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ABSTRACT

Existing graph matching methods typically assume that there are similar struc-
tures between graphs and they are matchable. This work addresses a more real-
istic scenario where graphs exhibit diverse modes, requiring graph grouping be-
fore or along with matching, a task termed mixture graph matching and cluster-
ing. Specifically, we introduce Minorize-Maximization Matching and Clustering
(M3C), a learning-free algorithm that guarantees theoretical convergence through
the Minorize-Maximization framework and offers enhanced flexibility via relaxed
clustering. Building on M3C, we further develop UM3C, an unsupervised model
that incorporates novel edge-wise affinity learning and pseudo label selection. Ex-
tensive experimental results on public benchmarks demonstrate that our method
outperforms state-of-the-art graph matching and mixture graph matching and clus-
tering approaches in both accuracy and efficiency.

1 INTRODUCTION

Graph matching (GM) (Yan et al., 2020b) constitutes a pervasive problem in computer vision and
pattern recognition, with applications in image registration (Shen & Davatzikos, 2002), recogni-
tion (Duan et al., 2012; Demirci et al., 2006), stereo (Goesele et al., 2007), 3D shape matching (Berg
et al., 2005; Petterson et al., 2009), and structure from motion (Simon et al., 2007). GM involves
finding node correspondences between graphs by maximizing affinity scores, commonly formulated
as the quadratic assignment problem (QAP), often referred to as Lawler’s QAP (Loiola et al., 2007):

X = argmax
X

vec(X)⊤Kvec(X) s.t. X ∈ {0, 1}n1×n2 ,X1n2 ≤ 1n1 ,X
⊤1n1 ≤ 1n2 (1)

Here, X is a permutation matrix encoding node-to-node correspondences, and 1n is an all-one
vector. The inequality constraints accommodate scenarios with outliers, addressing the general and
potentially ambiguous nature of the problem. Multiple graph matching (MGM) (Yan et al., 2015a;b;
Jiang et al., 2021) extends GM by enforcing cycle consistency among pairwise matching results.
GM and MGM are both NP-hard, leading to the proposal of approximate algorithms, either learning-
free (Yan et al., 2016) or learning-based (Yan et al., 2020a).

In GM, whether in two-graph matching or multi-graph matching, a common assumption prevails:
graphs must belong to the same category, and labels for both graphs and nodes are required. How-
ever, labeling can be costly, especially in domains like molecular design or drug discovery requiring
domain-specific knowledge. Real-world scenarios involve mixtures of different graph types, e.g., in
traffic tracing, frames may contain people, bicycles, and cars simultaneously. Matching with mixed
graph types is a practical challenge in its nascent stage. In this paper, we introduce Mixture Graph
Matching and Clustering (MGMC), aiming to align graph-structured data and simultaneously parti-
tion them into clusters, as shown in Fig. 1. This task seeks to mutually optimize both matching and
clustering problems, thereby enhancing the outcomes of both tasks: matching establishes a similarity
metric for clustering, while cluster information improves the results of intra-cluster matching.

Recent studies have explored mixture graph matching and clustering in two works: Decayed Pair-
wise Matching Composition (DPMC) (Wang et al., 2020b) and the graduated assignment neural
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Table 1: Comparison of the existing three works designated for mixture graph matching and clus-
tering: DPMC (Wang et al., 2020b), GANN (Wang et al., 2020a), and ours: M3C/UM3C.

Methods DPMC GANN M3C/UM3C (ours)

Optimization Space Discrete Continuous Discrete
Framework - Graduated Assign Minorize-Maximization

Supergraph Structure discrete tree real-value edge fully connected discrete and partly-connected
Joint Optimize × ✓ ✓

Convergence × slow fast
Affinity Learning - node node and edge

Pseudo Label - unselected selected w/ relaxed indicator
Empirical Robustness mediocre hardly work given 2+ outliers 30% accuracy improvement over GANN

network (GANN) (Wang et al., 2020a). However, they suffer from certain drawbacks that warrant
attention: 1) Convergence. DPMC exhibits convergence instability, while GANN has slow conver-
gence. 2) Rigid Structure. DPMC relies heavily on its tree structure, and GANN tends to converge
to a sub-optimal due to its hard clustering nature. 3) Robustness. GANN’s robustness is compro-
mised by noise, as shown in our experiments, where matching accuracy drops significantly with just
two outliers and further deteriorates with more outliers.

We propose our solution, Minorize Maximization Matching and Clustering (M3C). M3C enjoys
convergence guarantees and is based on a convergent alternating optimization solver. We utilize
the cluster indicator from hard clustering to represent the discrete structure used for optimization,
providing better information for graphs of different modes while preserving the convergence guar-
antee of the algorithm. We additionally introduce UM3C, which integrates the learning-free solver
into an unsupervised pipeline, incorporating edge-wise affinity learning, affinity loss, and a pseudo-
label selection scheme for higher robustness. A comprehensive comparison with previous works is
summarized in the appendix Sec. B with Table 1. The main contributions of this paper are:

• We present M3C, a learning-free solver for the mixture graph matching and clustering problem,
that guarantees convergence within the Minorize-Maximization framework, enhanced by a flexible
optimization scheme enabled by the relaxed cluster indicator. This marks the first theoretically
convergent algorithm for MGMC, to the best of our knowledge.

• We enhance M3C by integrating it with an unsupervised pipeline UM3C. Edge-wise affinity learn-
ing, affinity loss, and pseudo label selection are introduced for learning quality and robustness.

• M3C and UM3C outperform state-of-the-art learning-free and learning-based methods on mixture
graph matching and clustering experiments. UM3C even outperforms supervised models BBGM
and NGM, establishing itself as the top-performer for MGMC on public benchmarks.

2 RELATED WORKS

Graph Matching Graph matching has gained attention recently, with various techniques explored,
including spectrum, semi-definite programming (SDP), and dual decomposition (Gold & Rangara-
jan, 1996; van Wyk & van Wyk, 2004; Cho et al., 2010; Tian et al., 2012; Egozi et al., 2012; Swoboda
et al., 2017; Xu et al., 2019; Zhang et al., 2019; Liu et al., 2021). Multiple graph matching (MGM)
introduces cycle consistency as regularization to encourage matching transitivity, whose methods
fall into two categories: matrix factorization-based (Kim et al., 2012; Pachauri et al., 2013; Huang
& Guibas, 2013; Zhou et al., 2015; Chen et al., 2014; Leonardos et al., 2017; Hu et al., 2018; Swo-
boda et al., 2019) and supergraph-based approaches (Yan et al., 2015b;a; Jiang et al., 2021; Wang
et al., 2020b). The former enforces cycle consistency through matrix factorization, connecting all
graphs with a universe-like graph for global consistency. The latter iteratively updates two-graph
matchings by considering metrics along the supergraph path. Recent studies explore deep learning
methods for feature extraction and learning-free or neural network solvers for matching (Zanfir &
Sminchisescu, 2018; Wang et al., 2019; 2021; Wang et al., 2020; Rolı́nek et al., 2020; Yu et al., 2021;
Wang et al., 2020a; Liu et al., 2020; Nurlanov et al., 2023; Fey et al., 2020; Jiang et al., 2022b; Lin
et al., 2023; Jiang et al., 2022a), covering both supervised and unsupervised learning pipelines.

Graph Clustering In this paper, we tackle graph clustering, which aims to group similar graphs.
One approach involves embedding each graph into a Hilbert space and using clustering methods
like k-means (Xu & Lange, 2019) Previous work (Wang et al., 2020b;a) commonly use Spectral
Cluster (Ng et al., 2002) based on pairwise affinity scores. Another approach (Hartmanis, 1982;
Poljak & Rendl, 1995; Trevisan, 2012; Goemans & Williamson, 1995) utilizes max cut (De La Vega
& Kenyon, 2001; Festa et al., 2002; Poljak & Rendl, 1995; Trevisan, 2012; Goemans & Williamson,
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1995), treating input graphs as nodes in a supergraph and assigning weights to edges based on
pairwise scores. Alternative formulations for graph clustering include min cut (Johnson et al., 1993),
normalized cuts (Xu et al., 2009), and multi-cuts (Kappes et al., 2016; Swoboda & Andres, 2017).

Mixture Graph Matching and Clustering Matching with mixtures of graphs entails finding node
correspondence and partitioning graphs into clusters with works: DPMC (Wang et al., 2020b) and
GANN (Wang et al., 2020a). GANN introduces GA-MGMC, a graduated assignment-based al-
gorithm optimizing the MGMC problem in a continuous space, followed by projecting results to
discrete matching. DPMC, a learning-free solver, constructs a maximum spanning tree on the super-
graph and updates matching along the tree. Another work (Bai et al., 2019) embeds the input graph
for matching into an embedding vector for graph clustering. Joint matching and node-level clus-
tering are explored (Krahn et al., 2021), solving node correspondence and segmenting input graphs
into sub-graphs. This paper focuses on the joint graph matching and clustering problem, a relatively
new area in the literature. It represents an advancement for more open settings.

3 BACKGROUND AND PROBLEM FORMULATION

We introduce some preliminary concepts, definitions, and the proposed problem formulation in this
section. The definition of notations are introduced in Appendix Sec. A.
Definition 1 (Matching composition). Matching composition involves combining pairwise match-
ing results to enhance the initial matching configuration: Xt+1 = Xt

ik1
Xt

k1k2
. . .Xt

ksj
. We further

define the matching composition space of Gi and Gj to encompass all possible compositions between
them PX(i, j) = {Xik1

. . .Xksj |s ∈ N+, 1 ≤ k1 . . . ks ≤ N}.
Definition 2 (Supergraph). Supergraph is a common protocol for describing multi-graph matching.
The supergraph S = {V, E ,A} consists of vertices corresponding to graphs V = {G1, . . . ,GN} and
edges weighted by pairwise matching affinity scores Xij , with adjacency A ∈ {0, 1}N×N .

Each path on the supergraph corresponds to a matching composition. The weight of the path from
Gi to Gj is defined as the affinity score of the matching composition: Xij = Xik1

Xk1k2
. . .Xksj .

The matching composition space of Gi and Gj can be represented as all the paths from Gi to Gj on
the supergraph: PA(i, j) = {Xik1

. . .Xksj |∀aik1
= · · · = aksj = 1}.

