
Learning Shared Safety Constraints from Multi-task Demonstrations

Konwoo Kim * 1 Gokul Swamy * 1 Zuxin Liu 1 Ding Zhao 1 Sanjiban Choudhury 2 Zhiwei Steven Wu 1

Abstract
Regardless of the particular task we want them to
perform in an environment, there are often shared
safety constraints we want our agents to respect.
For example, regardless of whether it is making
a sandwich or clearing the table, a kitchen robot
should not break a plate. Manually specifying
such a constraint can be both time-consuming and
error-prone. We show how to learn constraints
from expert demonstrations of safe task comple-
tion by extending inverse reinforcement learning
(IRL) techniques to the space of constraints. In-
tuitively, we learn constraints that forbid highly
rewarding behavior that the expert could have
taken but chose not to. Unfortunately, the con-
straint learning problem is rather ill-posed and
typically leads to overly conservative constraints
that forbid all behavior that the expert did not take.
We counter this by leveraging diverse demonstra-
tions that naturally occur in multi-task settings
to learn a tighter set of constraints. We validate
our method with simulation experiments on high-
dimensional continuous control tasks.

1. Introduction
If a friend was in your kitchen and you told them to “make
toast” or “clean the dishes,” you would probably be rather
surprised if they broke some of your plates during this pro-
cess. The underlying safety constraint that forbids these
kinds of behavior is both a) implicit and b) agnostic to the
particular task they were asked to perform. Now, let’s bring
a household robot into the equation, operating within your
kitchen. How can we ensure that it adheres to these implicit
safety constraints, regardless of its assigned tasks?

One approach might be to write down specific constraints
(e.g. joint torque limits) and pass them to the decision-
making system of the robot. Unfortunately, more complex

*Equal contribution 1Carnegie Mellon University 2Cornell Uni-
versity. Correspondence to: Gokul Swamy <gswamy@cmu.edu>.

Proceedings of the Interactive Learning with Implicit Human Feed-
back Workshop at ICML 2023., Honolulu, Hawaii, USA. PMLR
202, 2023. Copyright 2023 by the author(s).

constraints like the ones we consider above are both diffi-
cult to formalize mathematically and easy for an end-user
to forget to specify (as they would be inherently under-
stood by a human helper). This problem is paralleled in the
field of reinforcement learning (RL), where defining reward
functions that lead to desirable behaviors for the learning
agent is a recurring challenge (Hadfield-Menell et al., 2017).
For example, it is rather challenging to handcraft the exact
function one should be optimized to be a good driver. The
standard solution to this sort of “reward design” problem
is to instead demonstrate the desired behavior of the agent
and then extract a reward function that would incentivize
such behavior. Such inverse reinforcement learning (IRL)
techniques have found application in fields as diverse as
robotics (Silver et al., 2010; Ratliff et al., 2009; Kolter et al.,
2008; Ng et al., 2006; Zucker et al., 2011), computer vi-
sion (Kitani et al., 2012), and human-computer interaction
(Ziebart et al., 2008b; 2012). Given the success of IRL
techniques and the similarity between reward and constraint
design, we propose extending IRL techniques to the space
of constraints. We term such techniques inverse constraint
learning, or ICL for short.

More formally, we consider a setting in which we have
access to demonstrations of the optimal safe policy for a task,
along with knowledge about the task’s reward. This allows
us to look at the difference between the safe optimal and
optimal policies for a task. Our first key insight is that the
actions taken by the optimal but not the safe-optimal policy
must be forbidden, allowing us to extract a constraint.

Unfortunately, the ICL problem is still rather ill-posed. In-
deed, prior work in ICL will often learn overly conservative
constraints that forbid all behavior the expert did not take
(Scobee & Sastry, 2019; Vazquez-Chanlatte et al., 2018;
McPherson et al., 2021). However, for tasks in a shared
environment with different rewards, there are often safety
constraints that should be satisfied regardless of the task (e.g.
a plate shouldn’t be broken regardless of whether you’re
serving food on it or cleaning up after a meal). Our sec-
ond crucial insight is that we can leverage multi-task data
to provide more comprehensive demonstration coverage
over the state space, helping our method avoid degenerate
solutions.

More explicitly, the contributions of our work are three-fold.

1

Learning Shared Safety Constraints from Multi-task Demonstrations

1. We formalize the inverse constraint learning prob-
lem. We frame ICL as a zero-sum game between a policy
player and a constraint player. The policy player attempts
to maximize reward while satisfying a potential constraint,
while the constraint player picks constraints that maximally
penalize the learner relative to the expert. Intuitively, such
a procedure recovers constraints that forbid high-reward
behavior the expert did not take.

2. We develop a multi-task extension of inverse con-
straint learning. We derive a zero-sum game between a
set of policy players, each attempting to maximize a task-
specific reward, and a constraint player that chooses a con-
straint that all policy players must satisfy. Because the
constraint player looks at aggregate learner and expert data,
it is less likely to select a degenerate solution.

3. We demonstrate the efficacy of our approach on vari-
ous continuous control tasks. We show that with restricted
function classes, we are able to recover ground-truth con-
straints on certain tasks. Even when using less interpretable
function classes like deep networks, we can still ensure
a match with expert safety and task performance. In the
multi-task setting, we are able to identify constraints that a
single-task learner would find struggling to learn.

2. Related Work
Our work exists at the confluence of various research thrusts.
We discuss each independently.

Inverse Reinforcement Learning. IRL (Ziebart et al.,
2008a;b; 2012; Ho & Ermon, 2016) can be framed as a
two-player zero-sum game between a policy player and a
reward player (Swamy et al., 2021). In most formulations of
IRL, a potential reward function is chosen in an outer loop,
and the policy player optimizes it via RL in an inner loop.
Similar to IRL, the constraint in our formulation of ICL is
chosen adversarially in an outer loop. However, in contrast
to IRL, the inner loop of ICL is constrained reinforcement
learning: the policy player tries to find the optimal policy
that respects the constraint chosen in the outer loop.

Constrained Reinforcement Learning. Our approach in-
volves repeated calls to a constrained reinforcement learn-
ing (CRL) oracle (Garcıa & Fernández, 2015; Gu et al.,
2022). CRL aims to find a reward-maximizing policy over
a constrained set, often formulated as a constrained policy
optimization problem (Altman, 1999; Xu et al., 2022). Solv-
ing this problem via Frank-Wolfe methods is often unstable
(Ray et al., 2019; Liang et al., 2018). Various methods have
been proposed to mitigate this instability, including varia-
tional techniques (Liu et al., 2022), imposing trust-region
regularization (Achiam et al., 2017; Yang et al., 2020; Kim &
Oh, 2022), optimistic game-solving algorithms (Moskovitz
et al., 2023), and PID controller-based methods (Stooke

et al., 2020). In our practical implementations, we use PID-
based methods for their relative simplicity.

