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Abstract

Pretraining on noisy, internet-scale datasets has been heavily studied as a technique
for training models with broad, general capabilities for text, images, and other
modalities.1–6 However, for many sequential decision domains such as robotics,
video games, and computer use, publicly available data does not contain the labels
required to train behavioral priors in the same way. We extend the internet-scale
pretraining paradigm to sequential decision domains through semi-supervised
imitation learning wherein agents learn to act by watching online unlabeled videos.
Specifically, we show that with a small amount of labeled data we can train an
inverse dynamics model accurate enough to label a huge unlabeled source of online
data – here, online videos of people playing Minecraft – from which we can then
train a general behavioral prior. Despite using the native human interface (mouse
and keyboard at 20Hz), we show that this behavioral prior has nontrivial zero-
shot capabilities and that it can be fine-tuned, with both imitation learning and
reinforcement learning, to hard-exploration tasks that are impossible to learn from
scratch via reinforcement learning. For many tasks our models exhibit human-
level performance, and we are the first to report computer agents that can craft
diamond tools, which can take proficient humans upwards of 20 minutes (24,000
environment actions) of gameplay to accomplish.

1 Introduction

Work in recent years has demonstrated the efficacy of pretraining large and general foundation
models7 on noisy internet-scale datasets for use in downstream tasks in natural language1–4, computer
vision,5,6,8 and multi-task models.9 For sequential decision domains (e.g. robotics, game playing,
and computer usage) where agents must repeatedly act within an environment, a wealth of data also
exists on the web; however, most of this data is in the form of unlabeled video (i.e. without the
actions taken at each frame), making it much less straightforward to train a behavioral prior in these
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domains than it is in e.g. natural language. In a few rare settings, such as Chess, Go, and StarCraft,
there already exist large datasets with action labels from various online platforms that researchers
have used for imitation learning.10,11 When large labeled datasets do not exist, the canonical strategy
for training capable agents is reinforcement learning (RL),12 which can be sample inefficient and
expensive for hard-exploration problems.13–19 Many virtual tasks, e.g. navigating websites, using
Photoshop, booking flights, etc., can be very hard to learn with RL and do not have large, commonly
available sources of labeled data.20,21 In this paper, we seek to extend the paradigm of training
large, general-purpose foundation models to sequential decision domains by utilizing freely available
internet-scale unlabeled video datasets with a simple semi-supervised imitation learning method. We
call this method Video PreTraining (VPT) and demonstrate its efficacy in the domain of Minecraft.

Existing semi-supervised imitation learning methods aim to learn with few or no explicit action labels;
however, they generally rely on the policy’s ability to explore the environment throughout training,
making them susceptible to exploration bottlenecks.22–26 Furthermore, most prior semi-supervised
imitation learning work was tested in the relatively low data regime; because we experiment with far

more data (⇠70k hours of unlabeled video), we hypothesize that we can achieve good performance
with a much simpler method, a trend that has proven true for pretraining in other modalities such
as text. 1 In particular, given a large but unlabeled dataset, we propose generating pseudo-labels by
gathering a small amount of labeled data to train an inverse dynamics model (IDM) that predicts
the action taken at each timestep in a video. Behavioral cloning (BC) can require a large amount
of data because the model must learn to infer intent and the distribution over future behaviors from
only past observations. In contrast, the inverse dynamics modeling task is simpler because it is
non-causal, meaning it can look at both past and future frames to infer actions. In most settings,
environment mechanics are far simpler than the breadth of human behavior that can take place within
the environment, suggesting that non-causal IDMs could require far less data to train than causal BC
models. Using pseudo-labels generated from the IDM, we then train a model to mimic the distribution
of behavior in the previously unlabeled dataset with standard behavioral cloning at scale, which does
not require any model rollouts and thus does not suffer from any potential exploration bottlenecks
in the environment. Finally, we show we can fine-tune this model to downstream tasks with either
behavioral cloning or reinforcement learning.

Figure 1: Example Minecraft
crafting GUI. Agents use the
mouse and keyboard to navigate
menus and drag and drop items.