Definition 3 (Cluster indicator). The cluster indicator is defined to describe whether two graphs
belong to the same cluster. It is represented by the cluster indicator matrix C ∈ {0, 1}N×N , where
cij = 1 denotes the same class. The transitive relation cijcjk ≤ cik serves as the sufficient and
necessary condition for C to be a strict cluster division (see proof in the appendix). The number of
clusters can be determined by the number of strongly connected components of C, namely SCC(C).

Problem Formulation The MGMC problem can be formulated as a joint optimization problem,
where matching results maximize pair similarity to facilitate clustering, while the cluster indicator
guides matching optimization in turn. Given the set of pairwise affinity and number of clusters Nc,
the overall objective F(X,C) for joint matching and clustering can be written as follows:

max
X,C

F(X,C) = max
X,C

∑
ij cij · vec(Xij)

⊤Kijvec(Xij)∑
ij cij

s.t. Xij1nj
≤ 1ni

,X⊤
ij1ni

≤ 1nj
, cikckj ≤ cij ,∀i, j, k, SCC(C) = Nc.

(2)

where X represents the pairwise matching matrices, and C denotes the cluster indicator matrix.
The first part of constraints ensures that Xij ∈ {0, 1}ni×nj is a (partial) permutation matrix, and
the second part requires C ∈ {0, 1}N×N to be a strict cluster division with Nc clusters. The term

1∑
ij cij

acts as a normalization factor to mitigate the influence of cluster scale. The cycle consistency
within each cluster is either enforced as a constraint XikXkj ≤ Xij , ∀cik = ckj = cij = 1, or
softly encouraged by the algorithm.

4 A LEARNING-FREE APPROACH: M3C

In this section, we present our learning-free algorithm, M3C. We start by converting the original
problem into a Minorize-Maximization (MM) framework (Hunter & Lange, 2004; Mairal, 2015), a
nontrivial achievement not realized before (Sec. 4.1). Additionally, we propose a relaxed indicator
that allows for more flexible exploration by relaxing the hard constraints from independent clusters
to the global and local rank of affinities (Sec. 4.2). We finally present the full algorithm (Sec. 4.3).

3



Published as a conference paper at ICLR 2024

Optimize via 

supergraph

……

Relaxed indicator

and supergraph

Minorize-Maximization

Framework

Input: Mixture graphs 

over images of multiple 

classes with given key-

points and structure.

F
ro

n
t-E

n
d

 E
x
tra

cto
r

E
d

g
e F

ea
tu

res
N

o
d

e F
ea

tu
res

M3C

Learned Affinity

Traditional

Feature

Extractor

⊕

Two-graph

Solver

Initial matching

and affinity score

Obtain cluster result and 

output matching

MM

Framework

Output: Clustered graphs with 

pairwise mapping in each cluster.

Pseudo label 𝐊𝒑𝒔𝒅

Relaxed indicator 𝐂

Pseudo label 𝐗𝒑𝒔𝒅

𝐊𝑝𝑠𝑑 =

vec 𝐗𝒑𝒔𝒅 ∙ vec(𝐗𝒑𝒔𝒅)⊤ 

Affinity 

Loss

Hand-craft Affinity

UM3C

car duck clusters

Forward

Backward

Figure 1: Pipeline of M3C and its unsupervised learning extension called UM3C. We use two clus-
ters: ducks and cars as an illustration example. The node in the plot refers to the graph sample for
matching and different colors refer to different clusters. M3C is a leaning free solver as shown in the
dotted box in the top middle with a minorize-maximization framework built on a relaxed indicator
(see Sec. 4). It is extended to an unsupervised pipeline (see Sec. 5) by learning the edge-wise affinity
matrix K and a pseudo label selection scheme.

4.1 CONVERTING THE PROBLEM SOLVING INTO A MINORIZE-MAXIMIZATION FRAMEWORK

Recall that DPMC (Wang et al., 2020b) device an alternative system for matching and clustering,
suffers non-convergence. To utilize the mutual optimization nature and guarantee convergence, we
introduce a Minorize-Maximization (MM) framework.

We start by presenting a new objective with a single variable X, denoted as f(X) = F(X, h(X)),
to incorporate the MM framework into our approach. Here, h(X) = argmaxC F(X,C), represents
the optimal cluster division for X.

The MM framework works by finding a surrogate function g(X|X0) = F(X, h(X0)), which mi-
norizes the original objective function f(X). By optimizing this surrogate function, we can itera-
tively improve the objective or maintain its value. The iterative steps are as follows:

• Construct the surrogate function g(X|X(t)) = F(X, h(X(t))) by inferring the best cluster based
on the current matching results X(t).

• Maximize g(X|X(t)) instead of f(X), which can be solved using graph matching solvers.

The above iteration guarantees that f(X) is monotonic incremental:

f(X(t+1)) ≥ g(X(t+1)|X(t)) ≥ g(X(t)|X(t)) = f(X(t)). (3)

On the other hand, f(X) exhibits a natural upper bound, i.e. f(X) <
∑

ij

∑
abcd Kij(a, b, c, d).

According to the Monotone Convergence Theorem, if a monotone sequence of real numbers, such
as f(Xt), is bounded, then the sequence converges. Details of the proof can be found in Sec. C.2.

4.2 RELAXATION ON CLUSTER INDICATOR

The proposed framework benefits from a convergence guarantee. However, subsequent theoretical
analyses indicate that hard clustering tends to converge rapidly to a sub-optimal solution and lacks
of the capability to correct the clustering results. A similar challenge is also faced by GANN (Wang
et al., 2020a), which overlooks the intrinsic differences between matched pairs and assigns them
clustering weights of either 1 or a constant β. Owing to its inherent hard clustering characteristic,
GANN’s performance exhibits high sensitivity to both parameter fine-tuning and the presence of
outliers. This underscores our motivation to relax the hard constraints.
Proposition 4.1. If the size of each cluster is fixed, the hard cluster indicator converges to the local
optimum in one step:

C(t) = C(t+1), if {N (t)
g1 , . . . , N (t)

gNc
} = {N (t+1)

g1 , . . . , N (t+1)
gNc

}. (4)
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Please refer to Sec. C.3 for the detailed proof. Two key observations are: First, the cluster indicator
attains a local optimum for each cluster size group. Second, it converges within one optimization
step when the target cluster size is known. Such convergence fixes the optimization space for find-
ing optimal matching compositions, constraining the exploration of both matching and clustering
results. Experimental results confirming the quick convergence is provided in Appendix. H.4.

To overcome the constrained exploration, we propose relaxing the hard constraints on the original
cluster indicator. We present two relaxations on the number of graph pairs for the new indicator Ĉ:∑

ij

ĉij = r ·N2 (global constraint);
∑
j

ĉij = r ·N, ∀i (local constraint) (5)

Here, r ∈ [0, 1] is a hyper-parameter that adjusts the ratio of chosen pairs.

M3C

-hard

Initial matching

and affinity score

from two-graph 

solver.
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and output matching

……
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M3C

Minorize-Maximization

Alternative Maximization

Figure 2: Three optimization structures. DPMC:
rigid tree structure, no convergence guarantee.
M3C-Hard: constrained exploration. M3C: re-
laxed indicator, better solutions with convergence.

The global version limits the total number of
selected graph pairs, while the local version re-
stricts pair numbers for each graph. We re-
fer to this new approach as the relaxed in-
dicator, which provides three advantages: 1)
The relaxed indicator assesses each graph pair
individually. Considering the potential er-
rors in clustering results, loosening cluster-
ing constraints—disregarding cluster numbers
and transitive relations cikckj ≤ cij—enables
the incorporation of valuable information from
other clusters. This, in turn, provides greater
flexibility in the optimization space. 2) It en-
hances pseudo label selection in unsupervised
learning by selecting graph pairs with higher
affinity scores, as discussed in Sec. 5. 3) Com-
pared to GANN (Wang et al., 2020a), which
also proposes a relaxation for C, our approach
maintains discrete constraints, resulting in bet-
ter convergence than GA-MGMC.

4.3 THE CLUSTER INDICATOR RELAXED ALGORITHM: M3C

We introduce the M3C algorithm, which leverages the relaxed indicator Ĉ within the MM frame-
work, consisting of three key parts: initialization, surrogate function construction, and maximization
step. The details are outlined in Alg. 1 in the appendix.

Initialization We obtain the initial matching X(0) using a two-graph solver, such as RRWM (Cho
et al., 2010), which is both cost-effective and aligns with existing literature on multiple graph match-
ing (Yan et al., 2015b; Jiang et al., 2021).

Surrogate Function Construction With the introduction of relaxed constraints in Sec. 4.2, we
first present two methods for solving the optimal relaxed indicator Ĉ using the so-called global and
local constraints, respectively.

Ĉ(t) = ĥ(X(t−1)) = argmax
Ĉ

∑
ij cij

rN2
vec(X(t−1)

ij )⊤Kijvec(X(t−1)
ij )

s.t.
∑
ij

cij = rN2 (global constraint) or
∑
j

cij = rN, ∀i (local constraint).
(6)

In Eq. 6, given X(t−1) and r, the affinity scores and the normalization coefficients remain fixed. The
objective is to select graph pairs with higher affinity scores. For the global constraint, we rank all
graph pairs by affinity and set a threshold at the highest rN2 values. For the local constraint, we
rank the neighbors of each graph and select the top rN pairs in the context of k-nearest-neighbor.
These two algorithms are denoted as global-rank and local-rank, respectively.

Building upon the local and global schemes, we propose a fused approach named fuse-rank. It
combines both global and local constraints by introducing a bi-level ranking. The local rank of a
pair of graphs (Gu,Gv) is determined as: Ruv = i+ j, where Gu is the i-th nearest neighbor of Gv ,
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and Gv is the j-th nearest neighbor of Gu. Subsequently, we establish a global threshold across all
graph pairs based on {Ruv}. This approach allows the induced relaxed indicator Ĉ to reflect both
local and global affinity relationships among graphs. We will evaluate the performance of the above
three strategies in our experiments.

Surrogate Function Maximization In hard clustering, the maximization step optimizes within
clusters, which is trivial to apply MGM algorithms. However, with the relaxed indicator, the op-
timization structure changes and requires a modification of the algorithm. We first present our
approach, and then resonate why it is a well-defined generalization to address this issue.

