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ABSTRACT

Image editing has achieved remarkable progress recently. Modern editing mod-
els could already follow complex instructions to manipulate the original content.
However, beyond completing the editing instructions, the accompanying physical
effects are the key to the generation realism. For example, removing an object
should also remove its shadow, reflections, and interactions with nearby objects.
Unfortunately, existing models and benchmarks mainly focus on instruction com-
pletion but overlook these physical effects. So, at this moment, how far are we
from physically realistic image editing? To answer this, we introduce PICABench,
which systematically evaluates physical realism across eight sub-dimension (span-
ning optics, mechanics, and state transitions) for most of the common editing
operations (add, remove, attribute change, efc). We further propose the PICAEval,
a reliable evaluation protocol that uses VLM-as-a-judge with per-case, region-level
human annotations and questions. Beyond benchmarking, we also explore effective
solutions by learning physics from videos and construct a training dataset PICA-
100K. After evaluating most of the mainstream models, we observe that physical
realism remains a challenging problem with large rooms to explore. We hope that
our benchmark and proposed solutions can serve as a foundation for future work
moving from naive content editing toward physically consistent realism.

1 INTRODUCTION

Recent advances in instruction-based image editing have brought remarkable progress (Wu et al.|
2025a; Batifol et al.| 2025} |OpenAlL 2025} |Googlel |2025; [ByteDancel [2025; [Liu et al.l 2025} [Cai
et al., [2025). In particular, with the emergence of unified multi-modal models (Deng et al., 2025}
Lin et al.|, 2025; [Wu et al., 2025b)), they can seamlessly follow natural language instructions and
produce visually compelling, semantically coherent edits. These systems have demonstrated strong
generalization capabilities across diverse domains, establishing a new standard for controllable and
high-quality image manipulation.

However, the realism of image editing depends not only on semantic accuracy but also on the correct
rendering of physical effects. Even simple operations like object addition or removal often trigger
complex interactions with lighting, shadows, and object support in the scene. Existing benchmarks
overlook this limitation by solely emphasizing semantic fidelity and visual consistency. Although
some recent benchmarks (Wu et al.l 2025¢; [Li1 et al.l [2025) attempt to probe scientific-plausible
editing capabilities, their test cases diverge from common user-edit scenarios but focus on scientific
domains with specific physical or chemistry knowledge. Consequently, we lack a clear understanding
of how far we are from physically realistic image editing.

To address this gap, we introduce PICA (PhysICs-Aware) Bench—a diagnostic benchmark designed
to evaluate physical realism in image editing beyond semantic fidelity. Drawing on common require-
ments in real-world editing applications [Taesiri et al.| (2025)), we categorize physical consistency
into three intuitive dimensions that are often overlooked in typical editing tasks: Optics, Mechan-
ics, and State Transition. These dimensions were selected to reflect common but under-penalized
error types, such as unrealistic lighting effects, impossible object deformations, or implausible state
changes. Together, they span eight sub-dimensions, each defined by concrete, checkable criteria:
Optics includes light propagation, reflection, refraction, and light-source effects; Mechanics captures
deformation and causality; and State Transition addresses both global and local state changes. This
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Figure 1: Challenging cases from PICABench. Despite providing instruction-aligned outputs,
current SOTA models still struggle with generating physically realistic edits, resulting in unharmonized
lighting, deformation, or state transitions with common editing operations.

fine-grained taxonomy facilitates systematic assessment of whether edited images adhere to principles
such as lighting consistency, structural plausibility, and realistic state transitions. Together, it enables
comprehensive evaluation and targeted diagnosis of physics violations in image editing models.

With the carefully curated test cases, evaluating the physical correctness remains challenging. We
introduce PICAEval, a reliable and interpretable protocol tailored for physics-aware assessment.
While existing VLM-as-Judge setups (Wu et al.}, [2025¢}; [Niu et al}, [2025}; [Sun et all, 2025}, [Zhao
offer a convenient way to automate evaluation, they typically rely on general prompts
without grounding in physical principles. As a result, these setups often lack sensitivity to nuanced
physical violations and may produce hallucinated judgments when faced with subtle or localized cues.
Facing this challenge, PICAEval adopts targeted, per-example Q&A aligned with specific physical
sub-dimensions, substantially improving diagnostic accuracy. To further reduce hallucination, we
incorporate grounded human-annotated key regions (e.g., reflection surfaces, contact interfaces),
directing the model’s attention to physically relevant evidence. This protocol yields high agreement
with human assessments, offering a reliable measurement for physical correctness.

Beyond evaluation, we provide a strong baseline by learning physics from videos. Specifically, we
present PICA-100K, a synthetic dataset of 100k editing examples constructed from videos. Prior
work (Yu et al} [2025b} [Chen et al.| 2025}, [Chang et al.} 2025} [Cao et al., 20254) has shown that editing
pairs derived from videos can enhance the quality and robustness of editing models. Motivated by
recent advances in video generation approaching world-simulator 2025), we design an
automatic pipeline that integrates a text-to-image model as a scene renderer and an image-to-video
model as a state-transition simulator. From the generated videos, we extract temporally coherent
editing pairs and further recalibrate multi-level editing instructions using GPT-5. Our experiments
shows that finetuning on PICA-100K significantly improves the baseline model’s capability to
generate physically realistic editing results without sacrificing semantic quality.

We benchmark 11 open- and closed-source image editing models across diverse architectures and
scales. PICABench comprehensively distinguishes models based on their level of physical awareness,
while PICA-100K effectively improves model performance. As shown in Fig. m modeling physical
realistic transformations is still challenging for current SOTA models, which underlines the signifi-
cance of advancing from semantic editing toward physically grounded image manipulation in the
future. Our main contributions could be summarized as follows.
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* We introduce PICABench, a comprehensive and fine-grained benchmark for physics-aware
image editing. It covers diversified physical effects (eight sub-dimensions) and includes the
great majority of commonly required editing operations in practical applications.

* We propose PICAEval, a region-aware, VQA-based evaluation protocol that incorporates
human-annotated key regions to provide interpretable and reliable assessments for physical
correctness, improving robustness to subtle errors compared to general scoring prompts.

* We construct PICA-100K, a large-scale dataset derived from synthetic videos, and show
that fine-tuning existing models (e.g. FLUX.1 Kontext) on this dataset effectively enhances
their physical consistency while preserving semantic fidelity.