We chose to test our method in Minecraft because it (a) is one
of the most actively played games in the world27 and thus has a
wealth of online video data, (b) is an open-ended sandbox game
with an extremely wide variety of potential things to do, build,
and collect, making our results more applicable to real-world
applications such as computer usage, which also tends to be
varied and open-ended, and (c) has already garnered interest by
the RL community as a research domain due to its complexity
and correspondingly difficult exploration challenges.28–32 In this
work we use the native human interface for Minecraft so that we
can (1) most accurately model the human behavior distribution
and reduce domain shift between video data and the environment,
(2) make data collection easier by allowing our human contractors
to play the game without modification, and (3) eliminate the need to hand-engineer a custom interface
for models to interact with the environment. This choice means that our models play at 20 frames
per second and must use a mouse and keyboard interface to interact with human GUIs for crafting,
smelting, trading, etc., including dragging items to specific slots or navigating the recipe book with
the mouse cursor (Fig. 1). Compared to prior work in Minecraft that uses a lower frame rate and
constructs crafting and attacking macros,31,33–35 using the native human interface drastically increases
the environment’s exploration difficulty, making most simple tasks near impossible with RL from
scratch. Even the simple task of gathering a single wooden log while already facing a tree takes 60
consecutive attack actions with the human interface, meaning the chance for a naive random policy to
succeed is 1/260. While this paper shows results in Minecraft only, the VPT method is general and
could be applied to any domain.

In Section 4 we show that the VPT foundation model has nontrivial zero-shot performance, accom-
plishing tasks impossible to learn with RL alone, such as crafting planks and crafting tables (tasks
requiring a human proficient in Minecraft a median of 50 seconds or ⇠970 consecutive actions).
Through fine-tuning with behavioral cloning to smaller datasets that target more specific behavior
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distributions, our agent is able to push even further into the technology tree, crafting stone tools
(taking a human a median of 2.3 minutes or ⇠2790 actions). Finally, fine-tuning via RL produces
the most dramatic improvements: our agent is able to craft diamond tools, an unprecedented result
in Minecraft made even more challenging by using the native human interface. This task requires
a proficient human a median upwards of 20 minutes or ⇠24000 actions. The main contributions
of this work are (1) we are the first to show promising results applying semi-supervised imitation
learning to extremely large, noisy, and freely available video datasets for sequential decision domains,
(2) we show that such pretraining plus fine-tuning enables agents to solve tasks that were otherwise
impossible to learn, (3) we show that labeled contractor data is far more efficiently used within
the VPT method than it would be by directly training a foundation model from it and (4) we open
source our contractor data, trained model weights, and Minecraft environment for future research
into learning to act via semi-supervised imitation learning at scale.

2 Preliminaries and Related Work

Imitation learning methods36–39 seek to construct a policy that accurately models the distribution of
behavior in some dataset D = {(oi, ai)}, i 2 {1...N} of action-observation pairs. In order to roll
out these policies in an environment, they must be causal, meaning they condition on observations
from the current timestep t and past timesteps only, i.e. ⇡ ⇠ p(at|o1...ot). Imitation learning is
simplest when demonstrations are labeled with corresponding actions. Imitating labeled trajectories
has seen success in aerial vehicles, 40,41 self-driving cars, 42,43 board games,10,44 and video games.11,45

When labeled demonstrations are not available, standard behavioral cloning will not work; however,
there is a large body of work in imitating behavior from unlabeled demonstrations.23 For instance,
GAIL24 constructs an adversarial objective incentivizing the trained policy to exhibit behaviors
indistinguishable from those in the target dataset. Edwards et al. 46 propose to first learn a latent
policy using unlabeled demonstrations and then map the learned latent actions to real actions using
environment interaction. Peng et al. 47 use motion-capture methods to track agent positions in videos
and then train RL agents to match these waypoints. Similarly, Behbahani et al. 48 and Aytar et al. 49

