at the New Amsterdam Theatre in previews on October 15, 1997, then officially opened on Broadway on November 13, 1997. On June 13, 2006, the Broadway production moved to the Minskoff Theatre, another Broadway theater, where it is still running after more than 9,000 performances.

Remark. Standard RAG produces a vague answer that misses key details about the Broadway timeline, providing only the year 1997. In contrast, Discourse-RAG integrates evidence across all relevant chunks, capturing both the preview and official opening dates as well as the later theater relocation, thereby delivering a more precise and comprehensive response.

Figure 5: Case study comparing standard RAG and Discourse-RAG on the query "When did The Lion King debut on Broadway?". Our method captures both the preview and official opening as well as the later relocation, while standard RAG gives only a vague year-based answer.

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1057

1058

1059

1061

1063

1064

1065

1066

1067

1068

1069

1070

1040

Case Study 2

Query. Where did Italy win the World Cup in 2006? **Retrieved Chunks.**

[Chunk 1] The 2006 FIFA World Cup final was played on July 9, 2006, between Italy and France ... after a 1-1 draw, Italy won 5-3 on penalties ...

[Chunk 2] ... The final was held at the Olympiastadion in Berlin, Germany, with an attendance of 69,000 spectators ...

[Chunk 3] Italy claimed their fourth world title, having previously won in 1934, 1938, and 1982 ...

[Chunk 4] ... France had won their only previous World Cup in 1998, while Italy had lost finals in 1970 and 1994 ...

[Chunk 5] The match was part of the France-Italy football rivalry, and marked Italy's first world title in 24 years ...

Standard RAG Output.

Italy won the 2006 World Cup in Munich, Germany, after a penalty shootout against France.

Discourse-RAG Output.

Italy defeated France in the 2006 FIFA World Cup Final, played on July 9, 2006, at the Olympiastadion in Berlin, Germany. After a 1–1 draw, Italy prevailed 5–3 in the penalty shootout.

Reference Answer.

The Italy national football team defeated France and was declared world champions in the 2006 World Cup Final, the last match of the 2006 FIFA World Cup, at the Olympiastadion stadium in Berlin, Germany, on July 9, 2006. Italy had won three previous finals in 1934, 1938, 1982 and lost in 1970 and 1994, while France had won their only previous final in 1998.

Remark. Standard RAG incorrectly states that the final took place in Munich, likely due to spurious retrieval or shallow aggregation of context. In contrast, Discourse-RAG integrates evidence across multiple chunks, correctly identifying the Olympiastadion in Berlin as the venue and providing richer historical context. This illustrates how explicit discourse modeling mitigates error propagation and enhances factual accuracy.

1071 1072 1073

1074

1075 1076

Figure 6: Case study comparing standard RAG and our proposed Discourse-RAG on the query "Where did Italy win the World Cup in 2006?". Our method correctly identifies the Olympiastadion in Berlin, while standard RAG produces a factual error.

1078

Relation Definitions in Intra-chunk RST Tree Construction Relation Definitions: - ELABORATION: Satellite provides additional detail or information about the nucleus. - EXPLANATION: Satellite explains or clarifies the nucleus content. - EVIDENCE: Satellite provides evidence or proof for the nucleus claim. - EXAMPLE: Satellite gives a specific example of the nucleus concept. - CONTRAST: Satellite presents opposing or contrasting information. - COMPARISON: Satellite compares two or more entities or concepts. - CONCESSION: Satellite acknowledges opposing viewpoint while maintaining main claim. - ANTITHESIS: Satellite presents directly opposite or contradictory information. - CAUSE: Satellite describes the cause of an event or situation. - RESULT: Satellite describes the result or consequence of an action. - CONSEQUENCE: Satellite shows the outcome following from the nucleus. - PURPOSE: Satellite explains the intended goal or purpose. - CONDITION: Satellite specifies conditions under which something holds. - TEMPORAL: Satellite indicates temporal relationship between events. - SEQUENCE: Satellite shows sequential order of events or actions. - BACKGROUND: Satellite provides background context or setting. - CIRCUMSTANCE: Satellite describes circumstances surrounding an event. - SUMMARY: Satellite summarizes or generalizes the nucleus content. - RESTATEMENT: Satellite restates the nucleus in different words. - EVALUATION: Satellite provides evaluation or assessment of the nucleus. - INTERPRETATION: Satellite offers interpretation of the nucleus content. - ATTRIBUTION: Satellite attributes information to a source. - DEFINITION: Satellite defines a term or concept. - CLASSIFICATION: Satellite classifies or categorizes information. Figure 7: Relation Definitions for Intra-chunk RST Tree Construction.