With the supergraph mentioned in Def. 2 and the relaxed indicator, we can construct an incomplete
supergraph with edges connecting graphs of the same class. The adjacency A of this supergraph
corresponds numerically to the relaxed indicator Ĉ, thus we simply set A = Ĉ. Let PA(t) denote
all the paths (matching composition space) based on adjacency A, different from traditional MGM
problem, the optimization step becomes:

X(t) = argmax
Xij∈P

A(t) (i,j)

∑
ij

vec(Xij)
⊤Kijvec(Xij) (7)

In Eq.7, the optimization space PA(t)(i, j) increases with the number of paths between Gi and Gj ,
making it more likely to optimize graphs of the same class. This property mirrors that of the cluster
indicator and renders the maximization objective equivalent to Eq. 7 when given the relaxed indica-
tor Ĉ. Furthermore, when the relaxed indicator degenerates to hard cluster division, the supergraph
reduces to several connected components, causing the optimization to focus solely on graphs within
the same cluster. Hence, Eq.7 is a well-defined generalization of the maximization objective.

With the proposed algorithm, the relaxed indicator Ĉ is no longer fixed, expanding the optimization
space of the maximization step. This enables the maximization step to enhance the quality of the
relaxed cluster. Both steps work jointly, optimizing both clustering and matching results.

In summary, we have introduced a novel learning-free approach for joint matching and clustering
with a convergence guarantee. In the following section, we aim to integrate deep neural networks
into our framework to enable an unsupervised learning paradigm for graph matching and clustering.

5 UNSUPERVISED LEARNING MODEL: UM3C

We introduce UM3C, an unsupervised extension to M3C, enabling joint matching and clustering
within a guaranteed convergence framework. Recent deep learning advancements in graph match-
ing (Zanfir & Sminchisescu, 2018; Wang et al., 2019; Rolı́nek et al., 2020) highlight the value of
learning node and edge features. However, M3C’s discrete optimization hinders gradient computa-
tion and machine learning integration. Previous attempts, like BBGM (Rolı́nek et al., 2020), strug-
gled with gradient approximation and affinity generalization. GANN (Wang et al., 2021), although
unsupervised, focused solely on Koopmans-Beckmann’s QAP, ignoring edge features and outlier
handling. UM3C addresses these challenges with two techniques: 1) edge-wise affinity learning and
affinity loss, guided by pseudo matching label from M3C solver; 2) Pseudo-label selection using
the introduced relaxed indicator to improve pseudo label quality. We detail these techniques in the
following subsections and present M3C’s integration into the unsupervised learning pipeline.

5.1 EDGE-WISE AFFINITY LEARNING

Our solver M3C adopts Lawler’s QAP (Loiola et al., 2007), which embraces second-order informa-
tion for enhanced performance. This requires meticulous design of the affinity matrix K.

Recent research on graph matching (Rolı́nek et al., 2020; Wang et al., 2021) adopts deep learning
pipelines to compute node features Fn

i and edge features Fe
ij using VGG-16 (Simonyan & Zisser-

man, 2014) and Spline CNN (Fey et al., 2018). A learned affinity Klearn can be constructed from
these first and second-order features as: Klearn

u = (Fn)⊤ΛFn,Klearn
q = (Fe)⊤ΛFe. Here, Ku

and Kq denote unary and quadratic affinities respectively, with Λ set to I for stable training.

Our goal is to improve Klearn using ground truth Xgt (or pseudo-label Xpsd). Commonly, a dif-
ferentiable pipeline calculates prediction matching X for applying the loss function. However, this
approach conflates affinity construction and the solver, leading to customized affinities limited to the
training solver and hampered generalization.
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We devise a cross-entropy loss to quantify the discrepancy between two input affinity matrices:

L(Klearn,Kgt) =
∑
pq

Kgt
pq log(K

learn
pq ) + (1−Kgt

pq) log(1−Klearn
pq ), (8)

where Kgt = vec(Xgt) · vec(Xgt)⊤. Note that Kpq represents the element in the p-th row and q-th
column of K between two graphs. This affinity loss decouples from solver effects, focusing solely
on affinity quality, enhancing robustness and applicability to various solvers.

With its higher-order information, UM3C shows significantly greater robustness against noise, com-
pared to GANN (Wang et al., 2020a), which centers only on node similarity and structural alignment.

5.2 UNSUPERVISED LEARNING USING PSEUDO LABELS

As previously mentioned, creating labels like Xgt demands significant time and effort. Hence, we
generate pseudo labels Xpsd using our learning-free solver M3C, aiming to replace Xgt. To enhance
the quality of Xpsd, we propose two techniques: affinity fusion and pseudo label selection.

The quality of Xpsd hinges on input affinity K. However, at the beginning of the training, the
learned affinity Klearn is random and unreliable. Conversely, the hand-crafted affinity Kraw cap-
tures only geometric information of node pairs, i.e. distances and angles, limiting its expressiveness.
Consequently, we fuse both affinities, leveraging their strengths.

In particular, for its simplicity and experimental effectiveness, we linearly merge learned and hand-
crafted affinities, balanced by hyperparameter α as K = Klearn + αKraw. The hand-crafted
Kraw adheres to a standard procedure (Yan et al., 2015b; Jiang et al., 2021). Both affinities are
normalized to the same scale. This design capitalizes on the reliability of hand-crafted affinity
and the expressiveness of learned affinity. In initial epochs, Kraw enhances the quality of pseudo
matching Xpsd. Later, learned affinity Klearn surpasses Kraw, further refining the final result.

Furthermore, we optimize pseudo label pair selection for loss computation, guided by the relaxed
indicator Ĉ. Unlike GANN, which accumulates losses for all pairs within inferred clusters, where
a single incorrect assignment affects multiple pseudo label pairs of differing categories. UM3C ad-
heres to Ĉ and selects graph pairs with higher affinity rank as pseudo labels. This strategy, assuming
higher affinity indicates greater accuracy, enhances pseudo affinity Kpsd quality. The overall loss is:

Lall =
∑
ij

ĉij · L(Klearn
ij ,Kpsd

ij ). (9)

This approach chooses more accurate matching pairs, bringing pseudo affinity closer to ground truth.
Empirical validation of this approach can be found in Sec. 6.3.

6 EXPERIMENTS

6.1 PROTOCOLS

Experiments on all learning-free solvers were conducted on a laptop with a 2.30GHz 4-core CPU
and 16GB RAM using Matlab R2020a. All learning-based experiments were carried out on a Linux
workstation with Xeon-3175X@3.10GHz CPU, one RX8000, and 128GB RAM.

Datasets We evaluate using two widely recognized datasets, Willow ObjectClass (Cho et al., 2013)
and Pascal VOC (Everingham et al., 2010). Detailed introduction and implementation of the datasets
will be introduced in Sec. G.1. For convenience of notation, Nc and Ng (denoted as Nc × Ng)
represent the number of categories and graphs we selected and mixed for tests on MGMC.

Methods We present three method versions: M3C-hard, M3C, and UM3C. M3C-hard serves as a
baseline following the hard clustering MM framework (Sec. 4.1), employing Spectral Clustering and
MGM-Floyd. M3C represents the relaxed algorithm from Sec. 4.3, and UM3C is the unsupervised
learning model described in Sec. 5, both using the fuse-rank scheme, if not otherwise specified.
We evaluate our methods in both learning-free and learning-based contexts. In learning-free ex-
periments, we mainly compare M3C with DPMC (Wang et al., 2020b) and MGM-Floyd (Jiang
et al., 2021), following protocols from Wang et al. (2020b;a). In learning-based experiments, we
compare UM3C with unsupervised method GANN (Wang et al., 2020a), and supervised learning
method BBGM (Rolı́nek et al., 2020), NGMv2 (Wang et al., 2020), GCAN (Jiang et al., 2022b),
and COMMON (Lin et al., 2023).
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Table 2: Evaluation of matching and clustering metric with inference time for the mixture graph
matching and clustering on Willow Object Class. Following the previous work (Wang et al., 2020a),
We select Car, Duck, and Motorbike as the cluster classes.

Nc = 3, Ng = 8, 0 outlier Nc = 3, Ng = 8, 2 outliers Nc = 3, Ng = 8, 4 outliers
Model Learning MA ↑ CA ↑ CP ↑ RI ↑ time(s) ↓ MA ↑ CA ↑ CP ↑ RI ↑ time(s) ↓ MA↑ CA ↑ CP ↑ RI ↑ time(s) ↓
RRWM free 0.748 0.815 0.879 0.871 0.4 0.595 0.541 0.643 0.680 0.4 0.572 0.547 0.661 0.685 0.6
MatchLift free 0.764 0.769 0.843 0.839 7.8 0.530 0.612 0.726 0.730 10.6 0.512 0.582 0.701 0.709 11.5
MatchALS free 0.635 0.571 0.689 0.702 1.3 0.245 0.39 0.487 0.576 2.5 0.137 0.383 0.480 0.571 2.6
CAO-C free 0.875 0.860 0.908 0.903 3.3 0.727 0.574 0.678 0.704 3.7 0.661 0.562 0.674 0.695 4.9
MGM-Floyd free 0.879 0.931 0.958 0.952 2.0 0.716 0.564 0.667 0.696 2.3 0.653 0.580 0.690 0.708 2.9
DPMC free 0.872 0.890 0.931 0.923 1.2 0.672 0.617 0.724 0.733 1.4 0.630 0.600 0.707 0.722 2.3
M3C-hard free 0.838 0.855 0.907 0.899 0.4 0.620 0.576 0.684 0.705 0.6 0.596 0.587 0.694 0.713 0.7
M3C (ours) free 0.884 0.911 0.941 0.938 0.5 0.687 0.653 0.750 0.758 0.6 0.635 0.646 0.748 0.753 1.0

NGMv2 sup. 0.885 0.801 0.843 0.825 9.0 0.780 0.927 0.952 0.941 4.7 0.744 0.886 0.916 0.906 4.7
BBGM sup. 0.939 0.704 0.751 0.758 1.6 0.806 0.964 0.977 0.971 4.8 0.747 0.881 0.918 0.908 6.6

GANN unsup. 0.896 0.963 0.976 0.970 5.2 0.610 0.889 0.918 0.913 20.6 0.461 0.847 0.893 0.881 30.2
UM3C (ours) unsup. 0.955 0.983 0.988 0.988 3.2 0.858 0.984 0.989 0.986 3.3 0.815 0.981 0.987 0.986 3.6

Table 3: Evaluation of matching and clustering metric with inference time for the mixture graph
matching and clustering on Pascal VOC. Mixture classes are randomly picked and average values
of metrics are reported over all the combinations. “+UM3C(ours)” means that UM3C apply the
same feature extractor and two-graph solver with compared models. The pretrain weight of the
feature extractor is loaded during the training to obtain a valid initial solution. Note that NGMv2
and BBGM are grouped together since their feature extractors are totally the same.