task a RL agent to match waypoints; however, their waypoints are embeddings from unsupervised
feature learning models. Pathak et al. 50 and Nair et al. 51 train goal conditioned policies to take
actions that move towards expert-provided goal states expressed as high dimensional visual waypoints.
Most similar to our own work, Torabi et al. 25 simultaneously train (1) an inverse dynamics model
(IDM),52 which aims to uncover the underlying action between timesteps given observations of past
and future timesteps, e.g. pIDM(at|ot, ot+1), and (2) a behavioral cloning (BC) model on trajectories
of observations labeled with the IDM. Data to train the IDM is collected by rolling out the BC
model in the target environment such that both models improve in tandem. However, at any point in
training if there are sequences in the dataset that the IDM performs poorly on, it requires that the BC
model perform those or similar sequences in order for the IDM to improve and correctly label them.
Therefore, if the BC model does not explore efficiently, it could severely slow down learning. In
order to avoid this potential issue we opted for a simpler two-stage approach: we first train an IDM
on a small number of labeled trajectories collected from human contractors (they play the game as
would normally as we record their keypresses and mouse movements). Because human contractors
reach most relevant parts of the state space, we can hold the IDM fixed throughout BC training.

Compared to most previous work in semi-supervised imitation learning, we experiment in the much
more complex and open-ended environment of Minecraft. Minecraft is a voxel-based 3D video
game that, due its popularity and wide variety of mechanics, has attracted a vast amount of RL
research.28,29,31–35,53–61 A large body of work focuses on small, custom-made Minecraft worlds
with tasks such as navigation,54,61 block placing,55,56 instruction following,59,60 combat,57 and
others.29,32,58 Work operating in the massive, randomly generated environments of Minecraft itself
has included hill climbing,53 automated curriculum learning31 and, most closely related to the RL
experiments presented in Sec. 4.4, diamond mining.28,33–35 However, to the best of our knowledge,
there is no published work that operates in the full, unmodified human action space, which includes
drag-and-drop inventory management and item crafting.

3 Methods
Inverse Dynamics Models (IDM) VPT, illustrated in Figure 2, requires we first collect a small
amount of labeled contractor data with which to train an inverse dynamics model pIDM(at|o1...T ),
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Figure 2: Video Pretraining (VPT) Method Overview.

which seeks to minimize the negative log-likelihood of an action at timestep t given a trajectory of T
observations ot : t 2 [1...T ]. In contrast to an imitation learning policy, the IDM can be non-causal,
meaning its prediction for at can be a function of both past and future events, i.e. ot0>t. Compared to
the behavioral cloning objective of modeling the distribution of human intent given past frames only,
we hypothesize that inverting environment dynamics is easier and more data efficient to learn. Indeed,
Sec. 4.1 will show that the IDM objective is much easier to learn, and furthermore Sec. 4.6 will show
that with very little labeled data (as few as 100 hours) we can train a fairly accurate IDM. This IDM
can be used to label online videos, providing the large amount of data required for the harder task of
behavioral cloning. See appendices D and B for IDM training and data collection details.

Data Filtering We gather a large dataset of Minecraft videos by searching the web for related
keywords (Appendix A). Online videos often (1) include overlaid artifacts, such as a video feed
of the player’s face, channel logos, watermarks, etc., (2) are collected from platforms other than
a computer with different gameplay, or (3) are from different game modes, e.g. in Minecraft we
only want "survival mode" where players start from scratch and must gather or craft all their items.
We call data “clean” if it does not contain visual artifacts and is from survival mode, and call all
other data “unclean.” With enough data, a large enough model, and enough training compute, a BC
model trained on both unclean and clean videos would likely still perform well in a clean Minecraft
environment. However, for simplicity and training compute efficiency, we choose to filter out unclean
segments of video (note that a video may contain both clean and unclean segments). We do this by
training a model to filter out unclean segments using a small dataset (8800) of images sampled from
online videos labeled by contractors as clean or unclean. We did not tune this process as it is fairly
standard; see Appendix A.2 for more details and ablations showing data cleaning is beneficial.

VPT Foundation Model We train a foundation model with standard behavioral cloning, i.e.
minimizing the negative log-likelihood of actions predicted by the IDM on clean data. For a particular
trajectory of length T we minimize

min
✓

X

t2[1...T ]

� log ⇡✓(at|o1, . . . , ot), where at ⇠ pIDM(at|o1, . . . , ot, . . . , oT ) (1)

As we will see in the following sections, this model exhibits nontrivial zero-shot behavior and can be
fine-tuned with both imitation learning and RL to perform even more complex skills.