Relation Definitions in Inter-chunk Rhetorical Graph Construction Relation Definitions: - SUPPORTS: Chunk provides support or evidence for another chunk. - CONTRADICTS: Chunk contradicts or opposes another chunk. - ELABORATES: Chunk elaborates on information in another chunk. - EXEMPLIFIES: Chunk provides examples for another chunk's concepts. - CAUSES: Chunk describes causes for events in another chunk. - RESULTS_FROM: Chunk describes results from another chunk's events. - ENABLES: Chunk describes what enables another chunk's situation. - PREVENTS: Chunk describes what prevents another chunk's situation. - PRECEDES: Chunk describes events that precede another chunk. - FOLLOWS: Chunk describes events that follow another chunk. - SIMULTANEOUS: Chunk describes simultaneous events with another chunk. - BACKGROUND_FOR: Chunk provides background context for another chunk. - GENERALIZES: Chunk provides general principles for another chunk's specifics. - SPECIFIES: Chunk provides specific details for another chunk's generalizations. - COMPARES_WITH: Chunk compares information with another chunk. - CONTRASTS_WITH: Chunk contrasts information with another chunk. - SUPPLEMENTS: Chunk supplements information in another chunk. - REPLACES: Chunk replaces or updates information in another chunk. - MOTIVATES: Chunk provides motivation for another chunk's content. - JUSTIFIES: Chunk justifies claims or actions in another chunk. - UNRELATED: Chunk has no meaningful rhetorical or semantic relation to another chunk. Figure 8: Relation Definitions for Inter-chunk Rhetorical Graph Construction.

1216 1217

1218 1219 1220

```
1177
1178
            Prompt for Intra-chunk RST Tree Construction
1179
1180
            You are an expert in Rhetorical Structure Theory (RST) analysis. Your task is to analyze the given text and
            construct a precise RST TREE.
1181
            Critical instructions:
1182
            1. RST tree is a HIERARCHICAL TREE structure (not a graph or network).
1183
            2. Each internal node has exactly two children: one NUCLEUS (core) and one SATELLITE (support).
1184
            3. NUCLEUS contains the main information; SATELLITE provides supporting content.
1185
            4. Relations describe how the SATELLITE relates to the NUCLEUS.
            5. Think carefully and output ONLY ONE complete RST tree. Do not provide multiple analyses or revisions.
1186
            Allowed RST relations:
1187
            ELABORATION, EVIDENCE, EXAMPLE, CONTRAST, COMPARISON, CONCESSION, ANTITHESIS,
1188
            CAUSE, RESULT, CONSEQUENCE, PURPOSE, CONDITION, TEMPORAL, SEQUENCE, BACKGROUND,
1189
            CIRCUMSTANCE, SUMMARY, RESTATEMENT, EVALUATION, INTERPRETATION, ATTRIBUTION,
1190
            DEFINITION, CLASSIFICATION
            Relation definitions:
1191
             {Relation Definition}
1192
            Step-by-step process:
1193
            1. Segment text into meaningful text segments (clauses, sentences, or coherent units).
1194
            2. Determine the most important segment (this becomes the root nucleus).
1195
            3. For each other segment, decide: Is it NUCLEUS (core) or SATELLITE (support)?
            4. Assign one relation from the allowed list.
1196
            5. Build the binary tree bottom-up.
1197
            Required output format:
1198
            SEGMENTS:
1199
             [1] < first segment>
1200
               <second segment>
1201
             [N] <Nth segment>
1202
            RST ANALYSIS:
1203
            RELATION(segment_i, segment_j): {RELATION TYPE}
1204
1205
            TREE_STRUCTURE:
1206
            ROOT[1-N]
1207
               - NUCLEUS[X] <segment text> (N)
              — SATELLITE[Y] <segment text> (S): {RELATION TYPE}
1208
            Validation rules:
1209
            - Each segment must be complete and meaningful.
1210
            - Relations must be chosen from the allowed list.
1211
            - Mark (N) for nucleus, (S) for satellite.
1212
            - Output exactly ONE complete tree.
1213
            TEXT TO ANALYZE: {chunk<sub>i</sub>}
1214
            Now analyze the given text following this exact format. Output ONLY ONE complete RST tree:
1215
```

Figure 9: Prompt for Intra-chunk RST Tree Construction. The complete relation definitions are provided in Figure 7.