Multi-task Inverse Reinforcement Learning. Prior work
in IRL has considered incorporating multi-task data (Xu
et al., 2019; Yu et al., 2019; Gleave & Habryka, 2018). We
instead consider a setting in which we know task-specific
rewards and are attempting to recover a shared component
of the demonstrator’s objective.

Inverse Constraint Learning. We are far from the first
to consider the ICL problem. Scobee & Sastry (2019);
McPherson et al. (2021) extend the MaxEnt IRL algorithm
of Ziebart et al. (2008a) to the ICL setting. We instead
build upon the moment-matching framework of Swamy
et al. (2021), allowing our theory to handle general reward
functions instead of the linear reward functions MaxEnt
IRL assumes. We are also able to provide performance
and constraint satisfaction guarantees on the learned policy,
unlike the aforementioned work. Furthermore, we consider
the multi-task setting, addressing a key shortcoming of the
prior work. In an excellent paper, Chou et al. (2020) also
consider the multi-task setting but propose a solution that
requires several special solvers. In contrast, our approach
is relatively simple to implement on top of an existing IRL
implementation and is, therefore, more likely to scale to
realistic problems.

In concurrent work, Lindner et al. (2023) propose an elegant
solution approach to ICL: rather than learning a constraint
function, assume that any unseen behavior is unsafe and
enforce constraints on the learner to play a convex combina-
tion of the demonstrated safe trajectories. The key benefit of
this approach is that it doesn’t require knowing the reward
function the expert was optimizing. However, by forcing
the learner to simply replay previous expert behavior, the
learner cannot meaningfully generalize, and might therefore
be extremely suboptimal on any new task. In contrast, we
use the side information of a reasonable set of constraints
to provide rigorous policy performance guarantees. Exper-
imentally, their method has only been shown to scale to
tabular / linear problems, while our method scales easily to
continuous control with deep networks. We also note that,
because we scale the learned constraint differently for each
task, their impossibility result (Prop. 2) does not apply to
our method, thereby elucidating why a naive application of
inverse RL isn’t sufficient for the problem we consider.

3. Formalizing Inverse Constraint Learning
We build up to our full method in several steps. We first
describe the foundational algorithmic structures we build
upon (inverse reinforcement learning and constrained re-
inforcement learning). We then describe the single-task
formulation before generalizing it to the multi-task setup.

2

Learning Shared Safety Constraints from Multi-task Demonstrations

Algorithm 1 CRL (Constrained Reinforcement Learning)
Input: Reward r, constraint c, learning rates η1:N , toler-
ance δ
Output: Trained policy π
Initialize λ1 = 0
for i in 1 . . . N do
πi ← RL(r = r − λic)
λi ← [λi + ηi(J(πi, c)− δ)]+

end for
Return Unif(π1:N).

We consider a finite-horizon Markov Decision Process
(MDP) (Puterman, 2014) parameterized by ⟨S,A, T , r, T ⟩
where S, A are the state and action spaces, T : S × A →
∆(S) is the transition operator, r : S ×A → [−1, 1] is the
reward function, and T is the horizon.

3.1. Inverse RL as Game Solving

In the inverse RL setup, we are given access trajectories
generated by an expert policy πE : S → ∆(A), but do
not know the reward function of the MDP. Our goal is to
nevertheless learn a policy that performs as well as the
expert’s, no matter the true reward function.

We solve the IRL problem via equilibrium computation
between a policy player and an adversary that tries to pick
out differences between expert and learner policies under
potential reward functions (Swamy et al., 2021). More
formally, we optimize over polices π : S → ∆(A) ∈ Π
and reward functions f : S × A → [−1, 1] ∈ Fr. For
simplicity, we assume that our strategy spaces (Π and Fr)
are convex and compact and that r ∈ Fr, πE ∈ Π. We
solve (i.e. compute an approximate Nash equilibrium) of
the two-player zero-sum game

min
π∈Π

max
f∈Fr

J(πE , f)− J(π, f), (1)

where J(π, f) = Eξ∼π[
∑T

t=0 f(st, at)] denotes the value
of policy π under reward function f .

3.2. Constrained Reinforcement Learning as Game
Solving

In CRL, we are given access to both the reward function
and a constraint c : S × A → [−1, 1]. Our goal is to learn
the highest reward policy that, over the horizon, has a low
expected value under the constraint. More formally, we seek
a solution to the optimization problem:

min
π∈Π
−J(π, r) s.t. J(π, c) ≤ δ, (2)

where δ is some error tolerance. We can also formulate
CRL as a game via forming the Lagrangian of the above

Algorithm 2 ICL (Inverse Constraint Learning)
Input: Reward r, constraint class Fc, trajectories from
πE

Output: Learned constraint c
Initialize c1 ∈ Fc

for i in 1 . . . N do
πi, λi ← CRL(r, ci, δ = J(πE , ci))
use any no-regret algo. to pick c
ci+1 ← argmaxc∈Fc

1
T

∑i
j(J(πj , c) − J(πE , c)) +

R(c).
end for
Return best of c1:N on validation data.

optimization problem (Altman, 1999):

min
π∈Π

max
λ>0
−J(π, r) + λ(J(π, c)− δ). (3)

Intuitively, the adversary updates the weight of the constraint
term in the policy player’s reward function based on how in
violation the learner is.

3.3. Single-Task Inverse Constraint Learning

We are finally ready to formalize ICL. In ICL, we are given
access to the reward function, trajectories from the solution
to a CRL problem, and a class of potential constraints Fc

in which we assume the ground-truth constraint c∗ lies. We
assume that Fc is convex and compact.

In the IRL setup, without strong assumptions on the dy-
namics of the underlying MDP and expert, it is impossible
to guarantee recovery of the ground-truth reward. Often,
the only reward function that actually makes the expert op-
timal is zero everywhere (Abbeel & Ng, 2004). Instead,
we attempt to find the reward function that maximally dis-
tinguishes the expert from an arbitrary other policy in our
policy class via game-solving (Ziebart et al., 2008a; Ho &
Ermon, 2016; Swamy et al., 2021). Similarly, for ICL, exact
constraint recovery can be challenging. For example, if
two constraints differ only on states the expert never visits,
it is not clear how to break ties. We instead try to find a
constraint that best separates the safe and optimal πE from
policies that achieve higher rewards.