4 Results

4.1 Performance of the Inverse Dynamics Model

The IDM architecture is comprised primarily of a temporal convolution layer, a ResNet63 image
processing stack, and residual unmasked attention layers, from which the IDM simultaneously
predicts keypresses and mouse movements (see Appendix D for IDM architecture and training
details). A key hypothesis behind our work is that IDMs can be trained with a relatively small amount
of labeled data. While more data improves both mouse movement and keypress predictions, our best
IDM trains on only 1962 hours of data (compared to the ⇠70k hours of clean data we collected from
the internet) and achieves 90.6% keypress accuracy and a 0.97 R2 for mouse movements evaluated
on a held-out validation set of contractor-labeled data (Figure 3 left).
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Figure 3: (Left) IDM keypress accuracy and mouse movement R2 (explained variance62) as a
function of dataset size. (Right) IDM vs. behavioral cloning data efficiency.

Figure 3 (right) validates our hypothesis that IDMs are far more data efficient than BC models, likely
because inverting environment mechanics is far easier than modeling the entire distribution of human
behavior. The IDM is two orders of magnitude more data efficient than a BC model trained on the
same data and improves more quickly with more data. This evidence supports our hypothesis that it
is more effective to use contractor data within the VPT pipeline by training an IDM than it is to train
a foundation model from contractor data directly (Sections 4.5 and 4.6 provide additional evidence).
Due to their data efficiency, training an IDM uses a negligible fraction of the overall compute needed
to train a VPT model.

4.2 VPT Foundation Model Training and Zero-Shot Performance

Figure 4: (Left) Training and validation loss on the web_clean internet dataset with IDM pseudo-
labels, and loss on the main IDM contractor dataset, which has ground-truth labels but is out-of-
distribution (see text). (Right) Amount a given item was collected per episode averaged over 2500
60-minute survival episodes as a function of training epoch, shaded with the standard error of the
mean. Basic mining refers to collection of dirt, gravel, or sand (all materials that can be gathered
without tools). Logs are obtained by repeatedly hitting trees for three seconds, a difficult feat for an
RL agent to achieve as we show in Sec. 4.4. Planks can be crafted from logs, and crafting tables
crafted from planks. Crafting requires using in-game crafting GUIs, and proficient humans take a
median of 50 seconds (970 consecutive actions) to make a crafting table.

We now explore the emergent behavior learned by a behavioral cloning policy trained on an extremely
large, but noisy, internet dataset labeled with our IDM. To collect the unlabeled internet dataset,
we searched for publicly available videos of Minecraft play with search terms such as “minecraft
survival for beginners.” These searches resulted in ⇠270k hours of video, which we filtered down to
“clean” video segments yielding an unlabeled dataset of ⇠70k hours, which we refer to as web_clean
(Appendix A has further details on data scraping and filtering). We then generated pseudo-labels
for web_clean with our best IDM (Section 3) and then trained the VPT foundation model with
behavioral cloning. Preliminary model scaling experiments suggested that our model could benefit
from 30 epochs of training and that a 0.5 billion parameter model was required to stay in the efficient
learning regime64 for that training duration (Appendix H shows results comparing model size and the
benefit of scaling to 0.5B parameters), which took ⇠9 days on 720 V100 GPUs.

We evaluate our models by measuring validation loss (Fig. 4, left) and rolling them out in the
Minecraft environment. Unless otherwise noted, in all environment evaluations we spawn agents in a
standard survival mode game where they play for 60 minutes, i.e. 72000 consecutive actions, and we
plot the mean and shade the standard error of the mean for various game statistics such as crafting
and collection rates (Fig. 4, right). The VPT foundation model quickly learns to chop down trees
to collect logs, a task we found near impossible for an RL agent to achieve with the native human
interface (Sec. 4.4). It also learns to craft those logs into wooden planks and then use those planks
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to craft a crafting table, which are required to unlock most other technology in the game and take a
human proficient in Minecraft approximately 50 seconds (970 consecutive actions) to collect. While
these behaviors are fairly complex in the native human action space, the VPT foundation model crafts
these items at a rate far below that of our proficient contractors, e.g. on average our contractors craft
5.44 crafting tables in 60 minutes of play versus 0.19 for the foundation model. The model also crafts
a non-negligible amount of wooden sticks, which are required to make wooden tools; collects various
flowers and crafts dyes from them; kills zombies that appear during the night; hunts wild animals;
collects various berries and mushrooms and eats them; and finds game-generated villages from which
to collect various rare items from chests. The model also learned to navigate uneven terrain, swim,
and pillar jump, which involves the agent repeatedly jumping and quickly placing a block below itself
such that it climbs upward by making a pillar.(iv)