1222 1223 1224 1225 1226 1227 1228 1229 **Prompt for Pairwise Discourse Relation Inference** 1230 1231 You are an expert in discourse analysis. Your task is to determine the rhetorical relation between two given text 1232 chunks. Each call to this prompt considers only one chunk pair, and your goal is to assess whether there is a directed discourse relation from $CHUNK_i$ to $CHUNK_j$. 1233 Task objective: 1234 Analyze the discourse function of $CHUNK_i$ with respect to $CHUNK_i$, and decide whether there exists a meaningful 1235 rhetorical relation from CHUNK_i to CHUNK_i. If so, identify and label the relation. Otherwise, return UNRELATED. 1236 **Relation direction:** Always assume the direction is from $CHUNK_i$ (source) to $CHUNK_j$ (target). The relation type should reflect how the 1237 source chunk contributes rhetorically to the target. 1238 Allowed relation types: 1239 SUPPORTS, CONTRADICTS, ELABORATES, EXEMPLIFIES, CAUSES, RESULTS_FROM, ENABLES, 1240 PREVENTS, PRECEDES, FOLLOWS, SIMULTANEOUS, BACKGROUND_FOR, GENERALIZES, SPECI-1241 FIES, COMPARES_WITH, CONTRASTS_WITH, SUPPLEMENTS, REPLACES, MOTIVATES, JUSTIFIES, **UNRELATED** 1242 **Step-by-step process:** 1243 1. Carefully read both CHUNK_i and CHUNK_i. 1244 2. Identify the main claim, fact, or event expressed in each chunk. 1245 3. Ask: does CHUNK_i serve any discourse function relative to CHUNK_i? 1246 4. If a rhetorical link exists, name the relation type. If not, return UNRELATED. **Required output format:** 1247 $CHUNK_i \rightarrow CHUNK_i$: {RELATION_TYPE} 1248 Validation rules: 1249 - Output exactly one line. 1250 Use only the allowed relation types. 1251 - Relation direction must be from CHUNK_i to CHUNK_j. - Output UNRELATED if no meaningful relation is present. 1252 TEXT TO ANALYZE: 1253 CHUNK_i: [Insert first chunk here] 1254 $CHUNK_j$: [Insert second chunk here] 1255 Now analyze the rhetorical relation from CHUNK_i to CHUNK_i and output the result: 1256 1257 1258 1259 1260

Figure 10: Prompt for pairwise discourse relation inference. The model is given two text chunks and must determine whether a directed rhetorical relation exists from the first to the second. This prompt is intended to be invoked once per chunk pair during graph construction. The complete relation definitions are provided in Figure 8.