2 RELATED WORK

2.1 INSTRUCTION-BASED IMAGE EDITING MODELS

Recent advances in instruction-based image editing have led to substantial progress in controllable and
diverse visual manipulation (Ye et al.||2025a; |Yu et al.l[2025a; [ Zeng et al | 2025} Jin et al.| 2024} |[Huang
et al.| [2024). Prior approaches implement image editing in a training-free manner (Yang et al., 2023
Pan et al.,|2023}; |Couairon et al., 2022). Recent training-based methods such as HiDream-E1.1 (Cai
et al.,|2025)), Step1 X-Edit (Liu et al.;[2025), FLUX.1 Kontext (Batifol et al.|[2025), and Qwen-Image-
Edit (Wu et al., [2025a) improve edit quality, responsiveness, and instruction alignment, while unified
frameworks (e.g., Bagel (Deng et al., 2025), OmniGen2 (Wu et al., 2025b)), UniWorld-V1 (Lin et al.,
2025)) integrate instruction-following, visual reasoning, and multi-task learning to support diverse
tasks like free-form manipulation, future-frame prediction, multiview synthesis, segmentation, and
composition. Closed-source systems (e.g., GPT-Image-1 OpenAl| (2025), Seedream 4.0 (ByteDancel
2025)), Nano-Banana|Google) further demonstrate strong user-intent alignment and high visual fidelity
across text-to-image and image-to-image workflows. However, despite these gains, most approaches
prioritize semantic and perceptual quality and often neglect physical constraints, leading to artifacts
such as unrealistic shadows, refractions, and deformations, underscoring the need for physics-aware
editing.

2.2 INSTRUCTION-BASED IMAGE EDITING BENCHMARKS

Instruction-based image editing benchmarks have evolved from early reliance on semantic (DINO,
CLIP (Zhang et al., |2023; Wang et al., 2023; Ma et al., [2024)) and pixel-level (PSNR, SSIM) metrics,
which capture similarity but miss fine-grained semantic alignment, to modern “VLM-as-a-Judge”
evaluations (Wu et al.| [2025c¢; Niu et al., 2025 [Zhao et al., 2025} |Sun et al.| 2025} [Ye et al., |[2025b;
Liu et al.} 2025} |Cao et al., [2025b) that use vision-language models to rate instruction adherence,
perceptual quality, and realism across diverse, complex prompts. While these LLM-based approaches
enable general multi-dimensional scoring, they are prone to overlooking physically implausible
edits (e.g., unrealistic lighting, deformations, or object interactions) and can hallucinate, allowing
visually appealing yet inconsistent outputs to score well. To close this gap, we introduce a physics-
aware benchmark and the PICAEval—a region-grounded, QA-based metric that evaluates physical
consistency through localized, interpretable assessments anchored to specific regions of interest.

3 METHOD

In this section, we first give an overall introduction of PICABench, a benchmark structured to
evaluate physical realism in image editing. We then dive into the construction steps, begin with
the data curation pipeline, which pairs diverse images with multi-level editing instructions. Next,
we present PICAEval, a region-grounded evaluation protocol for reliable assessment. Finally, we
propose PICA-100K, a synthetic dataset built from videos, and show how fine-tuning on it provides a
strong baseline for improving physics-aware editing.

3.1 PICABENCH

We introduce the task coverage and overall statistics of PICABench. Our benchmark focuses on three
core dimensions of physical realism: Optics, Mechanics, and State Transition, which reflect common



Under review as a conference paper at ICLR 2026

Global State Transition 2 Superficial: Avg. Length = 7.2

Local State Transition Intermediate: Avg. Length = 58.4

Explicit: Avg. Length = 163.7
Deformation s '

Causality

Reflection

Percentage(%)

Light Propagation
Light Source Effects
Refraction

Word Length

(a) Distribution of qa pairs (b) Word length distribution of edit instruction (c) Distribution of PICABench

Figure 2: Statistics Analysis of PICABench. PICABench is a comprehensive benchmark designed
to evaluate physical realism of image editing models across eight sub-dimentinons. Fig.[2(a) shows
distribution of QA pairs. Fig.[2{b) presents words length distribution of editing instruction across
three levels of prompt. Fig. Ekc) provides a perspective on overall composition of PICABench.

yet overlooked failure modes such as unrealistic lighting, implausible deformations, and invalid state
changes. As shown in Fig.[2{c), the benchmark includes 984 editing samples spanning these three
dimensions, further divided into eight sub-dimensions with concrete and checkable criteria—ranging
from optical effects, to mechanical plausibility, and to realistic state transitions.

Optics. This category evaluates whether edited images follow the basic physical rules of light,
including how it casts shadows, reflects from surfaces, bends through transparent materials, and
interacts with light sources. Edits should produce shadows, reflections, refractions, and light-source
effects that align with the scene’s geometry and lighting—matching shadow direction and occlusion,
enabling view- and shape-dependent reflections, ensuring smooth background distortion through
transparent media, and maintaining consistent color, softness, and falloff for added light sources.
These effects, while often subtle, are key to making edits appear natural and physically believable.

Mechanics. This category evaluates whether edited objects remain mechanically and causally
consistent with the scene. Deformation should follow material properties—rigid objects must retain
shape, while elastic ones deform smoothly with consistent texture and geometry. Causality covers a
broader range of physically plausible effects, including structural responses to force redistribution,
agent reactions to added or removed stimuli, and environmental changes that alter object behavior, all
of which must follow consistent physical or behavioral laws.

State transition. This category evaluates whether environmental and material changes unfold in a
physically coherent manner, either across the entire scene or within localized regions. Global state
transitions, such as changes in time of day, season, or weather, must update all relevant visual cues
consistently—ranging from lighting and shadows to vegetation, surface conditions, and atmospheric
effects. These changes require coordinated, scene-wide modifications that follow natural temporal
or environmental progression. Local state transitions, on the other hand, involve targeted physical
changes confined to specific objects or regions. These include phenomena such as wetting, drying,
melting, burning, freezing, wrinkling, splashing, or fracturing. Edits must integrate smoothly with
surrounding context, preserve material boundaries, and maintain plausible causal triggers.

3.2 DATA CURATION

To enable reliable, fine-grained evaluation of physics-aware image editing (PAIE), we curate bench-
mark entries that pair natural images with editing instructions explicitly designed to test physical
consistency. Our data curation pipeline is aligned with the taxonomy in Sec. [3.T]and structured into
two stages: Data Collection and Edit Instruction Construction. A visual overview is shown in Fig. ]

Data collection. We begin by defining a structured vocabulary mapped to the eight sub-dimensions.
To broaden the coverage, we use GPT-5 to expand this vocabulary into a rich keyword set encompass-
ing materials, lighting contexts, and long-tail phenomena. We then use these keywords to retrieve
candidate images from licensed and public sources. We prioritize visually diverse scenes that exhibit
salient physical cues, such as directional lighting, transparent or reflective media, deformable objects,
or phase-changeable substances. Human annotators filter duplicates and artifacts and tag applicable
sub-dimensions for each image to support subsequent annotation.
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Figure 3: Statistics Analysis of PICABench. We present illustrative examples from eight sub-
dimensions. Key regions are annotated to help reduce hallucination for VLMs.