More formally, we seek to solve the following constrained
optimization problem.

min
π∈Π

J(πE , r)− J(π, r) (4)

s.t.max
c∈Fc

J(π, c)− J(πE , c) ≤ 0. (5)

Note that in contrast to the moment-matching problem we
solve in imitation learning (Swamy et al., 2021), we instead
want to be at least as safe as the expert. This means that
rather than having equality constraints, we have inequality

3

Learning Shared Safety Constraints from Multi-task Demonstrations

ICL

minimize
over c

Figure 1. A visual depiction of the optimization problem we’re trying
to solve in ICL. We attempt to pick a constraint that minimizes the
value difference over the expert policy a safe policy could have. The
star corresponds to the output of CRL.

constraints. Continuing, we can form the Lagrangian:

min
π∈Π

max
λ>0

J(πE , r)− J(π, r) + λ(max
c∈Fc

J(π, c)− J(πE , c))

(6)

= max
c∈Fc

max
λ>0

min
π∈Π

J(πE , r − λc)− J(π, r − λc). (7)

Notice that the form of the ICL game resembles a combi-
nation of the IRL and CRL games. We describe the full
game-solving procedure in Algorithm 2, where R(c) is an
arbitrary strongly convex regularizer (McMahan, 2011). Ef-
fectively, we pick a constraint function in the same way we
pick a reward function in IRL but run a CRL inner loop
instead of an RL step. Instead of a fixed constraint thresh-
old, we set tolerance δ to the expert’s constraint violation.
Define

ℓi(c) =
1

T
(J(πi, c)− J(πE , c)) ∈ [−1, 1] (8)

as the per-round loss that the constraint player suffers in their
online decision problem. The best-in-hindsight comparator
constraint is defined as

ĉ = argmax
c∈Fc

T∑
i

ℓi(c). (9)

We can then define the cumulative regret the learner suffers
as

Reg(T) =
T∑
i

ℓi(ĉ)−
T∑
i

ℓi(ci), (10)

and let ϵi = ℓi(ĉ)− ℓi(ci). We prove the following theorem
via standard machinery.
Theorem 3.1. Let c1:N be the iterates produced by Algo-
rithm 2 and let ϵ̄ = 1

N

∑N
i ϵi denote their time-averaged

regret. Then, there exists a c ∈ c1:N such that π =
CRL(r, c, δ = J(πE , c)) satisfies

J(π, c∗)−J(πE , c
∗) ≤ ϵ̄T and J(π, r) ≥ J(πE , r). (11)

In words, by optimizing under the recovered constraint, we
can learn a policy that (weakly) Pareto-dominates the expert
policy under c∗. We conclude by noting that because FTRL
is a no-regret algorithm for linear losses like (8), we have
that limT→∞

Reg(T)
T = 0. This means that with enough

iterations, the RHS of the above bound on ground-truth
constraint violation will go to 0.

3.4. Multi-task Inverse Constraint Learning

Algorithm 3 MT-ICL (Multi-task Inverse Constraint Learn-
ing)

Input: Rewards r1:K , constraint class Fc, trajectories
from π1:K

E

Output: Learned constraint c
Set F̃c = {c ∈ Fc|∀k ∈ [K], J(πk

E , c) ≤ 0}
Initialize c1 ∈ F̃c

for i in 1 . . . N do
for k in 1 . . .K do
πk
i , λ

k
i ← CRL(rk, cki , δ = 0)

end for
use any no-regret algo. to pick c
ci+1 ← argmaxc∈F̃c

1
TK

∑i
j

∑K
k (J(πk

j , c) −
J(πk

E , c)) +R(c).
end for
Return best of c1:N on validation data.

One of the potential failure modes of the single-task ap-
proach we outline above is that we could learn an overly
conservative constraint, leading to poor task performance
(Liu et al., 2023). For example, imagine that we entropy-
regularize our policy optimization (Ziebart et al., 2008a;
Haarnoja et al., 2018), as is common practice. Assuming a
full policy class, the learner puts nonzero probability mass
on all reachable states in the MDP. The constraint player is
therefore incentivized to forbid all states the expert did not
visit (Scobee & Sastry, 2019; McPherson et al., 2021). Such
a constraint would likely generalize poorly when combined
with a new reward function (r̃ ̸= r) as it forbids all untaken
rather than just unsafe behavior.

At heart, the issue with the single-task formulation lies in the
potential for insufficient coverage of the state space within
expert demonstrations. Therefore, it is natural to explore a
multi-task extension to counteract this limitation. Let each
task be defined by a unique reward. We assume the dynam-
ics and safety constraints are consistent across tasks. We
observe K samples of the form (rk, {ξ ∼ CRL(rk, c∗)}).
This data allows us to define the multi-task variant of our
previously described ICL game:

max
c∈Fc

min
π1:K∈Π

max
λ1:K>0

K∑
i

J(πi
E , r

i − λic)− J(πi, ri − λic).

(12)

4

Learning Shared Safety Constraints from Multi-task Demonstrations

Figure 2. If we have a sufficient diversity of expert policies, none
of which are optimal along the reward vector, we can identify the
hyperplane that separates the safe policies from the unsafe policies.
The constraint (red, dashed) will be orthogonal to this hyperplane.
For this example, because ρπ ∈ R2, we need two expert policies.

We describe how we solve this game in Algorithm 3, where
R(c) is an arbitrary strongly convex regularizer (McMahan,
2011). In short, we alternate between solving K CRL prob-
lems and updating the constraint based on the data from all
policies.

We now give two conditions under which generalization to
new reward functions is possible.

3.5. A (Strong) Geometric Condition for Identifiability

Consider for a moment the linear programming (LP) for-
mulation of reinforcement learning. We search over the
space of occupancy measures (ρπ ∈ ∆(S ×A)) that satisfy
the set of Bellman flow constraints (Sutton & Barto, 2018)
and try to maximize the inner product with reward vector
r ∈ R|S||A|. We can write the CRL optimization problem
(assuming δ = 0 for simplicity) as an LP as well. Using ρΠ
to denote the occupancy measures of all π ∈ Π,

max
ρπ∈ρΠ

⟨ρπ, r⟩ s.t. ⟨ρπ, c∗⟩ ≤ 0.