While training and validation loss decrease healthily over training (Fig. 4, left), loss on our contractor
dataset (which the VPT model does not train on) begins increasing after 7 epochs. Contractor data
could be out-of-distribution because our contractors may have a different distribution of play or
because there is some impactful visual domain shift compared to videos from the web, and we provide
some evidence for this phenomenon in Appendix H. While one could have expected this would be
predictive of declining evaluation performance, we do not see notable game statistics from the VPT
foundation model rollouts (Figure 4, right) decrease over training, and in the next section we show
that BC fine-tuning performance continually improves as the VPT foundation model trains.

4.3 Fine-Tuning with Behavioral Cloning

Foundation models are designed to have a broad behavior profile and be generally capable across a
wide variety of tasks. To incorporate new knowledge or allow them to specialize on a narrower task
distribution, it is common practice to fine-tune these models to smaller, more specific datasets. 1 The
VPT foundation model trained on the broad web_clean dataset had nontrivial zero-shot performance;
it was able to craft a crafting table yet unable to go past this in the technology tree. As a case
study into BC fine-tuning, we attempt to improve the VPT foundation model’s ability to collect
and craft these “early game” items by fine-tuning to two narrower datasets targeted at Minecraft
behavior within the first few minutes of players starting in a fresh world. In the first dataset,
contractor_house, contractors have 10 minutes to build a basic house from scratch using primarily
wood, sand, and dirt. Collecting contractor data can be difficult and expensive, so we also construct a
dataset earlygame_keyword by searching for videos online with descriptions that match keywords
such as “new world”, “let’s play episode 1”, etc.; this is a subset of web_clean and is labeled with
the IDM. See Appendix B.4 and A.3 for full descriptions of both datasets.

Effect of Foundation Model Quality on BC Fine-Tuning

59x

213x

59x

Figure 5: (Left) Collection and crafting rates for three policies: the zero-shot VPT foun-
dation model, and the VPT foundation model BC fine-tuned to the earlygame_keyword or
contractor_house datasets. BC fine-tuning to either dataset improves performance, including (for
the contractor_house dataset) yielding wooden and stone tools. Proficient Minecraft players take
a median of 1.2 minutes (1390 actions) to construct wooden tools and 2.3 minutes (2790 actions)
to construct stone tools. (Right) Collection and crafting rates for VPT foundation model snapshots
throughout training after they are BC fine-tuned to the contractor_house dataset. In general,
crafting-related behaviors increase throughout foundation model training. Fig. 4 defines the other
task terms (logs, planks, crafting tables, and total crafting).

(iv)Sample videos: https://www.youtube.com/playlist?list=PLNAOIb_agjf3U3rSvG_BCWqJ869NdBhcP
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Fine-tuning to earlygame_keyword results in a large boost compared to the zero-shot foundation
model: 2.5x more crafting tables, 6.1x more planks, 4.3x more logs, and 5.5x more crafting overall
(Fig. 5). However, when fine-tuning to this dataset we did not see any new behaviors emerge,
only a refinement of existing skills. We saw an even bigger improvement when fine-tuning to the
contractor_house dataset: 213x more crafting tables, 59x more wooden planks, 7x more logs,
and 59x more crafting over all. In addition, we saw the emergence of crafting wooden tools, which
requires placing a crafting table on the ground, opening it to reveal a new crafting interface, and then
using it to craft wooden tools. This entire sequence takes a proficient human player a median of 1.2
minutes (1390 consecutive actions) to accomplish. The model goes further and collects cobblestone,
which requires a wooden pickaxe to mine, and crafts stone tools, requiring it to again use a crafting
table; this takes a proficient human player a median of 2.3 minutes (2790 consecutive actions). We
also saw this model more frequently raiding villages that randomly spawn in the game, hunting
animals for food, in addition to many behaviors we saw performed by the foundation model.(v)

Despite the foundation model’s zero-shot rollout performance plateauing 1/3 into training (Fig. 4,
right), fine-tuning performance does continue to increase throughout foundation model training
(Fig. 5, right). Additionally, there is a stark difference in performance when training from scratch vs.
fine-tuning from the VPT foundation model (Fig. 5 right, comparing the left and rightmost points).