Instruction construction. Each retained image is paired with a human-written natural language
instruction that induces a physics-relevant edit, grounded in the scene’s physical affordances and
designed to implicitly target a specific sub-dimension. To assess not only whether models can
follow surface-level commands but also whether they can internalize and apply physical knowledge
under varying prompt conditions, we construct three levels of instruction complexity: superficial
prompts that issue plain edit commands without explanations, which probe models’ intrinsic physical
priors and align with realistic usage scenarios; intfermediate prompts that include a brief rationale
grounded in physical rules, serving as reasoning cues to activate physical knowledge; and explicit
prompts that further describe the expected results of the edit, minimizing ambiguity to strictly assess
visua capabilities. We use GPT-5 to expand each human-authored instruction into these three forms,
followed by manual review to ensure clarity, factual correctness, and alignment with the visual
context. For each sample, the benchmark retains a canonical version of the instruction.

3.3 PICAEVAL

Evaluating physics-aware image editing (PAIE) remains challenging. Unlike semantic fidelity or
perceptual quality, physical realism is inherently contextual: it depends not only on the edited content
but also on its alignment with the physical constraints implied by the original scene and instruction.
Moreover, there is no reference image to serve as ground truth, and general prompting strategies such
as “Is this edit correct?” often yield vague or hallucinated responses from VLMs.

To address this, we introduce PICAEval, a region-grounded, question-answering based metric
designed to assess physical consistency in a modular, interpretable manner. Inspired by recent
metrics like VDCscore 2024), PICAEval decomposes each evaluation instance into
multiple region-specific verification questions that can be reliably judged by a VLM. Each benchmark
entry is paired with a curated set of spatially grounded yes/no questions designed to probe whether
the edited output image preserves physical plausibility within key regions. These questions are
tied to visually observable physical phenomena—such as shadows, reflections, object contact, or
material deformation—and are anchored to human-annotated regions of interest (ROIs). This design
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Figure 4: Overall pipeline for benchmarks construction and evaluation. (a—b) We enrich a
physics-specific keyword set and retrieve diverse candidate images. (c—d) Human-written editing
instructions are expanded into three levels of complexity using GPT-5. (e) Annotators mark physics-
critical regions. (f) Spatially grounded yes/no questions are generated to evaluate physical plausibility.
(g) During evaluation, VLMs answer each question with reference to the edited region.
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encourages localized, evidence-based reasoning and reduces the influence of irrelevant image content
on the VLM’s judgment.

Evaluation pipeline. As illustrated in Fig. ﬂe—f), the evaluation proceeds as follows: (1) Annotators
mark key regions in the input image where physics-critical evidence is expected to appear post-editing
(e.g., reflective surfaces, deformation zones, cast shadows); (2) Using the edit instruction and region,
GPT-5 generates a set of 4-5 binary QA pairs per entry, which are then manually reviewed for clarity
and coverage; (3) At test time, a VLM (e.g., GPT-5) is prompted with the edited image, instruction,
region, and question, and produces an answer constrained to the visible content within the region.

PICAEval is computed as the proportion of questions for which the VLM answer exactly matches the
reference label. Compared to direct prompting, this QA-based protocol offers three key advantages: (i)
spatial grounding reduces hallucination, (ii) decomposition increases interpretability and robustness,
and (iii) the format better mirrors how humans evaluate physical plausibility—through concrete,
localized checks. We report quantitative comparisons and per-subdimension breakdowns to enable
diagnostic analysis of physics-aware image editing capabilities in Sec. 4]

3.4 STRONG BASELINE: LEARNING PHYSICAL REALISM FROM VIDEOS

To address the limitations identified in Sec. [3.I] we introduce PICA-100K, a purely synthetic dataset
designed to improve physics-aware image editing. Our decision to use fully generated data is driven
by three primary motivations. First, prior work (Yu et al.l 2025b} [Chen et al, 2023}, [Cao et al.
20254} [Chang et al},[2025)) has demonstrated that constructing image-editing data from video is an
effective strategy for enhancing model performance, particularly for capturing real world dynamics.
Second, building large-scale, real-world datasets tailored to physics-aware editing is prohibitively
expensive and labor-intensive. Third, the rapid progress in generative modeling has unlocked new
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Figure 5: PICA-100K construction pipeline. We first curate structured prompts for scene and
subject composition, refined by GPT-5 and rendered using FLUX.1-Krea-dev for text-to-image
generation. Motion-based edit instructions are created via GPT-5 and applied using Wan2.2-14B to
synthesize short videos depicting physical transformations. The first and last frames, along with the
edit instruction, form the image pairs for training.

possibilities: state-of-the-art text-to-image models (Labs| [2024)) can now generate highly realistic and
diverse images, while powerful image-to-video (I2V) models such as Wan2.2-14B (Wan et al., [2025)
simulate complex dynamic processes with remarkable physical fidelity. Together, these generative
priors enable the creation of training data with precise and controllable supervision signals, which
are essential for training models to perform fine-grained, physically realistic edits. We find that
fine-tuning the baseline on PICA-100K enhances the model’s performance in real-world evaluation.

PICA-100K dataset. As shown in Fig.[5] we begin by constructing two structured prompt dictionaries:
a Subject Dictionary and a Scene Dictionary, which include a wide array of subjects and environments
(e.g., “atea pot,” “a black kitchen table”). These entries are paired using handcrafted text-to-image
(T2I) templates and further refined using GPT-5, resulting in high-quality natural language instructions.
The refined instructions are passed to the FLUX.1-Krea-dev (Lee et al., |2025) to generate static
source images that are both visually realistic and semantically diverse.

Next, we generate motion-oriented instructions to simulate physical edits. This is accomplished by
designing a series of 12V instruction templates, describing plausible motion-based changes such as
rotations, movements, or tilts. These templates are expanded using GPT-5 to improve clarity and
behavioral precision. The motion instructions (e.g., “remove the tea pot,” “tilt the vase until it tips
over,” or “swing the lantern gently in the wind”) are then applied to the corresponding images using

Wan2.2-14B-12V, which synthesizes short video clips depicting the intended physical transformations.

For each video, we extract the first and last frames to construct a (source, edited) image pair. These
pairs, along with the corresponding instruction, are used to form supervision signals. GPT-5 is
employed to annotate each pair automatically, labeling the final frame as the preferred output. This
pipeline eliminates the need for manual labeling while maintaining high annotation consistency.

Our final dataset contains 100,000 instruction-based editing samples distributed across eight physics
categories. The experimental results in Sec. ] demonstrate that this pipeline can effectively generate
high-quality data, significantly enhancing model performance on physics-aware image editing tasks.