We observe the solution to such a problem for K rewards,
begging the question of when that is enough to uniquely
identify c∗. Recall that to uniquely determine the equa-
tion of a hyperplane in Rd, we need d linearly independent
points. c∗ ∈ R|S||A|, so we need |S||A| expert policies.
Furthermore, we need each of these points to lie on the
constraint line and not on the boundary of the full poly-
tope. Put differently, we need each distinct expert pol-
icy to saturate the underlying constraint (i.e. ∃π ∈ Π s.t.
J(πk

E , r
k) < J(πk, rk)). Under these conditions, we can

uniquely determine the hyperplane that separates safe from
unsafe policies, to which the constraint vector is orthogonal.
More formally,

Lemma 3.2. Let π1:|S||A|
E be distinct expert policies such

that a) ∀i ∈ [|S||A|], πi
E ∈ relint(ρΠ) and b) no ρπi

E
can be

generated by a mixture of the other visitation distributions.
Then, c∗ is the unique (up to scaling) nonzero vector in

Nul

 ρπ1

E
− ρπ2

E

...
ρ
π
|S||A|−1
E

− ρ
π
|S||A|
E

 . (13)

We visualize this process for the |S||A| = 2 case in Fig. 2.
Assuming we are able to recover c∗, we can guarantee that
our learners will be able to act safely, regardless of the task
they are asked to do. However, the assumptions required
to do so are quite strong: we are effectively asking for our
expert policies to form a basis for the space of occupancy
measures, which means we must see expert data for a large
set of diverse tasks.

Identifiability is too strong a goal as it requires us to estimate
the value of the constraint everywhere in the state-action
space. If we know the learner will only be incentivized to go
to a certain subset of states (as is often true in practice), we
can guarantee safety without fully identifying c∗. Therefore,
we now consider how, by making distributional assumptions
on how tasks are generated, we can generalize to novel
tasks.

3.6. A Statistical Condition for Generalization

Assume that tasks τ are drawn i.i.d. from some P (τ). Then,
even if we do not see a wide enough diversity of expert
policies to guarantee identifiability of the ground-truth con-
straint function, with enough samples, we can ensure we do
well in expectation over tasks. For some constraint c, let us
define

V (c) = Eτ∼P (τ)[J(π
τ , c)− J(πτ

E , c)], (14)

where λτ , πτ = CRL(rτ , c) denote the solutions to the inner
optimization problem. We begin by proving the following
lemma.
Lemma 3.3. With

K ≥ O

(
log

(|Fc|
δ

)
(2T)2

ϵ2

)
(15)

samples, we have that with probability ≥ 1 − δ, we will
be able to estimate all |Fc| population estimates of V (c)
within ϵ absolute error.

Note that we perform the above analysis for finite classes
but one could easily extend it (Sriperumbudur et al., 2009).
The takeaway from the above lemma is that if we observe
a sufficient number of tasks, we can guarantee that we can
estimate the population loss of all constraints, up to some
tolerance.

Consider the learner being faced with a new task they have
never seen before at test time. Unlike in the single task case,

5

Learning Shared Safety Constraints from Multi-task Demonstrations

where it is clear how to set the cost limit passed to CRL, it
is not clear how to do so for a novel task. Hence, we make
the following assumption.

Assumption 3.4. We assume that Eτ [J(π
τ
E , c

∗)] ≤ 0, and
that ∀c ∈ Fc,∃π ∈ Π s.t. J(π, c) ≤ 0.

This (weak) assumption allows us to a) use a cost limit of 0
for our CRL step and b) search over a subset of Fc that the
expert is safe under. Under this assumption, we are able to
prove the following:

Theorem 3.5. Let c1:N be the iterates produced by Al-
gorithm 3 with K(ϵ, δ) chosen as in Lemma 3.3 and let
ϵ̄ = 1

N

∑N
i ϵi denote their time-averaged regret. Then,

w.p. ≥ 1 − δ, there exists a c ∈ c1:N such that π(r) =
CRL(r, c, δ = 0) satisfies

Eτ∼P (τ)[J(π(r
τ), c∗)− J(πτ

E , c
∗)] ≤ ϵ̄T + 3ϵT and

Eτ∼P (τ)[J(π(r
τ), rτ)− J(πτ

E , r
τ)] ≥ −2ϵT.

In short, if we observe enough tasks, we are able to learn a
constraint that, when optimized under, leads to policies that
approximately Pareto-dominate that of the expert.

We now turn our attention to the practical implementation
of these algorithms.

4. Practical Algorithm
We provide practical implementations of constrained re-
inforcement learning and inverse constraint learning and
benchmark their performance on several continuous con-
trol tasks. We first describe the environments we test our
algorithms on. Then, we provide results showing that our
algorithms learn policies that match expert performance and
constraint violation. While it is hard to guarantee constraint
recovery in theory, we show that we can recover the ground-
truth constraint empirically if we search over a restricted
enough function class.

4.1. Tasks

We focus on the ant environment from the PyBullet
(Coumans & Bai, 2016) and MuJoCo (Todorov et al., 2012)
benchmarks. The default reward function incentivizes
progress along the positive x direction. For our single-task
experiments, we consider a velocity and position constraint
on top of this reward function.

1. Velocity Constraint: ∥qt+1−qt∥2

dt ≤
0.75 where qt is the ant’s position

2. Position Constraint: 0.5xt − yt ≤
0 where xt, yt are the ant’s coordinates

For our multi-task experiments, we build upon the D4RL
(Fu et al., 2020) antmaze benchmark. The default reward
function incentivizes the agent to navigate a fixed maze to a
random goal position: exp(−∥qgoal− qt∥2). We modify this
environment such that the walls of the maze are transparent,
but the agent incurs a unit step-wise cost for passing through
the maze walls.

Our expert policies are generated by running CRL with the
ground-truth constraint. We use the Tianshou (Weng et al.,
2022) implementation of PPO (Schulman et al., 2017) as our
baseline policy optimizer. Classical Lagrangian methods
exactly follow the gradient update shown in Algorithm 1,
but they are susceptible to oscillating learning dynamics
and constraint-violating behavior during training. The PID
Lagrangian method (Stooke et al., 2020) extends the naive
gradient update of λi with a proportional and derivative
term to dampen oscillations and prevent cost overshooting.
To reduce the amount of interaction required to solve the
inner optimization problem, we warm-start our policy in
each iteration by behavior cloning against the given expert
demonstrations. We used a single NVIDIA 3090 GPU for
all experiments. Due to space constraints, we defer all other
implementation details to Appendix B.

4.2. ICL Results

We begin with results for the single-task problem continuing
on to the multi-task setup.