Nc = 3, Ng = 8 Nc = 5, Ng = 10
Model Learning MA↑ CA↑ CP↑ RI↑ time(s)↓ MA↑ CA↑ CP↑ RI↑ time(s)↓
GANN unsup. 0.2774 0.6949 0.7613 0.768 33.785 0.2372 0.5103 0.599 0.7816 64.015
UM3C unsup. 0.4979 0.7015 0.769 0.7756 5.2991 0.4817 0.5551 0.631 0.7921 24.661

NGMv2 sup. 0.8114 0.755 0.8083 0.8165 4.2586 0.821 0.6087 0.689 0.8167 18.8087
BBGM sup. 0.7919 0.7973 0.8406 0.8371 2.2618 0.7926 0.7261 0.783 0.8656 8.5146

+UM3C(ours) unsup. 0.7928 0.8761 0.9065 0.9061 5.35 0.7862 0.7861 0.832 0.8989 24.8569

GCAN sup. 0.8049 0.8089 0.8537 0.8438 4.6041 0.8041 0.672 0.7376 0.8459 23.8998
+UM3C(ours) unsup. 0.75 0.824 0.8637 0.8565 7.5568 0.753 0.6846 0.7452 0.847 37.3579

COMMON sup. 0.8334 0.9318 0.9467 0.9458 0.9152 0.8334 0.8058 0.848 0.9122 2.9551
+UM3C(ours) unsup. 0.8435 0.9494 0.9629 0.9595 4.2193 0.8396 0.8129 0.8586 0.919 12.217

Evaluation Metrics We employ matching accuracy (MA), clustering purity (CP), rand index (RI),
clustering accuracy (CA), and time cost as evaluation metrics, following prior research (Wang et al.,
2020b;a). MA assesses matching performance, while CP, RI, CA represent the quality of cluster
division. Detailed mathematical definitions are provided in Sec. G.2. Mean results from 50 tests are
reported unless specified otherwise.

6.2 PERFORMANCE ON MGMC

We conduct mixture graph matching and clustering experiments on Pascal VOC and Willow Object-
Class, as detailed in Table 2 and Table 3. For Pascal VOC, we explore two size settings: 3 clusters
× 8 images and 5 clusters × 10 images, where clusters and images are randomly chosen from the
dataset. In the Willow ObjectClass dataset, we use the 3 clusters × 8 images setting while investi-
gating the impact of outliers. This setting follows the previous work Wang et al. (2020a), selecting
Car, Duck, and Motorbike as the cluster classes, with images randomly sampled for each class.

Table 2 presents the performance of our learning-free solver, M3C, demonstrating its competitive-
ness compared to other learning-free algorithms. M3C achieves top matching accuracy (over 1%
gain) in the settings without outliers. As the number of outliers increases, M3C’s strength in cluster-
ing metrics becomes apparent, with gains of 3% - 5% in clustering accuracy. M3C also significantly
outperforms M3C-hard, affirming the effectiveness of our designed relaxed indicator.

Our unsupervised model, UM3C, excels in both matching and clustering tasks. When compared
to the peer method GANN, UM3C showcases superior performance on both Pascal VOC and Wil-
low ObjectClass, achieving remarkable improvements of 5.9% - 24.45% in matching accuracy and
0.66% - 2% in clustering metrics. This advantage becomes more pronounced in the presence of
outliers, underscoring the robustness of our unsupervised approach. On the other hand, UM3C re-
mains competitive even when compared to supervised models. On the Willow ObjectClass dataset,
UM3C outperforms supervised models (BBGM and NGMv2) in both matching and clustering met-
rics (1.6% - 7.8% in MA and 1.2% - 23% in CA, CP, RI). Concerning PascalVOC, a more chal-
lenging dataset, employing UM3C can further enhance the model’s capabilities based on pretrained
feature extractors, especially in clustering results.
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Figure 3: Ablation study of M3C by adding components under 3 × 8 Willow ObjectClass dataset
without outliers. Left: Evaluation on matching and clustering performance. Right: Quality of
pseudo labels during training and evaluation by iteration.

Furthermore, both M3C and UM3C stand out as time-efficient algorithms. As demonstrated in
Table 2, M3C consumes only 1.25 - 1.67× the time of the two-graph solver RRWM, while outpacing
peer MGM methods by 2.3 - 11.5× in terms of speed. On the other hand, UM3C requires only 0.54
- 2× the time of the two-graph matching models NGMv2 and BBGM, delivering a speed advantage
of 2.5 - 6.3× over the peer method GANN. Moreover, the “+UM3C” extension incurs a time cost of
only 1.2 - 2.9s for the 3 × 8 setting and 6.0 - 14.5s for the 5 × 10 setting, significantly shorter than
the time required by GANN. It is important to note that the time-cost of UM3C in Table 3 exhibits
significant variability, primarily due to different two-graph solvers and initialization methods.

6.3 ABLATION STUDY

We evaluate UM3C on Willow ObjectClass with 3 clusters × 8 images, excluding outliers, to assess
the effectiveness of different model components. We establish a baseline by substituting M3C for
the GA-GM solver in GANN. Given that GANN lacks Spline CNN for feature refinement, we also
investigate the impact of introducing Spline CNN in the unsupervised method. The effectiveness of
label selection and edge-wise affinity learning is validated by adding each component successively.

The pseudo label selection results, measured by the matching accuracy of pseudo labels during both
training and evaluation, are shown on the right side of Fig. 3. It shows a 5% improvement over
baseline M3C in the early training stage (first 100 iterations), affirming its ability to select pseudo
labels closer to the ground truth.

Regarding edge-wise affinity learning, the left side of Fig. 3 illustrates its significant contribution
to our model, highlighting the inadequacy of hand-crafted affinity and the necessity of learning
edge-wise affinity. Spline CNN further enhances matching accuracy. Notably, our baseline method
already outperforms GANN, attributed to our solver M3C.

6.4 ADDITIONAL EXPERIMENTS

We provide an index of additional experiments in the appendix for your reference. (H.1) Varying
cluster number and cluster size: results on more diverse settings on Willow ObjectClass. (H.2)
Comparison of different ranking schemes. (H.3) Comparison of different clustering algorithms.
(H.4) Convergence study of M3C. (H.5) Hyperparameter study of M3C. (H.6) Generalization test
of learned affinity Klearn. (I) Visualization of matching results.

7 CONCLUSION AND OUTLOOK

We have presented a principled approach for jointly solving graph matching and clustering in scenar-
ios involving mixed modes. Our learning-free solver, M3C, aligns with the minorize-maximization
paradigm and introduces a relaxed cluster indicator to improve algorithm flexibility. Additionally,
we integrate the M3C solver into an unsupervised learning pipeline, resulting in UM3C, with edge-
wise affinity learning and pseudo label selection schemes. Remarkably, our methods outperform all
state-of-the-art methods in the context of joint graph matching and clustering, which we believe is
a practical setting to advance the research of graph matching. For future work, we may apply our
methods to other domains like protein docking (Wu et al., 2024) and combinatorial problem instance
generation (Li et al., 2023; Chen et al., 2024) whereby graph matching can be a building block.
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REPRODUCIBILITY STATEMENT

To foster reproducibility, we will make our code available at https://github.com/Thinklab-
SJTU/M3C. We give details of our models M3C and UM3C in ‘Implementation Details’ Ap-
pendix. F, and our experimental protocol in ‘Experiment Details’ Appendix. G.
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APPENDIX

A NOTATION

We first present all notations used in this paper for a better understanding of proposed algorithms
and to facilitate the following discussion.

Table 4: Main notations and description used in this paper.

Notations Descriptions
N Number of input graphs.

G G is a set of N graphs G = {G1 . . .GN}.

G Graph to be matched with vertex set VG and edge set EG .

X X denotes all the possible pairwise matching results in graph set G: X = {Xij}1≤i,j≤N .

Xij(XGi,Gj ) Xij(XGi,Gj ) ∈ {0, 1}ni×nj denotes the pairwise matching results between Gi and Gj .

Kij
Kij ∈ Rninj×ninj denotes the affinity matrix between Gi and Gj . Its diagonal and off-
diagonal elements store the node-to-node and edge-to-edge affinities, respectively.

Jij Jij = vec(Xij)
⊤Kijvec(Xij) denotes the affinity score of graph pair (Gi,Gj).

C C ∈ {0, 1}N×N is the cluster indicator of N graphs. cij = 1 if Gi and Gj belongs to the
same cluster, and cij = 0 otherwise.

n, no number of nodes in a graph and the number of its outliers

Nc, Ng
Nc denotes the number of clusters. The size of each cluster is represented as
{Ng1 , Ng2 , . . . , NgNc

}. When the size of clusters is the same, we shorthand it as Ng .

Ĉ Ĉ ∈ {0, 1}N×N is the relaxed cluster indicator by solving relaxed constraints.

A A ∈ {0, 1}N×N denotes the adjacency matrix for supergraph (Def. 2).

vec(·) Column-vectorized operation of given matrix.

SCC(·) The number of strong connection components of the input cluster.

r Hyperparameter for cluster relaxation. r stands for the ratio of graph pairs to choose.

α Hyperparameter for affinity construction. α is the weight of the hand-craft affinity.

B COMPARISON WITH PREVIOUS WORKS

We underscore some key differences between our proposed method and two previous works,
DPMC (Wang et al., 2020b) and GANN (Wang et al., 2020a; 2023), focusing on MGMC in Ta-
ble 1. This comparison is to provide a comprehensive illustration of our novel contributions and
substantial advancements in this field.

Some key points of differentiation are worth emphasizing:

• Both approaches employed rigid optimization structures (a tree and a fully connected graph), while
M3C utilizes a discrete and partly connected supergraph, enhancing efficiency and flexibility in
matching and clustering.

• DPMC lacks a convergence guarantee, and GANN requires hundreds of iterations for conver-
gence, whereas M3C achieves convergence with fewer iterations.

• While GANN claimed to jointly optimize matching and clustering, empirical results reveal its
inability to adapt clustering once it incorporates clustering during matching, which becomes a
variant of hard clustering. In contrast, M3C demonstrates the crucial capability to jointly adjust
its relaxed indicator alongside matching, a defining feature of a true joint optimization framework.