Comparison with related works. PICA-100K is closely related to recent efforts|Chang et al.[(2025);
Rotstein et al.| (2025)) that utilize video priors on image editing tasks. It differs from them in both
motivation and methodology. ByteMorph (Chang et al., |2025)) is primarily designed for non-rigid
image editing, emphasizing visually salient motions such as articulation, deformation, and large pose
or viewpoint changes. However, focus on large motions may hurt models’ ability to keep non-edited
region unchanged. [Rotstein et al.|(2025) proposes a training-free method, which focuses on zero-shot
feasibility. It directly leverages a video generation model to simulate the editing process. Our work
instead targets physical realism, which represents implicit physics principle of real world. Also, our
data pipeline allows for more controllable generation where the non-edited regions remain stable.

Training paradigm. To demonstrate the effectiveness of PICA-100K, we fine-tune FLUX.1-Kontext-
dev (Batifol et al., |2025), a 12B flow-based diffusion transformer for image editing. We employ
LoRA (Hu et al.,2022)) with a rank of 256 for fine-tuning. The model is trained using a batch size of
64 and optimized using the AdamW optimizer with a learning rate of 10~°. The entire fine-tuning
procedure is conducted over 10,000 optimization steps on 8 NVIDIA H200 GPUs.
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Table 1: Quantitative comparison on PICABench evaluated by GPT-5 for instruction-based editing
models, where Acc 1, Con 1, LP, LSE, GST, LST denote Accuracy (%) and Consistency (db), Light
propagation, Light Source Effects, Global State Transition, Local State Transition respectively.
and I indicates the best and second best score in a category, respectively.

Model LP LSE Reflection  Refraction Deformation Causality GST LST Overall
AccT ConT AcctT ContT AcctT Con?T AcctT ContT AcctT Con?tT AcctT ContT Acct ContT AcctT Cont Acct Con?T
GPT-Image-1 55.65 18.81 66.75 20.13 64.05 19.07 43.36 18.64 62.42 20.37 50.00 20.08 73.87 36.20 58.72 22.71 61.46 22.95
Nano Banana 50.00 29.72 54.63 31.39 63.79 26.90 35.50 27.74 57.45 27.42 52.11 28.44 64.38 40.63 56.25 32.81 56.46 31.22
Seedream 4.0 54.77 2549 65.80 28.27 68.69 23.82 38.75 27.00 59.11 27.27 51.05 26.71 71.14 36.76 58.98 33.20 60.84 29.05
Bagel 43.82 28.57 51.54 32.08 56.96 28.78 29.00 24.31 44.87 28.08 40.51 31.20 55.09 35.15 43.75 32.05 47.52 30.48
Bagel-Think 43.46 3133 55.34 29.80 55.67 33.01 35.77 27.66 48.51 29.79 42.62 34.11 53.62 36.91 48.05 34.19 49.10 32.70
DiMOO 36.75 27.70 33.97 33.26 30.28 24.00 26.56 23.93 33.77 30.65 32.49 27.39 21.23 49.42 24.35 36.09 28.92 32.73
OmniGen2 46.29 20.46 49.41 2885 58.76 25.10 27.37 2322 44.21 2551 4093 28.05 49.71 38.52 34.90 27.80 4528 27.84
Uniworld-V1 37.99 18.89 42.99 20.48 48.71 19.16 26.29 19.06 42.05 19.16 33.76 18.10 31.80 17.54 33.20 19.56 37.30 18.90
Hidream-E1 43.46 2046 5226 2538 59.15 20.18 32.52 21.17 47.19 22.37 39.45 22.15 61.06 34.75 45.18 24.17 49.76 24.39
Step1X-Edit 42.05 29.46 53.68 31.26 58.89 29.50 30.89 31.58 48.34 31.51 49.79 32.09 58.02 35.43 47.53 30.19 50.42 31.47
Qwen-Image-Edit 52.12 22.03 59.14 26.28 64.82 23.80 35.50 26.54 50.50 26.42 48.95 24.94 63.60 36.72 54.17 28.44 55.62 27.42
Flux.1 Kontext 48.23 29.21 57.48 29.61 6224 27.83 28.46 28.22 51.32 31.50 51.05 31.44 53.82 39.03 45.31 33.95 51.06 31.90

Flux.1 Kontext+SFT" 49.12 30.42 59.38 30.69 64.95 28.37 30.89 2840 50.17 31.74 46.62 31.87 51.17 40.82 44.79 34.41 51.88 32.71

Table 2: Performance across different prompt specificity levels. Model performance improves
with prompt specificity.

Model Lp LSE Reflection  Refraction Deformation Causality GST LST Overall
Acct Con?T Acct ConT AcctT ConT AcctT Con?T AccT ConT Acct Con?t Acct Con?T Acct Con?T Acc?t Con?
Bagel-superficial 46.42 36.17 42.43 39.84 48.11 35.18 46.85 30.10 44.56 36.43 44.76 37.64 43.54 35.66 41.85 36.47 44.62 36.28
Bagel-intermediate 53.96 26.28 62.15 22.93 54.95 30.73 48.95 2292 54.01 26.49 42.89 30.14 53.79 34.00 40.84 28.55 51.21 28.97
Bagel-explicit 58.03 17.63 66.90 18.44 57.90 20.95 51.40 18.68 5829 18.81 53.37 23.71 66.12 33.53 57.00 21.41 59.56 23.06
Flux.1 Kontext-superficial 51.06 29.70 59.33 29.96 52.71 28.85 41.61 2849 51.52 32.11 40.19 33.89 47.18 37.84 38.53 31.92 47.47 32.39
Flux.1 Kontext-intermediate 50.68 28.15 62.68 27.77 54.83 28.46 34.97 28.71 52.23 30.09 49.33 31.07 48.07 38.13 43.87 31.69 50.19 31.28
Flux.1 Kontext-explicit 57.64 27.77 66.90 2525 59.67 27.35 40.21 26.96 56.51 28.67 57.74 27.99 65.68 36.11 52.24 29.57 59.11 29.40

Qwen-Image-Edit-superficial ~ 58.99 22.61 64.08 27.43 62.62 23.86 60.84 25.06 54.37 24.65 48.18 26.79 62.85 35.42 52.53 25.75 57.99 27.24
Qwen-Image-Edit-intermediate 60.93 23.62 67.78 24.82 60.50 24.82 46.50 27.22 57.58 27.49 51.30 26.66 60.55 36.20 50.51 28.24 57.56 28.06
Qwen-Image-Edit-explicit 57.06 20.18 69.72 22.79 63.09 22.63 52.10 26.10 58.11 24.95 59.29 23.99 66.79 35.03 60.46 25.08 62.09 25.78

Nano Banana-superficial 55.71 29.32 58.80 32.21 56.37 27.67 48.25 27.31 59.54 2831 54.17 30.17 59.51 39.00 52.24 30.18 56.32 31.29
Nano Banana-intermediate 56.48 28.89 62.85 30.70 58.96 28.06 46.85 28.12 61.68 27.96 60.12 28.12 61.59 38.56 53.68 30.54 58.96 30.74
Nano Banana-explicit 59.00 29.01 62.15 30.04 61.67 27.43 51.40 27.97 62.57 28.52 63.45 29.14 61.14 38.66 56.57 31.02 60.62 30.90