4.3. Single-Task Continuous Control Results

As argued above, we expect a proper ICL implementation
to learn policies that perform as well and are as safe as the
expert. However, by restricting the class of constraints we
consider, we can also investigate whether recovery of the
ground-truth constraint is possible. To this end, we consider
a reduced-state version of our algorithm where the learned
constraint takes a subset of the agent state as input. For
the velocity constraint, the learned constraint is a linear
function of the velocity, while for the position and maze
constraints, the learned constraint is a linear function of the
ant’s position.

Using this constraint representation allows us to visualize
the learned constraint over the course of ICL training, as
shown in Figure 3. We find that our ICL implementation is
able to recover the constraint, as the learned constraint for
both the velocity and position tasks converges to the ground-
truth value. Our results further show that over the course of
ICL training, the learned policies match expert performance
as their violations of the ground-truth constraint converge
towards the expert’s. Figure 4 provides a direct depiction
of the evolution of the learned constraint and policy. The
convergence of the red and blue lines shows that the learned
position constraint approaches the ground truth, and the

6

Learning Shared Safety Constraints from Multi-task Demonstrations

0 5 10 15
ICL Iteration

0.2

0.4

0.6

0.8

Ve
lo

ci
ty

Velocity Constraint

ci

c∗

0 5 10 15
ICL Iteration

1400

1500

1600

1700

J(
·,r

)

Velocity Constraint

π

πE

0 5 10 15
ICL Iteration

600

800

1000

J(
·,c
∗)

Velocity Constraint

π

πE

0 2 4 6 8
ICL Iteration

0.44

0.46

0.48

0.50

Sl
op

e

Position Constraint

ci

c∗

0 2 4 6 8
ICL Iteration

800

1000

1200

1400

1600

J(
·,r

)

Position Constraint

π

πE

0 2 4 6 8
ICL Iteration

−1500

−1000

−500

0

500

J(
·,c
∗)

Position Constraint

π

πE

Figure 3. Over the course of training, the learned ICL constraint
recovers the ground-truth constraints for the velocity and position
tasks. The learned policy matches expert performance and con-
straint violation. Standard errors are computed across 3 seeds.

Figure 4. As ICL training progresses, the learned position con-
straint (red line) converges to the ground-truth constraint (blue
line) and the policy learns to escape unsafe regions.

policy’s behavior approaches that of the expert in response
to this.

4.4. Multi-Task Continuous Control Results

We next consider an environment where, even with an
appropriate constraint class, recovering the ground-truth
constraint with a single task isn’t feasible due to the ill-
posedness of the inverse constraint learning problem. Specif-
ically, we use the AntMaze environment from D4RL (Fu
et al., 2020), modified to have a more complex maze struc-
ture. As seen in Figure 6, each task is to navigate through
the maze from one of the starting positions (top/bottom left)
to one of the grid cells in the rightmost column. We provide
expert data for all 10 tasks to the learner.

As we can see in Figure 5, multi-task ICL is able to recover
the ground-truth maze within a single iteration and quickly
learn policies that match expert performance and constraint
violation, all without ever interacting with the ground-truth
maze.

We visually compare several alternative strategies for using
the multi-task demonstration data in the bottom row of Fig-
ure 6. The 0/1 values in the cells correspond to querying the
deep constraint network from the last iteration of ICL on
points from each of the grid cells and thresholding at some
confidence. We see that a single-task network (d) learns
spurious walls that would prevent the learner from com-
pleting more than half of the tasks. Furthermore, learning

0 1 2 3 4
ICL Iteration

0.2

0.4

0.6

0.8

1.0

M
az

e
Io

U

Maze Constraint

ci

c∗

0 1 2 3 4
ICL Iteration

14.0

14.5

15.0

J(
·,r

)

Maze Constraint

π

πE

0 1 2 3 4
ICL Iteration

0

100

200

300

J(
·,c
∗)

Maze Constraint

π

πE

Figure 5. We see that over ICL iterations, we are able to recover
the ground-truth walls of the ant-maze, enabling the learner to
match expert performance and constraint violations. Results for
the second two plots are averaged across all 10 tasks. Standard
errors are computed across 3 seeds.

10 separate classifiers and then aggregating their outputs
(e) / (f) also fails to produce reasonable outputs. However,
when we use data from all 10 tasks to train our multi-task
constraint network (g) / (h), we are able to perfectly recover
the walls of the maze. These results echo our preceding the-
oretical argument about the importance of multi-task data
for learning constraints that generalize to future tasks.

5. Discussion
In this work, we derive an algorithm for learning safety
constraints from multi-task demonstrations. We show that
by replacing the inner loop of inverse reinforcement learning
with a constrained policy optimization subroutine, we can
learn constraints that guarantee learner safety on a single
task. We then give statistical and geometric conditions under
which we can guarantee safety on unseen tasks by planning
under a learned constraint. We validate our approach on
several high-dimensional continuous control tasks.

Limitations. On the practical side, our experiments are
performed purely on simulated tasks – we would be inter-
ested in applying our approach to real-world problems in the
future. On the theoretical side, the CRL inner loop can be
more expensive than an RL loop – we would be interested
in speeding up CRL using expert demonstrations, perhaps
by adopting the approach of Swamy et al. (2023). We also
ignore all finite-sample issues, which could potentially be
addressed via data-augmentation approaches like that of
Swamy et al. (2022).

6. Acknowledgements
We thank Drew Bagnell for edifying conversations on the
relationship between ICL and IRL. ZSW is supported in
part by the NSF FAI Award #1939606, a Google Faculty
Research Award, a J.P. Morgan Faculty Award, a Facebook
Research Award, an Okawa Foundation Research Grant, and
a Mozilla Research Grant. KK and GS are supported by a
GPU award from NVIDIA.

7

Learning Shared Safety Constraints from Multi-task Demonstrations

0 0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 1 1 1 0

0 0 1 1 1 0 1 1 1 0

0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 1 1 1 0

Ground-Truth Constraint

(a)

S

G

S

Single-Task ICL Setup

(b)

S G

G

G

G

G

G

G

G

G

S G

Multi-Task ICL Setup

(c)

0 0 1 1 1 1 1 1 1 1

0 0 1 1 1 1 0 1 1 0

0 0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 1 1 1 1

0 0 1 1 1 0 1 1 1 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 1 1 0 0

Single-Task ICL Constraint

(d)

0 0 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1

0 0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 1 1 1 0

0 0 1 1 1 0 1 1 1 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 1 1 1 1 0

0 0 0 0 0 1 1 1 1 0

Average of Single-Task ICL Constraints

(e)

0 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1

1 0 1 1 1 0 0 0 0 1

1 0 1 1 1 0 1 1 1 1

1 0 1 1 1 0 1 1 1 1

1 0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1

Max of Single-Task ICL Constraints

(f)

0 0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 1 1 1 0

0 0 1 1 1 0 1 1 1 0

0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 1 1 1 0

Multi-Task ICL Constraint

(g) (h)

Figure 6. We consider the problem of trying to learn the walls of a
custom maze (a) based on the AntMaze environment from D4RL
(Fu et al., 2020). We consider both a single-task (b) and multi-task
(c) setup. We see that the single-task data is insufficient to learn
an accurate constraint (d). Averaging or taking the max over the
constraints learned from the data for each of the ten goals (e)-(f)
also doesn’t work. However, if we use the data from all 10 tasks
to learn the constraint (g)-(h), we are able to perfectly recover the
ground-truth constraint with a single ICL iteration.