• GANN is rooted in Koopmans-Beckmann’s QAP (Koopmans & Beckmann, 1957), which only
considers structural similarity during matching, limiting its generalizability to edge feature learn-
ing. In contrast, UM3C utilizes a more generalized Lawler’s QAP (Loiola et al., 2007) variation
and introduces edge-wise affinity learning, making it more versatile.
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C CONVERGENCE ANALYSIS OF M3C

C.1 CLUSTER DIVISION AND CLUSTER INDICATOR

In this section, we show the relationship between cluster division and cluster indication. We prove
that the transitive relation cijcjk ≤ cik is the sufficient and necessary condition for C to be a strict
cluster division, which is proposed in Def. 3 of Sec. 3.
Proposition C.1. Transitive relation cijcjk ≤ cik is the sufficient and necessary condition for C to
be a strict cluster division, where C ∈ {0, 1}N×N and cij denotes whether Gi and Gj are belong to
the same category.

Proof. Necessary condition: C is a strict cluster division =⇒ cijcjk ≤ cik.

• When cij = 1 and cjk = 1, Gi and Gj are of the same class, where Gj and Gk are of the same
class, too. Therefore, Gi and Gk are of the same class, which means cik = 1 and cijcjk ≤ cik
holds.

• When one of cij and cjk is equal to 1 and another equals 0, we assume cij = 1 and cjk = 0
without loss of generality. That is, Gi and Gj are of the same class while Gj and Gk are not.
Therefore, Gi and Gk are not of the same class either, which means cik = 0 and cijcjk = 0 ≤ cik
also holds.

• When cij = 0 and cjk = 0, Gi and Gj are not of the same class, while Gj and Gk are neither of the
same class. In that case, we cannot tell the relationship between Gi and Gk, so cik = 0/1. It still
holds that cijcjk ≤ cik.

Sufficient condition: cijcjk ≤ cik =⇒ C is a strict cluster division.

• If Gi and Gj , Gj and Gk are both of the same class, cijcjk = 1 ≤ cik, which means cik = 1 and Gi

and Gk are of the same class.
• If Gi and Gj are of the same class, and Gj and Gk are of different classes, we have cij = cji = 1

and cjk = 0. We find that cik = cjicik ≤ cjk = 0, thus, cik = 0 and Gi and Gk are not of the
same class.

Above all, transitive relation cijcjk ≤ cik is the sufficient and necessary condition for C to be a
strict cluster division.

C.2 PROOF OF THE CONVERGENCE OF MINORIZE-MAXIMIZATION FRAMEWORK

In this section, we prove the convergence of the MM Framework.

The objective function F(X,C) is defined in Eq. 2 as:

max
X,C

F(X,C) = max
X,C

∑
ij cij · vec(Xij)

⊤Kijvec(Xij)∑
ij cij

s.t. Xij1nj
≤ 1ni

,X⊤
ij1ni

≤ 1nj
, cikckj ≤ cij ,∀i, j, k, SCC(C) = Nc,

Xij ∈ {0, 1}ni×nj , cij ∈ {0, 1}.

(10)

Let the C = h(X) solve the optimal cluster division for X, and f(X) = F(X, h(X)) be an objective
function with single variable X. Without loss of generality, we have

max
X

f(X) = max
X

F(X, h(X)) = max
X

max
C|X

F(X,C) = max
X,C

F(X,C) (11)

Therefore, f(X) is a variant of the objective function.

The MM algorithm works by finding a surrogate function that minorizes the objective function f(X).
Optimizing the surrogate function will either improve the value of the objective function or leave it
unchanged. To optimize the surrogate function, two steps are conducted iteratively.

• Construction. The surrogate function g(X|X(t)) = F(X, h(X(t))) is constructed by inferring the
best cluster based on current matching results X(t):

h(X(t)) = argmax
C

∑
ij

cij · vec(X(t)
ij )

⊤Kijvec(X(t)
ij )

s.t. cikckj ≤ cij ,∀i, j, k, SCC(C) = Nc.

(12)
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• Maximization. Maximize g(X|X(t)) instead of f(X), which is solved by off-the-shelf graph
matching solver.

X(t+1) =argmax
X

g(X|X(t)) = argmax
X

f(X, h(X(t)))

= argmax
X

∑
ij

c
(t)
ij · vec(Xij)

⊤Kijvec(Xij)

s.t. Xij1nj
≤ 1ni

,X⊤
ij1ni

≤ 1nj
.

(13)

The Construction step ensures two properties that g(X|X(t)) holds: 1) Since f(X) = F(X, h(X))
adopts the optimal cluster division, it holds for all X that

g(X|X(t)) = F(X, h(X(t))) ≤ F(X, h(X)) = f(X) (14)

2) It also holds that
g(X(t)|X(t)) = F(X(t), h(X(t))) = f(X(t)). (15)

With Eq. 14 and Eq. 15, for each iteration, the objective function will never decrease as shown in
Eq. 3,

f(X(t+1)) ≥ g(X(t+1)|X(t)) ≥ g(X(t)|X(t)) = f(X(t)). (16)

Thus we finish the proof of the convergence of our proposed MM Framework.

C.3 QUICK CONVERGENCE OF HARD CLUSTERING

In this section, we show the proof of the proposition proposed in Sec. 4.2 that the hard clustering
framework will converge quickly.
Proposition C.2 (Proposition 4.1). If the size of each cluster is fixed, the hard cluster indicator
converges to the local optimum in one step:

C(t) = C(t+1), if {N (t)
g1 , N (t)

g2 , . . . , N (t)
gNc

} = {N (t+1)
g1 , N (t+1)

g2 , . . . , N (t+1)
gNc

}. (17)

Proof. According to the maximization step in the MM framework, the pairwise matching is updated
individually. The improvement on Xij does not influence the optimization of other pairs. Therefore,
it holds that,

J
(t+1)
ij ≥ J

(t)
ij , ∀c(t)ij = 1

J
(t+1)
ij = J

(t)
ij , ∀c(t)ij = 0

(18)

where Jij = vec(Xij)
⊤Kijvec(Xij) denotes the pairwise affinity score.

We prove the proposition by contradiction. Assume that C(t) ̸= C(t+1). According to the optimiza-
tion framework, we have that

f(X(t+1)) ≥ g(X(t+1)|X(t)) ≥ g(X(t)|X(t)), (19)

which means,
F(X(t+1),C(t+1)) ≥ F(X(t+1),C(t)) ≥ F(X(t),C(t)). (20)

Therefore,
F(X(t+1),C(t+1))−F(X(t+1),C(t))

=
1∑
c
(t+1)
ij

∑
ij

c
(t+1)
ij · J (t+1)

ij − 1∑
c
(t)
ij

∑
ij

c
(t)
ij · J (t+1)

ij

≥0.

(21)

Since
{N (t)

g1 , N (t)
g2 , . . . , N (t)

gNc
} = {N (t+1)

g1 , N (t+1)
g2 , . . . , N (t+1)

gNc
}, (22)

it holds that, ∑
c
(t+1)
ij =

∑
c
(t)
ij . (23)
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Algorithm 1: Learning-free solver M3C
Input: Iterations number T , Cluster number Nc, Graph set {G1, . . .GN}.

1 Construct affinity matrix K from node coordinates of graph set {G1, . . .GN} through standard
process (Yan et al., 2015b; Jiang et al., 2021).

2 Obtain initialization matching X(0) via a two-graph solver e.g. RRWM (Cho et al., 2010);
3 for t = 1 : T do

/* Construction-Step */

4 Construct the surrogate function g(X|X(t−1)) via solving Ĉt = ĥ(X(t−1)) in Eq. 6 with
three strategy candidates: global-rank, local-rank, or fuse-rank;
/* Maximization-Step */

5 Set A(t) as relaxed indicator Ĉ(t), maximizing g(X|X(t−1)) via Eq. 7 to find optimal
matching composition X on A(t);

6 end
7 Obtain the affinity score for each graph pair: Jij = vec(Xij)

⊤Kijvec(Xij);
8 Sparsification on the affinity score:

{
Jk
ij

}
= KNN({Jij} , k);

9 Apply clustering algorithm, e.g. Spectral Clustering (Ng et al., 2002), Multi-Cut (Swoboda &
Andres, 2017), on

{
Jk
ij

}
to get C.

Output: Matching X(t), cluster C.

According to Eq. 18, we can further have

F(X(t+1),C(t+1))−F(X(t+1),C(t))

=
1∑
c
(t)
ij

∑
ij

c
(t+1)
ij · J (t+1)

ij −
∑
ij

c
(t)
ij · J (t+1)

ij


=

1∑
c
(t)
ij

 ∑
c
(t+1)
ij =1,c

(t)
ij =0

J
(t+1)
ij −

∑
c
(t+1)
ij =0,c

(t)
ij =1

J
(t+1)
ij


=

1∑
c
(t)
ij

 ∑
c
(t+1)
ij =1,c

(t)
ij =0

J
(t)
ij −

∑
c
(t+1)
ij =0,c

(t)
ij =1

J
(t+1)
ij


≥0.

(24)

Moreover, according to J
(t+1)
ij ≥ J

(t)
ij , ∀ctij = 1, we have∑

c
(t+1)
ij =1,c

(t)
ij =0

J
(t)
ij −

∑
c
(t+1)
ij =0,c

(t)
ij =1

J
(t)
ij ≥

∑
c
(t+1)
ij =1,c

(t)
ij =0

J
(t)
ij −

∑
c
(t+1)
ij =0,c

(t)
ij =1

J
(t+1)
ij ,

(25)

which means
1∑
c
(t+1)
ij

∑
ij

c
(t+1)
ij · J (t)

ij − 1∑
c
(t)
ij

∑
ij

c
(t)
ij · J (t)

ij ≥ 0. (26)

That is to say

F(X(t),C(t+1)) ≥ F(X(t),C(t)), (27)

which means C(t) is not the optimal cluster division for X(t). Contradiction. Therefore, we have
C(t) = C(t+1).