4.4 Fine-Tuning with Reinforcement Learning

Figure 6: Typical sequence of items for obtaining a diamond pickaxe. Below each item is the median
time and number of actions contractors required to obtain that item and the percentage of contractors
that got the item within 10 minutes. The median time to obtain a diamond pickaxe is unknown (except
that it is > 20m) because contractors obtained this item in less than 50% of 20-minute episodes.

To demonstrate the efficacy of RL fine-tuning, we chose the challenging goal of obtaining a diamond
pickaxe within 10 minutes starting from a fresh Minecraft survival world. Doing so involves acquiring
a sequence of difficult-to-obtain items that require complex skills like mining, inventory management,
crafting with and without a crafting table, tool use, operating a furnace, and mining at the lowest
depths, where many hazards like enemies and lava exist (Fig. 6). Adding to the difficulty, progress
can be easily lost by dropping items, destroying items, or dying. Obtaining a diamond pickaxe more
often than not takes a proficient human over 20 minutes (24,000 actions).

Agents are rewarded for each item obtained in the sequence, with lower rewards for items that have to
be collected in bulk and higher rewards for items near the end of the sequence. Agents are optimized
with the phasic policy gradient65 RL algorithm for ⇠1.3 million episodes (roughly 1.4⇥1010 frames).
Episodes last for 10 minutes. See Appendix G.1 for reward function and RL training details. Due to
computational constraints, RL experiments use a ⇠ 248 million parameter VPT model (Appendix H).

A major problem when fine-tuning with RL is catastrophic forgetting66,67 because previously learned
skills can be lost before their value is realized. For instance, while our VPT foundation model never
exhibits the entire sequence of behaviors required to smelt iron zero-shot, it did train on examples of
players smelting with furnaces. It therefore may have some latent ability to smelt iron once the many
prerequisites to do so have been performed. To combat the catastrophic forgetting of latent skills
such that they can continually improve exploration throughout RL fine-tuning, we add an auxiliary
Kullback-Leibler (KL) divergence loss between the RL model and the frozen pretrained policy.11

Training from a randomly initialized policy fails to achieve almost any reward, underscoring how
hard an exploration challenge the diamond pickaxe task is for RL in the native human action space
(Fig. 7a). The model never learns to reliably collect logs, typically the first of many steps to obtaining
a diamond pickaxe (Fig. 7b). RL fine-tuning from the VPT foundation model does substantially
better (Fig. 7a), learning everything up to mining iron ore and crafting furnaces. (Fig. 7c). However,
this agent fails at smelting an iron ingot, the next item required to get further into the tech tree, likely

(v)Sample Videos: https://www.youtube.com/playlist?list=PLNAOIb_agjf2yDSs4AqcoyPv4z_eWUiKm
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(a) (b)

(c) (d)

Figure 7: RL Fine-tuning results. (a) RL from a randomly initialized model fails to get almost
any reward, RL fine-tuning from the VPT foundation model performs substantially better with a
reward near 13, and RL fine-tuning from the early-game model performs best with a reward of 25.
When training the early-game model without a KL loss to the original policy (No KL-loss) progress
stalls after 100,000 episodes, suggesting that the skills necessary to make further progress have been
catastrophically forgotten. (b) RL from a randomly initialized model occasionally collects sticks by
breaking leaves (an easy but inefficient method of getting sticks that does not require logs or planks)
and never learns to reliably collect logs. (c) RL fine-tuning from the VPT Foundation model learns
everything in the curriculum up to iron ore and making furnaces, but fails to learn to use the furnace to
smelt iron ingots. (d) RL fine-tuning from the early-game model learns to obtain (at human-level) all
items in the sequence towards a diamond pickaxe and crafts a diamond pickaxe in 2.5% of episodes.

because the zero-shot probability that the VPT foundation model smelts an iron ingot is too low, even
when given the prerequisite materials.