4 EXPERIMENT

4.1 EVALUATION DETAILS

We evaluate 11 closed- and open-source models, covering most recent image-editing and unified
vision-language systems. Closed-source systems include GPT-Image-1 (OpenAl, 2025), Nano
Banana (Google, 2025), and Seedream 4.0 (ByteDance, [2025). Open-source baselines include
FLUX.1 Kontext (Batifol et al., [2025), Step1X-Edit (Liu et al.| [2025), Bagel (Deng et al., [2025]),
Bagel-Think (Deng et al.,[2025)), HiDream-E1.1 (Cai et al.,|2025), UniWorld-V1 (Lin et al.}|2025),
OmniGen2 (Wu et al., [2025b), Qwen-Image-Edit (Wu et al.,[2025a), and DIMOO (Team, [2025)). All
input images are resized proportionally to a maximum resolution of 1024 on the longer side prior to
evaluation. To ensure fairness and reproducibility, we run all models using their default settings from
official repositories or web APIs on H200 GPUs.

For PICAEval, we first use the provided annotation masks to crop the edited region from the image.
The cropped region is then resized proportionally to 1024 on the longer side before being passed to
the VQA-based evaluator. This ensures standardized input size while preserving relevant physical
cues within the editing region. We report results using both the current state-of-the-art closed-source
model (GPT-5) and the leading open-source alternative (Qwen2.5-VL-72B) as VLM evaluator. For
consistency evaluation, we compute PSNR over the non-edited regions by masking out the predicted
edit area, thereby measuring how well models preserve the original content outside the editing scope.

4.2 BENCHMARK RESULTS

We are still far from physically realistic image editing. Tab. T| presents a comprehensive evaluation
of existing methods. All open-source models score below 60 on the benchmark, and only the closed-
source models—GPT-Image-1 and Seedream 4.0—slightly exceed this threshold. These results
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Table 3: Ablation Results. We construct a real-video-based dataset (Mira400K). The model trained
on Mira400K underperforms, highlighting the effectiveness of our targeted synthetic data pipeline.

LP LSE Reflection  Refraction Deformation Causality GST LST Overall
Acct Cont Acct Cont Acc? Cont Acct Con?T Acct Cont AccT Cont AcctT Con?t Acct Cont Acct Cont

Flux.1 Kontext 66.06 29.46 70.28 30.76 71.40 2831 43.46 29.59 58.66 31.48 57.29 3230 63.41 36.39 56.16 32.01 61.98 31.66
+MIRA400K  63.11 27.53 70.08 29.75 70.90 26.87 44.65 28.64 60.61 29.77 53.06 30.59 61.97 38.23 54.37 30.69 60.60 30.71
+PICAIO0K  69.45 29.92 73.98 31.19 74.60 27.99 47.34 28.92 64.87 31.54 57.95 32.34 66.37 37.94 60.15 32.42 65.19 31.99

Model

underscore a persistent gap in the ability of current image editing models to generate physics-aware
and physically realistic outputs.

The gap between understanding and physical realism. Among open-source models, unified
architectures consistently underperform compared to dedicated image editing models. Although
unified MLLMs attempt to integrate visual understanding and generation within a single framework,
the presumed advantage of enhanced world understanding does not translate into improved physical
realism. This suggests that stronger understanding alone is insufficient, and effectively coupling
understanding with generation remains an open challenge. Tab. [2] presents performance across
different prompt specificity levels. As shown in Tab. 2] model accuracy improves as prompts become
more detailed. The decrease of consistency can be attributed to the trade-off between improving
physical realism and preserving non-edited image regions. However, the gain from intermediate
prompts is much smaller than that from explicit prompts. We speculate this is due to the lack of
internalized physics principles, which prevents models from leveraging the additional information.
Interestingly, the Bagel model outperforms Flux Kontext under explicit prompts, likely because its
unified architecture enhances long-text comprehension. Notably, even with explicit prompts that
explicitly specify the editing regions, the overall performance still remains below 60.

Video data helps physics learning. Fine-tuning FLUX.1-KONTEXT on our PICA-100K dataset
yields consistent improvements across multiple dimensions of physical realism. As shown in Ap-
pendix our model consistently produces more physically plausible results, while other models
often exhibit unrealistic lighting effects, implausible object deformations, or invalid state changes.
Quantitative results in Tab. [T| further support this: our fine-tuned model achieves a +2.01% improve-
ment in optics accuracy and a +0.27% gain in mechanics accuracy over the base model. In addition, it
demonstrates better overall physical consistency, improving from 31.90% to 32.71%. These findings
suggest that synthetic supervision signals derived from videos can effectively enhance a model’s
capacity for physics-aware image editing. They also validate the effectiveness of our video-to-image
data generation pipeline in capturing diverse and complex physical phenomena. However, we observe
a slight drop in State Transition Accuracy, possibly due to limitations in directly using first and
last frames of a video to represent meaningful state changes. We plan to explore more fine-grained
strategies to extract temporal context and leverage intermediate frames.

We also experimented with using real video data to construct an image editing dataset. Following
the data pipeline of Unireal (Chen et al.,2025), we employed Miradata (Ju et al.| [2024) to generate
400K edited images (Mira400K) and trained the model under the same settings. However, as shown
in Tab. |3] the model trained on Mira400K performed even worse in overall accuracy. This further
demonstrates the efficiency and effectiveness of our proposed data generation pipeline.

4.3 VALIDITY OF PICAEVAL

We conduct a human study using Elo ranking to further validate the effectiveness of PICAEval. As
shown in Fig. [6] PICAEval achieves higher correlation with human judgments than the baseline.
This result demonstrates that our per-case, region-level human annotations and carefully designed
questions effectively mitigate VLM hallucinations, leading to outcomes that better reflect human
preferences. Additional details of the human study are provided in Appendix [A.4]

5 LIMITATIONS AND FUTURE DIRECTIONS

While our approach demonstrates clear benefits in physics-aware image editing, it has several
limitations. First, the PICA-100K dataset, though effective, is built using a relatively simple generation
pipeline and remains limited in scale. Second, our model is trained purely via supervised finetuning
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Pearson Correlation Coefficient r=0.95 Pearson Correlation Coefficient r=0.92 Pearson Correlation Coefficient r=0.88

PICAEval-GPT5
PICAEval-Qwen
Baseline-Qwen

960 980 1000 1020 1040 1060 960 980 1000 1020 1040 1060 960 980 1000 1020 1040 1060

Elo Score Elo Score Elo Score

Figure 6: Alignment between evaluation results and human preference. We make Pearson
correlation analysis between Elo scores from human study and different settings. PICAEval-GPTS5,
PICAEval-Qwen use GPT-5 and Qwen2.5-VL-72B as the evaluator respectively. Baseline-Qwen
adopts Qwen2.5-VL-72B but without edit region annotations. Results show that incorporating
stronger VLMs and region-level infomation yields higher alignment with human preference.