References
Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first
international conference on Machine learning, pp. 1,
2004.

Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained
policy optimization. In International conference on ma-
chine learning, pp. 22–31. PMLR, 2017.

Altman, E. Constrained Markov decision processes, vol-
ume 7. CRC press, 1999.

Chou, G., Berenson, D., and Ozay, N. Learning constraints
from demonstrations. In Algorithmic Foundations of
Robotics XIII: Proceedings of the 13th Workshop on the
Algorithmic Foundations of Robotics 13, pp. 228–245.
Springer, 2020.

Coumans, E. and Bai, Y. Pybullet, a python module for
physics simulation for games, robotics and machine learn-
ing. 2016.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Garcıa, J. and Fernández, F. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning
Research, 16(1):1437–1480, 2015.

Gleave, A. and Habryka, O. Multi-task maximum en-
tropy inverse reinforcement learning. arXiv preprint
arXiv:1805.08882, 2018.

Gu, S., Yang, L., Du, Y., Chen, G., Walter, F., Wang, J.,
Yang, Y., and Knoll, A. A review of safe reinforce-
ment learning: Methods, theory and applications. arXiv
preprint arXiv:2205.10330, 2022.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S. J., and
Dragan, A. Inverse reward design. Advances in neural
information processing systems, 30, 2017.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing, 2016.

Kim, D. and Oh, S. Efficient off-policy safe reinforcement
learning using trust region conditional value at risk. IEEE
Robotics and Automation Letters, 7(3):7644–7651, 2022.

Kitani, K. M., Ziebart, B. D., Bagnell, J. A., and Hebert,
M. Activity forecasting. In European conference on
computer vision, pp. 201–214. Springer, 2012.

8

Learning Shared Safety Constraints from Multi-task Demonstrations

Kolter, J. Z., Rodgers, M. P., and Ng, A. Y. A control
architecture for quadruped locomotion over rough terrain.
In 2008 IEEE International Conference on Robotics and
Automation, pp. 811–818. IEEE, 2008.

Liang, Q., Que, F., and Modiano, E. Accelerated primal-
dual policy optimization for safe reinforcement learning.
arXiv preprint arXiv:1802.06480, 2018.

Lindner, D., Chen, X., Tschiatschek, S., Hofmann, K.,
and Krause, A. Learning safety constraints from
demonstrations with unknown rewards. arXiv preprint
arXiv:2305.16147, 2023.

Liu, Z., Cen, Z., Isenbaev, V., Liu, W., Wu, S., Li, B., and
Zhao, D. Constrained variational policy optimization for
safe reinforcement learning. In International Conference
on Machine Learning, pp. 13644–13668. PMLR, 2022.

Liu, Z., Guo, Z., Cen, Z., Zhang, H., Tan, J., Li, B., and
Zhao, D. On the robustness of safe reinforcement learn-
ing under observational perturbations. In International
Conference on Learning Representations, 2023.

McMahan, B. Follow-the-regularized-leader and mirror de-
scent: Equivalence theorems and l1 regularization. In Pro-
ceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, pp. 525–533. JMLR
Workshop and Conference Proceedings, 2011.

McPherson, D. L., Stocking, K. C., and Sastry, S. S. Max-
imum likelihood constraint inference from stochastic
demonstrations. In 2021 IEEE Conference on Control
Technology and Applications (CCTA), pp. 1208–1213.
IEEE, 2021.

Moskovitz, T., O’Donoghue, B., Veeriah, V., Flennerhag, S.,
Singh, S., and Zahavy, T. Reload: Reinforcement learning
with optimistic ascent-descent for last-iterate convergence
in constrained mdps. arXiv preprint arXiv:2302.01275,
2023.

Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte,
J., Tse, B., Berger, E., and Liang, E. Autonomous in-
verted helicopter flight via reinforcement learning. In
Experimental robotics IX, pp. 363–372. Springer, 2006.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Ratliff, N. D., Silver, D., and Bagnell, J. A. Learning to
search: Functional gradient techniques for imitation learn-
ing. Autonomous Robots, 27(1):25–53, 2009.

Ray, A., Achiam, J., and Amodei, D. Benchmarking safe ex-
ploration in deep reinforcement learning. arXiv preprint
arXiv:1910.01708, 7, 2019.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Scobee, D. R. and Sastry, S. S. Maximum likelihood con-
straint inference for inverse reinforcement learning. arXiv
preprint arXiv:1909.05477, 2019.

Silver, D., Bagnell, J. A., and Stentz, A. Learning from
demonstration for autonomous navigation in complex un-
structured terrain. The International Journal of Robotics
Research, 29(12):1565–1592, 2010.

Sriperumbudur, B. K., Fukumizu, K., Gretton, A.,
Schölkopf, B., and Lanckriet, G. R. On integral proba-
bility metrics,\phi-divergences and binary classification.
arXiv preprint arXiv:0901.2698, 2009.

Stooke, A., Achiam, J., and Abbeel, P. Responsive safety
in reinforcement learning by pid lagrangian methods. In
International Conference on Machine Learning, pp. 9133–
9143. PMLR, 2020.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. 2018.

Swamy, G., Choudhury, S., Bagnell, J. A., and Wu, Z. S.
Of moments and matching: A game-theoretic framework
for closing the imitation gap, 2021. URL https://
arxiv.org/abs/2103.03236.

Swamy, G., Rajaraman, N., Peng, M., Choudhury, S., Bag-
nell, J. A., Wu, Z. S., Jiao, J., and Ramchandran, K.
Minimax optimal online imitation learning via replay
estimation. arXiv preprint arXiv:2205.15397, 2022.

Swamy, G., Choudhury, S., Bagnell, J. A., and Wu, Z. S. In-
verse reinforcement learning without reinforcement learn-
ing. arXiv preprint arXiv:2303.14623, 2023.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ inter-
national conference on intelligent robots and systems, pp.
5026–5033. IEEE, 2012.