Results further improve by first BC fine-tuning the VPT Foundation Model to the
earlygame_keyword dataset (the early-game model, Sec. 4.3) and then fine-tuning with RL
(Fig. 7a), which in preliminary experiments we found to perform better than first fine-tuning to
contractor_house followed by fine-tuning with RL (Appendix G.2). The three-phase training
(pretraining, BC fine-tuning, and then RL fine-tuning) succeeds in learning extremely difficult tasks:
it achieves over 80% reliability on iron pickaxes, almost 20% reliability on collecting diamonds, and
2.5% reliability on obtaining a diamond pickaxe (Fig. 7d). For comparison, human players given
the objective of obtaining a diamond pickaxe collect these items in 57%, 15%, and 12% of episodes,
respectively, meaning our model is human-level for crafting iron pickaxes and mining diamonds.
Others have managed to obtain diamonds with ⇠ 0.1% reliability in 15 minutes33,34 but always with a
simplified action space designed to ease exploration. To the best of our knowledge, we are the first to
report non-zero success rates on crafting a diamond pickaxe. Qualitatively, the model developed
useful skills for diamond mining, such as efficient mining patterns, cave exploration, returning to
previously placed objects like crafting tables, and advanced techniques like using wooden pickaxes
as fuel when moving on to iron tools.(vi)

Finally, we validated the importance of the KL loss to the pretrained model during RL fine-tuning.
The treatment without a KL loss obtains only items early in the sequence (logs, planks, sticks, and
crafting tables) limiting its reward (Fig. 7a). This failure to progress further into the sequence is
likely because, while the initial skills of chopping logs and crafting planks are being learned with RL,
subsequent skills like crafting a wooden pickaxe are lost due to catastrophic forgetting.

4.5 Data Scaling Properties of the Foundation Model

In this section we validate a core hypothesis behind this work: that it is far more effective to use
labeled contractor data to train an IDM within the VPT method than it is to directly train a BC
foundation model from that same small contractor dataset. If we could cheaply collect a labeled
contractor dataset of a similar order of magnitude as web_clean, then this would not be important;
however, collecting that scale of data would have cost millions of dollars. Figure 8 compares

(vi)Videos found at https://www.youtube.com/playlist?list=PLNAOIb_agjf3e_UKweM5pQUSfTw8r-Wfc
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Trained on
Contractor Data

Trained on IDM
Labeled Web Data

Figure 8: (Left) Zero-shot rollout performance of foundation models trained on varying amounts
of data. Models to the left of the dashed black line (points 1k hours) were trained on contractor
data (ground-truth labels), and models to the right were trained on IDM pseudo-labeled subsets
of web_clean. Due to compute limitations, this analysis was performed with smaller (71 million
parameter) models except for the final point, which is the 0.5 billion parameter VPT foundation
model. (Right) The corresponding performance of each model after BC fine-tuning each model to
the contractor_house dataset.

foundation models trained on increasing orders of magnitude of data from 1 hour up to the full ⇠70k
web_clean dataset. Foundation models trained up to and including 1k hours are trained on the IDM
contractor data, and those trained on 5k hours and above are trained on subsets of web_clean, which
does not contain any IDM contractor data. Scaling training data increases log collection, mining, and
crafting capabilities. The zero-shot model only begins to start crafting crafting tables at over 5000
hours of training data. When fine-tuning each foundation model to contractor_house, we see that
crafting rates for crafting tables and wooden tools increase by orders of magnitude when using the
entire ⇠70k hour web_clean dataset. We furthermore only see the emergence of crafting stone tools
at the largest data scale.

4.6 Effect of Inverse Dynamics Model Quality on Behavioral Cloning

Figure 9: Zero-shot performance of BC models
trained from scratch on the earlygame_keyword
dataset labeled with IDMs that were trained on
increasing amounts of contractor data.

This section investigates how downstream
BC performance is affected by IDM qual-
ity. We train IDMs on increasingly larger
datasets and use each to independently label
the earlygame_keyword dataset (this smaller
dataset was chosen due to a limited compute bud-
get). We then train a BC model from scratch on
each dataset and report game statistics for each
model as a function of IDM contractor dataset
size (Fig. 9).

IDMs trained on at least 10 hours of data are
required for any crafting, and the crafting rate
increases quickly up until 100 hours of data,
after which there are few to no gains and differences are likely due to noise. Similarly, crafting tables
are only crafted after 50 or more hours of IDM data, and again gains plateau after 100 hours. While
in all previous experiments we use our best IDM trained on 1962 hours of data, these results suggest
we could reduce that number to as low as 100 hours.