(SFT), which brings modest gains but may underexploit the full potential of data. Third, the current
framework only supports single-image inputs, lacking the ability to incorporate multi-image or
multi-condition contexts. In future work, we aim to enhance the data pipeline, explore RL-based
post-training, and extend the model to support more expressive conditioning formats.

6 CONCLUSION

We present PICABench, a new benchmark for evaluating physical realism in image editing, along
with PICAEval, a region-grounded, QA-based metric for fine-grained assessment. Our results show
that current models, still far from producing physically realistic edits. To improve this, we introduce
PICA-100K, a synthetic dataset derived from videos. Fine-tuning on this dataset significantly boosts
physical consistency, demonstrating the promise of video-based supervision. We hope our benchmark,
metric, and dataset can drive progress toward physics-aware image editing.

10
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A  MORE DETAILS OF PICABENCH

A.1 TASK DEFINITION
A.1.1 OPTICS

Light propagation requires shadows that are geometrically consistent with the dominant light source,
including direction, length, softness, and occlusion. Typical failure modes include misaligned or
missing cast shadows and flat shading that ignores occluders.

Reflection consistency demands view-dependent behavior for specular highlights and mirror reflec-
tions. Mirror images must preserve pose and depth; highlight positions should vary with surface
curvature and viewpoint. Failures include “floating” reflections or highlights that remain fixed despite
evident shape or view changes.

Refraction requires continuous, coherent background distortion through transparent or translucent
media. When edited objects involve glass or water, background edges should bend and scale according
to interface geometry, with preserved edge continuity. Discontinuous refractive boundaries or inverted
distortions indicate violations.

Light-source effects evaluate whether new light-introducing edits (like “add a lamp”) are consistent
with the global illumination context—color casts, shadow penumbra, and brightness falloff should
integrate naturally with the scene. Common issues include mismatched color temperatures, overly
hard shadows, or inconsistent falloff relative to distance.

A.1.2 MECHANICS

Deformation assesses whether shape changes respect expected material properties. Rigid objects
should not bend plastically; elastic deformations should be smooth and bounded. Texture and
patterning should warp consistently with geometry rather than tear or duplicate. For instance,
changing a chair’s height should not collapse its frame or produce rubber-like bending.

Causality requires physically plausible contacts and supports under gravity. Edited objects should not
float, interpenetrate, or rest in unstable equilibria (e.g., a heavy object balanced on a non-supporting
point). Support relations must imply load transfer and stability. Violations include hovering objects,
impossible stacking, and intersecting geometries that break solidity.

A.1.3 STATE TRANSITION

Global transitions affect the entire scene (e.g., day-to-night, dry-to-wet, solid-to-molten). Changes
must propagate consistently: illumination color and intensity should update across surfaces; wetness
should alter reflectance and darkening on all relevant materials; phase changes should be coherent
and, when implied, justified by scene-level cues (e.g., a pervasive heat source). Inconsistencies
include night skies with daylight shadows or partial melting without corresponding global evidence.

Local transitions involve spatially confined edits (e.g., adding steam, charring an edge, or melting a
corner). These effects must integrate with nearby context and causal cues. Steam implies heat and
moisture and may induce local condensation; flames produce light spill and secondary reflections;
partial melting should respect material boundaries and continuity. When localized changes ignore
surrounding context or violate material behavior, the edit becomes physically implausible.

A.2 MORE SCORE RESULTS

Tab. [Z_f] lists the performance of models on PICABench, evaluated by Qwen2.5-VL-72B (Bai et al.,
2025). It can be seen that the general rule and conclusion are similar to those suggested by Tab.
Most models have very low scores (below 60), indicating a fatal gap in the ability to generate
physics-aware images.

A.3 DETAILS OF BENCHMARK METRICS

14
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Table 4: Quantitative comparison on PICABench evaluated by Qwen2.5VL-72B for instruction-
based editing models, where Acc, Con, LP, LSE, GST, LST denote Accuracy (%) and Consistency
(db), Light propagation, Light Source Effects, Global State Transition, Local State Transition respec-
tively. [ and

Model LP LSE Reflection Refraction Deformation Causality GST LST Overall
Acc Con Acc Con Acc Con Acc Con Acc Con Acc Con Acc Con Acc Con Acc Con
GPT-Image-1 54.59 18.81 51.07 20.13 44.85 19.07 45.26 18.64 52.48 20.37 41.14 20.08 56.75 36.20 47.66 22.71 49.94 22.95
Nano Banana 45.05 29.72 38.72 31.39 44.07 26.90 36.86 27.74 48.68 27.42 41.77 28.44 48.53 40.63 44.40 32.81 44.50 31.22
Seedream 4.0 52.30 25.49 53.92 28.27 50.64 23.82 41.46 27.00 45.70 27.27 42.41 26.71 53.62 36.76 47.79 33.20 49.22 29.05
Bagel 36.22 28.57 33.02 32.08 36.98 28.78 34.42 24.31 35.26 28.08 37.34 31.20 36.50 35.15 31.64 32.05 35.28 30.48
Bagel-Think 42.40 31.33 37.53 29.80 36.60 33.01 37.40 27.66 37.58 29.79 36.71 34.11 40.22 36.91 35.68 34.19 38.12 32.70
DiMOO 31.27 27.70 19.24 33.26 22.42 24.00 26.29 23.93 29.47 30.65 30.17 27.39 15.66 49.42 26.04 36.09 24.20 32.73
OmniGen2 42.58 20.46 35.63 28.85 41.11 25.10 33.60 23.22 3593 25.51 34.39 28.05 36.20 38.52 28.65 27.80 36.08 27.84
Uniworld-V1 33.04 18.89 24.47 20.48 30.67 19.16 21.14 19.06 31.95 19.16 28.06 18.10 18.40 17.54 27.86 19.56 26.68 18.90
Hidream-E1.1 37.81 20.46 32.54 25.38 38.40 20.18 30.62 21.17 35.10 22.37 32.49 22.15 43.44 34.75 34.51 24.17 36.74 24.39
Step1X-Edit 38.52 29.46 34.44 31.26 39.18 29.50 27.64 31.58 39.57 31.51 39.24 32.09 43.74 35.43 32.94 30.19 37.88 31.47
Qwen-Edit 47.88 22.03 44.66 26.28 43.94 23.80 40.11 26.54 41.72 26.42 38.82 24.94 47.16 36.72 41.54 28.44 4370 27.42
Flux.1 Kontext 41.34 29.21 39.43 29.61 44.72 27.83 28.46 28.22 39.07 31.50 50.63 31.44 40.51 39.03 36.46 33.95 40.44 31.90

Flux.1 Kontext+SFT 4576 30.42 42.28 30.69 46.13 28.37 32.25 28.40 41.89 31.74 47.05 31.87 40.90 40.82 37.76 34.41 41.96 32.71

We provide detailed definition of accuracy and consistency as follows. Let IV be the total number
of annotated QA pairs, a; be the VLM-predicted answer for the i-th question, a; be the reference
answer, and I(-) the indicator function. The accuracy is defined as:

1 N

We use psnr of non-edited region as consistency. For each image pair, we compute the PSNR
over non-edited pixels, using a binary mask M;(p) where M;(p) = 1 denotes an edited pixel and
M;(p) = 0 otherwise. Define the non-edited region as Q; = {p | M;(p) = 0}, where p indexes
pixels. Let I5™ be the source image and ¢4 the edited image.