D DETAILED ALGORITHM OF M3C

Please refer to Algorithm 1 and Algorithm 2 for a detailed presentation of our proposed learning-free
solver M3C and unsupervised learning method UM3C.
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Algorithm 2: Unsupervised learning UM3C
Input: Images {I1, . . . , IN}, node coordinates {V1, . . . ,VN}

1 Obtain node and edge features Fn,Fe via VGG16 and SplineCNN;
2 Construct Klearn from Fn,Fe by Klearn

u = (Fn)⊤ΛFn,Klearn
q = (Fe)⊤ΛFe;

3 Obtain hand-crafted Kraw following Zhou & Torre (2016); Yan et al. (2015b); Jiang et al.
(2021); Wang et al. (2020b);

4 K = Klearn + αKraw;
5 if training then
6 Xpsd, Ĉ = M3C(K);
7 Kpsd = vec(Xpsd) · vec(Xpsd);
8 Lall =

∑
ij ĉij · L(Klearn

ij ,Kpsd
ij )

9 else
10 X,C = M3C(K);
11 end

Output: Matching X, cluster C.

Table 5: Time complexity comparison of peer methods, where N and n is the total number of graphs
and number of nodes for each graph (we assume equal size here for notation simplicity), Ti denotes
the iterations needed for the algorithm to converge, and τpair denotes the time cost of calling a two-
graph matching solver.

method time complexity for MGMC

MGM-Floyd (Jiang et al., 2021) O(N4n+N3n3 +N2τpair + tNNcd)
CAO-C (Yan et al., 2015b) O(N4n+N3n3 +N2τpair + tNNcd)
DPMC (Wang et al., 2020b) O(T1 ∗ (N2n4 +N2 logN + tNNcd) +N2τpair)
GA-MGMC (Wang et al., 2020a) O(T2 ∗ (T ′N2n2d+ tNNcd))
M3C (ours) O(T3 ∗ (N3n3 +N2 logN2 + tNNcd) +N2τpair)

E TIME COMPLEXITY ANALYSIS BETWEEN LEARNING-FREE SOLVERS

We analyze the time complexity of our method M3C and compare it with other learning-free solvers
in Table 5. Notably, our algorithm outperforms vanilla MGM-Floyd (Jiang et al., 2021) in terms
of speedup due to a lower time complexity bound. Additionally, our approach benefits from a
significantly reduced constant factor.

Let N and n denote the number of graphs and nodes in one graph (ignoring the different graph sizes
for the brevity of notation), respectively, and τpair denote the time cost of a two-graph matching
solver, such as RRWM (Cho et al., 2010). It costs O(N2τpair) to calculate the score matrix and
O(N2 logN2) to construct the supergraph. In the worst case, we would add N(N−1)

2 edges to the
supergraph, resulting in O(N3n3) time cost for performing MGM-Floyd. Additionally, spectral
clustering is applied, with a time cost of O(tNNcd), where t is the k-means iteration, and d is the
dimension for embedded features. T denotes the number of iterations that M3C takes to converge.
Therefore, the total time complexity is given by O(T ∗ (N3n3+N2 logN2+ tNNcd)+N2τpair).

It’s important to note that M3C runs faster than peer methods in Table 2. This is primarily due to two
reasons. Firstly, M3C exhibits a significantly lower constant factor in the maximization step, and
the expected number of edges added is much smaller than in the worst case scenario. In practice, the
actual run time of the maximization step can be approximated as θN3n3, where θ < 1. Empirical
studies show that θ ≈ 0.16 for Nc = 5 and Ng = 20, and this value may further decrease with
larger Nc and Ng . Secondly, owing to the relaxed cluster indicator, M3C converges much faster
than GA-GAGM, resulting in a significantly reduced number of iterations: T3 ≪ T2. As a result,
the actual running time of M3C is significantly less than that of DPMC and GA-MGMC.
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F IMPLEMENTATION DETAILS

In this section, we introduce more implementation details of M3C and UM3C, including the detailed
structure of the neural network we applied, the construction of affinity matrix K, and some hyper-
parameters setting.

F.1 NETWORK STRUCTURE FOR FEATURE EXTRACTION

We utilize the feature extractor described in Rolı́nek et al. (2020) with a few modifications. The
process is outlined below:

• Compute the outputs of relu4 2, relu5 1 of the VGG16 (Simonyan & Zisserman, 2014) net-
work pre-trained on ImageNet (Krizhevsky et al., 2012), to obtain feature F1 and F2, respectively.
These features are then concatenated to create the final CNN feature F:

F = CONCAT(F1,F2) (28)

The detailed network structure and parameters are shown in Table. 6.
• Feed the obtained feature F and the graph adjacency A into the geometric feature refinement

component. The graph adjacency A is generated using Delaunay triangulation (Delaunay et al.,
1934) based on keypoint locations. We apply SplineConv (Fey et al., 2018) to encode higher-order
information and the geometric structure of the entire graph into node-wise features Fn:

Fn = SplineConv(F,A) (29)

The Spline Conv operation is calculated as follows:

Fn
i =

1

|N (i)|
∑

j∈N (i)

Fn
j · hΘ(Ei,j) (30)

where Fn
i represents the node feature of vi, N (i) denotes the neighborhood of vi, Ei,j = Fn

i −Fn
j

stands for the edge feature of the edge between vi and vj , and hΘ denotes a kernel function defined
over the weighted B-Spline tensor product basis.

F.2 CONSTRUCTION OF AFFINITY MATRIX K

In our paper, we discuss two types of affinities: the traditional Kraw and the learned Klearn. The
former is employed in all learning-free experiments, while both are utilized in the UM3C process.
Table 6: Network structure of vgg16 bn as applied in UM3C. The pre-trained weight is downloaded
by PyTorch. The bold line denotes the relu4 2, relu5 1, and final layers whose outputs are
applied as node features, edge features, and global features.

Layer Channels Kernel Layer Channels Kernel

1

Conv2d (3, 64) (3, 3) 3 ReLU (256, 256) -
BatchNorm2d (64, 64) - MaxPool2d - 2

ReLU (64, 64) -

4

Conv2d (256, 512) (3, 3)
Conv2d (64, 64) (3, 3) BatchNorm2d (512, 512) -

BatchNorm2d (64, 64) - ReLU (512, 512) -
ReLU (64, 64) - Conv2d (512, 512) (3, 3)

MaxPool2d - 2 BatchNorm2d (512, 512) -

2

Conv2d (64, 128) (3, 3) ReLU (512, 512) -
BatchNorm2d (128, 128) - Conv2d (512, 512) (3, 3)

ReLU (128, 128) - BatchNorm2d (512, 512) -
Conv2d (128, 128) (3, 3) ReLU (512, 512) -

BatchNorm2d (128, 128) - MaxPool2d - 2
ReLU (128, 128) -

5

Conv2d (512, 512) (3, 3)
MaxPool2d - 2 BatchNorm2d (512, 512) -

3

Conv2d (128, 256) (3, 3) ReLU (512, 512) -
BatchNorm2d (256, 256) - Conv2d (512, 512) (3, 3)

ReLU (256, 256) - BatchNorm2d (512, 512) -
Conv2d (256, 256) (3, 3) ReLU (512, 512) -

BatchNorm2d (256, 256) - Conv2d (512, 512) (3, 3)
ReLU (256, 256) - BatchNorm2d (512, 512) -

Conv2d (256, 256) (3, 3) ReLU (512, 512) -
BatchNorm2d (256, 256) - MaxPool2d - 2
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Table 7: Parameters of UM3C.

param WillowObject PascalVOC description
3× 8 5× 10 3× 8 5× 10

lr 10−3 10−3 10−3 / 10−5 10−3 / 10−5 learning rate
lr-steps {100, 500} {100, 500} {100, 500} {100, 500} lr/=10 at these number of iterations

α
train: 1 train: 1 train: 0.5 train: 0.5 weight of Kraw

test: 0 test: 1 test: 0.5 test: 0.5
β 0.9 0.9 0.9 0.9 weight parameter in Kraw

σ2 0.03 0.03 0.03 0.03 the scaling factor in Kraw

T 2 2 2 2 max iterations of M3C

The construction of Kraw adheres to the standard protocol used in previous works (Zhou &
Torre, 2016; Yan et al., 2015a;b; Jiang et al., 2021; Wang et al., 2020b). Kraw has no node
affinity and relies on edge affinity, which is computed based on two factors: length similarity
and angle similarity. For each edge e = ((x1, y1), (x2, y2)), its length feature de is calculated
as de =

√
(x1 − x2)2 + (y1 − y2)2, and its angle feature θe is computed as θe = tan−1( y1−y2

x1−x2+ϵ ).
The edge affinity is determined using the following formula:

krawe1, e2 = exp

(
− 1

σ2
(β |de1 − de2 |+ (1− β) |θe1 − θe2 |)

)
(31)

The learned affinity Klearn is extracted using a deep learning model, following the standard pipeline
(Rolı́nek et al., 2020; Wang et al., 2020a). Node features Fn

i are obtained through VGG16 and
SplineConv, while edge features are constructed as:

Fe
ij = Fn

i − Fn
j (32)

The learned affinity matrix K is computed as:

Ku = (Fn)⊤ΛFn, Kq = (Fe)⊤ΛFe (33)

Here, Ku represents unary affinity, Kq denotes quadratic affinity, and Λ is set to I for stable training.
UM3C constructs the affinity matrix through a combination:

K = Klearn + αKraw, (34)

where α is used to adjust the weight of Kraw. Further parameter details are provided in Sec. F.3.

F.3 PARAMETER SETTINGS

The detailed configuration of our model parameters is listed in Table 7, which are tuned based on
their performance on the training data. The parameter β and σ for Kraw follows the parameter
used for traditional solvers. The max iteration T is chosen based on the performance, convergence,
and time cost of M3C. For α, we found that as Klearn gets better when the training proceeds, a
less desirable Kraw would harm the performance of the solver under the simpler setting where
Nc = 3, Ng = 8, but is still instructive under more complex setting where Nc = 5, Ng = 10. This
also means that given more training categories, there is still room for improvement in unsupervised
learning methods.

G EXPERIMENT DETAILS

G.1 DATASETS

We conducted experiments on two datasets: Willow Object Class (Cho et al., 2013) and Pascal VOC
Keypoint (Everingham et al., 2010).