5 Discussion and Conclusion

The results presented in this paper help pave the path to utilizing the wealth of unlabeled data on
the web for many sequential decision domains. Compared to representation learning methods, e.g.
generative video modeling, VPT offers the exciting possibility of directly learning to act during
pretraining and using these learned behavioral priors as extremely effective exploration priors for
RL. VPT could even be an effective representation learning method for downstream tasks that do not
require acting, e.g. video captioning, because arguably the most important information in any given
scene would be present in features trained to correctly predict the distribution over future human
actions. We leave this intriguing direction to future work.
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Future work could improve results with more data (we estimate we could collect >1M hours) and
larger, better-tuned models. Our internet data was fairly noisy and varied (players choose their own
graphics settings); we hope future work will investigate even noisier sources of data, as well as how
to use both first and third person demonstrations. Furthermore, all models in this work condition
on past observations only; we cannot ask the model to perform specific tasks. Appendix I presents
preliminary experiments on conditioning our models on closed captions (text transcripts of speech in
videos), showing they become weakly steerable; we believe this a rich direction for future research.
By definition behavioral priors must predict actions, and in this work we found this objective sufficient
to train capable agents; however, a fruitful direction could be incorporating auxiliary representation
learning objectives (e.g. contrastive losses, environment dynamics modeling, etc.) to reduce the
sample complexity of both the IDM and foundation models. Similarly, it would be interesting to see if
VPT could benefit from pretraining its attention layers with a language modeling task as in Li et al. 68

and Reid et al. 69 Loss was not consistently correlated with downstream evaluation metrics (Sec. 4.2),
which often made progress slow. Another worthwhile future direction would be to investigate the
correlation between various training metrics and downstream evaluations.

For RL fine-tuning we only experimented with a standard policy gradient based RL algorithm (PPG);
an interesting future direction would be to investigate how well VPT can be combined with other
RL algorithms, e.g. off-policy or model based. Furthermore, we showed the efficacy of fine-tuning
VPT with RL using a very difficult, albeit handcrafted, reward function aimed at crafting diamond
tools. We hope future work will combine VPT with methods that can generate more generic reward
functions, e.g. natural language based reward functions as proposed in MineDojo70 (released after
this paper). Finally, while we do not anticipate any direct negative societal impacts from the models
trained in this work, as VPT improves and expands to other domains it will be important to assess and
mitigate harms that emerge with other forms of pretraining on internet datasets, such as emulating
inappropriate behavior.71

In conclusion, VPT extends the paradigm of training large and general purpose behavioral priors
to sequential decision domains that have commonly available unlabeled internet data. Our models
exhibited impressive zero-shot behavior and, when fine-tuned with RL, achieved an unprecedented
result of crafting a diamond pickaxe in Minecraft (all the more difficult given the human interface).
We further showed that contractor data is far better used within the VPT pipeline than to train a
foundation model directly and that only a small amount of contractor data (about $2000 USD) was
required to unlock massive amounts of unlabeled online data for use in BC. Finally, learning with
the human keyboard and mouse interface is highly general and allows losslessly modeling the entire
distribution of human behavior. While we only experiment in Minecraft, we believe that VPT provides
a general recipe for training behavioral priors in hard, yet generic, action spaces in any domain that
has a large amount of freely available unlabeled data, such as computer usage.

Acknowledgements

We thank the following people for helpful discussions and support: Bob McGrew, Ken Stanley,
Joel Lehman, Ilya Sutskever, Wojciech Zaremba, Ingmar Kanitscheider, David Farhi, Glenn Powell,
Jonathan Gordon, and the OpenAI supercomputing team, especially Christian Gibson, Ben Chess,
and Christopher Berner.

References
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[3] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

10



[4] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

[5] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li,
Ashwin Bharambe, and Laurens Van Der Maaten. Exploring the limits of weakly supervised
pretraining. In Proceedings of the European conference on computer vision (ECCV), pages
181–196, 2018.

[6] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021.

[7] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[8] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transform-
ers. CoRR, abs/2106.04560, 2021. URL https://arxiv.org/abs/2106.04560.

[9] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

[10] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[11] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[12] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[13] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
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