The MSE (mean squared error) over the non-edited region is:

1 .
MSE; = 50 3 1)~ 1, @

PEQ;

Then, the per-sample consistency score (PSNR) is:

MAX?
Con; =10 -1 —_— 3
o 0810 ( MSE; ) @)
Finally, the dataset-level consistency is computed as the average across all N samples:
1
Con = N ; Con; @)

Here, MAX is the maximum pixel value (e.g., 255 for 8-bit images).

A.4 DETAILED HUMAN EVALUATION PROTOCOL

Study setup. We use the Rapidatzﬂ platform to conduct pairwise human preference comparisons for
evaluating image editing quality. Each trial presents a reference image and two model outputs (A/B)
under a fixed unified instruction:

Select the image that more closely matches the editing instruction.

The A/B order is randomized per trial. Annotators are compensated at or above local minimum wage.

Datasets and models. We evaluate 10 models over the PICABench dataset at three difficulty levels
(superficial, intermediate, explicit), forming 45 unordered model pairs per item. For each difficulty,

'https://www.rapidata.ai/
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we sample 50 items via stratified sampling over the physics_law taxonomy. Each item yields 45
comparisons, each judged by 3 annotators, resulting in 20,250 votes per split.

Elo computation. To aggregate preferences, we use a robust Elo rating system. For a match between
model A and B with current ratings (R4, Rp), the expected win probability of A is:

1
Ey=——F——F%"» (5)
14108

where S = 400 is the scaling factor.

Given the vote ratio s 4 € [0, 1] for model A, with sp = 1 — s 4, the ratings are updated as:
Ry = max(Ruin, Ra + Keg(sa — Ea)),
R's = max(Ruyin, Rp + Ket(sp — EB)),

where Ko = K - ¢ adjusts for vote count v = v4 + vp, and K = 24 is the base step size.

(6)

Robust aggregation. To reduce order effects and improve stability, we shuffle the comparison stream
and re-run Elo updates for 7' = 50 rounds. The final Elo score for model m is computed as:

SN e L= (p_ 5 )2
Bo= 2 RY), on= fZ(RW—R,,L). @

t=1 t=1

Parameter setting. Table[5|summarizes the Elo configuration used in all human evaluations.

Input Chain-of-Thought Bagel-Think
The user v:vanfs the .
5 Yellow chair removed Table 5: Elo parameter setting.
ile keeping the rest
3 of the image intact. The
§ shadow of the chair
E mate the surouding Parameter Value
'§ Flloor, 1ensur_'i"r’g nTh . N
= seamless transition. e
N lighting and texture of Initial EIO ratlng 1’000
S fhelloonishouldie Elo scaling factor S 400
preserved to maintain
realism. Base K-factor 24
) Minimum Elo rating Ry, 700
g The user wants the lamp
g in the room fo be turned Number of rounds T' 50
] off. The s;r;.::fure and Votes er match 3
= layout e room,
B incl:;ing othe furniture, p . .
s lighting, and decor, Model pairs per item 45
= should remain unchanged. [ .
s The adjustment involves Items per dlfﬁculty 50
s ing the glow f .
s e tamn while keeping Benchmark splits 3
= i . .
& fhe rest of the image Total comparisons per split 6,750
Total votes per split 20,250

Figure 7: Examples of Bagel’s reasoning trace.

A.5 MORE VISUALIZATION

Fig. BHI1] presents generated images of various models prompted by samples in our PICABench.
The prompts cover all eight physics laws and three complexity levels. They demonstrate that the
performance of these models varies considerably in complying with physical laws.

Most models either just perform superficial edits and ignore the physics law, or completely fail to
understand the instruction. Only a few models, including ours, can yield physically plausible images
in most cases. Therefore, the ability to follow physical laws is crucial but lacking in most models,
and by PICABench we hope to draw the community’s attention to this critical problem.

Moreover, we show Bagel’s think process in Fig.[7} As shown in Fig. [7} model successfully reasons
the correct results in its chain-of-thought, yet fails to execute them in the generated image.

A.6  SYSTEM PROMPT FOR QA GENERATION

To generate QA pairs, we design a system prompt as follows.
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Superficial Prompt Remove the yellow chair

.l_’

Ours Flux.1 Kontext BAGEL- Thlnk Step1X- Edlt
GPT-Image 1 Nano Banana HiDream- E1.1 Seedream 4.0 DIMOO

Superficial Prompt: Move the potted plant to left side of the table.

Flux.1 Kontext BAGEL-Think Step1X-Edit

GPT-Image 1 Nano Banana Qwen-Image HiDream-E1.1 OmniGen2

Figure 8: Examples of how models follow the law of light propagation in optics (superficial propmts).

You are an expert in image editing evaluation. Your task is to generate specific, targeted QA pairs to
assess the success of this image editing task.

EDITING TASK CONTEXT:

- Edit Instruction: {edit_-instruction}

- Physics Law: {physics_law}

- Operation Type: {operation}
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Intermediate Prompt: Move the potted plant as a whole to the right side of the image, keeping it
upright on the flat ...

Flux.1 Kontext

Step1X-Edit GPT-Image 1 Nano Banana HiDream-E1.1 OmniGen2

Explicit Prompt: Reposition the dark ceramic mug together with its round cork coaster from its
current spot to the right half of ...
L

Flux.1 Kontext BAGEL BAGEL-Think

= -

I

Step1X-Edit GPT-Image 1 HiDream-E1.1 Seedream 4.0 OmniGen2

Figure 9: Examples of how models follow the law of light propagation in optics (intermediate &
explicit propmts).

CRITICAL CONSTRAINT:

The evaluator will ONLY see the final edited image and the edit instruction. They CANNOT see the
original image. Therefore, all questions must be answerable based solely on the final image.
GENERATE QUESTIONS FOR TWO CATEGORIES:

1. EDITING COMPLETION ASSESSMENT

Your goal: verify that the specific changes requested in the instruction are visible in the final image.

- Always explicitly localize the target object using a locator phrase within the noun phrase.

- Locator phrases may use: position (left/right/top...), relative position, ordinal (leftmost...), attributes
(color/size...), relationships (attached to...).

- Focus on directly observable characteristics in the result.

2. PHYSICS CONSISTENCY ASSESSMENT

Your goal: evaluate whether the final image respects the laws of {physics_law}.

- Check for physically impossible or unrealistic arrangements.

- Assess object states, positions, contacts, shadows, reflections, etc.

- Evaluate current physical state only, not the editing process.

MANDATORY SINGLE-CRITERION RULE

- Each question must test exactly one observable predicate.

- Do not use “and”, “or”, “while”, “both”, etc.

- Connectors may be used inside locator phrases only.

- Valid predicates: present/absent, is color X, located at Y, touching, casting shadow, number equals N.
QUESTION FORM GUIDELINES

- Removal: Ask for absence, e.g., “Is the [locator] [object] absent?”

- Addition: Ask for presence.

- Move: Ask for new position relative to anchor.

- Attribute: Ask for color/texture/text on the object.

18



Under review as a conference paper at ICLR 2026

Superficial Prompt: Turn on the lamp on the bedside table.

EPIN?INBBN

Ours Flux.1 Kontext BAGEL BAGEL-Think

j\“m -:x"“@ ‘\N

W
-

E T
< P 4 v
Step1X-Edit GPT-Image 1 Nano Banana HiDream-E1.1 OmniGen2

Superficial Prompt: Turn off the lamp in the room.

BAGEL-Think

GPT-Image 1 Nano Banana Qwen-Image HiDream-E1.1 OmniGen2

Figure 10: Examples of how models follow the law of light source effects in optics (superficial
propmts).

- Count: Ask about exact number of localized targets.

- Use clear and concrete language. Avoid vague terms like “some”, “appears to”, “looks like”.
REQUIREMENTS

- Keep questions concise and clear.

- Use simple language; split complex checks.
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- Avoid ambiguity and ensure single interpretation.

- Use locator phrases when categories appear multiple times.

- Frame questions positively.

- Cover all key aspects with multiple atomic questions (each addressing a different predicate).
CRITICAL: Every answer must be "Yes" or "No" — no other values are acceptable.
OUTPUT FORMAT:

{

"Editing Completion QA": [
{"question": "...", "answer": "Yes"},
{"question": "...", "answer": "No"}

1/

"Physics Consistency QA": [
{"question": "...", "answer": "Yes"},
{"question": "...", "answer": "No"}

}

BAD EXAMPLES (DO NOT OUTPUT)

- “Is there a table?” (ambiguous)

- “Is the central table removed and is the floor clean?” (two predicates)

GOOD EXAMPLES

- “Is there a round wooden table in the center foreground?”

- “Is there a small blue cup on the right edge of the desk?”

- “Is there a traffic cone placed on the left side of the crosswalk?”

- “Is the leftmost of the two vases red?”

- “Is the shadow of the lamp cast toward the lower-right, consistent with a top-left light source?”
Final Reminder:

Questions must evaluate the final image state, not the editing history.

Avoid rewording the same question multiple times — each question must test a different aspect.

B MORE DETAILS ABOUT PICA-100K

B.1 SYSTEM PROMPT FOR IMAGE-TO-VIDEO CAPTIONING

To generate physics-aware captions for image-to-video generation, we design a system prompt that
instructs the model to describe one physically plausible, visually salient content change observable
over 3-5 seconds. The model is not allowed to reference the source image, prompt, or editing. The
full system prompt used is shown below.

You are an expert writer of image-to-video captions (3-5 s).

You will receive ONE input image. DO NOT ask questions. DO NOT mention “image/photo/ed-
it/prompt”.

Goal

- Produce ONE concise motion caption that creates a VISUALLY OBVIOUS content change consistent
with the physical law.

- “Content change” means change the state of light source (add/remove/move/change color or intensity),
add/remove/move/replace an object, or alter a local/global material state.

- The camera is secondary: keep camera static unless a tiny move is necessary for visibility.

Thinking Steps (internal only)

1) Parse the scene: pick 1-2 salient objects; identify light, surfaces, supports, deformables, reflective/re-
fractive media.

2) Choose ONE change that the specified physical law can plausibly cause. Prefer highly visible ones.
3) Make it measurable: include motion/visual cues (e.g., “slides right by half its width”, “shadow
doubles”™).

4) Keep identities and layout stable unless global changes are implied.

5) Default: camera static. If necessary, use one simple motion (e.g., slow push-in).

Law Playbook (pick one)

- Light_Source_Effects: turn on/off lamp; move lamp to affect all lit areas.

- Light_Propagation: move object to change shadow shape/position under key light.
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- Reflection: place object near mirror; reflection should match highlights.

- Refraction: move object behind glass/water to create distortion.

- Deformation: add weight to soft object (e.g., pillow) to create indentation.

- Causality: remove support or add offset weight to cause collapse/tilt/slide.

- Local: change wet/dry/frozen/burnt/fractured/etc. with local visual cues.

- Global: simulate time/season/weather shift with coherent lighting/material change.
Constraints

- Duration: 3-5 seconds, single continuous shot.

- Primary change must be content-based.

- No object added/removed unless required by the change.

- Use specific, visible nouns (e.g., “mirror”, “glass of water”, “pillow”).

- Use physics cue words (e.g., shadow, reflection, warping, indentation).

- Avoid stories or naming the law.

- End the sentence with camera state: e.g., “camera static”.

Output Format

Return ONLY valid JSON:

{"i2v_prompt": "..." }

Examples (for reference only)

- “The desk lamp turns off and all previously lit areas fall into dimness, camera static.”
- “The ceramic mug slides right by half its width and its shadow shortens under left key light, camera
static.”
- “The spoon moves behind the glass and warps due to refraction, camera static.”
- “A dumbbell compresses the pillow, forming a deep indentation and partial rebound, camera static.”
- “Dense droplets form on the fabric and darken the surface, camera static.”
- “Light shifts to sunset; shadows grow longer and warmer, camera static.”

B.2 EXAMPLE OF PICA-100K

Fig.[12]shows some examples in PICA-100K dataset. For each pair, we focus on the manifestation of
physical laws.
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Intermediate Prompt: Remove the tall floor lamp next to the plant on the right and also remove all
illumination it produced. Update ...

Step1X-Edit

GPT-Image 1 Nano Banana Qwen-fmage Seedream 4.0 OmniGen2

Explicit Prompt: In the snowy dusk forest scene, a wooden post at center-left carries two lanterns,
with the upper-left lantern currently glowing ...

Input Ours Flux.1 Kontext Step1X-Edit
GPT-Image 1 Nano Banana Qwen-Image HiDream-E1.1 Seedream 4.0

Figure 11: Examples of how models follow the law of light source effects in optics (intermediate &
explicit propmts).
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Figure 12: Examples of PICA-100K dataset.
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