The Willow Object Class dataset comprises 304 images gathered from Caltech-256 (Griffin et al.,
2007) and Pascal VOC 2007 (Everingham et al., 2007). These images span 5 categories: 208 faces,
50 ducks, 66 wine bottles, 40 cars, and 40 motorbikes. Each image is annotated with 10 keypoints,
and we introduced random outliers for robustness tests.
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The Pascal VOC Keypoint dataset features natural images from 20 classes in VOC 2011 (Evering-
ham et al., 2010), with additional keypoint labels provided by Bourdev & Malik (2009). To tailor
the dataset to the graph matching and clustering problem, we selected 10 classes: aeroplane, bicy-
cle, bird, cat, chair, cow, dog, horse, motorbike, and sheep. We filtered out images with incomplete
keypoint counts, ensuring that all remaining images had 9-10 common keypoints for each class. We
also added random outliers to ensure that all images consistently contained exactly 10 keypoints.
This resulted in a training set of 944 images and an evaluation set of 220 images.

In both datasets, we constructed graphs using Delaunay triangulation. For learning-based models,
images were cropped to object bounding boxes and resized to 256× 256 pixels.

G.2 EVALUATION METRIC

Denote a cluster with a set of graphs C = {G1 . . .Gn}. The ground truth cluster division is denoted
as Cgt, and the predicted cluster is denoted as C. Moreover, let Cgt(cgtij ) denotes the ground truth
cluster indicator and C(cij) denotes the predict cluster indicator. Performance metrics include both
matching accuracy and clustering quality:

Matching Accuracy (MA) We only consider the intra-cluster matching accuracy and thus by
adapting the accuracy for a single cluster, we have

MA =
1∑
cgtij

∑
ij

cgtij · ACC(Xij), (35)

where ACC(Xij) denotes accuracy for matching Xij . Here C refers to an indicator for strict cluster
division.

Clustering Purity (CP) (Manning et al., 2008): it is given by

CP =
1

N

Nc∑
i=1

max
j∈{1,...,Nc}

∣∣Ci ∩ Cgt
j

∣∣ , (36)

where C′
i is the predicted cluster i and Cj is the ground truth cluster j, and N is the total number of

graphs.

Rand Index (RI) (Rand, 1971): RI calculates the correct graph pairs overall.

RI =
1

N2
· (

∑
cij=1,cgtij=1

1 +
∑

cij=0,cgtij=0

1) (37)

where
∑

cij=1,cgtij=1 1 represents the number of graphs predicted in the same cluster with same
label,

∑
cij=0,cgtij=0 1 the number of pairs that are in different clusters with different labels, and it is

normalized by the total number of graph pairs N2.

Clustering Accuracy (CA) (Wang et al., 2020b), it is defined by:

CA = 1− 1

Nc

∑
Ca

∑
C′
a ̸=C′

b

|C′
a ∩ Ca| |C′

b ∩ Ca|
|Ca| |Ca|

+
∑
C′
a

∑
Ca ̸=Cb

|C′
a ∩ Ca| |C′

a ∩ Cb|
|Ca| |Cb|

 (38)

where Ca, Cb are the ground truth clusters and C′
a, C′

b denotes prediction.

G.3 APPLY 2GM AND MGM ON MGMC.

To apply 2GM and MGM solvers on MGMC, we need to first get the pairwise matching results
X from these solvers. Then we will generate respective clustering results C based on resulting
matching X and given affinity matrix {Kij}. The details of the clustering algorithm are introduced
in Sec. G.4. Both X and C are used for the evaluation of these solvers.
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Algorithm 3: Clustering algorithm.
Input: Matching results X, affinity matrix {Kij}.

1 Obtain the affinity score for each graph pair: Jij = vec(Xij)
⊤Kijvec(Xij);

2 Sparsification on the affinity score:
{
Jk
ij

}
= KNN({Jij} , k);

3 Apply clustering algorithm, e.g. Spectral Clustering (Ng et al., 2002), Multi-Cut (Swoboda &
Andres, 2017), on

{
Jk
ij

}
to get C.

Output: Cluster C.

G.4 DETAILS FOR CLUSTERING ALGORITHM.

For all solvers (2GM, MGM, and MGMC), we adhere to the same clustering procedure outlined in
Alg. 3. The first step involves computing the affinity score Jij for each pair of graphs. To enhance the
effectiveness of clustering, we employ a sparsification technique, consistent with the pre-processing
approach in Wang et al. (2020b), aimed at obtaining a more efficient input matrix. Specifically, when
dealing with a pair of two graphs, if one graph is not among the k-nearest neighbors of the other, we
set their corresponding scores Jij (and Jji) to zero. The parameter k is consistently set to 10 for all
tests. The resulting sparsified affinity score is denoted as Jk

ij .

H ADDITIONAL EXPERIMENTS

H.1 VARYING CLUSTER NUMBER AND CLUSTER SIZE

We assess the model’s generalization ability concerning the number of graphs and clusters. For
Nc = 3, the categories consist of car, motorbike, and wine bottle. For Nc = 4, additional categories
include face. We also investigate unbalanced cluster sizes for Nc = 3, comprising 20 cars, 10
motorbikes, and 5 wine bottles. Both GANN and UM3C are trained with Nc = 5 and Ng = 10,
excluding outliers. During testing, two outliers are randomly added to the graph in all settings.

Table 8 demonstrates the robustness of our methods with varying cluster and graph numbers. Our
learning-free solver, M3C, exhibits competitive performance compared to DPMC, with a matching
accuracy ranging from 1% loss to 2% gain, and clustering accuracy improvement ranging from 2%
to 9%. These achievements further reflect the superiority of our proposed ranking scheme.

Notably, our UM3C outperforms in all performance metrics. It consistently achieves a cluster accu-
racy above 0.97 and a matching accuracy exceeding 0.87 across all settings, representing a 1 ∼ 7%
improvement in matching accuracy and 2 ∼ 18% enhancement in clustering accuracy. The fact that
UM3C’s training setting differs from testing settings validates the strong generalization ability of
our method across varying numbers of graphs, clusters, and the presence of outliers. Furthermore,
our method, although trained under simpler conditions, can be effectively deployed in more complex
scenarios, yielding satisfactory performance.

H.2 COMPARISON OF DIFFERENT RANKING SCHEMES

We compare three proposed ranking schemes across various test settings. M3C-Global, M3C-Local,
and M3C-Fuse refer to global-rank, local-rank, and fuse-rank, respectively. We vary the number of
graphs Ng within each cluster while keeping the cluster number fixed at Nc = 5, and we also vary
the number of outliers in each graph while maintaining Nc = 5 and Ng = 20.

Table 8: Evaluation of matching and clustering accuracy by varying the number of clusters, and
number of graphs in each cluster on WillowObj. MA and CA are used for matching accuracy and
clustering accuracy, respectively.

Nc ×Ng 3× 20, 2 outliers 4× 20, 2 outliers 5× 20, 2 outliers 5× 15, 2 outliers 5× 10, 2 outliers 3× [20, 10, 5], 2 outliers
Metrics Learning MA ↑ CA ↑ MA ↑ CA ↑ MA ↑ CA ↑ MA ↑ CA ↑ MA ↑ CA ↑ MA ↑ CA ↑
RRWM free 0.658 0.932 0.642 0.858 0.665 0.790 0.648 0.693 0.664 0.679 0.633 0.681
CAO-C free 0.849 0.946 0.812 0.855 0.820 0.790 0.801 0.708 0.804 0.679 0.787 0.757
MGM-Floyd free 0.845 0.945 0.812 0.878 0.819 0.807 0.798 0.727 0.799 0.707 0.778 0.755
DPMC free 0.867 0.942 0.827 0.894 0.775 0.772 0.739 0.713 0.756 0.744 0.795 0.823
M3C-hard free 0.758 0.966 0.782 0.908 0.726 0.824 0.710 0.753 0.722 0.719 0.727 0.744
M3C (ours) free 0.857 0.961 0.851 0.933 0.835 0.900 0.812 0.805 0.809 0.780 0.792 0.881

GANN unsup. 0.532 0.834 0.589 0.801 0.528 0.784 0.551 0.802 0.552 0.827 0.475 0.802
UM3C (ours) unsup. 0.874 0.992 0.897 0.981 0.879 0.972 0.876 0.975 0.878 0.975 0.872 0.984
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Figure 4: Comparison by four metrics of the three proposed ranking schemes (local, global, and
fuse in Section 4.3) on the Willow ObjectClass dataset, by varying the cluster size Ng and number
of outliers.

Table 9: Comparison of Spectral Clustering and Multi-Cut on learning-free solvers under the setting
of NC = 3, Ng = 8, and no = 2 outliers. Algorithms with ‘-MC’ use multicut in clustering.

Method MA ↑ CA ↑ CP ↑ RI ↑

With Spectral Clustering MGM-Floyd 0.709 0.567 0.673 0.699
M3C 0.687 0.653 0.750 0.758

With Multi-Cut MGM-Floyd-MC 0.709 0.603 0.716 0.724
M3C-MC 0.687 0.634 0.734 0.745

Our findings from Fig. 4 indicate that M3C-Fuse outperforms all other methods, leading us to select
M3C-Fuse as the solver for our unsupervised model, UM3C. These results also confirm that both
global and local ranking schemes serve as effective approximations. Furthermore, this demonstrates
the robustness and generalization ability of our ranking methods. Even in the presence of 10 outliers,
our method achieves a matching accuracy exceeding 0.5 and a clustering accuracy surpassing 0.65.
Additionally, the performance of our methods improves in both matching and clustering accuracy
as the number of graphs increases. This observation also explains why M3C does not outperform
other learning-free solvers in Table 2 (in simpler settings) but demonstrates significant superiority
in Table 8 (in more complex settings).

H.3 COMPARISON OF DIFFERENT CLUSTERING ALGORITHMS

In previous experiments, for all solvers (under the settings of 2GM, MGM, and MGMC), we adopt
the same procedure for clustering. The first step involves computing the affinity score Jij for each
pair of graphs. To sparsify the affinity scores, we select only the 10 nearest neighbors for each graph
and mask other pairwise affinities, following the approach in Wang et al. (2020b) to obtain a more
effective input matrix. Subsequently, we employ a clustering algorithm on the sparse affinity

{
Jk
ij

}
.

We now conduct a comparison between the clustering algorithms Spectral Clustering (Ng et al.,
2002) and Multi-Cut (Swoboda & Andres, 2017) applied to two well-established traditional algo-
rithms: MGM-Floyd and M3C-Fuse. We hope this comparison justifies our choice of clustering
algorithm.

Table 9 presents the performance of all four combinations. As a result, there is no substantial
alternation in clustering performance. As both (Wang et al., 2020b;a) utilized spectral clustering, to
ensure a fair comparison, we adhere to their protocol and employ spectral clustering in our primary
experiments.