270	
	Prompt for Rhetorically-Driven Generative Planning
271 272	You are an expert in discourse-aware text generation. Your task is to produce a RHETORICAL PLAN — a
1273	natural language paragraph that outlines how the final answer should be organized.
	Inputs:
274	1. The user query.
275	2. Retrieved text chunks.
276	3. Intra-chunk RST trees, capturing local rhetorical hierarchies.
277	4. The inter-chunk rhetorical graph, modeling cross-passage discourse flow.
278	Critical instructions: 1. The plan must be written as a continuous paragraph in natural language.
279	2. The plan should describe the intended organization of the final answer.
280	3. The plan must be dynamically adapted to the given query and evidence; do not follow a fixed template.
281	4. Avoid reproducing the content of the chunks; only outline how they will be used.
282	5. Output exactly ONE complete rhetorical plan.
283	Required output format:
1284	PLAN: <one answer="" describes="" in="" language="" natural="" of="" organization="" paragraph="" planned="" that="" the=""></one>
	TEXT TO ANALYZE: {query, chunks, RST trees, rhetorical graph}
1285	Now generate one rhetorical plan that organizes the answer coherently:
286	
1287	
1288	Figure 11: Prompt for Rhetorically-Driven Generative Planning.
289	
1290	
	Prompt for Rhetorical-Guided RAG Generation
292	•
292	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a
292 293	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a coherent and faithful answer by leveraging the following inputs:
292 293 294	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a coherent and faithful answer by leveraging the following inputs: Inputs:
1292 1293 1294 1295	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a coherent and faithful answer by leveraging the following inputs: Inputs: 1. The user query.
292 293 294 295 296	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a coherent and faithful answer by leveraging the following inputs: Inputs: 1. The user query. 2. Retrieved text chunks.
1292 1293 1294 1295 1296	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a coherent and faithful answer by leveraging the following inputs: Inputs: 1. The user query. 2. Retrieved text chunks. 3. Intra-chunk RST trees, capturing local rhetorical hierarchies.
1292 1293 1294 1295 1296 1297	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a coherent and faithful answer by leveraging the following inputs: Inputs: 1. The user query. 2. Retrieved text chunks. 3. Intra-chunk RST trees, capturing local rhetorical hierarchies. 4. The inter-chunk rhetorical graph, modeling cross-passage discourse flow.
1292 1293 1294 1295 1296 1297 1298	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a coherent and faithful answer by leveraging the following inputs: Inputs: 1. The user query. 2. Retrieved text chunks. 3. Intra-chunk RST trees, capturing local rhetorical hierarchies.
1292 1293 1294 1295 1296 1297 1298 1299	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a coherent and faithful answer by leveraging the following inputs: Inputs: 1. The user query. 2. Retrieved text chunks. 3. Intra-chunk RST trees, capturing local rhetorical hierarchies. 4. The inter-chunk rhetorical graph, modeling cross-passage discourse flow. 5. A rhetorical plan that outlines the intended argumentative organization. Critical instructions: 1. The answer must directly address the user's query.
11292 11293 11294 11295 11296 11297 11298 11299 11300	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a coherent and faithful answer by leveraging the following inputs: Inputs: 1. The user query. 2. Retrieved text chunks. 3. Intra-chunk RST trees, capturing local rhetorical hierarchies. 4. The inter-chunk rhetorical graph, modeling cross-passage discourse flow. 5. A rhetorical plan that outlines the intended argumentative organization. Critical instructions: 1. The answer must directly address the user's query. 2. Integrate evidence from multiple chunks, guided by their RST trees and rhetorical graph.
11292 11293 11294 11295 11296 11297 11298 11299 11300	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a coherent and faithful answer by leveraging the following inputs: Inputs: 1. The user query. 2. Retrieved text chunks. 3. Intra-chunk RST trees, capturing local rhetorical hierarchies. 4. The inter-chunk rhetorical graph, modeling cross-passage discourse flow. 5. A rhetorical plan that outlines the intended argumentative organization. Critical instructions: 1. The answer must directly address the user's query. 2. Integrate evidence from multiple chunks, guided by their RST trees and rhetorical graph. 3. Follow the rhetorical plan for structuring the answer.
11292 11293 11294 11295 11296 11297 11298 11299 11300 11301	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a coherent and faithful answer by leveraging the following inputs: Inputs: 1. The user query. 2. Retrieved text chunks. 3. Intra-chunk RST trees, capturing local rhetorical hierarchies. 4. The inter-chunk rhetorical graph, modeling cross-passage discourse flow. 5. A rhetorical plan that outlines the intended argumentative organization. Critical instructions: 1. The answer must directly address the user's query. 2. Integrate evidence from multiple chunks, guided by their RST trees and rhetorical graph. 3. Follow the rhetorical plan for structuring the answer. 4. Maintain factual accuracy, logical coherence, and rhetorical clarity.