Vazquez-Chanlatte, M., Jha, S., Tiwari, A., Ho, M. K., and
Seshia, S. Learning task specifications from demonstra-
tions. Advances in neural information processing systems,
31, 2018.

Weng, J., Chen, H., Yan, D., You, K., Duburcq, A.,
Zhang, M., Su, Y., Su, H., and Zhu, J. Tianshou:
A highly modularized deep reinforcement learning li-
brary. Journal of Machine Learning Research, 23(267):1–
6, 2022. URL http://jmlr.org/papers/v23/
21-1127.html.

9

https://arxiv.org/abs/2103.03236
https://arxiv.org/abs/2103.03236
http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html

Learning Shared Safety Constraints from Multi-task Demonstrations

Xu, K., Ratner, E., Dragan, A., Levine, S., and Finn, C.
Learning a prior over intent via meta-inverse reinforce-
ment learning. In International conference on machine
learning, pp. 6952–6962. PMLR, 2019.

Xu, M., Liu, Z., Huang, P., Ding, W., Cen, Z., Li, B., and
Zhao, D. Trustworthy reinforcement learning against
intrinsic vulnerabilities: Robustness, safety, and general-
izability. arXiv preprint arXiv:2209.08025, 2022.

Yang, T.-Y., Rosca, J., Narasimhan, K., and Ramadge, P. J.
Projection-based constrained policy optimization. arXiv
preprint arXiv:2010.03152, 2020.

Yu, L., Yu, T., Finn, C., and Ermon, S. Meta-inverse rein-
forcement learning with probabilistic context variables.
Advances in neural information processing systems, 32,
2019.

Ziebart, B., Dey, A., and Bagnell, J. A. Probabilistic point-
ing target prediction via inverse optimal control. In Pro-
ceedings of the 2012 ACM international conference on
Intelligent User Interfaces, pp. 1–10, 2012.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K.,
et al. Maximum entropy inverse reinforcement learning.
In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA,
2008a.

Ziebart, B. D., Maas, A. L., Dey, A. K., and Bagnell, J. A.
Navigate like a cabbie: Probabilistic reasoning from ob-
served context-aware behavior. In Proceedings of the
10th international conference on Ubiquitous computing,
pp. 322–331, 2008b.

Zucker, M., Ratliff, N., Stolle, M., Chestnutt, J., Bagnell,
J. A., Atkeson, C. G., and Kuffner, J. Optimization and
learning for rough terrain legged locomotion. The Inter-
national Journal of Robotics Research, 30(2):175–191,
2011.

10

Learning Shared Safety Constraints from Multi-task Demonstrations

A. Proofs
A.1. Proof of Theorem 3.1

Proof. Let Π(c) denote the set of policies such that

J(π, c)− J(πE , c) ≤ 0. (16)

First, note that ∀c ∈ Fc, πE ∈ Π(c). CRL is therefore trying to maximize reward over a set of policies that contains πE .
Thus, the reward condition is trivially true. We therefore focus on the safety condition. First, we note that by the definition
of regret,

1

N

N∑
i

[(J(πi, ĉ)− J(πE , ĉ))− (J(πi, ci)− J(πE , ci))] =
T

N

N∑
i

ℓi(ĉ)− ℓi(ci) ≤ ϵ̄T. (17)

This implies that
1

N

N∑
i

[(J(πi, c
∗)− J(πE , c

∗))− (J(πi, ci)− J(πE , ci))] ≤ ϵ̄T, (18)

as ĉ is the best-in-hindsight constraint. We then note that J(πi, ci)− J(πE , ci) ≤ 0 by the fact that πi is produced via a
CRL procedure, which means we can drop the former term from the above sum, giving us

1

N

N∑
i

(J(πE , c
∗)− J(πi, c

∗)) ≤ ϵ̄T. (19)

Because this equation holds on average, there must be at least one π ∈ π1:N for which it holds. Now, we recall that
πi = CRL(r, ci) to complete the proof.

A.2. Proof of Lemma 3.3

Proof. For a single c, a standard Hoeffding bound tells us that

P (| 1
K

K∑
i=0

Vk(c)− E[V (c)]| ≥ ϵ) ≤ 2 exp

(−2Kϵ2

(2T)2

)
, (20)

where Vk(c) denotes the value of the payoff using data from the kth task. We have |Fc| constraints and want to be within ϵ
of the population mean uniformly. We can apply a union bound to tell us that w.p. at least

1− 2|Fc| exp(
−2Kϵ2

(2T)2
), (21)

we will do so. If we want to satisfy this condition with probability at least 1− δ, simple algebra tells us that we must draw

K ≥ O

(
log

(|Fc|
δ

)
(2T)2

ϵ2

)
(22)

samples.

A.3. Proof of Theorem 3.5

Proof. For each c ∈ Fc, define the set of safe policies as Π(c) = {π ∈ Π|J(π, c) ≤ 0}. This set is non-empty by
assumption. Define

u(τ, c) = 1{πτ
E ∈ Π(c)}. (23)

We prove each of the desired conditions independently.

Reward Condition. Let ĉ ∈ c1:N . Recall that we want to prove that

Eτ∼P (τ)[J(π(r
τ), rτ)− J(πτ

E , r
τ)] ≥ −2ϵT, (24)

11

Learning Shared Safety Constraints from Multi-task Demonstrations

where πτ = CRL(rτ , ĉ, δ = 0). Observe that

πτ
E ∈ Π(ĉ)⇒ J(πτ , rτ) = max

π∈Π(ĉ)
J(π, rτ) ≥ J(πτ

E , r
τ). (25)

Thus, if
Eτ [u(τ, ĉ)] ≥ 1− ϵ, (26)

we have that

Eτ [J(π
τ , rτ)− J(πτ

E , r
τ)] (27)
≤ Eτ [(1− u(τ, ĉ))(J(πτ , rτ)− J(πτ

E , r
τ))] (28)

≤ Eτ [(1− u(τ, ĉ))](sup
τ

J(πτ , rτ)− J(πτ
E , r

τ)) (29)

≤ Eτ [(1− u(τ, ĉ))]2T (30)
≤ −2ϵT (31)

We now prove that with K large enough, we can guarantee Eq. 26 holds true w.h.p. Define

F̃c = {c ∈ Fc|∀k ∈ [K], πk
E ∈ Π(ĉ)}. (32)

We now argue that if

K ≥ O

(
log
|Fc|
δ

1

ϵ2

)
, (33)

w.p. ≥ 1− δ, Eq. 26 holds true ∀c ∈ F̃c. This means that as long as we pick c1:N ∈ F̃c, our desired condition will be true.
Note that this is fewer than the number of samples we assumed in the theorem statement.

For a single constraint, a Hoeffding bound tells us that

P (| 1
K

K∑
k

1{πk
E ∈ Π(c)} − Eτ [u(τ, c)]| ≥ ϵ) ≤ 2 exp (−2Kϵ2). (34)

Union bounding across Fc ⊇ F̃c, we get that the probability that ∃c ∈ F̃c s.t. Eq. 26 does not hold is upper bounded by

1− 2|Fc| exp (−2Kϵ2). (35)

To have this quantity be ≥ 1− δ, we need

K ≥ O

(
log
|Fc|
δ

1

ϵ2

)
. (36)

Safety Condition. We begin by considering the infinite sample setting. We therefore desire to prove that

Eτ [J(π
τ , c∗)− J(πτ

E , c
∗)] ≤ ϵ̄T. (37)

Define the per-round loss of the constraint player as

ℓi(c) =
1

T
Eτ [J(π

τ
i , c)− J(πτ

E , c)] ∈ [−1, 1], (38)

the best-in-hindsight comparator as ĉ = argmaxc∈Fc

∑N
i ℓi(c), instantaneous regret as ϵi = ℓi(ĉ)− ℓi(ci), and average

regret as ϵ̄ = 1
N

∑N
i ϵi. Proceeding similarly to the single-task case,

ϵ̄T =
1

N

N∑
i

Eτ [J(π
τ
i , ĉ)− J(πτ

E , ĉ)]− Eτ [J(π
τ
i , ci)− J(πτ

E , ci)] (39)

≥ 1

N

N∑
i

Eτ [J(π
τ
i , c

∗)− J(πτ
E , c

∗)]− Eτ [J(π
τ
i , ci)− J(πτ

E , ci)] (40)

12

Learning Shared Safety Constraints from Multi-task Demonstrations

We now argue that the second term in the above sum must be non-positive. Consider an arbitrary task τ . Then, because
πτ
E ∈ Π(ci) and CRL is optimizing over Π(ci), this term must be negative. As it is negative per-task, it must be negative in

expectation. Thus, we are free to drop the second term in the above expression which tells us that

ϵ̄T ≥ 1

N

N∑
i

Eτ [J(π
τ
i , c

∗)− J(πτ
E , c

∗)] (41)

Because this equation holds on average, there must be at least one π ∈ π1:N for which it holds. Now, we recall that
πτ
i = CRL(rτ , ci) to complete the infinite-sample proof.

We now consider the error induced by only observing a finite set of tasks. There are two places finite-sample error enters: in
estimating the value of ℓi(c) and in estimating F̃c.

By Lemma 3.3, the maximum error we can induce by estimating ℓi from finite samples is upper bounded w.h.p by ϵ. Thus,
the extra error induced on the average regret is also bounded by ϵ. Observe that our losses are scaled by 1

T in comparison to
difference of Js. Therefore, we need to add an ϵT to our bound for the infinite-sample setting.

By our argument in the reward section, πτ
E /∈ Π(ci) w.p. ≤ ϵ. When this is true, J(πτ

i , ci)− J(πτ
E , ci) can be as big as 2T .

Thus, the term we dropped in Eq. 40 (V (ci)) can be as big as 2ϵT instead of 0. In the worst case, this adds an additional
2ϵT to our bound.

Combining both of the above, when we transition from the infinite sample setting to the finite sample setting, our bound
degrades by 3ϵT .

13

Learning Shared Safety Constraints from Multi-task Demonstrations

B. Experimental Details
B.1. Implementation Details

For the velocity and position constraints, the state of the underlying environment is augmented to include the constraint
value (ground-truth constraint for CRL, learned constraint for ICL).

When using CRL as part of ICL, we set the constraint threshold used in the Lagrangian update to be the expert’s constraint
violation. However, when starting with degenerate constraints, this can prevent policy optimization from learning at all as
the expert’s violation under the constraint can be arbitrarily low. To circumvent this issue, we set the Lagrangian constraint
threshold to use the expert’s violation plus a cost limit buffer, which we anneal over the course of training to 0. This ensures
that our learned policy satisfies the learned constraint as much as the expert does as desired.

Because ICL requires learning a constraint, we represent our constraints as neural networks, mapping from the state space
of our agent to a bounded scalar in the range [0, 1]. To update this constraint, we solve the optimization problem using
a regression objective. Learner and expert constraint values are labeled with 1 and -1 respectively, and we optimize a
regression loss. For both CRL and ICL, we find that using a log-activation on top of the raw value of the constraint is an
important detail for stable training.

For the multi-task maze setting, we consider 10 distinct tasks corresponding to unique goal locations, each with 2 starting
locations. To reduce the sample-complexity of exploration, we first train four low-level policies, each of which is capable of
walking in a particular cardinal direction. Both the expert and learner operate in a discrete action space that corresponds to
executing one of these low-level policies. The difference is that the expert gets access to the ground-truth constraint, while
the learner gets access to an estimated constraint that is generated by querying our learned constraint network throughout the
state space.

We generate expert demonstrations / learner rollouts by combining a waypoint planner with the above low-level controllers.
Waypoints are calculated by discretizing the real / estimated maze into a 10 by 10 grid and running Q-value iteration. To
generate a trajectory, we follow the sequence of waypoints by using the learned low-level policies to navigate between each
pair. Because our low-level policies do not always walk perfectly straight, we enforce the learned constraint once again at
rollout time by adding in walls that correspond to the real / estimated structure of the maze.

B.2. Hyperparameters

All ICL experiments are run with a behavior-cloning initialization, regression objective for constraint updates, and augment-
ing the environment state with the constraint value.

14

Learning Shared Safety Constraints from Multi-task Demonstrations

Hyperparameter Value

PPO Learning Rate 0.0003
PPO Value Loss Weight 0.25
PPO Epsilon Clip 0.2
PPO GAE Lambda 0.97
PPO Discount Factor 0.99
PPO Batch Size 512
PPO Hidden Sizes [128, 128]
P-update Learning Rate 0.05
I-update Learning Rate 0.0005
D-update Learning Rate 0.1
Constraint Batch Size 4096
Constraint Learning Rate 0.05
Constraint Update Steps 250
CRL Epochs 10
CRL Steps per Epoch 30000
ICL Expert Demonstrations 20
ICL Velocity Cost Limit 20
ICL Position Cost Limit 100
ICL Anneal Rate 10
ICL Epochs 20

Table 1. Experiment hyperparameters.

15