Furthermore, we posit that the key to achieving effective clustering lies in obtaining high-quality
matching and forming reliable affinity scores for clustering. Multi-Cut, as well as Spectral Clus-
tering, represents just one approach to produce robust clustering. The clustering visualization of
different methods is shown in Fig. 5.

H.4 CONVERGENCE STUDY OF M3C

We experiment to show the changes in the supergraph structure of M3C-hard, M3C, and DPMC per
iteration in Table 10. In the case of the two M3C variants, the structure refers to the cluster indicator
(also the corresponding supergraph), whereas for DPMC, it pertains to the designed tree structure.
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Car Face Duck Motorbike Winebottle

Figure 5: Cluster visualization by projecting into 2-D space. We show the spectral embedding of
different methods: DPMC, M3C, and UM3C under 5 × 20, 2 outliers setting. The embedding is
obtained based on pairwise affinity score and the dimension of the embedding space is 16. We apply
t-SNE to reduce the dimension to 2 to draw the visualization figures.

Table 10: Changes in supergraph structure (measured by the number of changed edges per itera-
tion

∑∣∣A(t+1) −At
∣∣) over iterations under the setting of Nc = 3, Ng = 8 with 2 outliers as

disturbance. For M3C, the structure is the cluster indicator Ĉ, and for DPMC, the structure is the
maximum spanning tree.

Iteration # 2 3 4 5 6 7 8 9 10

M3C-hard 10.48 0.56 0 0 0 0 0 0 0
M3C 20.44 2.04 1.56 0.24 0.04 0.08 0 0 0
DPMC 10.16 6.16 3.28 1.20 0.48 0.32 0.24 0.24 0.24

The number is the edges changed per iteration, which is calculated by
∑

|A(t+1) − A(t)| where
A is the adjacency matrix of the respective supergraph. It is evident that DPMC oscillates without
convergence, while M3C-hard converges rapidly to a local optimum, confirming the fact that the
cluster size in M3C-hard remains unchanged in most cases in the experiments and our proposed
Proposition. 4.1 holds. M3C exhibits a more balanced convergence rate, leading to its well-balanced
performance.
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Figure 6: Convergence curve of M3C.
The rates are shown under three different
schemes of ranking: M3C-Global, M3C-
Local, and M3C-Fuse.

Additionally, we validate the convergence of the
three M3C variants using different ranking schemes:
M3C-Global, M3C-Local, and M3C-Fuse. The ex-
periment is conducted on the Willow ObjectClass
dataset, with the settings of Nc = 5, Ng = 20,
and the presence of two outliers. We iterate each
algorithm for 6 cycles and report the mean and
standard deviation of the curves based on 50 rep-
etitions. The hyperparameters r for M3C-Global,
M3C-Local, and M3C-Fuse are set to 0.05, 0.04, and
0.06, respectively. The results are depicted in Fig. 6.
They validate that our algorithm achieves rapid con-
vergence within a few iterations. In the case of each
algorithm, it attains a near-optimal target score by
the second iteration. This supports the earlier assess-
ment of supergraph structure convergence: the sec-
ond iteration witnesses a significant number of edge
changes, which diminishes in the third iteration but
still allows room for further enhancement. It is im-
portant to note that variations in target scores are a
consequence of selecting different values of r for each algorithm.

H.5 HYPERPARAMETER STUDY OF M3C

The major hyperparameter for M3C is r, which controls the number of graph pairs considered as
belonging to the same cluster and determines the number of edges in the supergraph. In this section,
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Figure 7: Sensitivity study of the hyperparameter r for the devised three ranking schemes. Experi-
ments are conducted under the setting Ng = 5, Nc = 20 and Ng = 5, Nc = 10, both with 2 outliers,
on Willow ObjectClass. The marker denotes the performance of our chosen r, which is to add edges
until the supergraph is connected.
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Figure 8: Generalization test of learned affinity under Nc = 3 Ng = 8, no = 2 outliers on Wil-
lowObject. The x-axis is the solver used, and the y-axis is the learning model of the learned affinity.
All models are learned under the same setting as the tests.

we first investigate the sensitivity of the hyperparameter r for M3C-Global, M3C-Local, and M3C-
Fuse, and subsequently, we present our tuning algorithm.

Figure 7 illustrates the matching and clustering performance varying the hyperparameter r, consid-
ering two settings: Nc = 5, Ng = 20, and Nc = 5, Ng = 10, each with no = 2 outliers. It is evident
that the matching performance of M3C-Global remains stable when r > 0.04 for Nc = 5, Ng = 20,
and r > 0.06 for Nc = 5, Ng = 10. However, its clustering performance deteriorates when r ≥ 0.6
in both settings. This observation implies that the threshold should be within a reasonable range, as
merely adding more edges does not necessarily improve performance. Conversely, having too few
edges restricts the algorithm’s optimization space. The findings from M3C-Local and M3C-Fuse
further support this observation. As depicted in Fig. 7, they achieve optimal results at r = 0.15 and
r = 0.03 for the 5× 20 setting, and r = 0.3 and r = 0.045 for the 5× 10 setting.

Additionally, it is worth noting that the optimal r varies for different inputs and settings, and de-
termining the best r for each input can be a time-consuming process. Consequently, we employ
an alternative approach to address this challenge. Rather than fixing a specific value for r, we dy-
namically add edges based on their rank until the supergraph becomes connected. The symbols ‘×’
and ‘+’ in Fig. 7 represent the mean value of r and the corresponding mean performance achieved
by this scheme in two settings, respectively. These empirical results demonstrate that this approach
provides a reliable approximation of the optimal r, enabling the algorithm to attain near-optimal
performance without extensive computation. This is the method employed in both our conventional
solver, M3C, and the unsupervised learning method, UM3C.

H.6 GENERALIZATION TEST OF LEARNED AFFINITY Klearn

We conducted experiments to evaluate the generalization capability of our learned affinity, demon-
strating how our edge-wise affinity loss enhances the robustness of affinity across different solvers.
The experiments were conducted on Willow ObjectClass under a 3 × 8 setting with 2 outliers, em-
ploying the solvers RRWM (Cho et al., 2010) (used in M3C), LPMP (Swoboda et al., 2017) (utilized
in BBGM), and M3C, as well as the affinities learned by BBGM, NGMv2, and UM3C. In the case
of UM3C, only Klearn was utilized for testing.
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As illustrated in Fig. 8, UM3C exhibited superior generalization capabilities in terms of both match-
ing and clustering accuracy. BBGM’s learning pipeline limited its applicability to the LPMP solver,
offering less utility for other solvers. Furthermore, the affinity generated by UM3C significantly im-
proved the performance of LPMP compared to that generated by BBGM. These results affirm that
our edge-wise affinity learning enhances the robustness of the learned affinity, making it adaptable
to various solvers.

H.7 SENSITIVITY TEST OF PSEUDO-LABELS

Table 11: Sensitivity of pseudo-labels for UM3C. Experiments are conducted on Willow Object
where we select Car, Duck, and Motorbike as the cluster classes. No outliers are included and we
apply RRWM to generate pseudo-labels during the training. “80%RRWM+UM3C” denotes that the
pseudo-labels is constructed by 80% RRWM results and 20% random permutation results.

Model Nc Ng MA↑ CA↑ CP↑ RI↑ time(s)↓
100%RRWM + UM3C 3 8 0.955 0.983 0.988 0.988 3.2
80%RRWM + UM3C 3 8 0.786 0.932 0.953 0.947 3.3
60%RRWM + UM3C 3 8 0.546 0.86 0.902 0.886 3.1
40%RRWM + UM3C 3 8 0.261 0.678 0.74 0.746 3.3
20%RRWM + UM3C 3 8 0.156 0.512 0.585 0.625 3.1

We conducted an experiment to assess the sensitivity of pseudo-labels. Table 11 reveals that match-
ing accuracy is significantly influenced by the quality of pseudo-labels, demonstrating an almost
linear relationship. It is noteworthy that clustering metrics appear more resilient to the degrada-
tion of pseudo-labels. Even with a 60% RRWM, the clustering results only decrease by 12.3% on
CA, 8.6% on CP, and 10.2% on RI. These findings illustrate that UM3C effectively clusters objects
even in scenarios where matching pseudo-labels are lacking. However, Table 11 also indicates that
if the pseudo-labels are excessively poor (20% RRWM and 40% RRWM), the cluster results may
deteriorate rapidly.
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I VISUALIZATIONS
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Figure 9: Comparison of different methods: DPMC(top), M3C(Middle), and UM3C(bottom). It is
run on the setting with Nc = 5 and Ng = 20 and 2 outliers. Accuracy is reported for each pairwise
matching. All the pairs are randomly picked. Better viewing with color and zooming in.
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Figure 10: Visualization of our methods: M3C(top) and UM3C(bottom). It is run on the setting with
Nc = 5 and Ng = 20 graphs and 2 outliers. Accuracy is reported for each pairwise matching. All
the pairs are randomly picked. Better viewing with color and zooming in.

28


	Introduction
	Related Works
	Background and Problem Formulation
	A Learning-free Approach: M3C
	Converting the Problem Solving into a Minorize-Maximization Framework
	Relaxation on Cluster Indicator
	The Cluster Indicator Relaxed Algorithm: M3C

	Unsupervised Learning Model: UM3C
	Edge-wise Affinity Learning
	Unsupervised Learning using Pseudo Labels

	Experiments
	Protocols
	Performance on MGMC
	Ablation Study
	Additional Experiments

	Conclusion and Outlook
	Notation
	Comparison with Previous Works
	Convergence Analysis of M3C
	Cluster Division and Cluster Indicator
	Proof of the Convergence of Minorize-Maximization Framework
	Quick Convergence of Hard Clustering

	Detailed Algorithm of M3C
	Time Complexity Analysis between Learning-Free Solvers
	Implementation Details
	Network Structure for Feature Extraction
	Construction of Affinity Matrix K
	Parameter Settings

	Experiment Details
	Datasets
	Evaluation Metric
	Apply 2GM and MGM on MGMC.
	Details for Clustering Algorithm.

	Additional Experiments
	Varying Cluster Number and Cluster Size
	Comparison of Different Ranking Schemes
	Comparison of Different Clustering Algorithms
	Convergence Study of M3C
	Hyperparameter Study of M3C
	Generalization Test of learned affinity Klearn
	Sensitivity Test of Pseudo-Labels

	Visualizations