11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a coherent and faithful answer by leveraging the following inputs: Inputs: 1. The user query. 2. Retrieved text chunks. 3. Intra-chunk RST trees, capturing local rhetorical hierarchies. 4. The inter-chunk rhetorical graph, modeling cross-passage discourse flow. 5. A rhetorical plan that outlines the intended argumentative organization. Critical instructions: 1. The answer must directly address the user's query. 2. Integrate evidence from multiple chunks, guided by their RST trees and rhetorical graph. 3. Follow the rhetorical plan for structuring the answer. 4. Maintain factual accuracy, logical coherence, and rhetorical clarity. 5. Output a continuous answer in natural language. Do not output trees, graphs, or plans.
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a coherent and faithful answer by leveraging the following inputs: Inputs: 1. The user query. 2. Retrieved text chunks. 3. Intra-chunk RST trees, capturing local rhetorical hierarchies. 4. The inter-chunk rhetorical graph, modeling cross-passage discourse flow. 5. A rhetorical plan that outlines the intended argumentative organization. Critical instructions: 1. The answer must directly address the user's query. 2. Integrate evidence from multiple chunks, guided by their RST trees and rhetorical graph. 3. Follow the rhetorical plan for structuring the answer. 4. Maintain factual accuracy, logical coherence, and rhetorical clarity. 5. Output a continuous answer in natural language. Do not output trees, graphs, or plans. Required output format:
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a coherent and faithful answer by leveraging the following inputs: Inputs: 1. The user query. 2. Retrieved text chunks. 3. Intra-chunk RST trees, capturing local rhetorical hierarchies. 4. The inter-chunk rhetorical graph, modeling cross-passage discourse flow. 5. A rhetorical plan that outlines the intended argumentative organization. Critical instructions: 1. The answer must directly address the user's query. 2. Integrate evidence from multiple chunks, guided by their RST trees and rhetorical graph. 3. Follow the rhetorical plan for structuring the answer. 4. Maintain factual accuracy, logical coherence, and rhetorical clarity. 5. Output a continuous answer in natural language. Do not output trees, graphs, or plans. Required output format: ANSWER:
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a coherent and faithful answer by leveraging the following inputs: Inputs: 1. The user query. 2. Retrieved text chunks. 3. Intra-chunk RST trees, capturing local rhetorical hierarchies. 4. The inter-chunk rhetorical graph, modeling cross-passage discourse flow. 5. A rhetorical plan that outlines the intended argumentative organization. Critical instructions: 1. The answer must directly address the user's query. 2. Integrate evidence from multiple chunks, guided by their RST trees and rhetorical graph. 3. Follow the rhetorical plan for structuring the answer. 4. Maintain factual accuracy, logical coherence, and rhetorical clarity. 5. Output a continuous answer in natural language. Do not output trees, graphs, or plans. Required output format: ANSWER: Validation requirements:
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a coherent and faithful answer by leveraging the following inputs: Inputs: 1. The user query. 2. Retrieved text chunks. 3. Intra-chunk RST trees, capturing local rhetorical hierarchies. 4. The inter-chunk rhetorical graph, modeling cross-passage discourse flow. 5. A rhetorical plan that outlines the intended argumentative organization. Critical instructions: 1. The answer must directly address the user's query. 2. Integrate evidence from multiple chunks, guided by their RST trees and rhetorical graph. 3. Follow the rhetorical plan for structuring the answer. 4. Maintain factual accuracy, logical coherence, and rhetorical clarity. 5. Output a continuous answer in natural language. Do not output trees, graphs, or plans. Required output format: ANSWER: Validation requirements: - The answer must be faithful to the retrieved content.
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308	You are an expert in retrieval-augmented generation with discourse knowledge. Your task is to generate a coherent and faithful answer by leveraging the following inputs: Inputs: 1. The user query. 2. Retrieved text chunks. 3. Intra-chunk RST trees, capturing local rhetorical hierarchies. 4. The inter-chunk rhetorical graph, modeling cross-passage discourse flow. 5. A rhetorical plan that outlines the intended argumentative organization. Critical instructions: 1. The answer must directly address the user's query. 2. Integrate evidence from multiple chunks, guided by their RST trees and rhetorical graph. 3. Follow the rhetorical plan for structuring the answer. 4. Maintain factual accuracy, logical coherence, and rhetorical clarity. 5. Output a continuous answer in natural language. Do not output trees, graphs, or plans. Required output format: ANSWER: Validation requirements:

Figure 12: Prompt for Rhetorical-Guided RAG Generation.

- Output exactly one complete answer.
TEXT TO ANALYZE: {query, chunks, RST trees, rhetorical graph, rhetorical plan}

Now generate the answer in natural language: